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Abstract
MinHash sketching is an important algorithm for efficient document retrieval and bioinformatics. We
show that the value of the matching MinHash codes convey additional information about the Jaccard
similarity of S and T over and above the fact that the MinHash codes agree. This observation
holds the potential to increase the sensitivity of minhash-based retrieval systems. We analyze the
expected Jaccard similarity of two sets as a function of observing a matching MinHash value a under
a reasonable prior distribution on intersection set sizes, and present a practical approach to using
MinHash values to improve the sensitivity of traditional Jaccard similarity estimation, based on
the Kolmogorov-Smirnov statistical test for sample distributions. Experiments over a wide range of
hash function counts and set similarities show a small but consistent improvement over chance at
predicting over/under-estimation, yielding an average accuracy of 61% over the range of experiments.
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1 Introduction

MinHash sketching is an important algorithm for efficient document retrieval. It reduces
a set S of size n to a smaller representation of size m ≪ n by applying m distinct hash
functions h1, . . . hm to each of the n elements of S, and identifies the smallest hash code for
each hi. This vector of minimum hash codes serves a sketch for the larger set S. A classical
result [2, 3] shows that the probability that smallest hash codes of two sets S and T are equal
is identical to J(S, T ), the Jaccard similarity of S and T . Thus the fraction of matching
MinHash codes represents an unbiased estimator of J(S, T ).

Hash code values, by definition, are not supposed to mean anything. They represent
mappings of an item x to a pseudorandom integer h(x) for purpose of fast identity matching
and retrieval. The relative values of h(x) and h(y) for items x and y have no special properties
beyond that of h(x) = h(y) likely implies that x = y for the conventional hash functions as
employed in algorithms such as MinHash.

But in this paper, we report a curious observation associated with MinHash. Suppose
the MinHash values for sets S = {s1, . . . , sn} and T = {t1, . . . , tn} equal both a particular
value, namely:

a =
n

min
j=1

hi(sj) =
n

min
j=1

hi(tj)

We shall show that the value of this matching MinHash value a conveys additional information
about the Jaccard similarity of S and T over and above the fact that the MinHash values
agree.
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20:2 Improving the Sensitivity of MinHash Through Hash-Value Analysis

This observation holds the potential to increase the sensitivity of minhash-based retrieval
systems. Our main results in this paper are:

We explain why observing a larger matching MinHash value a increases the expectation of
high similarity between S and T . Specifically, the expected value of a common MinHash
value a for two n-element sets with intersection size i is N/(2n − i + 1), presuming the
underlying hash function selects an integer from [0...N ] uniformly at random.
We analyze the expected Jaccard similarity of two sets as a function of observing a
matching MinHash value a under a reasonable prior distribution on intersection set sizes,
specifically the case where pairs of n-element sets have equal probability of intersection
size i for 1 ≤ i ≤ n. Experimental results confirm a modest increase in the sensitivity
of our hash-code weighted variant of MinHash over the original, over a range of set
similarities and number of hash codes.
We present a practical approach to using MinHash values to improve the sensitivity of
traditional Jaccard similarity estimation, based on the Kolmogorov-Smirnov statistical test
for sample distributions. Our techniques provide a supplemental signal suggesting whether
the fraction of matching MinHashes is more likely to over-estimate or underestimate the
true Jaccard similarity between two sets. Experiments over a wide range of hash counts
(k) and set similarities show a small but consistent improvement over chance, specifically
an average accuracy of 61% over the range of experiments.

We believe that this orthogonal view of measuring Jaccard similarity through the value
of matching MinHash codes is novel, and will inspire further interest. Although the practical
improvement we have demonstrated is not large, we believe that better interpretations of the
underlying statistics may yield better results.

This paper is organized as follows. We begin with a survey of the literature of MinHash
and related techniques in Section 2. We provide intuition as to why the value of the matching
MinHash value matters through a thought experiment in Section 3. We present our analysis
of the expected intersection size as a function of MinHash value for an appropriate prior
distribution in Section 4, and ways to combine this information into an estimate of Jaccard
similarity in Section 5. An alternate approach to interpret the values of MinHash codes using
the Kolmogorov-Smirnoff statistical test is presented in Section 6. Finally, we conclude with
some open problems raised by our work.

2 Prior Work

Broder [2, 3] developed MinHash as a solution to identifying similar documents (represented
as sets of shingles or substrings) within a large text corpus while avoiding the quadratic-time
costs of explicitly comparing each pair of documents. A function h(x) is applied to each set
element, mapping each element x to a pseudo-random integer. Each set S is represented by
the minimum hash value among all its elements.

The Jaccard similarity J(S, T ) of two sets S and T is defined as

J(S, T ) = |S ∪ T |
|S ∩ T |

.

For identical sets, J(S, T ) = 1 while for disjoint sets, J(S, T ) = 0. Broder [2, 3] observed that
the probability that two sets S and T generate the same MinHash value exactly equals the
Jaccard similarity of the two sets, J(S, T ). The fraction of matching minimum hashes over
k independent hash functions provides an unbiased estimator of J(S, T ), with the variance
of this estimate equal to J(S, T )(1 − J(S, T ))/k [4]. Surveys of MinHash sketching include
Cohen [9].
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MinHash is one of the most important algorithms for web search and duplicate detection
[12, 15, 17], social networks [8], and machine learning [7, 19]. More recently, it has been
successfully applied to bioinformatics for sketching large DNA sequence datasets, starting from
the seminal Mash software [21] and followed by related tools [5, 28, 1, 20]. Such applications
motivate our efforts in this paper to increase the sensitivity of minimum hashing-based
similarity measures.

Locality Sensitive Hashing (LSH) techniques seek to map similar data objects to the
same hash codes with a higher probability than the dissimilar ones by adopting a family of
randomized hash functions. Indyk et al. [16, 14, 10] introduced the notion of locality-sensitive
hashing in the context of nearest-neighbor search and string similarity. MinHash can be
viewed an instance of locality sensitive hashing. An extended survey of locality-sensitive
hashing can be found in [24].

SimHash [6] is a LSH-based method which provides an unbiased estimator of the similarity
between two vectors. Specifically, the probability that two vectors u and v generate the same
SimHash value equals the Cosine similarity of u and v. Henzinger [15] performed a large-scale
comparison of MinHash and SimHash on detecting similar web pages, finding that a hybrid
of the two approaches yielded the best results. Srivastava and Li [22] present analysis and
experiments to suggests that MinHash is more sensitive than SimHash in regions of high
similarity.

Each subset element is granted equal weight in traditional MinHash schemes, but this
can be generalized in weighted MinHash, perhaps to reflect the TD-IDF values of each word.
Weighted MinHash algorithms are surveyed in [25].

Finally, we mention another related sketching scheme named HyperLogLog [13] primarily
designed for the task of estimating the number of distinct items in a stream, but also
capable of estimating the cardinality of the union of two sets and therefore their Jaccard
similarity. Several works proposed unifying combinations of the two sketches [11, 27]. Note
that HyperLogLog has some relationship with our work, as it employs the idea of estimating
the cardinality of a random set from its minimum value. However, a direct application of
this idea to MinHash has not been made, to our knowledge.

3 Thought Experiment: Why MinHash Values Matter

We present the following thought experiment to illustrate how the actual value of matching
MinHash codes provides information about Jaccard similarity. For a set S, let Mh(S) denote
its MinHash value under a given hash function h, i.e. Mh(S) = mins∈S{h(s)}. We use the
notation M(S) when h is irrelevant (but assumed fixed across sets).

Now consider following two “extreme” situations involving pairs of sets S and T , each
with n elements:
1. S and T are identical. Hence by definition, the minimum hash values must match, so

a1 = Mh(S) = Mh(T ),
2. S and T intersect in only one element x, which happens to be the minimum value of both

under h, so a2 = h(x) = Mh(S) = Mh(S).

Now, given just the two unlabeled values for a1 and a2, can we correctly assign these
codes to the appropriate case above with probability greater than 1/2?

Assume hash function h selects an integer from the range [0 . . . N ] uniformly at random.
Now suppose that two n-element sets with intersection size i share a common MinHash value
m. Then m is the smallest of the 2n − i values in the union. Since the expected minimum of
ℓ numbers drawn uniformly at random from [0..N ] is N/(ℓ + 1), the expected value of m is

CPM 2023



20:4 Improving the Sensitivity of MinHash Through Hash-Value Analysis

Figure 1 Probability distributions that two sets of size 100 share a common MinHash value, as
a function of the size of their intersection (respectively 20, 50, and 100). The probability of small
matching MinHash values are increase for relatively dissimilar sets.

N/(2n − i + 1). In the first case above, i = n, so E[a] = N/(n + 1), while for the second case
i = 1 and E[b] = N/(2n). Thus it is more likely that min(a1, a2) corresponds to case (1) and
max(a1, a2) to case (2).

The situation is illustrated in Figure 1, which shows the probability of observing a given
MinHash value a for three different intersection sizes. The probability of observing a MinHash
value of 0 with a possible range [0 . . . 1000] is almost twice as high for two 100-element sets
with a 20-element intersection than when the sets are identical. More similar pairs of sets,
with larger intersection sizes, have greater probability of large matching MinHash values.

4 Expected Intersection Size as a Function of MinHash Value

In this section, we analyze the expected intersection size of two sets based on observing a
particular matching MinHash value. For two n-element sets S and T where |S ∩ T | = i,
J(S, T ) = i/(2n − i). Thus analyzing the intersection size of S and T provides a result
which can be alternately interpreted in the context of the Jaccard similarity of S and T for
n-element sets.

Let S and T be two sets each of size n. We limit our attention to the case where S and T

are non-disjoint, which is necessary for MinHash values to legitimately collide, so S ∩ T ̸= ∅.
Further, we assume that range of h from [0 . . . N ] is sufficiently large relative to n that we
can discount the possibility of spurious collisions, namely that there does not exist s ∈ S

and t ∈ T where h(s) = h(t) despite s ̸= t.

4.1 Prior Distribution

Determining the expected intersection size as a function of matching hash values requires
knowledge of a prior distribution on the value of the intersection size. In the analysis below,
we base our analysis on a uniform prior distribution, that all intersection sizes between S

and T are equally likely. Thus for every i ∈ [1..n], P[|S ∩ T | = i] = 1/n.
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The uniform distribution appears most natural to us as a general prior, which is why
we analyze this case below. That said, the true prior distribution differs with application,
particularly as to whether pairs of randomly selected sets are likely to have large or small
intersection sizes. The analysis below can be repeated for any particular well specified prior
distribution in an analogous fashion.

4.2 Analysis
The probability of two sets sharing the MinHash value equals the Jaccard similarity index,
that is

P[M(S) = M(T ) | i = |S ∩ T |] = i

2n − i
. (1)

Because all intersections are equiprobable under our prior distribution, we have

P[|S ∩ T | = i | M(S) = M(T )] =
i

2n−i∑n
j=1

j
2n−j

(2)

Note that given ℓ random numbers x1, . . . , xℓ uniformly drawn from [1..N ], for a ∈ [1..N ],
we have

P[min{x1, . . . , xℓ} ≤ a] = 1 − P[x1 > a & . . . & xℓ > a] = 1 −
(

1 − a

N

)ℓ

. (3)

Then, the probability the MinHash is exactly a is given by

P[min{x1, . . . , xℓ} = a] =
(

1 − a − 1
N

)ℓ

−
(

1 − a

N

)ℓ

. (4)

We now estimate the conditional probability P[|S ∩ T | = i | M(S) = M(T ) = a]. We have

P[|S ∩ T | = i | M(S) = M(T ) = a] = P[(|S ∩ T | = i) ∧ (M(S) = M(T )) ∧ (a = M(S ∪ T ))]
P[(M(S) = M(T )) ∧ (a = M(S ∪ T ))]

= P[|S ∩ T |= i] · P[a=M(S ∪ T ) | |S ∩ T |= i] · P[M(S)=M(T ) | (|S ∩ T |= i) ∧ (a=M(S ∪ T )]∑n

i=1 (P[(M(S) = M(T )) ∧ (a = M(S ∪ T )) | |S ∩ T | = i] · P[|S ∩ T | = i])

= P[(a = M(S ∪ T )) | (|S ∩ T | = i)] · P[(M(S) = M(T )) | (|S ∩ T | = i) ∧ (a = M(S ∪ T ))]∑n

i=1 P[(M(S) = M(T )) ∧ (a = M(S ∪ T )) | |S ∩ T | = i]
(5)

The last rewrite follows because P[|S ∩ T | = i] = 1/n is the same for all i. To further simplify
Eqn. 5, observe that

P[M(S) = M(T ) | (|S ∩ T | = i) ∧ (a = M(S ∪ T ))] = P[M(S) = M(T ) | |S ∩ T | = i]

because the event of sharing common MinHash (M(S) = M(T )) is independent of its value
(a) for a fixed intersection size. For the same reason, in the denominator,

P[(M(S) = M(T )) ∧ (a = M(S ∪ T )) | |S ∩ T | = i] =
P[M(S) = M(T ) | |S ∩ T | = i] · P[a = M(S ∪ T ) | |S ∩ T | = i]

Eqn. 5 then rewrites to

P[a = M(S ∪ T ) | |S ∩ T | = i] · P[M(S) = M(T ) | |S ∩ T | = i]∑n
i=1 (P[M(S) = M(T ) | |S ∩ T | = i] · P[a = M(S ∪ T ) | |S ∩ T | = i])

. (6)

CPM 2023



20:6 Improving the Sensitivity of MinHash Through Hash-Value Analysis

Figure 2 The probability of intersection size of two sets of size 100 sharing a common MinHash
value. The red curve shows the probability of having a given intersection size (formula (2)). The
other curves show the same probability conditioned on the value a of common MinHash (formula
(7)), where the hash space is [1..1000]. Larger values of a favor larger intersection sizes.

Using (4), (1), we obtain

P[|S ∩ T | = i | M(S) = M(T ) = a] =
i

2n−i

((
1 − a−1

N

)2n−i −
(
1 − a

N

)2n−i
)

∑n
j=1

j
2n−j

((
1 − a−1

N

)2n−j −
(
1 − a

N

)2n−j
) (7)

Using (7), we can compute the expected intersection size as a function of the shared
MinHash value:

E[|S ∩ T | | M(S) = M(T ) = a] =
n∑

i=1
i · P[|S ∩ T | = i | M(S) = M(T ) = a] (8)

As an illustration, Figure 2 shows probability distributions of intersection sizes without
taking into account the common MinHash value (formula (2)) and knowing the common
MinHash value (formula (7)). The figure demonstrates that larger common MinHash values
provide an evidence for larger intersection sizes.

5 Hash Scoring for Sketch Similarity

In the classical MinHash scheme, the probability that two sets have matching MinHash is
equal to the Jaccard similarity between the two sets. Thus, the fraction of matches taken over
a number of trials provides an unbiased estimator of the Jaccard similarity. We have shown
that the values of these matching MinHashes provides an orthogonal measure of similarity.
The question is what the best way to combine these measures is.

We propose the following initial strategy. Traditional MinHash can be interpreted as
averaging the values of 0/1 indicator variables, where a match of hash codes is represented
by 1 and a mismatch by 0. We will replace the value associated with matching hashes by
real values that over/underweight based on the value of shared MinHash. More specifically,
a shared MinHash value will contribute with weight

E[|S ∩ T | | M(S) = M(T ) = a]
E[|S ∩ T |] , (9)
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Table 1 Improvement (in terms of the average reduction of absolute error) in estimating set
intersection size by summing hash-weighted counts vs. equal weighting to estimate Jaccard similarity
for different numbers of hash functions (rows) and set intersection sizes (columns). Bolded entries
represent improvement over traditional MinHash estimation, representing 116/140 = 82.9% of the
non-trivial cells in the table.

k / int 1 2 3 5 10 15 19 20
1 .0068 .0140 .0205 .0375 .0837 .1150 .1550 -.1650
2 .0067 .0138 .0269 .0395 .0583 .0626 .1020 -.1120
3 .0092 .0250 .0258 .0466 -.0914 .0369 .0824 -.0833
4 .0128 .0250 .0308 .0496 .0042 .0093 .0648 -.0615
5 .0161 .0240 .0312 .0493 .0280 -.0799 .0684 -.0532
6 .0163 .0251 .0377 .0537 -.0471 .0012 .0550 -.0489
7 .0116 .0301 .0368 -.0277 -.0008 .0071 .0636 -.0384
8 .0143 .0257 .0356 .0119 .0282 -.0072 .0615 -.0347
9 .0159 .0201 .0350 .0200 -.0377 .0018 .0298 -.0325
10 .0139 .0283 .0416 .0233 .0029 -.0411 -.0146 -.0290
11 .0155 .0266 .0476 .0266 .0156 .0028 -.0166 -.0244
12 .0147 .0262 .0218 .0350 -.0172 -.0023 -.0004 -.0231
13 .0165 .0353 .0016 .0403 .0133 -.0044 .0035 -.0213
14 .0176 .0283 .0157 -.0133 .0162 -.0035 .0070 -.0193
15 .0168 .0280 .0125 .0077 -.0207 -.0226 .0148 -.0172
16 .0164 .0291 .0142 .0173 .0081 -.0003 .0059 -.0155
17 .0189 .0328 .0196 .0115 .0113 -.0045 .0084 -.0144
18 .0163 .0293 .0193 .0207 -.0157 .0071 .0058 -.0144
19 .0152 -.0060 .0208 .0304 .0043 .0036 .0092 -.0118
20 .0146 .0094 .0213 .0289 .0059 -.0193 -.0122 -.0115

where the numerator is defined by Eqn 8, and

E[|S ∩ T |] =
n∑

i=1
P(|S ∩ T | = i | M(S) = M(T )) (10)

is the expected intersection size independent of MinHash value, i.e. implied by the prior
distribution of intersection sizes.

5.1 Experimental Results
We performed a modest experiment to evaluate the performance of this technique, with
the results reported in Table 1. We limited the experiment to small sets (n = 20), but
consider a broad range of hash function counts (1 ≤ k ≤ 20 = n) and set similarities defined
by intersection sizes from 1 ≤ i ≤ 20 = n. Each cell represents the average difference in
absolute error in estimating intersection size between MinHash with over/underweighting
and traditional 0/1 counts, where each cell is averaged over 1,000 independent random trials.

We note that the rightmost column in Table 1 (intersection size 20 out of a possible 20)
corresponds to identical sets, where the traditional Jaccard (and intersection size) estimate
is always correct, leaving our proposed method with no room for possible improvement. But
116/140 = 82.9% of the non-trivial cells show improvement over the traditional MinHash
baseline.

CPM 2023



20:8 Improving the Sensitivity of MinHash Through Hash-Value Analysis

Figure 3 The Kolmogorov-Smirnov test quantifies the difference between two probability
distributions by the maximum y-distance gap between the two cumulative distribution functions.
On the left, two samples from the same normal distribution. On the right, comparison of samples
from uniform and normal distributions drawn over the same x-range..

6 Sketch Evaluation using the Kolmogorov-Smirnov Test

We now propose an alternate approach to improve the Jaccard similarity estimate offered by
the classical MinHash approach, namely the fraction of matching MinHash values in k trials.
We seek to improve this estimate by analyzing the distribution of the values of the matching
hashes from these trials to decide whether it is more likely to be over or under estimating
the actual similarity. A key advantage of this approach over of that of Section 4 is that does
not require a prior distribution on the actual intersection sizes.

Our approach is based on the Kolmogorov-Smirnov (KS) statistical test [18, 23], which
compares empirical cumulative distribution functions (CDFs) to assess whether two samples
are drawn from the same underlying distribution. We will use it to compare the observed
distribution of matching MinHash values against the theoretical distribution for the classical
Jaccard estimate. The direction of the largest deviation suggests whether it is more likely an
over or under estimate.

6.1 The Kolmogorov-Smirnov Test

In the KS-test, the empirical cumulative distribution function (CDFs) of the two different
samples are plotted on the same chart. If the two samples are drawn from the same
distribution, the ranges of x values should largely overlap. An empirical CDF F̂ (x) of a
sample is defined as the fraction of the sample ≤ x.

We seek to identify the value of x for which the associated values of the two CDFs differ
by as much as possible. The distance D(F̂ , Ĝ) between two empirical CDFs F̂ and Ĝ is the
difference of the y values at this critical x, formally stated as

D(F̂ , Ĝ) = max
x

|F̂ (x) − Ĝ(x)|

The more substantially that two samples differ in this fashion, the more likely it is that
they were drawn from different distributions. Figure 3 (left) shows two independent samples
from the same normal distribution. In contrast, Figure 3 (right) compares a sample drawn
from a normal distribution against one drawn from the uniform distribution. The big gaps
near the tails provide evidence that the two samples are drawn from different distributions.
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The KS-test compares the value of D(F̂ , Ĝ) against a particular target, declaring that
two distributions differ at the significance level of α when:

D(F̂ , Ĝ) > c(α)
√

n1 + n2

n1n2

where c(α) is a distribution-independent constant to look up in a table. In this paper, we
use the ideas behind the KS-test for qualitative evaluation instead of precisely measuring
statistical significance, and so will be interested in the direction of the deviation without this
associated constant.

6.2 Application to MinHash Analysis
As explained above, the distribution of matching MinHash values differs as a function of the
intersection size or (equivalently) Jaccard similarity between two sets of size n. Recall that
for ℓ random numbers x1, . . . , xℓ uniformly drawn from [1..N ], for a ∈ [1..N ], we have

Fℓ(x) = P[min{x1, . . . , xℓ} ≤ x] = 1−P[x1 > x & . . . & xℓ > x] = 1−
(

1 − x

N

)ℓ

≈ 1−e−xℓ/N . (11)

This defines the CDF on matching MinHash values. Comparing two sets A and B, both
of cardinality n with an intersection of size i, any common MinHash value represents the
smallest of ℓ = 2n − i random values. Thus the distribution of matching MinHash values is
defined by Eqn. 11, given an estimate for the union size ℓ. An important observation for
us is that CDFs Fℓ are majorating one another, that is if ℓ1 > ℓ2, then Fℓ1(x) > Fℓ2(x) for
any x.

Estimates for the union size ℓ and intersection size i follow from classical MinHash analysis.
If m matching MinHash values are observed in k trials, m/k is an unbiased estimator of the
Jaccard index i

ℓ = i
2n−i = 2n−ℓ

ℓ . Therefore, i and ℓ are estimated respectively by

î = 2nm

k + m
, ℓ̂ = 2nk

k + m
.

We can now employ the idea underlying the KS-test to evaluate how well the m observed
MinHash values match the estimated distribution Fℓ̂(x). In doing that, we analyze the sign
of the critical deviation

D(Fℓ̂, F̂ ) = Fℓ̂(x̃) − F̂ (x̃) for x̃ = argmax |Fℓ̂(x) − F̂ (x)|,

where F̂ is the empirical CDF obtained from the sample of matching MinHash values. When
D is positive, this suggests that the regular MinHash estimate ℓ̂ is an overestimate and
therefore î is an underestimate for the true intersection size. Conversely, a negative D

provides an evidence that î is an overestimate for the true intersection size. This reasoning
is supported by the above-mentioned majorating property of CDFs, as it guarantees that
the sign of D correctly defines whether the estimate ℓ̂ should be increased or decreased for
the KS-test statistic to be reduced and therefore for the estimated CDF to fit better the
observed MinHash values. We thus propose the sign of D as a secondary signal to improve
the accuracy of î as an estimator for intersection size.

The running time of this test is O(m log m) because we must sort the observed matching
hash values to compute the CDF. It is only necessary to compare the distributions at the m

sample points to identify the extremal points, with each comparison efficiently done using the
exponential form of Eqn. 11. The magnitude of the deviation directly maps to a confidence
value in the direction of change, with p-values obtainable using tables of c(α) values from
the standard KS-test. However, in the experiments below we propose to estimate correction
direction from the sign of D independent of its magnitude.

CPM 2023



20:10 Improving the Sensitivity of MinHash Through Hash-Value Analysis

Table 2 Performance (in terms of the fraction of correct direction predictions) of the KS-test-
based over/under correction, as a function of the number of hash functions k (shown in left column),
and the true Jaccard similarity/intersection size (shown in first/second row). Generally speaking,
the improvement is greatest at extreme values of similarity (either high or low), and with smaller
numbers of hash functions.

Jaccard .961 .869 .786 .739 .667 .538 .429 .333 .258 .176 .111 .081
intersect 980 930 880 850 800 700 600 500 410 300 200 150 Avg

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 .816 .696 .596 .534 .457 .339 .988 .994 .996 .998 .999 .998 .784
3 .764 .618 .485 .419 .275 .552 .445 .340 .983 .992 .994 .998 .655
4 .711 .556 .440 .651 .561 .388 .570 .475 .361 .982 .989 .993 .640
5 .683 .519 .632 .572 .478 .551 .394 .551 .450 .974 .985 .993 .649
10 .591 .577 .590 .537 .566 .505 .474 .452 .483 .561 .399 .966 .558
20 .502 .540 .565 .573 .545 .564 .535 .528 .456 .460 .395 .514 .515
50 .506 .550 .539 .567 .550 .560 .549 .544 .541 .520 .474 .396 .525
75 .518 .535 .562 .552 .508 .553 .550 .492 .515 .506 .487 .431 .517
100 .512 .552 .556 .561 .553 .578 .552 .552 .542 .525 .468 .454 .534
200 .525 .549 .550 .557 .563 .568 .555 .557 .543 .527 .505 .491 .541
300 .522 .551 .558 .556 .535 .561 .550 .530 .543 .536 .515 .506 .539
500 .529 .550 .550 .559 .556 .574 .558 .553 .543 .534 .521 .511 .545
1000 .520 .552 .556 .567 .561 .565 .557 .548 .550 .540 .512 .512 .545

Average .621 .596 .584 .586 .550 .561 .591 .580 .608 .690 .660 .697 .610

6.3 Experimental Results

Table 2 summarizes the performance of our KS-based correction strategy over a wide range
of hash counts (from k = 1 to k = 1000) and true Jaccard similarity (from 0.081 to 0.961).
For each Jaccard similarity level, we constructed 10,000 pairs of 1000-element sets, each
pair constructed to the appropriate level of similarity. We then constructed k independent
hash functions of these sets, and determined the number of matching MinHashes for these
trials. We then performed the KS-test on the matching values to propose whether the actual
Jaccard estimate should be higher or lower than the observed fraction of matches. We chose
parameters of our tests (intersection size) so that to avoid the situation when the MinHash
estimate exactly equals the true Jaccard similarity, making each case a fair binary trial.

Of the 14×12 = 172 entries in Table 2, 144 of them (83.7%) are greater than 0.5, meaning
the adjustment breaks in the correct direction more often than not. The average accuracy
ratio taken over all trials is 61.0%, substantially better than the baseline of 50%.

When employing large numbers of hash functions k ≥ 100, our technique improves the
estimate on average in 57 of 60 (95%) entries, and proves most beneficial in the middle regions
where the Jaccard similarity is ≈ 0.5. This is curious, because larger k provides greater
resolution on the fraction of matching hash values, thus reducing the quantization error of
classical MinHash. But the KS-analysis also improves with more samples as k increases, and
continues to refine the similarity estimate even as k = 1000. Presumably in the limit as k

grows, the improvement over baseline will disappear, but it seems durable over the range of
k that appear in general applications.

That our best (and worst) performance occurs for very small k reflects issues of
quantization: for an intersection size of n/2 and k = 5, the best possible estimate must be
wrong by at least 10%. As a statistical significance test, the KS-test was designed to be
used with a meaningful number of samples per observed distribution. There are likely other
statistical tests to do better with small (and maybe even large) values of k.
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7 Conclusions

We have demonstrated that the value of matching MinHash values provides additional
information on the degree of similarity between pairs of sets. Our wins are small, but they
are real. We believe that there exist better methods of integration to synthesize the mix of
the number of matching hashes and their values into a more accurate measure of similarity
and believe that this is a research direction worth pursuing. We note that even careful
analysis of the values of the matching hash codes will be substantially less computationally
expensive than that of obtaining the MinHash codes themselves, so these improvements will
come at a little computational cost.

The MinHash values that do not match also contain some degree of signal concerning the
similarity of two sets. Suppose the smallest hash values of two sets do not match, but are both
unusually large, say a substantial fraction of the total range N . These large MinHash values
signify that both sets exclude the same large fraction of possible elements from the universe,
implying they must both be constructed from just a relatively small set of non-excluded
elements. This conditioning increases the expected Jaccard similarity, despite the fact that
the hash values do not match. We believe this signal to be very weak except in extreme
cases, but its analysis may be part of a complete solution.

The theoretical success of MinHash depends strongly upon the elements of the sets being
distinct. If multiplicity of elements should be taken into account, one should resort to the
weighted variant of MinHash [26]. Extending our ideas to Weighted MinHash is another
interesting direction of study for the future.
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