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Abstract
Maximum Parsimony is the problem of computing a most parsimonious phylogenetic tree for a
taxa set X from character data for X. A common strategy to attack this notoriously hard problem
is to perform a local search over the phylogenetic tree space. Here, one is given a phylogenetic tree T

and wants to find a more parsimonious tree in the neighborhood of T . We study the complexity of
this problem when the neighborhood contains all trees within distance k for several classic distance
functions. For the nearest neighbor interchange (NNI), subtree prune and regraft (SPR), tree
bisection and reconnection (TBR), and edge contraction and refinement (ECR) distances, we show
that, under the exponential time hypothesis, there are no algorithms with running time |I|o(k)

where |I| is the total input size. Hence, brute-force algorithms with running time |X|O(k) · |I| are
essentially optimal.

In contrast to the above distances, we observe that for the sECR-distance, where the contracted
edges are constrained to form a subtree, a better solution within distance k can be found in kO(k) ·
|I|O(1) time.
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1 Introduction

Maximum Parsimony is one of the most popular methods for inferring phylogenetic
(evolutionary) trees from sequences of morphological or molecular characters. Given sequences
of characters for n taxa, this method reconstructs a phylogenetic tree T whose n leaves are
labeled bijectively by the n taxa and that has the minimum parsimony score over all such
trees. The parsimony score is the number of character state changes along the tree edges
that are necessary when extending the sequences for the leaves of T to all internal vertices
of T . Note that for each character, this score is at least s − 1, where s denotes the number
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18:2 Parameterized Local Search for Maximum Parsimony

of different character states. A phylogenetic tree is called perfect if it achieves score s − 1 for
every character. Such a perfect phylogeny does not always exists. For a more comprehensive
introduction to Maximum Parsimony, we refer the interested reader to [9].

From an algorithmic point of view, the Maximum Parsimony problem is notoriously
hard: It is NP-complete even for binary characters [12]. Moreover, the current best running
time is Ω((2n − 3)!!), where (2n − 3)!! = 1 · 3 · . . . · (2n − 5) · (2n − 3) [4]. The associated
algorithm generates all possible binary phylogenetic trees on n leaves in a bottom-up fashion.
Hence, the best known algorithm is essentially a brute-force-method. This running time
bound is impractical when n > 15. Better running times are possible when the instance
has a near-perfect phylogeny and the number of different character states s is small. Here,
the running time is measured also in terms of the excess q over the score of a perfect
phylogeny. In the general case, Maximum Parsimony can be solved in nmO(q)2O(q2s2)

time [10], where m is the length of the character sequences. In 2007, the running time was
improved to O(21q + 8qnm2) for the special case of binary characters and the practical
usefulness of the improved algorithm was demonstrated for q ≤ 10 [30]. In the worst case,
however, q can be essentially as large as m. Moreover, Maximum Parsimony is NP-hard
even for q = 0 when the number of different character states is unbounded [3].

Given the hardness of Maximum Parsimony, solving this problem exactly is impractical
for many real-world datasets due to prohibitive running times. Consequently, heuristic
approaches, in particular local search, play an important role in computing good, but not
necessarily optimal, solutions [2, 13, 14, 16, 17, 18, 19, 25, 26]. These approaches search
the space of all possible phylogenetic trees on n taxa. In the course of such a search, the
parsimony score of a subset of the phylogenetic trees in the space is computed. For any
given tree, this step takes polynomial time using Fitch’s or Sankoff’s algorithm [11, 28]. A
search through tree space starts by first computing a starting tree T before computing the
parsimony score of all neighbors of T . If there is a neighboring tree T ′ whose parsimony
score is smaller than that of T , then the search is continued by computing the parsimony
score of all neighbors of T ′ and so on until a local optimum is found. In each iteration of
the search, the neighboring trees are those that can be obtained from the current best tree
by one or more rearrangement operations. The most well-known rearrangement operations
on trees that are also considered in local search approaches for Maximum Parsimony, are
nearest neighbor interchange (NNI), subtree prune and regraft (SPR), and tree bisection
and reconnection (TBR) [1]. Each of these operations deletes an edge of a tree and then
reconnects the resulting two subtrees. Depending on the operation, the reconnection is more
or less restrictive, with SPR being a generalization of NNI and TBR being a generalization
of SPR. The set of all trees that can be obtained by one operation is called the NNI, SPR, or
TBR neighborhood, respectively. More general, we say that a tree T ′ is in the k-neighborhood
with respect to NNI, SPR, or TBR of another tree T , if T ′ can be obtained from T by at
most k NNI, SPR, or TBR operations, respectively.

In addition to NNI, SPR, and TBR, the k-ECR operation has also been considered in
the literature (see for example the works by Ganapathy et al. [13, 14]). This latter operation
first contracts up to k edges and then refines the resulting tree arbitrarily. Here, the k-ECR
neighborhood contains all trees that can be obtained from a starting tree by applying one
k-ECR operation. The 1-ECR neighborhood is exactly the NNI neighborhood, but the 2-ECR
neighborhood strictly contains the set of trees reachable by two NNI moves [14]. The k-ECR
neighborhood appeared earlier implicitly under the term sectorial search [19]. The k-sECR
neighborhood, a restricted version of the k-ECR neighborhood where the contracted edges
must form a subtree was considered by Sankoff et al. [29]. They found that for larger
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values of k, the k-sECR neighborhood gives better results than the 1-ECR neighborhood
or, equivalently, the NNI neighborhood. Guo et al. [20] found that exploring the k-ECR
neighborhood is too costly and thus proposed a restriction of this neighborhood which
already leads to very good local optima. Their approach contracts k edges and then refines
the resulting tree by using neighbor joining, a fast distance-based method to reconstruct
phylogenetic trees. To summarize, local search is an important paradigm for designing
heuristics for Maximum Parsimony, and it has been noted that larger neighborhoods such
as the k-ECR neighborhood give better results at the cost of higher running times. So far,
there is however no study of how hard exploring larger neighborhoods actually is.

To analyze the computational complexity of exploring neighborhoods under NNI, SPR,
TBR, k-ECR, and k-sECR, we use the framework of parameterized local search [8, 15, 23, 24].
Here, one studies local search problems with a neighborhood whose size can be adjusted by
a parameter k. In the canonical parameterized local search problem, one is then given some
solution for an optimization problem and the question is whether there is a better solution
in the k-neighborhood. Local search for any of the aforementioned neighborhoods that are
associated with distances between two trees fits exactly into this framework: we are given
a phylogenetic tree and want to know whether there is one with a better parsimony score
in the k-neighborhood. Typically, the k-neighborhood has a size of O(|I|f(k)), where |I|
is the input size. In our case, the input size |I| is in O(n2 · m). Thus, using a brute-force
algorithm, one can find a better solution in the neighborhood if it exists in |I|f(k) time. The
algorithmic question is now whether this can be done much faster. In particular, a running
time of f(k) · |I|O(1) would be desirable since the explosion in the running time would then
depend only on k and not on |I|. Parameterized algorithmics provides toolkits to design
such algorithms or to show that such algorithms are unlikely. The latter can be done by
showing W[1]-hardness with respect to k [6, 7] or by giving tight running time bounds based
on the exponential time hypothesis (ETH) [21].

Our results are as follows. We show that even when all characters are binary, searching
the k-ECR neighborhood is W[1]-hard with respect to k. The reduction that we use to
establish this result also shows that, under the ETH, a running time of |I|Ω(k) is necessary.
Moreover, the reduction implies hardness for searching the k-neighborhood with respect to
NNI, SPR, and TBR. In a nutshell, our results show that one cannot gain a substantial
speed-up over the brute-force algorithm when trying to search these large neighborhoods.
We then establish that nO(k) · m time is sufficient to search the k-neighborhoods with respect
to any of NNI, SPR, TBR, and k-ECR, giving tight upper and lower bounds for the running
time dependence on k. Finally, we observe that the k-sECR neighborhood of Sankoff [29]
can be searched in kO(k) · |I|O(1) time, making it possible to consider much larger values
of k than for the other neighborhoods. Let us remark that, while we formally study the
decision problem that asks for the existence of a better tree in the k-neighborhood, our
hardness results and algorithms also apply to the problem of finding an optimal tree in
the k-neighborhood.

Proofs of statements marked with (*) are deferred to a full version of the article.

2 Preliminaries

For details about relevant definitions of parameterized complexity such as fixed-parameter
tractability, W[1]-hardness, parameterized reductions and ETH, refer to the standard mono-
graphs [6, 7].
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Graph notation. For a graph G = (V, E) and a vertex set K ⊆ V , let E(K) denote the
set of edges of G where both endpoints are from K. The subdivision of an edge e ∈ E in G

results in the graph G′ obtained by removing e from G and adding a new vertex which is
adjacent to both endpoints of e. Let v be a vertex of degree 2 in G. The suppression of v

in G results in the graph G′ obtained by removing v from G and joining both neighbors of v

by an edge.

Phylogenetic trees. Throughout this paper, X denotes a non-empty finite set of taxa.
An unrooted phylogenetic X-tree (for short, X-tree) T is a tree with leaf-set X and where

no vertex has degree 2. If all non-leaf vertices of T have degree three, then T is called binary.
Furthermore, if an edge e is incident with a leaf of T , then e is called a pendant edge and,
otherwise, an internal edge. For two disjoint sets of taxa A and B, we say that A|B is a split
of an X-tree T if there is an edge e in T such that the deletion of e results in two subtrees
where one has leaf set A and the other has leaf set B. The set of all splits of T is denoted
by Σ(T ). Furthermore, we say that an X-tree T ′ is a refinement of T if Σ(T ) ⊆ Σ(T ′).
Additionally, if T ′ is binary, then T ′ is a binary refinement of T . We say that two X-trees T

and T ′ are isomorphic if Σ(T ) = Σ(T ′). Equivalently, two X-trees T and T ′ are isomorphic
if there is a bijection φ between the vertices of T and the vertices of T ′ such that φ(x) = x

for all x ∈ X, and for all distinct vertices u and v of T , {u, v} is an edge of T if and only if
{φ(u), φ(v)} is an edge of T ′.

Now, let T be an X-tree and let V ′ be a subset of the vertices of T . Then T (V ′) denotes
the minimal subtree of T containing all vertices in V ′. Let A be a non-empty and proper
subset of X and let T be a binary X-tree. If A|(X \ A) is a split of T , then the subtree T (A)
is a pendant A-tree. Moreover, the pseudo-root of T (A) is the unique vertex of degree 2
in T (A) if |A| > 1 and the unique vertex of T (A), otherwise.

Maximum parsimony. A character1 c on X is a function c : X → C. If |C| = 2, then c

is called a binary character. Intuitively, C can be thought of as the underlying alphabet
and each element in the alphabet is a character state. Let T be an X-tree with vertex set
V , and let c be a character on X whose set of character states is C. An extension c∗ of c

to V is a function c∗ : V → C such that c∗(x) = c(x) for each taxon x ∈ X. Let c∗ be an
extension of c. A mutation edge of c∗ in T is an edge {u, v} in T such that c∗(u) ̸= c∗(v)
and we let scorec∗(T ) denote the number of mutation edges of c∗ in T . Then the parsimony
score of c on T , denoted by scorec(T ), is obtained by minimizing scorec∗(T ) over all possible
extensions c∗ of c. An extension c∗ that minimizes scorec∗(T ) is called an optimal extension
of c in T . Moreover the maximum parsimony score of c, denoted by MP(c), is the parsimony
score of c minimized over all binary X-trees.

Now let S = (c1, c2, . . . , cm) be a sequence of characters on X. Then the parsimony score
of S on an X-tree T is defined as scoreS(T ) =

∑m
i=1 scoreci(T ) and, similarly, the maximum

parsimony score of S, denoted by MP(S), is the parsimony score of S minimized over all
binary X-trees.

We may abuse notation by writing c ∈ S if the character c is contained in the sequence S.

SPR and TBR. Let T be a binary X-tree. Let e = {u, v} be an edge of T , and let T1
and T2 be the two trees obtained from T by deleting e and suppressing u if its degree is 2.
Without loss of generality, we may assume that T2 contains v. If T1 contains at least one

1 Characters as defined here are not elements of some alphabet but functions that assign an element of
some alphabet to each taxon.
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edge, subdivide an edge of T1 with a new vertex u′; otherwise, set u′ to be the single isolated
vertex of T1. Finally, obtain a binary X-tree T ′ by adding the new edge {u′, v}. We say
that T ′ has been obtained from T by a single subtree prune and regraft (SPR) operation.
We next define a generalization of the SPR operation. Again, let e be an edge of T , and
let T1 and T2 be the two trees obtained from T by deleting e and suppressing any resulting
degree-2 vertices. For each i ∈ {1, 2}, if Ti has at least one edge, subdivide an edge in Ti

with a new vertex vi and, otherwise, set vi to be the single vertex of Ti. Obtain a binary
X-tree T ′ by adding the new edge {v1, v2}. We say that T ′ has been obtained from T by a
single tree bisection and reconnection (TBR) operation.

NNI, k-ECR, and k-sECR. Let T be a binary X-tree. Let e = {u, v} be an edge of T and
let e′ = {v, w} be an internal edge of T that is adjacent to e. Let T ′ be a binary X-tree
obtained from T by deleting e, suppressing v, subdividing an edge that is incident with w

with a new vertex v′, and joining u and v′ via a new edge. We say that T ′ has been obtained
from T by a single nearest neighbor interchange (NNI) operation. Equivalently, if T ′ is a
binary refinement of the tree obtained from T by contracting e′ and T ′ is non-isomorphic
to T , then T ′ is obtained from T by a single NNI operation.

Now let T be a binary X-tree, and let k be a positive integer. Let T ′ be a binary
refinement of a tree obtained from T by contracting k (distinct) internal edges E′. If T ′

and T are non-isomorphic, then we say that T ′ is a single k-edge contract and refine (k-ECR)
operation [13] apart from T and that E′ is a contraction set for T and T ′. Note that an NNI
operation is a 1-ECR operation and vice versa. We denote the restricted version of a k-ECR
operation that requires the k contracted edges to form a subtree of T as k-sECR [29].

Distance measures. Let T and T ′ be binary X-trees. For each Θ ∈ {NNI, SPR, TBR},
the distance dΘ(T, T ′) is defined as the minimum number of Θ operations to transform
T into T ′ [1]. The distance dECR(T, T ′) is defined as the smallest number k such that T

and T ′ are one k-ECR operation apart. Analogously, the distance dsECR(T, T ′) is defined as
the smallest number k such that T and T ′ are one k-sECR operation apart.

Considered problems. In this work, we consider the parameterized complexity of the
following problem for each distance measure d ∈ {dNNI, dSPR, dTBR, dECR, dsECR}.

d-LS Maximum Parsimony
Input: A set of taxa X, a binary X-tree T , a sequence of characters S, and an
integer k.
Question: Is there a binary X-tree T ′ with d(T, T ′) ≤ k and scoreS(T ′) < scoreS(T )?

3 Properties of the Considered Distance Measures

In this section, we analyze the relation of the different distance measures.

▶ Observation 3.1 ([1, 27]). The distance measures dNNI, dSPR, and dTBR are metrics.

▶ Lemma 3.2 (*). The distance measure dECR is a metric.

▶ Observation 3.3. Let T and T ′ be distinct binary X-trees and let k > 0 be an inte-
ger. If dECR(T, T ′) = k, then there is a binary X-tree T̃ with dsECR(T̃ , T ′) > 0 such
that dECR(T, T ′) = dECR(T, T̃ ) + dsECR(T̃ , T ′).

CPM 2023



18:6 Parameterized Local Search for Maximum Parsimony

The idea behind Observation 3.3 is to consider the connected components of T induced by
the contraction set S between T and T ′. If S forms a subtree of T , then S is connected
and dsECR(T, T ′) = dECR(T, T ′). Hence, the statement holds for T̃ = T ′. Otherwise, let S̃

be an inclusion-maximal subset of S, such that S̃ forms a subtree of T . Since S̃ is inclusion-
maximal, we can obtain T ′ from T in two steps: First, we can obtain an intermediate X-tree T̃

from T by an sECR operation with contraction set S̃. Second, we can obtain T ′ from T̃ by
an ECR operation with contraction set S \ S̃.

▶ Lemma 3.4 (*). Let T and T ′ be binary X-trees. Then, dNNI(T, T ′) ≥ dECR(T, T ′).

▶ Lemma 3.5. Let T and T ′ be binary X-trees. Then, dsECR(T, T ′) ≥ dSPR(T, T ′).

Proof. Let k = dsECR(T, T ′). Hence, there is a set S of k internal edges in T such that T ′

can be obtained by an sECR operation with contraction set S. Let V ′ be the vertices of T

incident with some edge of S and let V ∗ be the neighbors of V ′ in T that are not incident
with any edge of S. Recall that by definition of sECR operations, the edges of S induce
a subtree of T . Hence, T (V ∗) is a binary V ∗-tree having the set S as internal edges. For
each vertex v of V ∗, let Tv denote the pendant subtree of T with pseudo-root v obtained by
removing the edge between v and the unique neighbor of v in V ′. Since T ′ can be obtained
by an sECR operation with contraction set S, T ′ contains a subtree T ′

v isomorphic to Tv for
each vertex v of V ∗. Hence, dSPR(T, T ′) = dSPR(TS , T ′

S), where TS is obtained from T by
replacing Tv by the auxiliary taxa v for each vertex v of V ∗ and where T ′

S is obtained from T ′

by replacing T ′
v by the auxiliary taxa v for each vertex v of V ∗ [1]. Note that TS = T (V ∗).

Hence, it remains to show that dSPR(TS , T ′
S) ≤ k. Since T is binary and the edges of S

induce a subtree of T , |V ∗| = |S| + 3. Moreover, since for each set of taxa X ′ and each two
binary X ′-trees T̃ and T̂ , dSPR(T̃ , T̂ ) ≤ |X ′| − 3 [1], we conclude dSPR(TS , T ′

S) ≤ |V ∗| − 3 =
|S| = k. Consequently, dSPR(T, T ′) ≤ k = dsECR(T, T ′). ◀

▶ Lemma 3.6 (*). Let T and T ′ be binary X-trees. Then, dECR(T, T ′) ≥ dSPR(T, T ′).

4 Hardness of d-LS Maximum Parsimony

In this section, we establish our main theorem.

▶ Theorem 4.1. For each distance measure d ∈ {dNNI, dECR, dSPR, dTBR} and even if each
character is binary, d-LS Maximum Parsimony

is NP-complete, W[1]-hard when parameterized by k, and
cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the ETH fails.

We reduce from Clique which is NP-hard [22], W[1]-hard when parameterized by k [7],
and cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the ETH
fails [5, 6].

Clique
Input: An undirected graph G = (V, E) and an integer k.
Question: Is there a clique of size k in G, that is, a set of vertices K of size k, such
that |E(K)| =

(
k
2
)
?

Let I = (G = (V, E), k) be an instance of Clique and let d ∈ {dNNI, dECR, dSPR, dTBR}
be a distance measure. We describe how to construct an equivalent instance I ′ = (X, T =
(V ′, E′), S, k′) of d-LS Maximum Parsimony in polynomial time where k′ := k if d ∈
{dSPR, dTBR} and k′ := 2k if d ∈ {dNNI, dECR}.
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(a) For a vertex v ∈ V , the pendant Xv-tree Tv . The bold
edges are the only edges of Tv that are not in R.

q2

q3

q|V |

x∗

TV (1) TV (2)

TV (3)

TV (|V |)

(b) The subtree of T connecting the pen-
dant trees Tv for each vertex v ∈ V .

Figure 1 The construction of the X-tree T .

Definition of X and T . We start with an empty taxa set X and add for each vertex v ∈ V ,
a set Xv consisting of the eight taxa

in0
v, in1

v, in0
v, in1

v, out0
v, out1

v, out0
v, and out1

v

to X. Additionally, we add a taxon x∗ to X. This completes the definition of X.
Next, we define the binary X-tree T = (V ′, E′). Since X contains 8 · |V |+1 taxa and each

internal vertex of T has three neighbors, T ′ has 16 · |V | vertices and 2 · |X| − 3 = 16 · |V | − 1
edges. By definition, V ′ is a superset of X. Additionally, for each vertex v ∈ V , the set V ′

contains the seven vertices

inv, inv, outv, outv, rin
v , rmid

v , and rout
v .

The subtree Tv := T (Xv) is depicted in Figure 1a.
Moreover, V ′ contains |V | − 1 additional vertices qi with i ∈ [2, |V |]. Fix some arbitrary

ordering of the vertices of V and let V (i) denote the ith vertex of V according to that
ordering. The vertex q2 is adjacent to rout

V (1), rout
V (2), and q3. For each i ∈ [3, |V | − 1], the

vertex qi is adjacent to qi−1, qi+1, and rout
V (i). Finally, q|V | is adjacent to q|V |−1, rout

V (|V |),
and x∗. See Figure 1b for an illustration. This completes the definition of T .

Intuition. The idea of the reduction is as follows: Some of the characters that we define in
the following will ensure that each binary X-tree T ′ that improves over T contains a pendant
subtree T ′(Xv) for each vertex v ∈ V . Further characters will ensure that there are only two
non-isomorphic trees for T ′(Xv) which are depicted in Figure 1a and Figure 2. Intuitively,
these two choices then function as a selection gadget for selecting vertex v as a vertex of the
sought clique K. The budget k′ bounds how many such vertices can be selected. Finally,
further characters will ensure that T ′ improves over T only if E(K) contains at least

(
k
2
)

edges.

Definition of the characters of S. Next, we define the characters of S which are all binary
characters whose character states are 0 and 1. We obtain S by concatenating two sequences
of characters, SG and SR, which we describe in the following.

First, we describe the characters of SG. An overview of the characters is given in Table 1.
We initialize SG as the empty sequence.

CPM 2023



18:8 Parameterized Local Search for Maximum Parsimony

For each edge e ∈ E, we add a character ce to SG. Let e be an edge of E. We set ce(x∗) := 1.
Let v be a vertex of V . If v is an endpoint of e, we set ce(x) := 1 for each taxon x ∈
{in0

v, in1
v, in0

v, in1
v} and we set ce(x) := 0 for each taxon x ∈ {out0

v, out1
v, out0

v, out1
v}. Other-

wise, if v is not an endpoint of e, we set ce(x) := 1 for each taxon x ∈ {in1
v, in1

v, out1
v, out1

v}
and we set ce(x) := 0 for each taxon x ∈ {in0

v, in0
v, out0

v, out0
v}. Let SE denote the sequence

of characters ce for each edge e ∈ E.
Next, we define a character cmal. We set cmal(x∗) := 1. For each vertex v ∈ V , we

set cmal(out0
v) = cmal(out1

v) := 1 and we set cmal(x) := 0 for each taxon x ∈ Xv \{out0
v, out1

v}.
We add a sequence Smal of

(
k
2
)

− 1 copies of cmal to SG. Intuitively, in a binary X-tree T ′, if
both endpoints of an edge e ∈ E are in the selected set K, then the parsimony score of ce

in T ′ is exactly the parsimony score of ce in T minus one. Moreover, if T ′ is non-isomorphic
to T , then the parsimony score of Smal in T ′ is exactly the parsimony score of Smal in T

plus |Smal|. Hence, the characters of Smal act as a hurdle to ensure that E(K) contains at
least |Smal| + 1 =

(
k
2
)

edges.
Finally, for each vertex v ∈ V , we define four characters cv,in, cv,out, cv,ri, and cv,ro. For

each taxon x of X \ Xv, we set cv,in(x) := cv,out(x) := cv,ri(x) := cv,ro(x) := 1. Now, let x

be a taxon of Xv.
If x is in {in0

v, in1
v}, we set cv,in(x) := 1, cv,out(x) := 0, cv,ri(x) := 1, and cv,ro(x) := 0.

If x is in {in0
v, in1

v}, we set cv,in(x) := 1, cv,out(x) := 0, cv,ri(x) := 0, and cv,ro(x) := 0.
If x is in {out0

v, out1
v}, we set cv,in(x) := 0, cv,out(x) := 1, cv,ri(x) := 0, and cv,ro(x) := 0.

If x is in {out0
v, out1

v}, we set cv,in(x) := 0, cv,out(x) := 1, cv,ri(x) := 0, and cv,ro(x) := 1.
Let α := 2|X| · (|E| +

(
k
2
)
). Note that α is larger than scoreSE

(T ′) + scoreSmal(T ′) of any
binary X-tree T ′, since such a tree T ′ contains less than 2|X| edges and |SE | + |Smal| =
|E| +

(
k
2
)

− 1. For each vertex v ∈ V , we extend SG by
a sequence Sv,in of α copies of cv,in,
a sequence Sv,out of α copies of cv,out,
a sequence Sv,ri of 2α copies of cv,ri, and
a sequence Sv,ro of 2α copies of cv,ro.

Let Sv denote the combined sequences of Sv,in, Sv,out, Sv,ri, and Sv,ro. Intuitively, for
each binary X-tree T ′ that improves over T and contains T ′(Xv) as a pendant subtree,
the characters of Sv ensure that T ′(Xv) is isomorphic to either the pendant tree depicted
in Figure 1a or the pendant tree depicted in Figure 2. These two choices then function as a
selection gadget for the vertices of the sought clique in G. This completes the construction
of SG. Note that |SG| = |E| +

(
k
2
)

− 1 + 6α · |V |.
Next, we describe the sequence of characters SR. Let β := 2|X| · |SG|. Note that β is

larger than scoreSG
(T̃ ) of any binary X-tree T̃ , since such a tree T̃ contains less than 2|X|

edges. Let R := E′ \ {{rin
v , rmid

v }, {rmid
v , rout

v } | v ∈ V }. For each edge e of R, we define a
character ce

R. Let A|B be the split of T induced by e. For each taxon x ∈ A, we set ce
R(x) := 0

and for each taxon x ∈ B, we set ce
R(x) := 1. We add as sequence Se

R of β copies of ce
R to SR.

Intuitively, the characters of SR ensure that each binary X-tree T ′ that improves over T ,
shares the split that is induced by e in T for each edge e of R. This implies that T ′(Xv) is a
pendant subtree of T ′ for each vertex v ∈ V .

Properties of binary X-trees. Before we show the correctness of the reduction, we first
make some observations about binary X-trees with the characters of the construction.

Note that for each binary X-tree T ′ and each edge e of R, scorece
R

(T ′) ≥ 1.
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Table 1 An overview of the characters of SG.

ce ∈ SE ce ∈ SE cmal cv,in cv,out cv,ri cv,ro c ∈ Sw

v ∈ e v /∈ e w ̸= v

x∗ 1 1 1 1 1 1 1 1
in0

v 1 0 0 1 0 1 0 1
in1

v 1 1 0 1 0 1 0 1
in0

v 1 0 0 1 0 0 0 1
in1

v 1 1 0 1 0 0 0 1
out0

v 0 0 0 0 1 0 0 1
out1

v 0 1 0 0 1 0 0 1
out0

v 0 0 1 0 1 0 1 1
out1

v 0 1 1 0 1 0 1 1

▶ Definition 4.2. Let T ′ be a binary X-tree. We say that T ′ is split-consistent for T and R

if for each edge e of R, the split of T induced by e is also a split of T ′.

In preparation for the next observation, note that if a binary X-tree T ′ is not split-
consistent for T and R, then there is some edge e of R such that scorece

R
(T ′) ≥ 2 and

thus scoreSe
R

(T ′) ≥ 2 · β. Hence, scoreS(T ′) ≥ scoreSR
(T ′) ≥ β · (|R| + 1). Since β >

scoreSG
(T ), this implies scoreS(T ′) > scoreS(T ). Hence, we conclude the following.

▶ Observation 4.3. Let T ′ be a binary X-tree. a) If scoreS(T ′) ≤ scoreS(T ), then T ′ is split-
consistent for T and R. b) If T ′ is split-consistent for T and R, then scoreSR

(T ′) = β · |R|.

To determine whether I ′ is a yes-instance of d-LS Maximum Parsimony, we analyze
the structure of binary X-trees T ′ with scoreS(T ′) ≤ scoreS(T ). Due to Observation 4.3, we
only need to consider binary X-trees that are split-consistent for T and R in the following.

Let v be a vertex of V and let T ′ be a binary X-tree which is split-consistent for T and R.
Since there is an edge ev in T such that ev induces the split Xv|(X \ Xv) in T and ev is
contained in R, Xv|(X \ Xv) is a split in T ′. Hence, T ′(Xv) is a pendant tree. Moreover,
since all edges incident with inv are in R, we can assume that inv is the common neighbor
of in0

v and in1
v in T ′. Similarly, we may assume that inv is the common neighbor of in0

v

and in1
v in T ′, outv is the common neighbor of out0

v and out1
v in T ′, and outv is the common

neighbor of out0
v and out1

v in T ′.

▶ Definition 4.4. Let T ′ be a binary X-tree which is split-consistent for T and R, let v be a
vertex of V , and let r be the pseudo-root of the pendant tree T ′(Xv). We say that T ′(Xv) is
an in-rooting of Tv if inv is adjacent to r, inv has distance 2 to r, and both outv and outv

have distance 3 to r. Similarly, we say that T ′(Xv) is an out-rooting of Tv if outv is adjacent
to r, outv has distance 2 to r, and both inv and inv have distance 3 to r.

Figure 1a shows an out-rooting of Tv and Figure 2 shows an in-rooting of Tv.
Note that for each vertex v of V , there is a unique in-rooting of Tv with respect to

isomorphism. Similarly, there is a unique out-rooting of Tv with respect to isomorphism.
Note that for each vertex v ∈ V , Tv is an out-rooting of Tv. We call a binary X-tree T ′ well-
rooted if T ′ is split-consistent for T and R and if for each vertex v ∈ V , T ′(Xv) is either an
in-rooting or an out-rooting of Tv. Note that T is well-rooted.

▶ Lemma 4.5 (*). Let T ′ be a binary X-tree which is split-consistent for T and R and let v be
a vertex of V . If T ′(Xv) is an in-rooting of Tv or an out-rooting of Tv, then scoreSv (T ′) = 9α.
Otherwise, scoreSv

(T ′) ≥ 10α.
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in0
v in1

v

inv

in0
v in1

v

inv

out0
v out1

v

outv

out0
v out1

v

outv

Figure 2 An in-rooting of Tv.

Next, we describe for a given well-rooted binary X-tree T ′ the maximum parsimony
scores of T ′ with respect to the characters of SE and Smal. The idea is that in a well-rooted
binary X-tree T ′, for each edge e = {u, v} ∈ E where T ′(Xu) is an in-rooting of Tu and
where T ′(Xv) is an in-rooting of Tv, the parsimony score of the character ce in T ′ is exactly
the parsimony score of the character ce in T minus one. Moreover, if T ′(Xv) is an in-rooting
of Tv for at least one vertex v ∈ V , then the parsimony score of the characters of Smal in T ′

is exactly the parsimony score of the characters of Smal in T plus
(

k
2
)

− 1.

▶ Lemma 4.6. Let T ′ be a well-rooted binary X-tree. Let e = {u, v} be an edge of E.
a) If T ′(Xu) is an in-rooting of Tu and T ′(Xv) is an in-rooting of Tv, then scorece

(T ′) =
4(|V | − 2) + 2. Otherwise, scorece

(T ′) = 4(|V | − 2) + 3.
b) If there is a vertex w ∈ V such that T ′(Xw) is an in-rooting of Tw, then scorecmal(T ′) =

|V | + 1. Otherwise, that is, if T ′ is isomorphic to T , scorecmal(T ′) = |V |.

Proof. For each vertex w of V , let T ′
w := T ′(Xw). Let Vin be those vertices w of V , where T ′

w

is an in-rooting of Tw and let Vout = V \ Vin be those vertices w of V , where T ′
w is an

out-rooting of Tw. For each vertex w ∈ Vin, let rin
w be the name of the pseudo-root of T ′

w,
let rmid

w and inw be the neighbors of rin
w , and let rout

w and inw be the neighbors of rmid
w .

Analogously, for each vertex w ∈ Vout, let rout
w be the name of the pseudo-root of T ′

w, let rmid
w

and outw be the neighbors of rout
w , and let rin

w and outw be the neighbors of rmid
w . Recall that

since T ′ is well-rooted, for each vertex w ∈ V , inw is adjacent to both in0
w and in1

w, inw is
adjacent to both in0

w and in1
w, outw is adjacent to both out0

w and out1
w, and outw is adjacent

to both out0
w and out1

w.
First, we show statement a). Let ce be a character for some edge e = {u, v} of E. For

each vertex w ∈ V \ {u, v},
let Pinw

be the unique path between in0
w and in1

w in T ′,
let Pinw

be the unique path between in0
w and in1

w in T ′,
let Poutw

be the unique path between out0
w and out1

w in T ′, and
let Poutw

be the unique path between out0
w and out1

w in T ′.
Note that each of these four paths only contains two edges and that these four paths
are pairwise edge-disjoint. Let Pw := {Pinw

, Pinw
, Poutw

, Poutw
}. Let P ′ be a path in Pw

and let w0 and w1 be the terminals of P ′. Since by definition ce(w0) ̸= ce(w1), for each
extension c∗

e of ce in T ′ at least one edge of P ′ is a mutation edge of c∗
e. Note that each

path in Pw is edge-disjoint with each path in Pw′ for distinct vertices w and w′ of V \ {u, v}.
Moreover, let Pu be the path between in0

u and out0
u in T ′ and let Pv be the path between in0

v

and out0
v in T ′. Note that Pu and Pv are edge-disjoint and that both are edge-disjoint with

each path Pw ∈ Pw for each vertex w ∈ V \ {u, v}. Since ce(in0
u) = 0 and ce(out0

u) = 1, for
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each extension c∗
e of ce in T ′, at least one edge of Pu is a mutation edge of c∗

e. Similarly,
since ce(in0

v) = 0 and ce(out0
v) = 1, for each extension c∗

e of ce in T ′, at least one edge of Pv

is a mutation edge of c∗
e. Hence, scorece

(T ′) ≥ 4(|V | − 2) + 2.

Case 1: T ′
u is an in-rooting of Tu and T ′

v is an in-rooting of Tv. We define an extension c∗
e

of ce in T ′, such that scorec∗
e
(T ′) = 4(|V |−2)+2. We set c∗

e(outu) := c∗
e(outu) := c∗

e(rout
u ) := 0

and c∗
e(outv) := c∗

e(outv) := c∗
e(rout

v ) := 0. For each remaining internal vertex v′ of T ′, we
set c∗

e(v′) := 1. Hence, the edge set

{{rout
u , rmid

u }, {rout
v , rmid

v }}

∪ {{in0
w, inw}, {in0

w, inw}, {out0
w, outw}, {out0

w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗
e in T ′. Consequently, scorec∗

e
(T ′) = 4(|V | − 2) + 2 which

implies scorece(T ′) = 4(|V | − 2) + 2.

Case 2: T ′
u is an out-rooting of Tu or T ′

v is an out-rooting of Tv. Assume without loss of
generality that T ′

v is an out-rooting of Tv. Let P ∗
x be the unique path between out0

v and x∗

in T ′. Since ce(out0
v) = 0 and ce(x∗) = 1, for each extension c∗

e of ce in T ′, at least one edge
of P ∗

x is a mutation edge of c∗
e. Note that P ∗

x is edge-disjoint with Pu and edge-disjoint with
each path Pw ∈ Pw for each vertex w ∈ V \ {u, v}. Moreover, since T ′

v is an out-rooting
of Tv, P ∗

x is also edge-disjoint with Pv. Hence, scorece
(T ′) ≥ 4(|V | − 2) + 3. We define an

extension c∗
e of ce in T ′, such that scorec∗

e
(T ′) = 4(|V | − 2) + 3. To this end, we distinguish

whether T ′
u is an in-rooting of Tu or an out-rooting of Tu.

Case 2.1: T ′
u is an in-rooting of Tu. We set c∗

e(outu) := c∗
e(outu) := c∗

e(rout
u ) := 0

and c∗
e(outv) := c∗

e(outv) := 0. For each remaining internal vertex v′ of T ′, we set c∗
e(v′) := 1.

Hence, the edge set

{{rout
u , rmid

u }, {rmid
v , outv}, {rout

v , outv}}

∪ {{in0
w, inw}, {in0

w, inw}, {out0
w, outw}, {out0

w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗
e in T ′.

Case 2.2: T ′
u is an out-rooting of Tu. We set c∗

e(inu) := c∗
e(inu) := c∗

e(rin
u ) := 1

and c∗
e(inv) := c∗

e(inv) := c∗
e(rin

v ) := 1. For each remaining internal vertex v′ of T ′, we
set c∗

e(v′) := 0. Hence, the edge set

{{rin
u , rmid

u }, {rin
v , rmid

v }, {x∗, qn}}

∪ {{in1
w, inw}, {in1

w, inw}, {out1
w, outw}, {out1

w, outw} | w ∈ V \ {u, v}}

contains the mutation edges of c∗
e in T ′.

Consequently, in both cases scorec∗
e
(T ′) = 4(|V | − 2) + 3 which implies scorece(T ′) =

4(|V | − 2) + 3.
Next, we show statement b). Consider the character cmal. For each vertex v ∈ V , let Pv

be the unique path between out0
v and out0

v in T ′. Since cmal(out0
v) = 0 and cmal(out0

v) = 1,
for each extension c∗

mal of cmal in T ′ at least one edge of Pv is a mutation edge of c∗
mal.

Note that the paths Pv and Pw are edge-disjoint for distinct vertices v and w of V .
Hence, scorecmal(T ′) ≥ |V |.
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Case 1: There is some vertex v ∈ V such that T ′
v is an in-rooting of Tv. Let P ∗

x be
the unique path between in0

v and x∗ in T ′. Since cmal(in0
v) = 0 and cmal(x∗) = 1, for each

extension c∗
mal of cmal in T ′, at least one edge of P ∗

x is a mutation edge of c∗
mal. Note that P ∗

x

is edge-disjoint with Pw for each vertex w ∈ V distinct from v. Moreover, since T ′
v is an

in-rooting of Tv, P ∗
x is also edge-disjoint with Pv. Hence, scorecmal(T ′) ≥ |V | + 1. We define

an extension c∗
mal of cmal in T ′, such that scorec∗

mal
(T ′) = |V | + 1. We set c∗

mal(outw) := 1,
for each vertex w ∈ V . For each remaining internal vertex v′ of T ′, we set c∗

mal(v′) := 0.
Hence, the edge set {{qn, x∗}} ∪ {{outv, rout

v } | v ∈ V } contains the mutation edges of c∗
mal

in T ′. Consequently, scorec∗
mal

(T ′) = |V | + 1 which implies scorecmal(T ′) = |V | + 1.

Case 2: For each vertex v ∈ V , T ′
v is an out-rooting of Tv. Hence, T ′ is isomorphic to T .

We define an extension c∗
mal of cmal in T ′, such that scorec∗

mal
(T ′) = |V |. We set c∗

mal(inv) :=
c∗

mal(inv) := c∗
mal(outv) := c∗

mal(rin
v ) := c∗

mal(rmid
v ) := 0, for each vertex v ∈ V . For each

remaining internal vertex v′ of T ′, we set c∗
mal(v′) = 1. Hence, the edge set {{rmid

v , rout
v } |

v ∈ V } contains the mutation edges of c∗
mal in T ′. Consequently, scorec∗

mal
(T ′) = |V | which

implies that scorecmal(T ′) = |V |. ◀

The score of improving X-trees with respect to S. Since T is well-rooted, and for each
vertex v ∈ V , Tv is an out-rooting of Tv, Observation 4.3, Lemma 4.5, and Lemma 4.6 imply
the following.

▶ Corollary 4.7. scoreS(T ) = |E| · (4(|V | − 2) + 3) + (
(

k
2
)

− 1) · |V | + |V | · 9α + |R| · β.

Note that by definition, α = 2(8|V |+1) · (|E|+
(

k
2
)
) > |E| · (4(|V |−2)+3)+(

(
k
2
)

−1) · |V |.
Hence, scoreS(T ) < α · (9|V | + 1) + |R| · β.

▶ Corollary 4.8. Let T ′ be a binary X-tree with scoreS(T ′) < scoreS(T ). Then, T ′ is
well-rooted.

Proof. Due to Observation 4.3, T ′ is split-consistent for T and R and scoreSR
(T ′) = |R| · β.

Assume towards a contradiction that there is a vertex v ∈ V such that T ′(Xv) is neither
an in-rooting of Tv nor an out-rooting of Tv. Hence, Lemma 4.5 implies scoreSv (T ′) ≥ 10α

and scoreSw
(T ′) ≥ 9α for each vertex w ∈ V \ {v}. Consequently, scoreS(T ′) ≥ 10α + (|V | −

1) · 9α + |R| · β = α · (9|V | + 1) + |R| · β > scoreS(T ), a contradiction. ◀

Distances between well-rooted binary X-trees. Next, we describe for each distance
measure d ∈ {dNNI, dECR, dSPR, dTBR} the distance between T and any other well-rooted
binary X-tree T ′.

▶ Lemma 4.9. Let T ′ be a binary and well-rooted X-tree. Moreover, let K be the set of
vertices of V such that T ′(Xv) is an in-rooting of Tv for each vertex v ∈ K and T ′(Xw) is
an out-rooting of Tw for each vertex w ∈ V \ K. Then, dNNI(T, T ′) = dECR(T, T ′) = 2 · |K|
and dSPR(T, T ′) = dTBR(T, T ′) = |K|.

Proof. First, we show that dNNI(T, T ′) = dECR(T, T ′) = 2 · |K|. To this end, we show
that dNNI(T, T ′) ≤ 2 · |K| and that dECR(T, T ′) ≥ 2 · |K|. Since dNNI(T, T ′) ≥ dECR(T, T ′)
due to Lemma 3.4, this then implies dNNI(T, T ′) = dECR(T, T ′) = 2 · |K|.

To show that dNNI(T, T ′) ≤ 2·|K|, we prove the following: Let T̃ be a well-rooted binary X-
tree and let v be a vertex such that T̃ (Xv) is an out-rooting of Tv. Then, dNNI(T̃ , T̂ ) ≤ 2,
where T̂ is a well-rooted binary X-tree with T̃ (X \ Xv) = T̂ (X \ Xv) and where T̂ (Xv)
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inv inv outv outv inv inv outv outv inv inv outv outv

Figure 3 The two consecutive NNI operation transforming an out-rooting into an in-rooting.

inv inv outv outv

q

inv inv outv outv

q

inv inv outv outv

q

Figure 4 Transforming an out-rooting into an in-rooting by an SPR operation. First, the bold
edge is removed and the triangular vertex is suppressed. Second, the unique internal edge incident
with inv is subdivided by the rectangular vertex. Finally, the rectangular vertex is joined with q by
a new edge.

is an in-rooting of Tv. To show the claim, we describe two consecutive NNI operations
transforming T̃ into T̂ . See Figure 3 for an illustration of these NNI operations. Let rout

v be
name of the pseudo-root of the pendant tree T̃ (Xv), let rout

v be the name of the common
neighbor of rmid

v and outv in T̃ , and let rmid
v be the name of the common neighbor of rin

v

and outv in T̃ . Moreover, let q be the unique neighbor of rout
v outside of T̃ (Xv) in T̃ . We

obtain the well-rooted binary X-tree T̂ from T̃ by
firstly removing the edges {q, rout

v } and {outv, rmid
v } and adding the edges {outv, rout

v }
and {q, rmid

v }, and
secondly removing the edges {q, rmid

v } and {inv, rin
v } and adding the edges {inv, rmid

v }
and {q, rin

v }.
Since this can be done by two consecutive NNI operations and T̃ (X \ Xv) = T̂ (X \ Xv), we
conclude dNNI(T̃ , T̂ ) ≤ 2. Since dNNI is a metric one can then show via induction over any
arbitrary ordering of the vertices of K, that dNNI(T, T ′) ≤ 2 · |K|.

It remains to show that dECR(T, T ′) ≥ 2 · |K|. Let Ẽ be a subset of the internal edges
of T , such that T ′ can be obtained from T by an ECR operation with contraction set Ẽ.
We show that |Ẽ| ≥ 2 · |K|. Let v be a vertex of K. Recall that Tv is an out-rooting of Tv

and that T ′
v is an in-rooting of Tv. Hence, the edge {rout

v , rmid
v } induces the split A|B in T

with A := {in0
v, in1

v, in0
v, in1

v, out0
v, out1

v} and B := X \ A. Since A|B is not a split of T ′, the
edge {rout

v , rmid
v } is contained in Ẽ. Similar, since the edge {rmid

v , rin
v } induces the split A|B

in T with A := {in0
v, in1

v, in0
v, in1

v} and B := X \ A. Since A|B is not a split of T ′, the
edge {rmid

v , rin
v } is contained in Ẽ. Hence, for each vertex v of V , Ẽ contains at least two

edges of T (Xv). Consequently, |Ẽ| ≥ 2 · |K| which implies dECR(T, T ′) ≥ 2 · |K|.
Second, we show that dSPR(T, T ′) = dTBR(T, T ′) = |K|. Similar to the first part of the

proof, we show that dSPR(T, T ′) ≤ |K| and that dTBR(T, T ′) ≥ |K|. Since dSPR(T, T ′) ≥
dTBR(T, T ′) this then implies dSPR(T, T ′) = dTBR(T, T ′) = |K|.

To show that dSPR(T, T ′) ≤ |K|, we prove the following: Let T̃ be a well-rooted binary X-
tree and let v be a vertex such that T̃ (Xv) is an out-rooting of Tv. Then, dSPR(T̃ , T̂ ) ≤ 1,
where T̂ is a well-rooted binary X-tree with T̃ (X \ Xv) = T̂ (X \ Xv) and where T̂ (Xv) is an
in-rooting of Tv.
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To show this claim, we describe an SPR operation transforming T̃ into T̂ . See Figure 4 for
an illustration of this SPR operation. Let rout

v be the name of the pseudo-root of the pendant
tree T̃ (Xv) and let q be the name of the unique neighbor of rout

v outside of T̃ (Xv) in T̃ .
Moreover, let rin

v be the name of the common neighbor of inv and inv in T̃ . We obtain the well-
rooted binary X-tree T̂ from T̃ by: removing the edge {rout

v , q}, suppressing the vertex rout
v ,

subdividing the edge {inv, rin
v } by a vertex q′, and adding the edge {q, q′}. Since this can be

done by a single SPR operation and T̃ (X \ Xv) = T̂ (X \ Xv), we conclude dSPR(T̃ , T̂ ) ≤ 1.
Since dSPR is a metric, one can then show via induction over any arbitrary ordering of the
vertices of K, that dSPR(T, T ′) ≤ |K|.

It remains to show that dTBR(T, T ′) ≥ |K|. This proof is deferred to a full version of the
article. ◀

Correctness. Finally, we are able to show that I is a yes-instance of Clique if and only
if I ′ is a yes-instance of d-LS Maximum Parsimony with appropriate distance bounds.

▶ Lemma 4.10. The following statements are equivalent:
1. There is a clique of size k in G.
2. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dSPR(T, T ′) ≤ k.
3. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dTBR(T, T ′) ≤ k.
4. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dNNI(T, T ′) ≤ 2k.
5. There is a binary X-tree T ′ with scoreS(T ′) < scoreS(T ) and dECR(T, T ′) ≤ 2k.

Proof. First, we show that Item 1 implies each of Item 2–5. Let K ⊆ V be a clique
of size k in G. Further, let T ′ be a well-rooted binary X-tree such that for each ver-
tex v ∈ K, T ′(Xv) is an in-rooting of Tv, and for each vertex v ∈ V \ K, T ′(Xv) is an
out-rooting of Tv. Due to Lemma 4.9, dSPR(T, T ′) = dTBR(T, T ′) = k and dNNI(T, T ′) =
dECR(T, T ′) = 2k. It remains to show that scoreS(T ′) < scoreS(T ). Since T ′ is well-
rooted, due to Observation 4.3, scoreSR

(T ′) = |R| · β and due to Lemma 4.5, for each
vertex v ∈ V , scoreSv

(T ′) = 9α. Moreover, since K is non-empty, we obtain by Lemma 4.6,
that scoreSmal(T ′) = (

(
k
2
)

− 1) · (|V | + 1). Since K is a clique in G, |E(K)| =
(

k
2
)
. Finally,

by Lemma 4.6, for each edge e of E(K), scorece
(T ′) = 4(|V | − 2) + 2, and for each edge e

of E \ E(K), scorece
(T ′) = 4(|V | − 2) + 3. We conclude

scoreS(T ′) = |E| · (4(|V | − 2) + 3) −
(

k

2

)
+

((
k

2

)
− 1

)
· (|V | + 1) + |V | · 9α + |R| · β

= |E| · (4(|V | − 2) + 3) +
((

k

2

)
− 1

)
· |V | + |V | · 9α + |R| · β − 1 = scoreS(T ) − 1,

due to Corollary 4.7. Hence, T ′ is a binary X-tree with scoreS(T ′) < scoreS(T ), dSPR(T, T ′) =
dTBR(T, T ′) = k, and dNNI(T, T ′) = dECR(T, T ′) = 2k.

Second, we show that each of Item 2–5 implies Item 1. Let T ′ be a binary X-tree with
a) scoreS(T ′) < scoreS(T ) and b) dSPR(T, T ′) ≤ k, dTBR(T, T ′) ≤ k, dNNI(T, T ′) ≤ 2k,
or dECR(T, T ′) ≤ 2k. Since scoreS(T ′) < scoreS(T ), due to Corollary 4.8, T ′ is well-rooted,
that is, for each vertex v ∈ V , T ′

v := T ′(Xv) is either an in-rooting of Tv or an out-
rooting of Tv. Let K ⊆ V be the set of all vertices v of V where T ′

v is an in-rooting
of Tv. We show that K is a clique of size k in G. Since dSPR(T, T ′) ≤ k, dTBR(T, T ′) ≤
k, dNNI(T, T ′) ≤ 2k, or dECR(T, T ′) ≤ 2k, Lemma 4.9 implies that K has size at most k.
Moreover, since scoreS(T ′) < scoreS(T ), T ′ is not isomorphic to T , which implies that K

is nonempty. Hence due to Lemma 4.6, scoreSmal(T ′) = (
(

k
2
)

− 1) · (|V | + 1). Moreover,
since T ′ is well-rooted, due to Observation 4.3, scoreSR

(T ′) = |R| · β and due to Lemma 4.5,
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for each vertex v ∈ V , scoreSv (T ′) = 9α. Finally, by Lemma 4.6, for each edge e ∈
E\E(K), scorece

(T ′) = 4(|V |−2)+3, and for each edge e ∈ E(K), scorece
(T ′) = 4(|V |−2)+2.

Consequently, scoreS(T ) − scoreS(T ′) = |E(K)| − (
(

k
2
)

− 1).
Since scoreS(T ′) < scoreS(T ), we have |E(K)| ≥

(
k
2
)
. Hence, K is a size-k clique in G. ◀

Since k′ = k if d ∈ {dSPR, dTBR} and k′ = 2k if d ∈ {dNNI, dECR}, Lemma 4.10 implies
that I is a yes-instance of Clique if and only if I ′ is a yes-instance of d-LS Maximum
Parsimony. This completes the proof of Theorem 4.1.

5 Essentially Tight Brute-Force Algorithms

We now show that simple brute-force algorithms for d-LS Maximum Parsimony for each
distance measure d ∈ {dNNI, dECR, dSPR, dTBR} essentially match the lower bounds shown
in Theorem 4.1. First, consider a distance measure d ∈ {dNNI, dSPR, dTBR}.

▶ Observation 5.1. Let T be a binary X-tree, let d ∈ {dNNI, dSPR, dTBR} be a distance
measure, and let k be an integer. One can enumerate all binary X-trees T ′ with d(T, T ′) ≤ k

in |X|O(k) time.

Observation 5.1 can be seen as follows: there are |X|O(1) many binary X-trees T ′ such
that d(T, T ′) = 1, all these trees can be enumerated in |X|O(1) time, and for each binary X-
tree T ′ with d(T, T ′) > 0, there is a binary X-tree T̂ with d(T̂ , T ′) = 1 and d(T, T ′) =
d(T, T̂ ) + 1.

Furthermore, we may enumerate all binary X-trees T ′ with dsECR(T, T ′) ≤ k as follows:
First, we enumerate all subtrees of T with at most k edges. Second, for each connected
subtree Ts of T with at most k edges, we enumerate all binary refinements of T after
contracting all edges of Ts. In Lemma 5.2, we show that the first step can be done in
O(4k · k−0.5 · |X|) time. In Lemma 5.3, we show that both steps can be performed in
O((2k + 1)!! · 4k · k

√
k · |X|2) time where (2k + 1)!! := 1 · 3 · . . . · (2k + 1).

▶ Lemma 5.2 (*). For every binary X-tree T and every integer k, all connected subtrees
of T with at most k edges can be enumerated in O(4k · k−0.5 · |X|) time.

▶ Lemma 5.3 (*). For a given binary X-tree T and an integer k, there are O((2k + 1)!! ·
4k · k−0.5 · |X|) binary X-trees T ′ with dsECR(T, T ′) ≤ k. Moreover, all these binary X-tree
can be enumerated in O((2k + 1)!! · 4k · k

√
k · |X|2) time.

Hence, we obtain the following due to the fact that the parsimony score of a given X-tree
can be computed in O(|X| · |S|) time [11].

▶ Theorem 5.4. dsECR-LS Maximum Parsimony can be solved in O((2k + 1)!! · 4k · k
√

k ·
|X|2 · |S|) = 2O(k·log k) · |X|2 · |S| time.

Finally, we describe how to enumerate all binary X-trees T ′ with dECR(T, T ′) ≤ k.

▶ Lemma 5.5. Let T be a binary X-tree and let k be an integer. One can enumerate all
binary X-trees T ′ with dECR(T, T ′) ≤ k in |X|O(k) time.

Proof. We show this statement by induction over k.

Base case. Consider k = 0. Hence, T is the only binary X-tree T ′ with dECR(T, T ′) = 0
and can be enumerated in |X|O(1) time.

CPM 2023
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Inductive step. For the inductive step, suppose that for each binary X-tree T̃ and
for each k′ < k, one can compute all binary X-trees T ′ with dECR(T̃ , T ′) ≤ k′ in
|X|O(k′) time. Note that this implies that for each k′ < k there are |X|O(k′) binary X-
trees T ′ with dECR(T̃ , T ′) = k′. For each i < k, let Ti be the collection of all bi-
nary X-trees T̃ with dECR(T, T̃ ) = i and let T<k be the collection of all binary X-trees T̃

with dECR(T, T̃ ) < k, that is, T<k = ∪k−1
i=0 Ti. Moreover, let TsECR be the collection of all

binary X-trees T̃ with dsECR(T, T̃ ) = k. Note that T<k can be computed in |X|O(k−1) time
and due to Lemma 5.3, TsECR can be computed in kO(k) · |X|O(1) time. Let

T ′
k := TsECR ∪

k−1⋃
i=1

⋃
T̃ ∈Ti

{T ′ | dECR(T̃ , T ′) ≤ k − i}.

Recall that by the induction hypothesis, for each i < k, Ti has size |X|O(i) and for each
binary X-tree T̃ ∈ Ti the collection {T ′ | dECR(T̃ , T ′) ≤ k − i} can be computed in
|X|O(k−i) time. Hence, T ′

k can be computed in |X|O(k) time. We set T := T ′
k ∪ T<k and

show that T contains exactly the binary X-trees T ′ with dECR(T, T ′) ≤ k.
Assume towards a contradiction that this is not the case.

Case 1: There is a binary X-tree T ′ with dECR(T, T ′) ≤ k such that T ′ is not
in T . By definition, T<k contains all binary X-trees T̃ with dECR(T, T̃ ) < k. Conse-
quently, dECR(T, T ′) = k. Hence, due to Observation 3.3, there is a binary X-tree T̃

with dsECR(T̃ , T ′) > 0 such that dECR(T, T ′) = dECR(T, T̃ ) + dsECR(T̃ , T ′). Let i :=
dECR(T, T̃ ).

Note that i ≤ k − 1. If i = 0, then T is isomorphic to T̃ and thus dsECR(T, T ′) =
dsECR(T̃ , T ′) = k. Hence, T ′ is contained in TsECR, a contradiction. Otherwise, if i > 0,
then T̃ is contained in Ti. Moreover, since dsECR(T̃ , T ′) = dECR(T, T ′) − dECR(T, T̃ ) = k − i

and dsECR(T̃ , T ′) ≥ dECR(T̃ , T ′), we have dECR(T̃ , T ′) ≤ k − i which implies that T ′ is
contained in T , a contradiction.

Case 2: There is a binary X-tree T ′ with dECR(T, T ′) > k such that T ′ is contained
in T . Hence, T ′ is contained in T ′

k \ TsECR. That is, there is some i with 1 ≤ i ≤ k and
a binary X-tree T̃ in Ti such that dECR(T̃ , T ′) ≤ k − i. Since dECR is a metric, due to the
triangle inequality, dECR(T, T ′) ≤ dECR(T, T̃ ) + dECR(T̃ , T ′) ≤ k, a contradiction.

Since T can be computed in |X|O(k) time, the statement holds. ◀

We conclude the following.

▶ Theorem 5.6 (*). For each distance measure d ∈ {dNNI, dECR, dSPR, dTBR}, d-LS Maxi-
mum Parsimony can be solved in |X|O(k) · |S| time.

6 Conclusion

A clear goal for future research would be to improve the running time of the algorithm
for the k-sECR neighborhood. This seems promising since the current bottleneck is the
enumeration of the binary refinements of the tree obtained after contracting k edges. However,
an algorithm for dsECR-LS Maximum Parsimony running in 2o(k·log k) · |I|O(1) time would
imply an algorithm for Maximum Parsimony running in 2o(|X|·log |X|) · |I|O(1) time: when
applying the dsECR-LS Maximum Parsimony algorithm with k := |X| − 3, locally optimal
solution are also globally optimal. Hence, a more immediate question is whether Maximum
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Parsimony can be solved in 2o(|X|·log |X|) · |I|O(1) time. A further goal would be to find other
neighborhoods for which d-LS Maximum Parsimony can be solved in time f(k) · |I|O(1).
Finally, it is open whether better running times are possible when searching the neighborhood
not for a better tree but for a perfect phylogeny, that is, for a tree where for each character,
the parsimony score is equal to the number of character states minus one.

References

1 Benjamin L. Allen and Mike Steel. Subtree transfer operations and their induced metrics on
evolutionary trees. Ann. Comb., 5(1):1–15, 2001.

2 Alexandre A. Andreatta and Celso C. Ribeiro. Heuristics for the phylogeny problem. J.
Heuristics, 8(4):429–447, 2002.

3 Hans L. Bodlaender, Michael R. Fellows, and Tandy J. Warnow. Two strikes against perfect
phylogeny. In Proceedings of the 19th International Colloquium on Automata, Languages and
Programming (ICALP ’92), volume 623 of Lecture Notes in Computer Science, pages 273–283.
Springer, 1992.

4 Amir Carmel, Noa Musa-Lempel, Dekel Tsur, and Michal Ziv-Ukelson. The worst case
complexity of maximum parsimony. J. Comput. Biol., 21(11):799–808, 2014.

5 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

8 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? J. Comput. Syst. Sci., 78(3):707–
719, 2012. doi:10.1016/j.jcss.2011.10.003.

9 Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates Sunderland, 2004.
10 David Fernández-Baca and Jens Lagergren. A polynomial-time algorithm for near-perfect

phylogeny. SIAM J. Comput., 32(5):1115–1127, 2003. doi:10.1137/S0097539799350839.
11 Walter M. Fitch. Toward defining the course of evolution: minimum change for a specific tree

topology. Systematic Biology, 20(4):406–416, 1971.
12 Les R. Foulds and Ronald L. Graham. The Steiner problem in phylogeny is NP-complete.

Adv. Appl. Math., 3(1):43–49, 1982.
13 Ganeshkumar Ganapathy, Vijaya Ramachandran, and Tandy Warnow. On contract-and-refine

transformations between phylogenetic trees. In Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’04), pages 900–909, 2004.

14 Ganeshkumar Ganapathy, Vijaya Ramachandran, and Tandy J. Warnow. Better hill-climbing
searches for parsimony. In Proceedings of the 3rd International Workshop on Algorithms in
Bioinformatics (WABI ’03), volume 2812 of Lecture Notes in Computer Science, pages 245–258.
Springer, 2003. doi:10.1007/978-3-540-39763-2_19.

15 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI ’12). AAAI Press, 2012.

16 Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao. Local search for the maximum
parsimony problem. In Proceedings of the First International Conference on Advances in
Natural Computation (ICNC ’05), volume 3612 of Lecture Notes in Computer Science, pages
678–683. Springer, 2005.

CPM 2023

https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.jcss.2011.10.003
https://doi.org/10.1137/S0097539799350839
https://doi.org/10.1007/978-3-540-39763-2_19


18:18 Parameterized Local Search for Maximum Parsimony

17 Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao. Progressive tree neighborhood applied
to the maximum parsimony problem. IEEE/ACM Trans. Comput. Biol. Bioinform., 5(1):136–
145, 2008. doi:10.1109/TCBB.2007.1065.

18 Pablo A Goloboff. Character optimization and calculation of tree lengths. Cladistics, 9(4):433–
436, 1993.

19 Pablo A. Goloboff. Analyzing large data sets in reasonable times: Solutions for composite
optima. Cladistics, 15(4):415–428, 1999. doi:10.1006/clad.1999.0122.

20 Maozu Guo, Jian-Fu Li, and Yang Liu. Improving the efficiency of p-ECR moves in evolutionary
tree search methods based on maximum likelihood by neighbor joining. In Proceeding of the Sec-
ond International Multi-Symposium of Computer and Computational Sciences (IMSCCS ’07),
pages 60–67. IEEE Computer Society, 2007.

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

22 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a Symposium
on the Complexity of Computer Computations, The IBM Research Symposia Series, pages
85–103. Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

23 Christian Komusiewicz and Nils Morawietz. Parameterized local search for vertex cover: When
only the search radius is crucial. In Proceedings of the 17th International Symposium on
Parameterized and Exact Computation (IPEC ’22), volume 249 of LIPIcs, pages 20:1–20:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

24 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett.,
36(1):31–36, 2008.

25 Kevin C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics,
15(4):407–414, 1999. doi:10.1006/clad.1999.0121.

26 Celso C. Ribeiro and Dalessandro Soares Vianna. A GRASP/VND heuristic for the phylogeny
problem using a new neighborhood structure. Int. Trans. Oper. Res., 12(3):325–338, 2005.

27 David F. Robinson. Comparison of labeled trees with valency three. J. Comb. Theory B,
11(2):105–119, 1971.

28 David Sankoff. Minimal mutation trees of sequences. SIAM J. Appl. Math., 28(1):35–42, 1975.
29 David Sankoff, Yvon Abel, and Jotun Hein. A tree· a window· a hill; generalization of

nearest-neighbor interchange in phylogenetic optimization. J. Classif., 11(2):209–232, 1994.
30 Srinath Sridhar, Kedar Dhamdhere, Guy E. Blelloch, Eran Halperin, R. Ravi, and Russell

Schwartz. Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and
practice. IEEE/ACM Trans. Comput. Biol. Bioinform., 4(4):561–571, 2007. doi:10.1109/
TCBB.2007.1070.

https://doi.org/10.1109/TCBB.2007.1065
https://doi.org/10.1006/clad.1999.0122
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1006/clad.1999.0121
https://doi.org/10.1109/TCBB.2007.1070
https://doi.org/10.1109/TCBB.2007.1070

	1 Introduction
	2 Preliminaries
	3 Properties of the Considered Distance Measures
	4 Hardness of d-LS Maximum Parsimony
	5 Essentially Tight Brute-Force Algorithms
	6 Conclusion

