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Abstract
Merging T sorted, non-redundant lists containing M elements into a single sorted, non-redundant
result of size N ≥ M/T is a classic problem typically solved practically in O(M log T ) time with a
priority-queue data structure the most basic of which is the simple heap. We revisit this problem
in the situation where the list elements are strings and the lists contain many identical or nearly
identical elements. By keeping simple auxiliary information with each heap node, we devise an
O(M log T + S) worst-case method that performs no more character comparisons than the sum of
the lengths of all the strings S, and another O(M log(T/ē) + S) method that becomes progressively
more efficient as a function of the fraction of equal elements ē = M/N between input lists, reaching
linear time when the lists are all identical. The methods perform favorably in practice versus an
alternate formulation based on a trie.
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1 Introduction & Summary

Producing a sorted list, possibly with duplicate elements removed, from a collection of T

sorted input lists is a classic problem [4]. Moreover, with today’s massive data sets, where an
in-memory sort would require an excessively large memory, this problem gains in importance
as a component of an external, disk-based sort. Our motivating example is modern DNA
sequencing projects that involve anywhere from 100 billion to 5 trillion DNA bases of data
in the form of sequencing reads that are conceptually strings over the 4-letter alphabet A, C,
G, T [8]. In particular, the problem of producing a sorted table of all the k-mers (substrings
of length exactly k) and their counts has been the focus of much study and is used in many
analysis methods for these data sets [5, 6, 7].

Priority queue implementations such as a heap, take O(log T ) to extract the next minimum
and insert its replacement, giving an O(M log T ) merge time where M is the sum of the
lengths of the input lists [2]. However when the domain of the merge is strings, as opposed to
say integers, then one must consider the time taken for each of the O(log T ) string comparisons,
which is not O(1) but conceptually the average length of the longest common prefix (lcp)
between all the compared strings. For example, this is O(logΣ M) in the “Uniform Scenario”
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22:2 Merging String Lists

where the characters of the strings are chosen with equal probability over an alphabet of size
Σ. But it can be much worse, for example, when merging lists of say 21-mers each obtained
from a portion of a 40X coverage DNA sequencing data set, where many strings are identical.

In the worst case, one can only assert that the time to merge the list of strings is
O(S log T ) where S is the total number of characters in the input lists, e.g. Mk for lists of
k-mers. Assuming the Uniform Scenario, one can more accurately characterize the efficiency
as O(M log T log M) expected time. In this paper we present a method that is guaranteed
to take O(M log T + S) time by modifying the heap data structure so that the amortized
time spent on comparing the characters of any string while it is in the heap is never more
than its length. Moreover, in the Uniform Scenario, the efficiency is O(M(log T + log M))
expected time. We call such a modified heap a string heap. Interestingly, a binary search
tree augmented by a generalized list structure that also leverages lcp’s was developed by
Amir et al. [1] and also achieves the bounds above, albeit with a different logic/design.

It is further true in the case of DNA sequencing data sets, that often the number of
elements N in the merged list is much smaller than M when duplicate elements are removed.
Specifically, N can be as small as M/T assuming the input lists themselves do not contain
equal elements. With another modification to a heap, not specific to strings per se, we will
achieve here an algorithm that takes O(M log(T/ē)) time where ē = M/N is the average
number of distinct input lists a given element is in. So when all the input elements are
unique the time is as usual O(M log T ) but as ē increases less time is taken, reaching O(M)
when all the input lists are identical, that is, ē = T . We call such a modified heap a collision
heap. We show it can easily be combined with a string heap to give an O(M log(T/ē) + S)
algorithm for string merging.

While the focus of this paper is on modifying a heap to support string elements, an
orthogonal approach to realizing a priority queue (PQ) of strings appeared in a comprehensive
paper by Thorup ([9]) that is primarily focused on integer PQs, but which in Section 6
uses a trie [3] to merge strings of, potentially large, integers in O(M log log T + S) time. In
bioinformatics, strings are generally over alphabets of small size Σ, e.g. 4 for DNA, so taking
Thorup’s algorithm, but replacing the general integer priority queue with van Emde Boas
small integer PQs [10] over domain Σ, one obtains an O(M log log Σ+S) time algorithm. The
implementation of either of these methods encounters rather larger overheads compared to
simply realizing the basic approach of Thorup’s algorithm with a compact trie with Σ-element
arrays for the out-edges. Moreover, because adding to the trie then becomes linear, the
complexity of this simplified approach is O(NΣ + S). Given limited values of Σ, e.g. say up
to 20 for protein sequences, the trie approach is very competitive, especially for the cases
where N is significantly smaller than M .

We implemented programs to merge files of sorted strings using a regular heap, a
string heap, a collision heap, a combination of the string and collision heap, and a simple
compact trie and performed timing experiments on both simulated and real DNA se-
quencing k-mer data to determine their relative performance. The codes are available
at github.com/thegenemyers/HEAPS. Amongst the heap-based algorithms, the string heap
proves superior as the average lcp between consecutive output strings increases, and the
collision heap proves superior as the collision ratio ē increases. Also, the combination heap
tracked the behavior of whichever of the string or collision heap proves superior, but at an
overhead of roughly 5%. Against the trie approach, the string heap is faster in the uniform
scenario until T becomes quite large, e.g. 256 in our experiments. In scenarios where N ≪ M

due to a uniform collision rate the trie proved fastest save for small values of T . For real
data sets, where the collision rate is highly variable, the collision and combination heaps gave
the best times. In short, the new heap methods are of both theoretical and practical interest.
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2 Preliminaries: Definitions and a Short Recap of Heaps

Consider T sorted lists of strings St = st
1, st

2, . . . st
Nt

of lengths Nt. We assume that the
elements are distinct, i.e. st

j < st
j+1, and let st

j = ajt

0 ajt

1 . . . ajt

nt
j
−1. Note carefully, that

the first character of a string is at index 0. The problem is to produce a single sorted list
R = r1, r2, . . . rN of length N with any duplicates between the lists removed. That is, while
each input list has unique strings, the same string, can occur in up to T different lists. Let
ei ∈ [1, T ] be the number of different queues the string ri occurs in. Letting M =

∑T
t=1 Nt

be the sum of the lengths of the input lists, note that N is in the range [M/T, M ].
A T element heap is a complete binary tree of T nodes containing or referring to domain

values to be prioritized. A heap further has the heap property when for every node, the
domain values of its children are not less than its domain value. A heap can be very simply
implemented as an array H[1..T ] where H[i] is the datum for node i, its left child is 2i, and
its right child is 2i + 1 (if they exist, i.e. are ≤ T ).

In the case of merging T input lists, we will let each heap node contain the index t ∈ [1, T ]
of an input list and another array, V [0..T ] will contain the current value for that list in V [t]
(the role of V [0] is discussed in the next paragraph). If all the nodes greater than i have the
heap property, then recall that the simple routine Heapify(i,x,t) in Figure 1 below will add
the value x from list t to the heap guaranteeing that H has the heap property for all nodes
greater than i−1. The routine takes time proportional to at most the height of i in the heap
which is O(log T ) for all i.

Let S[t] denote the tth sorted input list and assume it operates as a one-sided queue
where one can Pop the next element from the list and ask if the queue is Empty. We will also
assume that INFINITY is an infinitely large string value greater than all those encountered
as input and when a list is exhausted place this value at V [0] so that H[1] becomes 0 when
all the lists are exhausted. Finally, for simplicity we assume each list has at least one element,
i.e. Nt > 0 for all t. Then a complete pseudo-code for the basic priority queue approach to
merging T sorted lists while removing duplicate values is shown at right in Figure 1.

int T domain_list S[1..T]
int H[1..T]
domain V[0..T] 1. for t = T downto 1 do

2. Heapify(t,Pop(S[t]),t)
Heapify(i,x,t)
{ c = i 3. last = INFINITY

while (u=2c) <= T do 4. while (t = H[1]) > 0 do
{ if u < T and V[H[u+1]] < V[H[u]] then 5. { x = V[t]

u = u+1 6. if x != last then
if x <= V[H[u]] then 7. output (last=x)

break 8. if Empty(S[t]) then
H[c] = H[u] 9. Heapify(1,INFINITY,0)
c = u 10. else

} 11. Heapify(1,Pop(S[t]),t)
(H[c],V[t]) = (t,x) }

}

Figure 1 The Heapify routine (left) and the overall merge algorithm (right).

In lines 1 and 2, the first element of each list is Pop’d and placed in the heap in reverse
order of the nodes so that the entire heap has the heap property upon completion. The
total time taken for this setup is O(T ) as the sum of the heights of the nodes in a complete
binary tree is of this order. Then in the while-loop of line 4, the list t with the next smallest
element is H[1] and if this value is not zero (indicating the exhaustion of all the queues),
then the element x = V [t] is processed in the loop body. If the value x is not a duplicate of
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22:4 Merging String Lists

the last element output then it is output (lines 5 - 7). If list t is not empty then its next
element replaces the element just output and the heap property is restored at node 1 (lines 8
& 11). Otherwise the element is replaced with the largest possible value INFINITY (line 9)
in “queue” 0 so that when all T lists are exhausted the extraction of 0 as the queue index
marks the end of the merge.

Given that Heapify takes O(log T ) time and an input element is processed with each
iteration of the loop, the algorithm clearly operates in O(M log T ) time assuming domain
comparisons are O(1). As discussed in the introduction this assumption is not necessarily
true when the values are strings and we address this in the next section.

3 The String Heap

The idea for a string heap is very simple, namely, for each node also record and keep current
the length of the longest common prefix between the string at the node and the string at
its parent (except for the root). Let lcp(u, v) be the longest common prefix between strings
u and v. Then more formally, a string heap also maintains a third array P [1..T ] such that
P [i] = lcp(V [H[i]], V [H[⌊i/2⌋]]) for i > 1. The interesting and complex part of this extension
is maintaining this property during the induction of Heapify and using it to accelerate the
comparison of string values by limiting the number of character comparisons involved.

Intuitively, Heapify(i,x,t) traverses the maximal left most path starting at i, all of whose
elements are less than x and not more than their siblings until a node c⋆ is reached that
is either a leaf or for which all its children are not less than x. The values along this path
are shifted up to the node above during each iteration until x is placed at node c⋆ at the
last. To help argue the induction to follow, it conceptually simplifies matters to think of x as
being explicitly placed at the node indexed by the variable c (i.e. H[c] = t) as the algorithm
descends from node i to the final placement of x. From this viewpoint, at the start of each
iteration of the loop of Heapify, the heap satisfies the heap property at every node in the
subtree rooted at i except c where x conceptually currently resides. For the array P realizing
a string heap, the loop invariant is that P is correct except possibly at nodes 2c and 2c + 1 as
x has just been placed at their parent node c. Our goal is to maintain this invariant through
the next iteration of the loop where either x is found to be not greater than the children of c

and the loop exits, or the algorithm descends to one of the children of c swapping x with the
child’s value.

To facilitate a simpler logic around the comparison of strings, we will assume that every
string ends with a special terminating character $ that is less than any ordinary character
(e.g. 0 for C-strings). With this convention, finding the lcp of two strings x and y is simply
a matter of finding the first index ρ for which the strings have unequal characters or both
are $. Moreover note that x < y iff x[ρ] < y[ρ].

For all but the first iteration of the loop of Heapify, note that the value that was at the
current node c is now at ⌊c/2⌋ having been exchanged with x as it has a smaller value. In
what follows, we will let o = V [H[⌊c/2⌋]] < x be this value and also let vl = V [H[2c]] and
vr = V [H[2c + 1]] be the strings currently at the left and right children of c. Observe that it
must be that P [2c] = lcp(o, vl) and P [2c + 1] = lcp(o, vr) as these values are unchanged since
the previous iteration when o was at node c. Let pl and pr denote these values, respectively,
and further let p = P [c] = lcp(o, x) in the proof/analysis that follows.

▶ Theorem 1. Given that insertions are monotone, i.e. the next value inserted is not less
than the value just extracted, the Heapify routine of Figure 2 is correct once initialized. To
start, it suffices to set, H[i] = 0 for all i and V[0] = $ and then perform Lines 1 and 2 of the
merge given in Figure 1. After calling Heapify, P [1] is the lcp of the the last value extracted
and the value at the root.
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Proof. First consider the situation when the heap has been correctly initialized and one is
now inserting a new element x as in Line 11 of the merge algorithm in Figure 1. So upon
entry to Heapify, c = i = 1 and observe that it will be the case that P [2] and P [3] will have
the value lcp(o, H[V [2]]) and lcp(o, H[V [3]]) where o is the value that was just extracted
from the root of the heap and which x is now about to replace. So in order to get started we
need to set p to lcp(o, x) where o < x by the monotonicity condition. Given that nothing has
been placed at V [H[1]], it still has o as its value, and so in Figure 2, Heapify starts correctly
by setting p to LCP2(V [H[1]], x, 0) before initiating its loop. Indeed one could imagine that
o is at the virtual father of the root 1.

(The reader should observe that if o > x, i.e. the context is not monotone, then getting
the induction started also requires readjusting P [2] and P [3] downward to p if they happen
to be larger than p. In this case, we can no longer place a bound on the total number
of character comparison made during the operation of the heap, but it will still operate
correctly.)

In the case that the heap is being initialized, i.e. i > 1 in Line 2 of the merge algorithm,
it suffices to let o be the empty string, ϵ, so that P [i] = P [2i] = P [2i + 1] = 0. The conditions
of the theorem correctly guarantee then that LCP2(V [H[1]], x, 0) = LCP2($, x, 0) = 0.

We now proceed to analyze the numerous cases that arise to maintain the induction
during the iterations of Heapify’s loop in terms of the relationships between the quantities
p, pl, and pr. To further simplify matters observe that the treatment of the left and right
children of c is symmetric, so we only consider the left case, pr ≤ pl, in the enumeration
below knowing that the right case, pl < pr, is handled simply by exchanging the roles of
left and right. Furthermore, we repeatedly use the logic that if lcp(x, s) < lcp(s, y) then
lcp(x, y) = lcp(x, s) and x < s iff x < y.
Case 1: pr < pl and p < pl. By the case condition lcp(x, o) = p < pl = lcp(o, vl) and since

we know x > o we can conclude that x > vl and lcp(x, vl) = lcp(x, o) = p. Similarly
lcp(vr, o) = pr < pl = lcp(o, vl) and we know vr ≥ o allowing us to conclude that vr > vl

and lcp(vr, vl) = lcp(vr, o) = pr. So vl is the smallest of x, vl, and vr implying that the
loop should descend to 2c with vl being placed at c. Moreover, P [c] should be set to pl,
while p and P [2c + 1] can remain unchanged having already the correct values for the
next iteration.

Case 2: pr ≤ pl and p > pl. By the case condition lcp(vl, o) = pl < p = lcp(o, x) and
since we know vl ≥ o we can conclude that x < vl and lcp(vl, x) = lcp(vl, o). Similarly
lcp(vr, o) = pr ≤ pl < p = lcp(o, x) and we know vr ≥ o allowing us to conclude that
x < vr and lcp(vr, x) = lcp(vr, o). So the loop can terminate with x being placed at node
c. Moreover, P [2c] and P [2c + 1] remain unchanged having yet the correct values.

Case 3: pr < pl and p = pl. First compute px = p + lcp(vl + p, x + p) where s + j is the
suffix of string s beginning at position j. Clearly px = lcp(vl, x) and if vl[px] < x[px] then
vl < x, otherwise vl ≥ x. We have two subcases:
Subcase 3a: vl[px] < x[px]. The condition pr < pl implies lcp(vr, o) < lcp(o, vl) and

we know vr ≥ o allowing us to conclude that vr > vl and lcp(vr, vl) = lcp(vr, o). Thus
vl is smaller than both x and vr. So the loop should descend to 2c with vl being placed
at c. Therefore, P [c] should be set to pl and p to px, while P [2c + 1] has the correct
value.

Subcase 3b: vl[px] ≥ x[px]. By the case conditions we know pr < p implying
lcp(vr, o) < lcp(o, x) and we know vr ≥ o allowing us to conclude that vr > x

and lcp(vr, x) = lcp(vr, o). Thus x is not less than both vl and vr. So the loop can
terminate with x being placed at node c. While P [2c + 1] remains correct, P [2c] needs
to be updated to px.

CPM 2023



22:6 Merging String Lists

Case 4: pr = pl and p < pl. Compute px = pl + lcp(vl + pl, vr + pl) which is clearly
lcp(vl, vr). If vr[px] < vl[px] then vr < vl, otherwise vr ≥ vl. WLOG let’s assume
vl ≤ vr, as the case vr < vl is symmetric. As in cases before p < pl and x > o allow us
to surmise that x > vl and lcp(x, vl) = lcp(x, o). Therefore vl is smaller than x and not
larger than vr, implying that the loop should descend to 2c with vl being placed at c.
Therefore, P [c] should be set to pl, P [2c + 1] to px, while p continues to have the correct
value.

Case 5: pr = pl = p. First compute px = p + lcp3(vl + p, vr + p, x + p) where lcp3 is the
3-way common prefix, and this by the case conditions is clearly equal to lcp3(vl, vr, x).
There now arise numerous subcases based on the relationships between x[px], vl[px], and
vr[px] in direct analogy to the subcases based on the relationships between p, pl, and pr,
so we will number these 5.1, 5.2, and so on:

Subcase 5.1: vr[px] > vl[px] and x[px] > vl[px]. The case conditions imply x > vl

and vr > vl and lcp(vl, x) = lcp(vl, vr) = px. So vl is the smallest of x, vl, and vr

implying that the loop should descend to 2c with vl being placed at c. So P [c] should
be set to pl, while p and P [2c + 1] are now clearly px.

Subcase 5.2: vr[px] ≥ vl[px] and x[px] ≤ vl[px]. In this subcase, clearly x is not
more than both vl and vr and lcp(vl, x) = lcp(vr, x) = px. So the loop should
terminate and both P [2c] and P [2c + 1] should be updated to px.

Subcase 5.3: vr[px] > vl[px] and x[px] = vl[px]. First compute py = px + lcp(vl +
px, x + px) which is clearly lcp(vl, x) note that the conditions to this point imply
lcp(vl, vr) = lcp(x, vr) = px.

Subcase 5.3a: vl[py] < x[py]. So vl is the smaller than x and vr implying the loop
should descend to 2c with vl being placed at c. So P [c] should be set to pl and the
correct new values for p and P [2c + 1] are py and px, respectively.

Subcase 5.3b: vl[py] ≥ x[py]. So x is not smaller than vl and vr implying the loop
can terminate at c,

Subcase 5.4: vr[px] = vl[px] and x[px] > vl[px]. Compute py = px + lcp(vl +px, vr +
px) which is clearly lcp(vl, vr). If vr[py] < vl[py] then vr < vl, otherwise vr ≥ vl.
WLOG let’s assume vl ≤ vr, as the case vr < vl is symmetric. By the case conditions
x > vl and lcp(x, vl) = px. Therefore vl is smaller than x and not larger than vr,
implying that the loop should descend to 2c with vl being placed at c. Therefore, P [c]
should be set to pl, P [2c + 1] to py, and p to px. ◀

Figure 2 presents the complete algorithm for the string version of Heapify embodying
the case analysis above so that the P -array values are correctly maintained. Note carefully,
that the lcp information in the P -array is used both to determine the relative values of the
heap elements and hence direct the path that Heapify takes to insert a new element x, but
further also saves time on the number of character comparisons performed by only computing
new lcp’s in terms of an initial lcp-offset that is common to all of the arguments to LCP2 or
LCP3. So as regards complexity, the algorithm for Heapify takes O(log T ) time plus the time
spent in LCP2 or LCP3 for character comparisons. Note carefully the code assumes that we
are merging sorted string lists, so the value of x is not less than the value of the previous
element o = V [H[1]] on the same queue H[1], i.e. the computation is monotone. We make
an amortization argument to bound the total number of character comparisons as follows:
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Heapify(int i, string x, int t) int LCP2(string x, string y, int n)

{ c = i { while true do

p = LCP2(V[H[i]],x,0) { (a,b) = (x[n],y[n])

while (l = 2c) <= T do if a != b or a == $ then

{ (hl,pl) = (H[l],P[l]) return n

if l < T then n += 1

(hr,pr) = (H[l+1],P[l+1]) }

else }

pr = -1

if pr < pl then

{ if p < pl then # Case 1L int LCP3(string x, string y, string z, int n)

(H[c],P[c],c) = (hl,pl,l) { while true do

else if p > pl then # Case 2L { (a,b,c) = (x[n],y[n],z[n])

break if a != b or a != c or a == $ then

else return n

{ vl = V[hl] n += 1

px = LCP2(vl,x,pl) }

if vl[px] < x[px] then # Case 3La }

(H[c],P[c],p,c) = (hl,pl,px,l)

else # Case 3Lb

{ P[l] = px

break

}

}

}

else if pr > pl then

{ # Case 1R, 2R, 3Ra, 3Rb

...

}

else if p > pl then # Case 2

break

else

{ (vl,vr) = (V[hl],V[hr])

if p < pl then # Case 4

{ px = LCP2(vr,vl,pl)

if (vl[px] <= vr[px])

(H[c],P[c],P[l+1],c) = (hl,pl,px,l)

else

(H[c],P[c],P[l],c) = (hr,pr,px,l+1)

}

else # Case 5

{ px = LCP3(vl,vr,x,p)

if vr[px] > vl[px] then

{ if x[px] > vl[px] then # Case 5.1L

(H[c],P[c],P[l+1],p,c) = (hl,pl,px,px,l)

else if x[px] < vl[px] then # Case 5.2L

{ P[l] = P[l+1] = px

break

}

else

{ py = LCP2(vl,x,px)

if vl[py] < x[py] then # Case 5.3La

(H[c],P[c],P[l+1],p,c) = (hl,pl,px,py,l)

else # Case 5.3Lb

{ (P[l],P[l+1]) = (py,px)

break

}

}

}

else if vr[px] < vl[px] then

{ # Case 5.1R, 5.2R, 5.3Ra, 5.3Rb

...

}

else if x[px] <= vl[py] then # Case 5.2

{ P[l] = P[l+1] = px

break

}

else # Case 5.4

{ py = LCP2(vl,vr,px)

if vl[py] < vr[py] then

(H[c],P[c],P[l+1],p,c) = (hl,pl,py,px,l)

else

(H[c],P[c],P[l],p,c) = (hr,pr,py,px,l+1)

}

}

}

}

(H[c],V[t],P[c]) = (t,x,p)

}

Figure 2 The Heapify algorithm for a string heap.
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▶ Theorem 2. The merge algorithm of Figure 1 when using the string heap of Figure 2 1

takes O(M log T + X) time where X = |s1| +
∑M

i=2 lcp(si−1, si) and R+ = s1, s2, . . . sM is
the sequence of M strings extracted from the heap over the course of the list merge, i.e. the
output list if duplicates were not removed. Thus it takes O(M log T + S) worst-case time and
O(M(log T + log M)) expected time in the Uniform Scenario.

Proof. First, observe that every string value has an lcp-value associated with it, namely, for
the string V [H[i]] it is P [i] and it represents the number of character comparisons “charged”
to its string. Examination of the case conditions reveals that when LCP2 or LCP3 is called, all
the string arguments have the same lcp-value at the time of the call. Afterwords, all but one
of the arguments will have its lcp-value increased to the returned value, effectively charging
the comparisons of the lcp call to those arguments (NB: for LCP3 two comparisons per lcp
increment are made). The total time taken then over the course of the merge is the sum of
the maximum lcp-value of every string that passes through the heap. Since the lcp-value of
each string is never more than the length of the string, we have our O(S) bound on the total
number of character comparisons.

We can more accurately characterize the number of comparisons with the observation
that the maximum lcp-value that each string reaches when it is extracted from the root of
the heap is its lcp with the string value extracted just before it. To see this simply review
WLOG the logic involved in a value moving from node 2 to node 1 where, in all relevant cases,
P [1] is assigned to pl = lcp(o, vl) where o is the last value extracted as explained previously.
Further note that the comparisons for the first element extracted equals its length as its
conceptual predecessor is the empty string. So the total number of character comparisons is
|s1| +

∑M
i=2 lcp(si−1, si) over the M string in R+. This expression clearly reveals that the

time spent comparing strings in a string heap is a function of the consecutive similarity of
the strings in the final list, and immediately proves the expected time complexity claim for
the Uniform Scenario as the average lcp value is O(logΣ M) in this scenario. ◀

4 The Collision Heap

One might think that when merging sorted string lists that themselves have no duplicates,
that there would be in expectation very few duplicates between the lists. This would be
correct for the Uniform Scenario. But this is not true, for instance, when the problem is to
merge lists of k-mers generated from a shotgun data set. To wit, in a coverage c, say 40X,
data set, every part of the underlying target sequence/genome has been sampled on average
40 times and so we expect non-erroneous k-mers from unique parts of the target to occur on
average 40 times, and a multiple thereof if from repetitive regions. So if one were to partition
the data into T equal sized parts, sort the k-mers in each part, and then merge those lists,
one quite often sees the same k-mer in different lists. More precisely, the chance that a given
k-mer that occurs c times in the data set is not in a given input queue is (1 − 1/T )c, so we
expect the k-mer to be in ē = T (1 − (1 − 1/T )c) ≈ T (1 − e−c/T ) of the input lists. So if T

is say 10, then a non-erroneous, unique k-mer will be found in ē = 6.5, 8.8, 9.6, or 9.85 of
the lists if c = 10, 20, 30, or 40, respectively. It was this specific use-case, that we call the
“Shotgun Scenario”, that motivated the development of a collision heap.

1 The test x != last is simply replaced by P[1] < |x| as P [1] is the lcp of x and the previous extracted
element per Theorem 1.
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The idea behind a collision heap is also very simple, namely, for each node one also records
whether the value at that node is equal to its left child and its right child with a pair of
boolean flags in auxiliary (bit) arrays L[1..T ] and R[1..T ]. Formally, L[i] has the value of the
predicate V [H[i]] = V [H[2i]] and R[i] has the value of the predicate V [H[i]] = V [H[2i + 1]].
Again the interesting and somewhat complex part of this extension is maintaining these
values during the induction of Heapify and using them to accelerate the handling of duplicate
entries.

▶ Theorem 3. The Heapify routine of Figure 3 correctly maintains the L and R arrays.

Proof. The inductive invariant for the loop of Heapify is basically that all values are correct
or will be correct once the algorithm is complete, save for H[c], L[c] and R[c] which need
to be determined depending on the relative values of x, conceptually at c, and those of its
current children. Let vl = H[V [2c]] and vr = H[V [2c + 1]] be the strings currently at the left
and right children of c. There are 9 cases depending on the relative magnitudes of x, vl, and
vr, where the three that entail the condition vl > vr are treated by symmetry:
Case 1: vl < vr and x > vl. By the conditions, vl will move to node c and the path followed

descends to 2c. vl < vr implies that R[c] should be false. However, vl < x does not
imply the same for the new value of L[c] as vl could be equal to the element at 2(2c) or
2(2c) + 1 or both and if so, then those elements are also less than x implying one or the
other will replace x at 2c. Therefore L[c] should be true as it will be correct and remain
correct after the next loop iteration. So to recapitulate, if L[2c] or R[2c] are true then
L[c] should be set to true otherwise it should be false.

Case 2: vl < vr and x = vl. By the conditions, the loop will terminate with x finally
resting at node c. By the case conditions it is then clear that L[c] is true and R[c] is false.

Case 3: vl ≤ vr and x < vl. Again a very simple case where the loop stops and clearly
L[c] = R[c] = false.

Case 4: vl = vr and x > vl. In this case, vl moves up to occupy c and x moves down to
node 2c. Clearly R[c] should then be true as vl = vr. As argued in Case 1, if vl equals
either of its children then the value of L[c] needs to be true as one of these children is
smaller than x. Otherwise L[c] should be false.

Case 5: vl = vr and x = vl. Then the loop terminates and both L[c] and R[c] are true. ◀

Figure 3 presents the complete algorithm for the collision version of Heapify embodying
the case analysis above so that the L and R array values are correctly maintained when a
heap update occurs. The code is further obviously O(log T ).

The value of the additional L and R flags is that when the top element, say x, is about
to be extracted as the current minimum in the heap, one can find all the additional elements
equal to x by recursively visiting the children that are marked as equal according to the
relevant L and R flags. In Figure 3, the routine PopHeap calls the recursive routine cohort
that makes a post order traversal of the subtree of the heap of all elements equal to x, and
places the indices of these nodes in post order in an array G, returning how many of them
there are. Thus after calling PopHeap the array G[1..PopHeap()] contains the next group of
equal elements. The routine clearly takes time proportional to the number of equal elements
found. The interesting part is how to replace the cohort in the heap and the time taken to
do so, which we treat in the following:

▶ Theorem 4. The merge algorithm of Figure 3 correctly merges the lists, outputting a
unique element in each iteration and takes O(M log(T/ē)) worst-case time where ē = M/N .
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int H{1..T] int G[1..T]

value V[1..T]

boolean L[1..T] int cohort(int c, int len)

boolean R[1..T] { if (R[c])

len = cohort(2c+1,len)

static void Heapify(int i, value x, int t) if (L[c])

{ V[t] = x len = cohort(2c,len)

c = i len += 1

while ((l = (2c)) <= T) G[len] = c

{ hl = H[l] return len

vl = V[hl] }

if (l >= T)

vr = INFINITY

else

{ hr = H[l+1]

vr = V[hr]

}

if (vr > vl)

{ if (x > vl) # Case 1L

{ H[c] = hl

L[c] = L[l] or R[l]

R[c] = false

c = l

}

else if (x == vl) # Case 2L

{ H[c] = t

L[c] = true

R[c] = false

return

}

else # Case 3L

break

}

else if (vr < vl)

{ # Cases 1R, 2R, 3R

. . .

}

else

{ if (x > vl) # Case 4

{ H[c] = hl

L[c] = L[l] or R[l] domain_list S[1..T]

R[c] = true

c = l 1. for t = T downto 1 do

} 2. Heapify(t,Pop(S[t]),t)

else if (x < vl) # Case 3

break 3. while (t = H[1]) > 0 do

else # Case 5 4. { output V[t]

{ H[c] = t 5. len = cohort(1,0)

L[c] = R[c] = true 6. for k = 1 to len do

return 7. { i = G[k]

} 8. t = H[i]

} 9. if Empty(S[t]) then

} 10. Heapify(i,INFINITY,0)

H[c] = t 11. else

L[c] = R[c] = false 12. Heapify(i,Pop(S[t]),t)

return }

} }

Figure 3 The Heapify (left) and cohort (upper right) and top-level merge (lower right) algorithms
for a collision heap. In the main algorithm cohort(1,0) identifies all of the equal next elements to be
output in Line 5, and then Lines 6-12 carefully replace each of these with its list successor.



G. Myers 22:11

Proof. While the flags allow us to easily identify the next cohort of equal elements to extract
from the heap, there remains the somewhat more subtle problem of replacing all of them with
their list successors. Lines 6-12 of the psuedo-code for the top-level merge at the bottom right
of Figure 3 details how this is done. Because the nodes in the cohort G are in post-order,
calling Heapify on each listed node in that order guarantees a proper heap after all the
elements have been replaced. In terms of complexity suppose e nodes are in the cohort for a
given iteration of the loop. While the time taken in Lines 6-12 is certainly O(e log T ) we can
bound this more tightly by observing that the most time is taken when the e nodes form
a complete binary subtree of the heap, that is, every node has the highest height possible.
In this case the lowest nodes are at height log T − log e and the sum over all e nodes is
dominated by this as the sum telescopes (e.g. as for the time analysis for establishing the
heap in Lines 1 and 2). Thus the time taken is more accurately O(e log(T/e)). Observe that
when e = T the time is O(e) and when e = 1 the time taken is O(log T ).

Looking at the overall time to produce the final list R where ri occurrs in ei of the
lists, the total time is O(

∑N
i=1 ei(log T − log ei)). By the convexity of the log-function∑

i ei log2 ei ≥ Nē log2 ē where ē =
∑

i ei/N is the average value of ei. It thus follows that
the total time is O(

∑
i ei log T − Nē log ē) = O(M log(T/ē)). So when ē = 1, i.e. every input

element is unique, then the time is O(M log T ) as usual. But this gradually decreases as ē

approaches T where upon the time is O(M). ◀

5 The String Collision Heap

Observing that the idea of a string heap and a collision heap are independent, one can combine
the ideas obtaining an O(M log(T/ē) + S) time algorithm. Further observe that the L- and
R-arrays are not necessarily needed as L[c] is the same as the predicate V [H[x]][P [x]] = $
where x = 2c and R[c] is similarly V [H[x]][P [x]] = $ where x = 2c + 1. In words, the string
of a child equals the string of its’ parent iff the character at its’ lcp-value is the end of its’
string. If one has the length Len[t] of the current string from the tth input list, then the test
is simply, P [x] = Len[H[x]] where x is either 2c or 2c + 1.

6 A Trie-Based Priority Queue for Strings

We briefly review trie-based implementations of a string priority queue in order to explain
which approach we chose to compare against the modified heap algorithms of this paper.
Given a basic Fredkin trie, adding a new string is a matter of following the path from the
root of the trie spelling the common prefix with the new string, until its remaining suffix
diverges at some node x. A new out edge labelled with the first character of the remaining
suffix is added to node x and trie nodes for the suffix are linked in. Finding the minimum
string in a trie is simply a matter of following the out edge with the smallest character from
each node. To delete this minimum, one finds the last node along the minimum path that
has out degree greater than one, and then removes the minimum out edge from this divergent
node and the suffix that follows.

If the out edges of each node are realized with a van Emde Boas priority queue for which
add and delete are O(log log Σ) and finding the minimum is O(1) then adding and deleting
from the queue are both O(log log Σ + s) where s is the length of the string being added or
deleted. Finding the minimum element is O(s). This gives the O(M log log Σ + S) bound for
the entire merge. If one further realizes a compact trie, wherein all nodes with out degree 1
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are collapsed into their successor so that nodes are now labeled with string fragments, the
trie is guaranteed to have O(T ) nodes and thus the space requirement for the trie is O(TΣ)
(excluding the space for the strings themselves).

Empirically we found that for typical values of Σ it is actually more efficient to simply
realize the out edge PQ with a Σ element array that is directly indexed with a character. In
addition, one keeps the current out-degree of the node and the current minimum out-edge.
With this information finding the minimum and adding a new string is just O(s). Deletion
however does require traversing the out-edge array at the divergent node looking for the
new minimum out-edge and so is O(Σ + s). Offsetting this is the fact that the number of
strings deleted/extracted from the trie is N and not M , so the total complexity for this
simple implementation is O(NΣ + S) and as will be seen this empirically gives very good
performance for the Shotgun Scenario.

Table 1 Performance for the Uniform Scenario.

Time Time Time Time Time
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

Heap String Collision Combo’ Trie
M, Σ, ¯lcp, ē T Heap Heap Heap

10M, 4, 10.8, 1.000 4 .654 .506 .597 .542 .984
8 .848 .633 .851 .673 1.022

16 1.057 .776 1.130 .810 1.060
32 1.268 .907 1.407 .950 1.097
64 1.479 1.053 1.658 1.090 1.144

128 1.650 1.183 1.914 1.230 1.249
256 1.897 1.323 2.201 1.373 1.331

100M, 4, 12.5, 1.000 4 7.04 5.21 6.29 5.54 9.99
8 8.99 6.47 8.96 6.85 10.81

16 11.18 7.88 11.84 8.12 11.10
32 13.57 9.15 14.75 9.60 11.50
64 16.16 10.58 17.86 10.90 12.01

128 18.69 12.05 21.18 12.34 13.09
256 21.63 13.64 24.53 14.00 13.77

1000M, 4, 14.1, 1.000 4 72.9 52.5 66.0 55.7 99.7
8 94.7 65.5 95.2 68.9 107.9

16 115.9 77.7 121.9 81.0 111.6
32 140.2 91.1 154.6 95.6 116.2
64 168.5 106.6 187.4 111.2 123.4

128 195.5 121.1 221.8 125.7 132.2
256 229.5 139.2 265.3 142.9 143.2

1000M, 8, 9.3, 1.000 4 61.4 51.0 57.2 53.8 89.7
8 77.7 64.3 81.1 67.3 93.6

16 94.2 76.7 103.0 80.0 95.7
32 108.5 90.5 126.6 94.1 98.3
64 126.4 105.4 149.3 110.2 102.4

128 145.9 118.9 174.1 123.9 110.2
256 168.5 133.5 202.4 137.8 113.9

1000M, 16, 6.8, 1.000 4 56.1 50.0 53.4 50.8 85.2
8 69.2 60.2 71.1 63.9 85.0

16 81.4 74.1 92.0 75.2 87.7
32 95.1 88.1 110.5 89.2 88.5
64 109.6 99.7 132.7 103.9 91.3

128 126.7 113.6 157.0 119.1 100.2
256 150.0 129.3 181.0 134.6 101.7

7 Empirical Performance

We implemented string list merging programs using a regular heap, Heap, a string heap,
Sheap, a collision heap, Cheap, a string-collision heap, SCheap, and a simple, compact trie,
Trie, and measured their performance on a 2019 Mac Pro with a 2.3 GHz Intel Core i9
processor, 64GB of memory, and 8TB of SSD disk. All the codes are available at GitHub at
the url github.com/thegenemyers/STRING.HEAP.
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In the first set of timing experiments over synthetic data, for a given setting of parameters
M , T , and Σ we generated T input files, each with M 20-mers where every 20-mer over a
Σ character ASCI alphabet occurs with equally likelihood, that is, the Uniform Scenario
introduced in the introduction. We chose 20 as the k-mer size as it is greater than the lcp
seen in any of the experiments. For such data we expect the lcp between successive elements
in the output list to be on average logΣ M and ē to be 1 given that the average lcp is less
than 20 for all trials considered. In Table 1, we present timings where Σ was set to 4, T was
set from 4 to 256 in steps of 2x, and M was set to 10x for x = 7, 8, and 9. In addition, for
M = 109, we also generated data sets where Σ was also set to 8 and 16 to see the dependence
of the programs, especially Trie, on Σ.

Table 2 Performance for the Shotgun Scenario.

–

Time Time Time Time Time
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

Heap String Collision Combo’ Trie
T c ¯lcp ē Heap Heap Heap

4 0 14.1 1.0 70.6 54.2 65.8 58.0 98.4
1 15.7 1.4 73.7 53.6 59.8 56.3 84.6
2 16.8 2.0 69.7 50.1 49.9 50.7 66.5
4 17.7 2.8 63.2 42.6 38.6 43.3 48.0
6 18.0 3.3 60.2 38.4 34.0 38.7 41.0
8 18.1 3.6 58.5 35.8 31.7 35.1 36.5

12 18.2 3.9 57.0 34.0 29.8 32.8 33.9
8 0 14.1 1.0 95.0 66.4 96.7 70.1 113.5

2 17.0 2.1 93.6 64.7 79.1 65.8 79.8
4 18.1 3.5 88.4 57.8 60.9 56.0 61.1
8 18.7 5.3 82.5 48.1 45.9 46.9 45.9

12 18.9 6.4 79.1 42.5 38.8 40.6 39.6
16 19.0 7.1 77.9 39.3 34.9 37.0 35.9
24 19.0 7.7 76.9 35.4 31.7 33.2 33.5

16 0 14.1 1.0 117.9 79.3 124.6 82.8 113.7
4 18.2 3.9 109.8 73.0 85.6 70.7 63.0
8 18.9 6.6 101.3 63.1 65.1 59.3 50.3

16 19.3 10.4 97.3 54.3 48.8 47.5 40.1
24 19.4 12.6 94.9 48.1 41.7 40.9 34.9
32 19.4 14.0 93.8 44.0 37.9 36.8 33.2
48 19.5 15.3 91.8 39.1 34.1 33.5 30.6

The timings confirm that all algorithms are linear in M and that the heap algorithms
are linear in log T . As M becomes larger or Σ becomes smaller the average lcp between
consecutive strings increases and so as expected the string heap becomes progressively faster
than a regular heap. The combination heap tracks the performance of the string heap but
lags by about 5% for all parameter values due to the additional overhead of maintaining
information about collisions, which in these experiments basically do not occur. The trie’s
behavior is basically constant, edging up slightly with T due to an increase in the branching
layers in the prefix of the trie. Counter intuitively, the trie becomes faster with larger Σ as
this reduces the expected number of branching layers in the trie which dominates the minor
cost of searching for the smallest out-edge of a single node when deleting an entry. Thus,
ultimately as T increases the trie becomes the fastest, at 256 for Σ = 4, 64 for Σ = 8, and 32
for Σ = 16.

In the second set of timing experiments, we produced synthetic data sets of k-mers where
they followed the Shotgun Scenario. We fixed M at 109, k at 20, and then for each of T = 4,
8, and 16, we varied the coverage c such that c/T = .25, .5, 1.0, 1.5, 2.0, and 3.0.
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As the number of collisions increases, the collision heap overtakes the string heap, with
again the combination heap tracking the better of the two with an overhead of 5% or so.
But our trie implementation does becomes faster for larger values of T due to its O(NΣ + S)
complexity. The collision heap, in terms of N , has complexity O(Nē log(T/ē)) which explains
the behavior. Basically, the number of elements in the trie decreases rapidly from T toward
1 as collisions occur greatly accelerating its operation. Nonetheless, the table reveals that for
smaller values of T the heap algorithms are generally superior.

The final set of experiments were for k-mers from a real shotgun sequencing data set, the
motivating example for this work. For high-accuracy read data sets k, is typically chosen at
40 or more, as k-mers of that size are well conserved. The other difference with the synthetic
Shotgun Scenario is that the k-mers occur with a complex frequency profile wherein some
k-mers occur with frequency about C, but for example, 80% of the k-mers contain errors
and occur once, others from a haplotype region occur roughly C/2 times, and so on. So in
Table 3 below one will see that ē is significantly less than for the synthetic examples, yet
still substantially elevated. Interestingly in these cases the collision heap or combined heap
perform best because they respond continuously to the collisions, beating out the string heap,
and the lcp is very near k, thus beating out the trie.

Table 3 Performance on real sequencing data with k = 40.

–

Time Time Time Time Time
(in sec.) (in sec.) (in sec.) (in sec.) (in sec.)

Heap String Collision Combo’ Trie
M T c ¯lcp ē Heap Heap Heap

333M 4 4 28.3 2.1 33.2 23.1 22.4 24.8 29.1
666M 8 8 32.9 3.4 85.7 56.1 55.0 55.0 60.5

1333M 16 16 35.4 4.9 210.2 123.3 118.5 114.7 121.8
484M 4 8 30.3 2.5 50.7 32.5 29.9 33.7 38.3
968M 8 16 33.6 3.6 127.4 74.9 71.3 73.6 84.0

1936M 16 32 35.4 4.6 314.9 175.0 164.7 159.2 183.4
566M 4 12 30.4 2.4 59.6 37.6 35.2 39.2 44.0

1232M 8 24 33.3 3.3 149.9 87.1 84.3 86.3 98.5
2464M 16 48 34.8 4.0 382.2 212.0 205.3 194.7 230.4

In summary, the string heap performs best when the average lcp value increases, and the
collision ratio is low. The collision heap always performs better than the string heap when
collisions become high. The combination heap tracks the better of the two combined methods,
lagging by about 5%. The trie data structure is generally the best for large T or pure collision
scenarios, but on real high-fidelity shotgun data sets the collision and combination heaps
proved superior.
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