
String Factorization via Prefix Free Families
Matan Kraus #

Bar-Ilan University, Ramat-Gan, Israel

Moshe Lewenstein #

Bar-Ilan University, Ramat-Gan, Israel

Alexandru Popa #

Faculty of Mathematics and Computer Science, University of Bucharest, Romania

Ely Porat #

Bar-Ilan University, Ramat-Gan, Israel

Yonathan Sadia #

Bar-Ilan University, Ramat-Gan, Israel

Abstract
A factorization of a string S is a partition of w into substrings u1, . . . , uk such that S = u1u2 · · · uk.
Such a partition is called equality-free if no two factors are equal: ui ̸= uj , ∀i, j with i ̸= j. The
maximum equality-free factorization problem is to find for a given string S, the largest integer k for
which S admits an equality-free factorization with k factors.

Equality-free factorizations have lately received attention because of their applications in DNA
self-assembly. The best approximation algorithm known for the problem is the natural greedy
algorithm, that chooses iteratively from left to right the shortest factor that does not appear before.
This algorithm has a

√
n approximation ratio (SOFSEM 2020) and it is an open problem whether

there is a better solution.
Our main result is to show that the natural greedy algorithm is a Θ(n1/4) approximation

algorithm for the maximum equality-free factorization problem. Thus, we disprove one of the
conjectures of Mincu and Popa (SOFSEM 2020) according to which the greedy algorithm is a Θ(

√
n)

approximation.
The most challenging part of the proof is to show that the greedy algorithm is an O(n1/4)

approximation. We obtain this algorithm via prefix free factor families, i.e. a set of non-overlapping
factors of the string which are pairwise non-prefixes of each other. In the paper we show the
relation between prefix free factor families and the maximum equality-free factorization. Moreover,
as a byproduct we present another approximation algorithm that achieves an approximation ratio
of O(n1/4) that we believe is of independent interest and may lead to improved algorithms. We
then show that the natural greedy algorithm has an approximation ratio that is Ω(n1/4) via a
clever analysis which shows that the greedy algorithm is Θ(n1/4) for the maximum equality-free
factorization problem.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases string factorization, NP-hard problem, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.19

Funding This work was supported by a grant of the Ministry of Research, Innovation and Digitization,
CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-0253, within PNCDI III. Matan kraus,
Ely Porat and Yonathan Sadia were supported by ISF grants no. 1278/16 and 1926/19, by a BSF
grant 2018364, and by an ERC grant MPM under the EU’s Horizon 2020 Research and Innovation
Programme (grant no. 683064).

© Matan Kraus, Moshe Lewenstein, Alexandru Popa, Ely Porat, and Yonathan Sadia;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 19; pp. 19:1–19:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krausma@biu.ac.il
mailto:moshe.lewenstein@biu.ac.il
mailto:alexandru.popa@fmi.unibuc.ro
mailto:porately@cs.biu.ac.il
mailto:yonathansadia@gmail.com
https://doi.org/10.4230/LIPIcs.CPM.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 String Factorization via Prefix Free Families

1 Introduction

A factorization of a string S is a partition of S into substrings u1, u2, . . . , uk such that
S = u1u2 · · ·uk. Factorizations are central objects of study in stringology, a famous example
being the Lempel-Ziv algorithm [14]. String factorizations have many other applications
as we show next. For instance, finding an occurrence of a string v in a text T can be
formulated as T admitting a factorization T = uvw. Then, a string v is a prefix of another
string T if T = vw and it is a suffix of T if T = uv. Moreover, many string problems can
be seen as string factorization problems [9] such as: Shortest Common Superstring,
Longest Common Subsequence and Shortest Common Supersequence, to name a
few. Another example of a string factorization problem is the Minimum Common String
Partition [6, 7], a problem concerned with identifying factorizations for two strings such
that the sequence of factors for one string is the permutation of the other’s.

In this paper we focus on the equality-free factorization, a special case of string fac-
torization in which all factors are distinct. The equality-free factorization is a restricted
variant of a more famous problem, termed generalized function matching which has a long
history starting from 1979 (see, e.g., [12] and the references therein for more details). In
the generalized function matching the input consists of a text t over an alphabet Σ1 and
a pattern p = p1p2 . . . pm over an alphabet Σ2. The goal is to find an injective function
from f : Σ2 → Σ+

1 such that t = f(p1)f(p2) . . . f(pm). Thus, the maximum equality free
factorization problem is a particular case of the generalized function matching in which all
the characters of the pattern p are distinct. In turn, generalized function matching is a
particular case of string equations, which is a notoriously difficult problem (see, e.g., the
JACM paper [13]). In fact, even the version which restricts character-to-character function
matching is extremely difficult, see [1], as opposed to the more restricted parameterized
matching [2, 3, 10] which is simpler. Thus, maximum equality free factorization is part of
family of fundamental problems in stringology.

The maximum equality free factorization problem is also motivated by applications in
DNA synthesis [4]. More specifically, it is possible to produce short DNA fragments that
will self-assemble into the wanted DNA structure. However, to obtain the desired structure,
it is required that no two fragments are identical. Since the fragments must be short, one
approach is to split the target DNA sequence into as many distinct pieces as possible.

Previous work

The equality-free factorization problem was first introduced by Condon, Maňuch and
Thachuk [4] where it was presented as the string partitioning problem. The string par-
titioning problem asks for a factorization into distinct factors such that each factor is at most
of a certain length. The problem was studied in a more general setting where the measure of
collision between two factors is either equality or one is a prefix/suffix of the other. Condon
et al. showed that these variants are NP-complete. More recently, Fernau, Manea, Mercaş
and Schmid [5] presented a similar problem that imposes a lower bound on the number of
factors instead of an upper bound on factor length. Fernau et al. showed that this variant is
also NP-complete. Afterwards, Schmid [9] studied the Fixed-Parameter Tractability of the
two problems.

The decision version of the problem, that is, given a string S and an integer k, decide if
there exists an equality free factorization of S with at least k factors, is termed MAXEFF-s
(this is the notation of Schmid [9] and we decide to use it for the sake of consistency).
The optimization version, in which we are given S and the goal is to find an equality free

M. Kraus, M. Lewenstein, A. Popa, E. Porat, and Y. Sadia 19:3

factorization with as many factors as possible, is termed OPTEFF-s. The acronyms for the
two problems were introduced in the previous papers [5, 9, 11] and we will use them in our
paper for consistency (OPT stands for optimization).

Mincu and Popa [11] study OPTEFF-s and another variant named Maximum Gapped
Equality Free Factorization (OPTGEFF-s). In the latter it is not required that all the
characters of the input strings are part of the factorization. That is, the goal is to find
an equality free factorization using a maximum number of factors of a substring of the
input string. More formally, a gapped factorization of string S over alphabet Σ is a tuple
(u1, u2, . . . , uk) such that S = α0u1α1u2α2 · · ·αk−1ukαk, where ui ∈ Σ+ are the factors and
αi ∈ Σ∗ are the gaps. OPTGEFF-s asks, for a given string S, to find the largest integer k

such that S admits a gapped equality-free factorization of size k. In [11] a 2-approximation
for the OPTGEFF-s and a

√
n-approximation (where n is the size of the input string) for the

OPTEFF-s were shown. Moreover, it was conjectured [11] that the greedy approximation
ratio is Ω(

√
n). Grüttemeier et al. [8] show a randomized algorithm for solving the MAXEFF-s

with running time 2k · kO(1) + O(n).

Our results

As mentioned, the best-known approximation algorithm, the greedy algorithm, for the
OPTEFF-s has an approximation ratio of

√
n and it was conjectured that the greedy algorithm

has an approximation ratio of Θ(
√

n). In this paper, we show a better approximation
algorithm for OPTEFF-s with ratio O(n1/4). We then use this algorithm to show that the
greedy algorithm has the same approximation ratio of O(n1/4). Hence, this disproves the
conjecture from [11] saying that the approximation ratio of the greedy algorithm is Ω(

√
n).

The challenge is to show that the greedy algorithm has an approximation ratio of O(n1/4).
To get our approximation ratio we start with an (approximate) prefix free solution for the
version with gaps. Then, we use the prefix free property to map the factors of a solution
returned by the greedy algorithm to the aforementioned prefix free solution. Moreover,
besides the greedy algorithm, we introduce another approximation algorithm for OPTEFF-s
with an approximation ratio of O(n1/4), that uses some interesting techniques and is of
independent interest. We claim that our techniques give some key insights and perhaps open
the path for better approximation algorithms for the problem.

Finally, we use a clever analysis to also show that the greedy algorithm cannot have an
approximation ratio better than O(n1/4) and, hence, the approximation ratio of the greedy
algorithm is Θ(n1/4) for the maximum equality-free factorization problem.

2 The prefix-free property

For the OPTGEFF-s problem (the version of factorization with gaps), a 2-approximation
algorithm via a reduction from a scheduling problem was shown in [11]. A natural direction
for proving an approximation algorithm for OPTEFF-s is to transform a factorization with
gaps, obtained from the approximation algorithm of OPTGEFF-s, into a solution without
gaps. However, it is difficult to transform a given factorization with gaps into a factorization
without gaps with roughly the same number of factors.

In this section we show that it is possible to transform a special case of a factorization
with gaps into a factorization without gaps. We introduce the notion of a prefix-free gapped
factorization, which has an important role in our algorithm and might be of independent
interest.

CPM 2023

19:4 String Factorization via Prefix Free Families

▶ Definition 1. Let n, k ∈ N, let S be a string of length n and let Fk = {S1, S2, . . . , Sk}
be a set of non-overlapping factors of S (possibly with gaps). F is a prefix-free gapped
factorization of S if for all i ̸= j, Si is not a prefix of Sj.

Given a prefix-free gapped factorization F such that |F | = k, we prove that there is a
transformation of F into a factorization without gaps with the same number of factors k,
since each factor Si can be extended until the next factor Si+1 without colliding with another
factor Sj .

▶ Lemma 2. Let n, k ∈ N and let S be a string of length n with a prefix-free gapped
factorization F with |F | = k. Then, there is an equality free factorization for S without gaps
with at least k factors.

Proof. Denote S = T0S1T1S2T2S2 . . . Tk−1SkTk. Denote with Ri = SiTi. Note that for
each i ≠ j, Ri and Rj are not prefixes of each other because their prefixes are Si and Sj ,
respectively, which are not prefixes of each other.

Now, consider S = T0R1R2 . . . Rk. If, for all i, T0 ̸= Ri, then we have an equality free
(k + 1)-factorization. Otherwise, there exists an i such that T0 = Ri. We distinguish two
cases.

In the first case, if i < k, then we set Qi = RiRi+1. Thus, Qi and all other factors
Rj are still not prefixes of each other. T0, which equals Ri, is not a prefix of any other
Rj (because it equaled Ri) and is shorter than Qi. Hence S has a k-factorization S =
RiR1R2 . . . Ri−1QiRi+2 . . . Rk.

In the second case, if i = k, then we set Qk = Rk−1Rk and using a similar argument as
above we obtain a k-factorization S = RkR1R2 . . . Rk−2Qk. ◀

3 An O(n1/4)-approximation algorithm

In this section we show an algorithm that has an O(n1/4)-approximation to OPTEFF-s.
Our algorithm (see Algorithm 1) is composed of two algorithms: a greedy algorithm,

called Greedy1 (see Algorithm 3), which always yields an
√

n-approximation, and a new
algorithm (Algorithm 2) which is described next. Algorithm 1 simply selects the better of
the two algorithms and returns it.

Algorithm 1 An O(n1/4)-approximation algorithm for OPTEFF-s.

Input: String S.
1 F ← Algorithm 2(S);
2 G← Algorithm 3(S);
3 if |G| > |F | then
4 return G

5 return F

The basic idea behind Algorithm 2 is to find, for every fixed integer 1 ≤ i ≤ 2
√

n, a greedy
equality free gapped factorization of the input string in which every factor has length exactly i.
The algorithm chooses from these gapped fixed length factorizations, the factorization with
the most factors. Then, due to Lemma 2, we append to each of these factors the following
adjacent (possibly empty) gap and we obtain an equality free factorization. See Algorithm 2
for more details.

M. Kraus, M. Lewenstein, A. Popa, E. Porat, and Y. Sadia 19:5

Algorithm 2 Fixed length greedy factorization.

Input: String S.
1 F ← ∅;
2 for i← 1 to 2

√
n do

3 j ← 1,G← ∅;
4 while j ≤ n− i do
5 if S[j..j + i− 1] /∈ G then
6 G← G ∪ {S[j..j + i− 1]};
7 j ← j + i− 1;
8 j ← j + 1;
9 if |G| > |F | then

10 F ← G;
11 Extend each factor wi ∈ F until factor wi+1 (for the last factor, extend it until the

end of S);
12 return F

▶ Lemma 3. Algorithm 2 yields an equality-free factorization without gaps.

Proof. First, in the for loop, at each step, Algorithm 2 adds to G only distinct substrings of S.
Then, notice that for every two factors w1, w2 ∈ G, it holds that w1 is not a prefix of w2, since
both w1 and w2 have the same length. Therefore, G is a prefix-free gapped factorization, and
due to Lemma 2, the factors are extended as in line 11 to have an equality-free factorization
without gaps. ◀

Analysis

Here we prove that when the optimal solution, denoted OPT, has “many” factors, Algorithm 2
returns a good approximation of OPT.

Formally, let F be the factorization returned by Algorithm 2. Let α be n/|OPT |. Notice
that |OPT | = n/α. We claim that |F | = Ω(n/α2).

We first give an overview of the proof. First, we prove in Lemma 5 that there are at least
n/2α short factors (of length at most 2α) in OPT. Then we prove in Lemma 6 that there are
at least Ω(n/α2) factors of the exact same length in OPT. Next, we prove in Lemma 9 that
the factorization F returned in Algorithm 2 is a 2-approximation of optimal fixed length
factorization (see Definition 7). Finally, we prove in Lemma 10 that |F | = Ω(n/α2).

▶ Definition 4. An x-short factor of S is a factor of length ≤ x. An x-long factor of S is a
factor of length > x. When x is clear we will simply call them short factors and long factors.

▶ Lemma 5. There exist at least n/2α factors in OPT that are 2α-short.

Proof. Let LF denote the set of 2α-long factors in OPT and SF denote set of the 2α-short
factors in OPT. We will use an argument on n, the length of S. Each long factor must be, by
definition, of length ≥ 2α + 1. Hence, by length arguments, |LF | · (2α + 1) + |SF | · 1 ≤ n and,
hence, |LF | ≤ n/(2α+1)−|SF |/(2α+1). On the other hand, since |OPT | = n/α, we have that
|SF | = n/α− |LF |. Putting these two equations together yields that |SF | = n/α− |LF | ≥
n/α − n/(2α + 1) + |SF |/(2α + 1) and hence, |SF | − |SF |/(2α + 1) ≥ n/α − n/(2α + 1)
which in turn yields 2α|SF |/(2α + 1) ≥ (nα + n)/α(2α + 1). Hence, 2α2|SF | ≥ nα + n and
|SF | ≥ n/2α + n/2α2 ≥ n/2α. ◀

CPM 2023

19:6 String Factorization via Prefix Free Families

Next, we show that among the short factors, Ω(1/α) fraction of them actually have
exactly the same length.

▶ Lemma 6. There exists an integer ℓ ≤ 2α such that there are at least n/4α2 short factors
in OPT of length exactly ℓ.

Proof. By Lemma 5, there are at least n/2α short factors in OPT. The average number of
factors of each short length, is at least n/2α

2α = n/4α2. By the pigeonhole principle, there
exists an integer ℓ ≤ 2α such that there are at least n/4α2 short factors in OPT of length
exactly ℓ. ◀

Next we prove that Algorithm 2 is a constant approximation algorithm to the problem of
gapped factorization with fixed lengths.

▶ Definition 7. The Fixed-Length Maximum Gapped Equality-Free Factorization Size
(FLOptGEFF-s) problem is defined as follows. For a given string S and an integer r,
find the largest integer m, such that S admits a gapped equality-free factorization of size m

where all factors are of length r.

In [11], the problem of OPTGEFF-s is reduced to the Job Interval Selection Problem
with k intervals (JISPk, see Theorem 8), which has a 2-approximation algorithm.

▶ Theorem 8 (restated from [11]). Given n jobs containing k time intervals each, find the
maximum number of intervals that can be selected such that (i) no two intervals intersect
and (ii) at most one time interval is selected per job.

Analogously to [11], FLOptGEFF-s is reducible as well to JISPk, and here we briefly
show the reduction.

▶ Lemma 9. Algorithm 2 is a 2-approximation for FLOptGEFF-s.

Sketch Proof. We construct an instance of JISPk with O(n) jobs from a string S with n

characters. For each distinct substring of S with length r, we create a job. For each substring
s we add [a, b) as a time interval of s for all occurrences s = S[a, b] in S.

Since JISPk has a 2-approximation algorithm, we have that FLOptGEFF-s has a 2-
approximation algorithm as well. Moreover, the algorithm that approximates FLOptGEFF-
s(S, r) for some string S and integer r is in fact the inner loop of Algorithm 2, on the iteration
where i = r. ◀

We are ready to prove a lower bound on the number of factors returned by Algorithm 2.

▶ Lemma 10. Let F be the factorization returned by Algorithm 2. Then, |F | = Ω(n/α2).

Proof. By Lemma 6, there exists ℓ such that there are at least n/4α2 short factors in OPT
of length ℓ.

Let Sℓ
ALG be the number of factors of length ℓ produced by Algorithm 2, let Sℓ

GEF F be
FLOptGEFF-s(S, ℓ), and let Sℓ

OP T be the number of factors of length ℓ in OPT .
By Lemma 9, there is a polynomial algorithm that is a 2-approximation of the number

of occurrences of a factor of length ℓ in OPT . Moreover, the algorithm behind Lemma 9
is in fact the inner loop of Algorithm 2. Notice that ℓ ≤ 2α ≤ 2n/|OPT | ≤ 2

√
n, since

|OPT | ≥
√

n and therefore there is an iteration where i = ℓ. Then,

Sℓ
OP T /2 ≤ Sℓ

GEF F /2 ≤ Sℓ
ALG

where the first inequality is due to the definition of FLOptGEFF-s and the second inequality
is due to Lemma 9.

M. Kraus, M. Lewenstein, A. Popa, E. Porat, and Y. Sadia 19:7

Hence, combining Lemma 6 and Lemma 9, for the iteration where i = ℓ on line 9,
|G| = Sℓ

ALG ≥ (n/4α2)/2. Since the number of factors returned by the algorithm is at least
|G| (i.e. |F | ≥ Sℓ

ALG), we have that |F | = Ω(n/α2). ◀

As stated before, Algorithm 1 is composed by two algorithms, Algorithm 2 and Algorithm 3.
Algorithm 3 was introduced in [11] as Greedy1 algorithm. In a nutshell, consider starting
“at the left” of the string and adding the next shortest substring (distinct from the already
selected factors) to the incumbent factorization at each step of the algorithm. See [11] for
details.

Algorithm 3 Greedy1.

Input: String S.
1 j ← 1,F ← ∅;
2 for i← 1 to n do
3 if S[j..i] /∈ F then
4 F ← F ∪ S[j..i];
5 j ← i + 1;
6 Extend the last factor of F until the end of S;
7 return F

It was proven in [11] that Greedy1 yields an equality-free factorization. Moreover, they
prove that Greedy1 produces at least Ω(

√
n) factors.

▶ Theorem 11. Algorithm 1 is an O(n1/4)-approximation polynomial time algorithm for the
OPTEFF-s problem.

Proof. Combining Greedy1 with Algorithm 2, we have an algorithm that pro-
duces at least Ω(max((n/α2),

√
n)) factors. This gives an approximation ratio of

O(min(n/α
n/α2 , (n/α)/

√
n)) = O(min(α,

√
n/α)), which is maximized at α =

√
n/α, i.e. at

α = n1/4.
Finally, notice that the both Greedy1 and Algorithm 2 run in polynomial time of at most

O(n1.5 log n). ◀

4 The natural greedy algorithm is a Θ(n1/4)-approximation

In this section we prove that Greedy1 itself achieves an approximation ratio of O(n1/4).

▶ Lemma 12. Greedy1 is a 2-approximation of Algorithm 2.

Proof. Let S be a string, and let ℓ be a positive integer. Let Fℓ be a fixed ℓ length gapped
factorization on S such that |Fℓ| =FLOptGEFF-s(S, ℓ). Let FG be the factorization that is
the output of the Greedy1 algorithm. We show that |FG| ≥ |Fℓ|/2.

We map each factor of Fℓ to a factor of FG as follows. Let f ∈ Fℓ be a factor in Fℓ and
let i ≤ j be two indices such that f = S[i, j]. In FG, denote the factors that cover S[i] and
S[j] as gi and gj , respectively. If gi ≠ gj , map f to gj . If f is a suffix of gj , then also map f

to gj . Otherwise, f is fully contained in a factor of FG and f is not a suffix of gj . Then, it
must be the case that there is a factor gs in FG such that the suffix of gs is exactly f , as
otherwise Greedy1 would have cut the factor gj right after index j, but f is not a suffix of gj .
Therefore, map f to gs (if there are more than one factors with f as a suffix in FG, map to
one of them arbitrarily).

CPM 2023

19:8 String Factorization via Prefix Free Families

Now, let g be a factor in FG, and let î ≤ ĵ be two indices such that g = S [̂i, ĵ]. We claim
that there are at most two factors in Fℓ that are mapped to g. There is at most one factor
in Fℓ that overlaps S [̂i], and therefore mapped to g because of overlapping two factors in FG.
Moreover, since all the factors in Fℓ have the same size, there is at most one factor in Fℓ

such that the suffix of g is equal to the factor. Therefore, there are at most 2 factors in Fℓ

that are mapped to g. To conclude, there are at most 2 · |FG| factors in Fℓ, for every ℓ.
Let FA be the factorization returned by Algorithm 2. There is an ℓ such that |Fℓ| ≥ |FA|.

Since we proved that |FG| ≥ |Fℓ|/2 for every ℓ, we also have that |FG| ≥ |FA|/2. ◀

Combining the above lemma with the Theorem 11, we conclude the following theorem.

▶ Theorem 13. The approximation ratio of Greedy1 is O(n1/4).

Proof. By Lemma 12, Greedy1 is a constant approximation of Algorithm 2 and therefore
Greedy1 is also a constant approximation of Algorithm 1 (that simply uses Algorithm 2 and
Greedy1 and returns the maximum between them). Since by Theorem 11 Algorithm 1 is an
O(n1/4)-approximation for OPTEFF-s we have that Greedy1 is also an O(n1/4)-approximation.

◀

5 Tightness of Algorithm 1

In this section we prove that our analysis of Algorithm 1 is actually tight. We show that
there is a case where both Greedy1 and Algorithm 2 have an approximation ratio that is at
least Ω(n1/4).

Similar to [11], we define a string S as follows. Let n be a square of an even number, i.e.
there is an integer k such that n = (2k)2. Let Σ = {x1, x2, . . . , x√

n} be an alphabet. We
define variables X1, X2, . . . , X√

n such that for each variable Xi, define Xi = x1x2..xi. The
string S is defined as S = X1X2..X√

n. Note that |S| = Θ(n).

▶ Lemma 14. There exists a factorization of S with Ω(n3/4) factors.

Proof. We first factorize S into Ω(n3/4) factors with gaps, and afterwards we get rid of the
gaps. We factorize the variables X1..X√

n/2−1 using only one factor. Then, the variable
X√

n/2 is factorized into x1; x2; ..; x√
n/2, for a total of

√
n/2 factors. At least

√
n/2 − 1

factors are produced by the variables X√
n/2+1X√

n/2+2 as follows. The variable X√
n/2+1 is

factorized into x1x2; x3x4; . . . , for a total of
⌊
|X√

n/2+1|/2
⌋

factors. The variable X√
n/2+2 is

factorized into x2x3; x4x5; . . . , also for a total of at least
⌊
(|X√

n/2+1|)/2
⌋

factors.
In general, at each iteration i, the algorithm produces factors of length i using i variables

and i offsets. Each variable is of length at least
√

n/2, therefore at least i · ⌊(
√

n/2)/i⌋ ≥√
n/2 − i factors are produced by i variables. For each iteration i, the rth variable Xj of

iteration i produces factors of length i starting at index r with respect to the beginning of
Xj . This procedure produces an equality free factorization with gaps.

There is a constant c > 0 such that there are c
√√

n/2 = cn1/4 iterations to the process.
Therefore, at least

cn1/4∑
i=1

√
n/2− i ≥ cn3/4/2− c2√n = Ω(n3/4)

factors are produced in this process.

M. Kraus, M. Lewenstein, A. Popa, E. Porat, and Y. Sadia 19:9

We are left with handling the gaps. Notice that there are two reasons for a gap to occur.
First, (1) on iteration i and variable Xj , we produce ⌊|Xj |/i⌋ factors, and |Xj |−i ⌊|Xj |/i⌋ > 0,
so we have a gap at the end of Xj . Second, (2) on iteration i and the rth variable of the
iteration Xj , when Xj is not the first variable of iteration i (r ̸= 1), the factorization of Xj

does not start from x1 but from xr.
For gaps of type 1, let Xj be a variable that has a gap at the end of Xj . Then, if j ̸=

√
n,

we extend the first factor of Xj+1 backwards to close the gap. This extended factor is unique
since there is only one instance of xjx1 in S. If j =

√
n and we are in the last variable, we

extend the last factor of Xj . This extended factor is unique since there is only one instance
of this length in S.

For gaps of type 2, let Xj be a variable that has a gap at the beginning of Xj . Then, we
extend the last factor of Xj−1 forward to close the gap. This extended factor is unique since
there is only one instance of xj−1x1 in S.

For gaps with both types 1 and 2, we just handle them as gaps with type 1. ◀

On string S, Greedy1 produces Θ(
√

n) factors. Hence, and by Lemma 14, we have the
following corollary.

▶ Corollary 15. The approximation ratio of Greedy1 is Ω(n1/4).

On the string S described above, Algorithm 2 produces O(
√

n) factors. To see this, let
l be some length that is being observed in line 2 of Algorithm 2. There are (at most)

√
n

x1’s in string S. Therefore there are at most
√

n factors containing x1. On the other hand,
every factor that does not contain x1, must start in a unique character (since before the
extension, every factor is of length exactly l). There are (at most)

√
n unique characters

in S. Therefore, there are at most
√

n factors not containing x1.
Hence, and by Lemma 14, we have the following corollary.

▶ Corollary 16. The approximation ratio of Algorithm 2 is Ω(n1/4).

Finally, since both lower bounds were based on the same case of string S, we have the
following corollary.

▶ Corollary 17. The approximation ratio of Algorithm 1 is Ω(n1/4).

6 Conclusions and future work

In this paper we disproved one of the conjectures of Mincu and Popa [11] and show that the
natural greedy algorithm for the OPTEFF-s problem has a Θ(n1/4)-approximation factor.
It is, of course, a natural open question to improve the approximation ratio for OPTEFF-s
using a different algorithm than the greedy. We believe that the key in succeeding to obtain
such an algorithm is finding a better approximation algorithm for the case when the number
of factors in an optimal solution is relatively small. Thus, the ideas introduced in Section 3,
where we present an alternative O(n1/4) approximation algorithm, represent a promising
direction.

References
1 Amihood Amir, Yonatan Aumann, Moshe Lewenstein, and Ely Porat. Function matching.

SIAM Journal on Computing, 35(5):1007–1022, 2006.
2 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of

Computer and System Sciences, 52(1):28–42, 1996.

CPM 2023

19:10 String Factorization via Prefix Free Families

3 Richard Cole, Carmit Hazay, Moshe Lewenstein, and Dekel Tsur. Two-dimensional parameter-
ized matching. ACM Transactions on Algorithms, 11(2):12:1–12:30, 2014.

4 Anne Condon, Ján Maňuch, and Chris Thachuk. The complexity of string partitioning. Journal
of Discrete Algorithms, 32:24–43, 2015.

5 Henning Fernau, Florin Manea, Robert Mercas, and Markus L. Schmid. Pattern matching
with variables: Fast algorithms and new hardness results. In 32nd International Symposium
on Theoretical Aspects of Computer Science, 2015, March 4-7, 2015, Garching, Germany,
pages 302–315, 2015.

6 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition problem:
Hardness and approximations. The Electronic Journal of Combinatorics, 12, 2005.

7 Isaac Goldstein and Moshe Lewenstein. Quick greedy computation for minimum common
string partition. Theoretical Computer Science, 542:98–107, 2014.

8 Niels Grüttemeier, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. String
factorizations under various collision constraints. In 31st Annual Symposium on Combinatorial
Pattern Matching (CPM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

9 Markus L. Schmid. Computing equality-free and repetitive string factorisations. Theoretical
Computer Science, 618:42–51, 2016.

10 Moshe Lewenstein. Parameterized pattern matching. In Encyclopedia of Algorithms, pages
1525–1530. Springer, 2016.

11 Radu Stefan Mincu and Alexandru Popa. The maximum equality-free string factorization
problem: Gaps vs. no gaps. In International Conference on Current Trends in Theory and
Practice of Informatics, pages 531–543. Springer, 2020.

12 Sebastian Ordyniak and Alexandru Popa. A parameterized study of maximum generalized
pattern matching problems. Algorithmica, 75(1):1–26, 2016.

13 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal
of the ACM (JACM), 51(3):483–496, 2004.

14 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24:530–536, 1978.

	1 Introduction
	2 The prefix-free property
	3 An O(n^{1/4})-approximation algorithm
	4 The natural greedy algorithm is a Theta(n^{1/4})-approximation
	5 Tightness of Algorithm 1
	6 Conclusions and future work

