
PalFM-Index: FM-Index for Palindrome Pattern
Matching
Shinya Nagashita #

Kyushu Institute of Technology, Fukuoka, Japan

Tomohiro I #

Kyushu Institute of Technology, Fukuoka, Japan

Abstract
The palindrome pattern matching (pal-matching) is a kind of generalized pattern matching, in
which two strings x and y of same length are considered to match (pal-match) if they have the
same palindromic structures, i.e., for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome
if and only if y[i..j] is a palindrome. The pal-matching problem is the problem of searching for,
in a text, the occurrences of the substrings that pal-match with a pattern. Given a text T of
length n over an alphabet of size σ, an index for pal-matching is to support, given a pattern P of
length m, the counting queries that compute the number occ of occurrences of P and the locating
queries that compute the occurrences of P . The authors in [I et al., Theor. Comput. Sci., 2013]
proposed an O(n lg n)-bit data structure to support the counting queries in O(m lg σ) time and the
locating queries in O(m lg σ + occ) time. In this paper, we propose an FM-index type index for the
pal-matching problem, which we call the PalFM-index, that occupies 2n lg min(σ, lg n) + 2n + o(n)
bits of space and supports the counting queries in O(m) time. The PalFM-indexes can support
the locating queries in O(m + ∆occ) time by adding n

∆ lg n + n + o(n) bits of space, where ∆ is a
parameter chosen from {1, 2, . . . , n} in the preprocessing phase.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Palindrome matching, Generalized string pattern matching, Indexing

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.23

Related Version Previous Version: https://arxiv.org/abs/2206.12600

Funding This work was supported by JSPS KAKENHI (Grant Number 19K20213).
Tomohiro I : KAKENHI (Grant Numbers 19K20213).

1 Introduction

A palindrome is a string that can be read same backward as forward. Palindromic structures
in a string are one of the most fundamental structures in the string and have been extensively
studied. For example, it is known that any string w contains at most |w| + 1 distinct
palindromic substrings [6], and the strings reaching the maximum values have some intriguing
properties [15, 28]. Another concept regarding palindromic structures is the palindrome
complexity [1, 4, 2], which is the number of distinct palindromic substrings of a given length
in a string.

Instead of thinking about distinct palindromic substrings, one might be interested in
occurrences of palindromic substrings. The palindromic structures in such a sense are
captured by the maximal palindromes from all possible “centers” in a string. Manacher’s
algorithm [26], originally proposed for computing a prefix-palindrome, can be extended to
compute all the maximal palindromes in O(|w|) time for a string w. The authors in [18]
considered the problem of inferring strings from a given set of maximal palindromes and
showed that the problem can be solved in O(|w|) time.

© Shinya Nagashita and Tomohiro I;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nagashita.shinya206@mail.kyutech.jp
mailto:tomohiro@ai.kyutech.ac.jp
https://orcid.org/0000-0001-9106-6192
https://doi.org/10.4230/LIPIcs.CPM.2023.23
https://arxiv.org/abs/2206.12600
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 PalFM-Index: FM-Index for Palindrome Pattern Matching

In [19], a new concept called palindrome pattern matching was introduced as a generalized
pattern matching. Two strings x and y of the same length are said to palindrome pattern
match (pal-match in short) iff they have the same palindromic structures, i.e., the following
condition holds: for any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is
a palindrome. We remark that x and y themselves are not necessarily palindromes. The
palindrome pattern matching has potential applications to genomic analysis, in which some
palindromic structures play an important role to estimate RNA secondary structures [21].

The pal-matching problem is to search for, in a text, the occurrences of the substrings
that pal-match with a pattern. Given a text T of length n and a pattern P of length m, a
Morris-Pratt type algorithm for solving the pal-matching problem in O(n) time was proposed
in [19]. The method in [19] is based on the lpal-encoding of a string w, denoted as lpalw,
that is the integer array of length |w| such that lpalw[i] is the length of the longest suffix
palindrome of w[1..i]. The lpal-encoding is helpful because two strings x and y pal-match iff
lpalx = lpaly. When T is large and static, and patterns come online later, one might think
of preprocessing T to construct an index for pal-matching. An index for pal-matching is
to support the counting queries that compute the number occ of occurrences of P and the
locating queries that compute the occurrences of P . For this purpose, I et al. [19] proposed
the palindrome suffix tree of T , which is a compacted tree of the lpal-encoded suffixes of T .
The palindrome suffix tree takes O(n lg n) bits of space and supports the counting queries in
O(m lg σ) time and the locating queries in O(m lg σ + occ) time, where σ is the size of the
alphabet from which characters in T are taken and occ is the number of occurrences.

In this paper, we present a new index, named the PalFM-index, by applying the technique
of the FM-index [7] to the pal-matching problem. In so doing we introduce a new encoding,
named the ssp-encoding, that is based on the non-trivial shortest suffix-palindrome of each
prefix. In contrast to the lpal-encoding, the ssp-encoding has a good property to design
the PalFM-index. The PalFM-index occupies 2n lg min(σ, lg n) + 2n + o(n) bits of space
and supports the counting queries in O(m) time. The locating queries can be supported in
O(m + ∆occ) time by adding n

∆ lg n + n + o(n) bits of space, where ∆ is a parameter chosen
from {1, 2, . . . , n} in the preprocessing phase.

1.1 Related work
One of the well-studied algorithmic problems related to palindromes is factorizing a string
into non-empty palindromes, or in other words, recognizing a string that is obtained by
concatenating a certain number of non-empty palindromes [26, 24, 12, 9, 20, 25, 3, 29]. The
combinatorial properties discovered during tackling this factorization problem are useful to
work on palindromes-related problems.

Developing techniques of designing space-efficient indexes for generalized pattern matching
is of great interest. Our PalFM-index was inspired by that of Kim and Cho [23], which
is a simplified version of the FM-index for parameterized pattern matching [13]. Indexes
based on the FM-index for other generalized pattern matching problems were considered
in [14, 11, 22].

2 Preliminaries

2.1 Notations
An integer interval {i, i + 1, . . . , j} is denoted by [i..j], where [i..j] represents the empty
interval if i > j.

S. Nagashita and T. I 23:3

1 2 3 4 5 6 7 8

a b c b a a c a

b c a c b b d b

Figure 1 Illustration of the palindromic structures for pal-matching strings abcbaaca and
bcacbbdb. Check that the radii of their maximal palindromes for all possible centers, which are
illustrated by two-headed arrows, coincide.

Let Σ be a finite alphabet, a set of characters. An element of Σ∗ is called a string. The
length of a string w is denoted by |w|. The empty string ε is a string of length 0, that is,
|ε| = 0. The concatenated string of two strings x and y are denoted as x ·y or simply xy. The
i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w

that begins at position i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e.
w[i..j] = w[i]w[i+1] . . . w[j]. For convenience, let w[i..j] = ε if i > j. A substring of the form
w[1..j] (resp. w[i..|w|]) is called a prefix (resp. suffix) of w and denoted as w[..j] (resp. w[i..])
in shorthand. Note that ε is a substring/prefix/suffix of any string w. A substring of w is
called proper if it is not w itself. When needed we use parentheses to indicate positions in a
concatenated string, for example, (xy)[i] refers to the i-th character of the string xy. Hence,
(xy)[i] should be distinguished from xy[i], which can be interpreted as the concatenated
string of x and y[i].

Let ≺ denote the total order over an alphabet we consider. In particular, we will consider
strings over a set consisting of integers and ∞, in which natural total order based on their
values is employed. We extend ≺ to denote the lexicographic order of strings over the
alphabet. For any strings x and y that do not match, we say that x is lexicographically
smaller than y and denote it by x ≺ y iff x[i + 1] ≺ y[i + 1] for largest integer i with
x[..i] = y[..i], where we assume that x[i + 1] or y[i + 1] refers to the lexicographically smallest
character $ if it points to out of bounds.

For any string w, let wR denote the reversed string of w, that is, wR = w[|w|] · · · w[2]w[1].
A string w is called a palindrome if w = wR. The radius of a palindrome w is |w|

2 . The
center of a palindromic substring w[i..j] of a string w is i+j

2 . A palindromic substring w[i..j]
is called the maximal palindrome at the center i+j

2 if no other palindromes at the center i+j
2

have a larger radius than w[i..j], i.e., if w[i − 1] ̸= w[j + 1], i = 1, or j = |w|.
Two strings x and y of same length are said to palindrome pattern match (pal-match in

short) iff they have the same palindromic structures, i.e., the following condition holds: for
any possible 1 ≤ i < j ≤ |x| = |y|, x[i..j] is a palindrome iff y[i..j] is a palindrome. For
example, abcbaaca and bcacbbdb pal-match since their palindromic structures coincide (see
Figure 1). Note that pal-matching induces a substring consistent equivalent relation [27], i.e.,
if x and y pal-match then x[i..j] and y[i..j] pal-match for any possible 1 ≤ i < j ≤ |x| = |y|.

The pal-matching problem is to search for, in a text string T , the occurrences of the
substrings that pal-match with a pattern P . In the pal-matching problem, an occurrence of
P refers to a position i such that T [i..i + |P | − 1] and P pal-match. Throughout this paper
we consider indexing a text T of length n over an alphabet Σ of size σ.

CPM 2023

23:4 PalFM-Index: FM-Index for Palindrome Pattern Matching

2.2 Toolbox

As a component of our PalFM-index, we use a data structure for a string w over an integer
alphabet U supporting the following queries.

rankw(i, c): return the number of occurrences of character c ∈ U in w[..i].
selectw(i, c): return the i-th smallest position of the occurrences of character c ∈ U in w.
rangeCountw(i, j, c, d): return the number of the occurrences of any character in [c..d] ⊆ U

in w[i..j].

The Wavelet tree [17] supports these queries in O(lg |Σ|) time using |w|H0(w) + o(|w| lg |U |)
bits of space, where H0(w) = O(lg |U |) is the 0-th order empirical entropy of w. The
subsequent studies [8, 16] improved the complexities, resulting in the following theorem.

▶ Theorem 1 ([16]). For a string w over an integer alphabet U , there is a data structure in
|w|H0(w) + o(|w|) bits of space that supports rank, select and rangeCount in O(1 + lg |U |

lg lg |w|)
time.

We also use a data structure for the Range Maximum Queries (RMQs) over an integer
array V . Given an interval [i..j] over V , a query RMQV (i, j) returns a position in [i..j] that
has the maximum value in V [i..j], that is, RMQV (i, j) = arg maxk∈[i..j] V [k]. We use the
following result.

▶ Theorem 2 ([10]). For an integer array V of length n, there is a data structure with
2n + o(n) bits of space that supports the RMQs in O(1) time.

2.3 FM-index

The suffix array SA of T is the integer array of length n + 1 such that SA[i] is the starting
position of the lexicographically i-th suffix of T .1 We define the string L (a.k.a. the Burrows-
Wheeler Transform (BWT) [5] of T) of length n + 1 as follows:

L[i] =
{

$ (SA[i] = 1),
T [SA[i] − 1] (SA[i] > 1).

We define the string F of length n + 1 as F = T [SA[1]]T [SA[2]] · · · T [SA[n + 1]]. The so-
called LF-mapping LF is the function defined to map a position i to j such that SA[j] =
SA[i] − 1 (with the corner case LF(i) = 1 for SA[i] = 1). A crucial point is that LF-
mapping can be efficiently implemented by rank queries on L and select queries on F with
LF(i) = selectF(rankL(i, L[i]), L[i]). 2 The occurrences of pattern P in T can be answered by
finding the maximal interval [Pb..Pe] in the SA array such that T [SA[i]..] is prefixed by P iff
i ∈ [Pb..Pe], and computing the SA-values in the interval. For a string w and character c,
the so-called backward search computes the maximal interval in the SA prefixed by cw from
that of w using a similar mechanism of the LF-mapping (see [7] for more details).

1 Against convention, we include the empty string that starts with the position n + 1 to SA. In particular,
SA[1] = n + 1 holds as the empty string is always the smallest suffix.

2 In the plain LF-mapping, select queries on F can be implemented by a simple table that counts, for
each character c, the number of occurrences of characters smaller than c in T , but it is not the case in
our generalized LF-mapping for pal-matching.

S. Nagashita and T. I 23:5

Table 1 A comparison between lpal and ssp for w = abbbabb and w′ = bw = babbbabb. The
values that change when prepending b to w are underlined.

w = a b b b a b b
lpalw = 1 1 2 3 5 3 5
sspw = ∞ ∞ 2 2 5 3 2

w′ = b a b b b a b b
lpalw′ = 1 1 3 2 3 5 7 5
sspw′ = ∞ ∞ 3 2 2 5 3 2

3 Encodings for pal-matching

The pal-matching algorithms in [19] are based on the lpal-encoding of a string w, denoted as
lpalw. lpalw is the integer array of length |w| such that, for any position 1 ≤ i ≤ |w|, lpalw[i]
is the length of the longest suffix-palindrome of w[1..i]. See Table 1 for example.

▶ Lemma 3 (Lemma 2 in [19]). For any strings x and y, x and y pal-match iff lpalx = lpaly.

Although Lemma 3 is sufficient to design suffix-tree type indexes, it seems that the
lpal-encoding is not suitable to design FM-index type indexes. For example, more than one
position could change when a character is prepended (see Table 1) and this unstable property
make messes up lexicographic order of lpal-encoded suffixes, which prevents us to implement
LF-mapping space efficiently.

In this paper, we introduce a new encoding suitable to design FM-index type indexes for
pal-matching. Our new encoding is based on the shortest suffix-palindrome for each prefix,
where the shortest suffix is chosen excluding the trivial palindromes of length ≤ 1. We call
the encoding the shortest suffix-palindrome encoding (the ssp-encoding in short). For any
string w, the ssp-encoding sspw of w is the integer array of length |w| such that, for any
position 1 ≤ i ≤ |w|, sspw[i] is the length of the non-trivial shortest suffix-palindrome of
w[..i] if such exists, and otherwise ∞. See Table 1 for example.

▶ Lemma 4. Two strings x and y pal-match iff sspx = sspy.

Proof. Since the ssp-encoding relies only on palindromic structures, the direction from left
to right is clear.

In what follows, we focus on the opposite direction; x and y pal-match if sspx = sspy.
Assume for contrary that x and y does not pal-match. Without loss of generality, we can
assume that there are positions i and j such that x[i..j] is a palindrome but y[i..j] is not,
with smallest j if there are many. Note that the smallest assumption on j implies that
y[i + 1..j − 1] is a palindrome: If y[i + 1..j − 1] is not a palindrome (clearly |y[i + 1..j − 1]| > 1
in such a case), j − 1 must be a smaller position that satisfies the above condition because
x[i + 1..j − 1] is a palindrome. Let k = sspx[j] = sspy[j]. Since x[i..j] is a palindrome, it
holds that 1 < k ≤ |x[i..j]|. Moreover, k ̸= |y[i..j]| as y[i..j] is not a palindrome. Since the
palindrome x[i..j] has a suffix-palindrome of length k, the prefix x[i..i + k − 1] of length
k is a palindrome, too. On the other hand, since y[i..j] is not a palindrome that has a
suffix-palindrome of length k, the prefix y[i..i + k − 1] of length k cannot be a palindrome.
This contradicts the smallest assumption on j because i + k − 1 is a smaller position such
that x[i..i + k − 1] and y[i..i + k − 1] disagree on their palindromic structures. ◀

In contrast to the lpal-encoding, the ssp-encoding has a stable property when prepending
a character.

CPM 2023

23:6 PalFM-Index: FM-Index for Palindrome Pattern Matching

▶ Lemma 5. For any string w and character c, there is at most one position i (1 ≤ i ≤ |w|)
such that sspw[i] ̸= sspcw[i + 1]. Moreover, if such a position i exists, sspw[i] = ∞ and
sspcw[i + 1] = i + 1.

Proof. By definition it is obvious that sspw[i] = sspcw[i + 1] if sspw[i] ̸= ∞. In what follows,
we assume for contrary that there exist two positions i and i′ with 1 ≤ i < i′ ≤ |w| such that
sspw[i] = ∞ > sspcw[i + 1] and sspw[i′] = ∞ > sspcw[i′ + 1]. Note that sspcw[i + 1] = i + 1
and sspcw[i′ + 1] = i′ + 1 by definition, and (cw)[..i + 1] and (cw)[..i′ + 1] are palindromes.
Since (cw)[..i + 1] is a prefix-palindrome of (cw)[..i′ + 1], it is also a suffix-palindrome of
(cw)[..i′ + 1]. It contradicts that (cw)[..i′ + 1] is the non-trivial shortest suffix-palindrome of
(cw)[..i′ + 1]. ◀

We consider yet another encoding based on the shortest suffix of w[..i−1] that is extended
outwards when appending a character w[i]. The concept is closely related to the ssp-encoding
because the extended palindrome is the non-trivial shortest suffix-palindrome of w[..i]. An
advantage of this new encoding is that we can reduce the number of distinct integers to be
used to O(min(σ, lg |w|)), which will be used (in a symmetric way) to define Lpal and obtain
a space-efficient FM-index specialized for pal-matching.

For any string w we partition the suffix-palindromes (including the empty suffix) by the
characters they have immediately to their left and call each group a suffix-pal-group for w.
We utilize the following lemma.

▶ Lemma 6. For any string w, the number of suffix-pal-groups for w is O(min(σ, lg |w|)).

Proof. It is obvious that the number of suffix-pal-groups is at most σ because each character
is associated to at most one suffix-pal-group. Also it is known that the lengths of the suffix-
palindromes can be represented by O(lg |w|) arithmetic progressions and each arithmetic
progression induces a period in the involved suffix (e.g., see [20]). Then we can see that every
suffix-palindrome represented by an arithmetic progression is in the same group. Hence there
are O(lg |w|) groups. ◀

The next lemma shows that pal-matching strings share the same structure of suffix-pal-
groups.

▶ Lemma 7. Let x and y be strings that pal-match and let i and j be integers with 1 ≤ i <

j ≤ |x| = |y|. If x[i + 1..] and x[j + 1..] are palindromes with x[i] = x[j], then y[i + 1..] and
y[j + 1..] are palindromes with y[i] = y[j].

Proof. Since the palindrome x[i + 1..] has a suffix-palindrome of length k = |x[j + 1..]|,
it also has a prefix-palindrome of length k, that is, x[i + 1..i + k] is a palindrome. Also,
x[i + k + 1] = x[j] holds. Since x[i] = x[j] = x[i + k + 1], x[i..i + k + 1] is a palindrome.

Since x and y pal-match, y[i + 1..], y[j + 1..] and y[i..i + k + 1] are palindromes. By
transition of equivalence induced by the palindromes y[i..i + k + 1] and y[i + 1..], we can see
that y[i] = y[i + k + 1] = y[j]. Thus the claim holds. ◀

Let the shortest palindrome in a suffix-pal-group be the representative of the group. We
assign consecutive integer identifiers starting from 1 to the suffix-pal-groups in increasing
order of their representative’s lengths. See Figure 2 for example.

For any string w, we define the shortest suffix-pal-group encoding sspgw of w as the integer
array of length |w| such that, for any position 1 ≤ i ≤ |w|, sspgw[i] is the identifier assigned
to the suffix-pal-group of the suffix-palindrome in w[..i − 1] that is extended outwards by
appending w[i], if such exists, and otherwise ∞. See Table 2 and Figure 3 for example. Since

S. Nagashita and T. I 23:7

Figure 2 An example of suffix-pal-groups for bababababacababacababacababa. The number
enclosed in a circle denotes the pal-group-id. The suffix-palindromes in the suffix-pal-group with
identifier 1 (resp. 2 and 3) have a (resp. b and c) immediately to their left. The identifiers are given
in increasing order of their representative’s lengths, that is, |ε| = 0, |a| = 1 and |ababa| = 5.

the non-trivial shortest suffix of w[..i] is extended outwards from the representative of the
suffix-pal-group for w[1..i − 1] that has w[i] immediately to the left, sspgw[i] has essentially
equivalent information to sspw[i]. Formally the next lemma holds.

▶ Lemma 8. For any string x of length k, suppose we have the set of lengths of the
representatives of suffix-pal-gropus of x[..k − 1]. Given sspgx[k] we can identify sspx[k], and
vice versa.

Proof. It is clear that sspx[k] = ∞ iff sspgx[k] = ∞. Given sspgx[k] ̸= ∞ we can identify
sspx[k] from the representative of the suffix-pal-group with identifier sspgx[k]. Given sspx[k] ̸=
∞ we can identify sspgx[k] from the representative that has length sspx[k] − 2. ◀

The next lemma shows that the sspg-encoding is another encoding for pal-matching, and
induces the same lexicographic order with the ssp-encoding.

▶ Lemma 9. Let x and y be strings of length k such that sspx[..k − 1] = sspy[..k − 1]. Then,
sspx[k] = sspy[k] iff sspgx[k] = sspgy[k]. Also, sspx[k] < sspy[k] iff sspgx[k] < sspgy[k].

Proof. It follows from Lemma 7 that x[..k − 1] and y[..k − 1] have the same structure of
suffix-pal-groups. By Lemma 8, sspx[k] = sspy[k] if sspgx[k] = sspgy[k], and vice versa.
Since the identifiers of suffix-pal-groups are given in increasing order of their representative’s
lengths, it holds that sspx[k] < sspy[k] if and only if sspgx[k] < sspgy[k]. ◀

For any string w, let π(w) = sspgwR [|w|]. Intuitively, π(w) holds the information from
which prefix-palindrome of w[2..] the non-trivial shortest prefix-palindrome of w is extended,
and the information is encoded with the identifier defined in the completely symmetric way
as the case of the suffix-pal-groups. The function π(·) will be applied to the suffixes of
T to define Fpal and Lpal, and the next lemma is a key to implement LF-mapping for our
PalFM-index.

CPM 2023

23:8 PalFM-Index: FM-Index for Palindrome Pattern Matching

Table 2 A comparison between sspw and sspgw for w = babbbabb. sspw[6] = 5 because the
non-trivial shortest suffix-palindrome of w[1..6] = babbba is abbba, which is of length 5. On the
other hand, sspgw[6] = 2 because the shortest suffix-palindrome abbba ending at 6 is extended from
bbb and the suffix-pal-group to which bbb belongs for w[1..5] = babbb has the identifier 2.

w = b a b b b a b b
sspw = ∞ ∞ 3 2 2 5 3 2

sspgw = ∞ ∞ 2 1 1 2 2 2

babbbw = bba.

1

2

sspgw[6] = 2

Figure 3 Illustration to show sspgw[6] = 2 for w = babbbabb.

▶ Lemma 10. Let x and y be strings of length ≥ 1 such that π(x) = π(y). Then, sspx ≺ sspy

iff sspx[2..] ≺ sspy[2..].

Proof. Let i be the largest integer such that x[2..i] and y[2..i] pal-match. Since π(x) = π(y),
using Lemma 9 in a symmetric way, it holds that x[..i] and y[..i] pal-match. Recall Lemma 5
that at most one ∞ in sspx[2..] (resp. sspy[2..]) turns into the largest possible integer at the
changed position when prepending x[1] (resp. y[1]). We analyze the cases focusing on the
changed positions:
1. The claim clearly holds if neither sspx nor sspy has the changed position less than or

equal to i + 1.
2. If both of sspx and sspy have the changed position at j ≤ i + 1, it holds that sspx[j] =

sspy[j] = j and sspx[2..][j − 1] = sspy[2..][j − 1] = ∞, which also indicates that j < i + 1.
Since this change does not affect the lexicographic order, the claim holds. See the left
part of Figure 4 for an illustration of this case.

3. Assume sspy has the changed position at j ≤ i+1, but sspx does not. Since x[..i] and y[..i]
pal-match, j cannot be less than i + 1, and hence, j = i + 1 and sspx[i + 1] = sspx[2..][i] ≺
i + 1 = sspy[i + 1] ≺ ∞ = sspy[2..][i]. Note that the lexicographic order between sspx and
sspy (resp. sspx[2..] and sspy[2..]) is determined by that between sspx[i + 1] and sspy[i + 1]
(resp. sspx[2..][i] and sspy[2..][i]). Since the lexicographic order between sspx[i + 1] and
sspy[i + 1] is the same as that between sspx[2..][i] and sspy[2..][i], the claim holds. See the
right part of Figure 4 for an illustration of this case.

Thus, we conclude that the lemma holds. ◀

S. Nagashita and T. I 23:9

j–1
sspx[2..]

sspy[2..]

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

1

i+1
sspx

sspy

∞ ∞ j ∞

∞ ∞ ∞

1 j

j

k

k’

k

k’

sspx[2..]

sspy[2..]

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

1

i+1
sspx

sspy

∞ ∞ ∞

∞ ∞ ∞

1

∞

k

k

i

i+1

∞

∞

∞

∞

∞

∞

Figure 4 The left (resp. right) figure illustrates the second (resp. third) case in the proof of
Lemma 10.

4 Computational results for new encodings

In this section, we show that the ssp- and sspg-encodings can be computed in linear time for
a given string.

We use the following known results.

▶ Lemma 11 ([26]). For any string w, we can compute all the maximal palindromes in
O(|w|) time.

▶ Lemma 12 (Lemma 3 in [19]). For any string w, we can compute lpalw in O(|w|) time.

Using Lemmas 11 and 12, we obtain:

▶ Lemma 13. For any string w, we can compute sspw in O(|w|) time.

Proof. Manacher’s algorithm [26] can compute the radius of the maximal palindrome in
increasing order of centers in linear time. It can be extended to compute the length lpalw[i]
of the longest palindrome ending at each position i because the maximal palindrome with
the smallest center that ends at position ≥ i gives us the longest suffix-palindrome ending at
i by truncating the palindrome at i (e.g., see Lemma 3 of [19]). In a similar way, we can
compute the length lpal′w[i] of the second longest palindrome ending at i.

Using lpalw and lpal′w, we can compute sspw[i] in increasing order as follows:
1. If lpalw[i] = 1, then sspw[i] = ∞.
2. If lpalw[i] > 1 and lpal′w[i] = 1, then sspw[i] = lpalw[i].
3. If lpalw[i] > 1 and lpal′w[i] > 1, then sspw[i] = sspw[i − lpalw[i] + lpal′w[i]].

In the third case, we use the fact that the non-trivial shortest suffix-palindrome ending at i

has length ≤ lpal′w[i] and it ends at i − lpalw[i] + lpal′w[i], too.
Clearly all can be done in O(|w|) time. ◀

For any string w, let Gw denote the array of length |w| such that Gw[i] stores the number
of suffix-pal-groups for w[..i].

▶ Lemma 14. For any string w, we can compute Gw in O(|w|) time.

CPM 2023

23:10 PalFM-Index: FM-Index for Palindrome Pattern Matching

c’

c’

i–1

c’

j+1
c

c’

c

c

j+1
c

sppw[i–1]

w w

Figure 5 The left figure illustrates the case with lpalw[j + 1] > 1, in which we see that there is a
suffix-pal-group for w[..j] that has w[j + 1] = c immediately to their left. The right figure illustrates
the case with sppw[i − 1] ≤ |w[i − 1..j]|, in which we see that the maximal palindrome w[i..j] is not
the representative because there is a shorter palindrome that ends at j and has the same character
c′ immediately to the left.

Proof. Let sppw be the array defined in a symmetric way of sspw such that sppw[i] stores the
length of the non-trivial shortest prefix-palindrome starting at i (or ∞ if such a palindrome
does not exist). Using Lemma 13 in a symmetric way, we can compute sppw in O(|w|) time.

Let us focus on the palindromes involved in Gw[j]. First, there is a suffix-pal-group for
w[..j] that has w[j + 1] immediately to their left iff lpalw[j + 1] > 1. Next observe that the
palindromes in other suffix-pal-groups for w[..j], which do not have w[j + 1] immediately to
their left, are the maximal palindromes ending at j. Also, a maximal palindrome w[i..j] is the
representative (i.e., the shortest palindrome) in a suffix-pal-group to which it belongs. if and
only if sppw[i − 1] > |w[i − 1..j]| or i = 1. See Figure 5 for illustrations of these observations.

Based on the above observations, we compute Gw as follows: First, we compute the
maximal palindromes and lpalw in O(|w|) time by Lemmas 11 and 12. Next we check every
maximal palindrome and assign it to its ending position if it is a representative, which can
be done in O(|w|) time in total. We also check if lpalw[j + 1] > 1 for all positions j in O(|w|)
time to count a suffix-pal-group that has w[j + 1] immediately to their left. To sum up, Gw

can be computed in O(|w|) time. ◀

Generalizing the algorithm presented in the proof of Lemma 14, we obtain:

▶ Lemma 15. For any string w, we can compute sspgw in O(|w|) time.

Proof. We modify the algorithm presented in the proof of Lemma 14 slightly. Now the
task is to count, for every position j + 1, the number of suffix-pal-groups for w[..j] whose
representative is shorter than ssp[j + 1] − 1 because the number is exactly sspgw[j + 1] by
definition. We check every maximal palindrome w[i..j] and assign it to its ending position j if
sppw[i − 1] > |w[i − 1..j]| and ssp[j + 1] − 1 > j − i + 1. Finally the number of representatives
assigned to j plus one is sspgw[j + 1]. Similarly to the proof of Lemma 14, all can be done in
O(|w|) time. ◀

5 PalFM-index

The PalFM-index of T conceptually sort the suffixes of T in lexicographic order of their
ssp-encodings (or equivalently sspg-encodings). Let SApal be the integer array of length n + 1
such that SApal[i] is the starting position of the i-th suffix of T in ssp-encoded order. We
define the strings Fpal and Lpal of length n + 1 based on π function applied to the sorted
suffixes. Formally, for any position i (1 ≤ i ≤ n + 1) we define:

S. Nagashita and T. I 23:11

i T [i..] sspT [i..] sspT [SApal[i]..] SApal[i] Fpal[i] Lpal[i] LFpal(i)
1 abbabbcbc ∞∞2432∞33 ε 10 $ ∞ 2
2 bbabbcbc ∞2∞32∞33 ∞ 9 ∞ ∞ 5
3 babbcbc ∞∞32∞33 ∞2∞32∞33 2 1 2 6
4 abbcbc ∞∞2∞33 ∞2∞33 5 1 ∞ 7
5 bbcbc ∞2∞33 ∞∞ 8 ∞ 2 8
6 bcbc ∞∞33 ∞∞2432∞33 1 2 $ 1
7 cbc ∞∞3 ∞∞2∞33 4 ∞ 2 9
8 bc ∞∞ ∞∞3 7 2 2 10
9 c ∞ ∞∞32∞33 3 2 1 3
10 ε ε ∞∞33 6 2 1 4

Figure 6 An example of SApal[i], Fpal[i] and Lpal[i] for T = abbabbcbc.

Fpal[i] =
{

$ if i = 1,
π(T [SApal[i]..]) otherwise.

Lpal[i] =
{

$ if SApal[i] = 1,
π(T [SApal[i] − 1..]) otherwise.

See Figure 6 for example.
As in the case of LF, we define a function LFpal : i 7→ j so that SApal[j] = SApal[i] − 1

(with the corner case LFpal(i) = 1 for SApal[i] = 1). Thanks to Lemma 10, for any value
c, the suffixes used to obtain i-th k in Lpal and in Fpal are the same, which enables us to
implement the LFpal function by LFpal(i) = selectFpal(rankLpal(i, Lpal[i]), Lpal[i]). See Figure 7
for an illustration.

For any string w, let w-interval refer to the maximal interval [b..e] such that sspT [SApal[i]..]
is prefixed by sspw, where w-interval is empty if there is no substring of T that pal-matches
with w. Notice that the substring of T of length |w| starting at SApal[i] pal-matches with w

iff i ∈ [b..e]. A single step of backward search computes cw-interval from w-interval for some
character c.

The following theorems are the main contributions of this paper.

▶ Theorem 16. Let T be a string of length n over an alphabet of size σ. There is a data
structure of 2n lg min(σ, lg n) + 2n + o(n) bits of space to support the counting queries for the
pal-matching problem in O(m) time, where m is the length of a given pattern P .

Proof. We use the data structures of Theorem 1 for Lpal and Fpal, and the RMQ data
structure of Theorem 2 for the integer array V with V [i] = LFpal(i). Since the number of
distinct symbols in Lpal and Fpal are O(min(σ, lg n)) by Lemma 6, the data structures occupy
2n lg min(σ, lg n) + 2n + o(n) bits of space in total and all queries (rank, select, rangeCount
and RMQ) can be supported in O(1) time.

The number of occurrences of P can be answered by computing the width of P -interval.
Thus we focus on a single step of backward search. In a general setting, for any string w

and a character c, we show how to compute cw-interval [b′..e′] in O(1) time from w-interval
[b..e], π(cw) and the number g of prefix-pal-groups of w. The procedure differs depending on
π(cw) = ∞ or not.

CPM 2023

23:12 PalFM-Index: FM-Index for Palindrome Pattern Matching

T[SA[i]..]
𝜀
c

b b a b b c b c

b b c b c

b c

a b b a b b c b c

a b b c b c

c b c

b a b b c b c

b c b c

T[SA[i]–1..]
c

b c

a b b a b b c b c

a b b c b c

c b c

b a b b c b c

b c b c

b b a b b c b c

b b c b c

Lpal[i]
∞
∞
2

∞
2

$

2

2

1

1

Fpal[i]
$

∞
1

1

∞
2

∞
2

2

2

LFpal(i)

Figure 7 An illustration for Fpal[i], Lpal[i] and LFpal(i). Except the corner cases that have $, Fpal[i]
and Lpal[i] are defined by π(T [SApal[i]..]) and π(T [SApal[i] − 1..]), respectively. Since π(w) encodes
the information about the non-trivial shortest prefix of w, in each row the non-trivial shortest prefix
is shown in grayed background. For example, π(abbabbcbc) = 2 because its non-trivial shortest
prefix-palindrome abba is extended from the prefix-palindrome bb of bbabbcbc and bb belongs to
the prefix-pal-group with the identifier 2. Observe that Fpal is a permutation of Lpal since both Fpal

and Lpal use every suffix w of T exactly once to obtain π(w). Roughly speaking, LFpal(·) is meant to
map a row having a suffix w in the T [SApal[i] − 1..]) column to the row having the same suffix w in
the T [SApal[i]..] column. Thanks to Lemma 10, for any value k, the suffixes used to obtain i-th k in
Lpal and in Fpal are the same, and hence, one can observe visually that the arrows starting from the
same Lpal-value are not crossed.

1. When π(cw) = k ̸= ∞. Using Lemma 9 in a symmetric way, [b′..e′] is obtained by
mapping the positions of π(cw) in Lpal[b..e] by the LFpal function. More specifically,
b′ = selectFpal(rankLpal(b − 1, k) + 1, k) and e′ = selectFpal(rankLpal(e, k), k), which can be
computed in O(1) time.

2. When π(cw) = ∞. We note that [b′..e′] is the maximal interval such that T [SApal[i]..] does
not have non-trivial prefix-palindrome (i.e. π(T [SApal[i]..]) = ∞) or T [SApal[i]..] has the
non-trivial shortest prefix-palindrome of length longer than |cw| (i.e. π(T [SApal[i]..]) > g).
Thus, e′−b′+1 is equivalent to the number of occurrences of values larger than g in Lpal[b..e],
which can be computed in rangeCountLpal

(b, e, g, ∞) in O(1) time. Moreover, it holds that
e′ = LFpal(RMQV (b, e)) because ssp(T [SApal[i] − 1..]) with π(T [SApal[i] − 1..]) = Lpal[i] > g

is always lexicographically larger than ssp(T [SApal[j] − 1..]) with π(T [SApal[j] − 1..]) =
Lpal[j] ≤ g. Thus, we can compute [b′..e′] in O(1) time.

Backward search for P requires π(P [i..]) and the number g of prefix-pal-groups of P [i..]
for all 1 ≤ i ≤ m, which can be computed by sspgP R and GP R in O(m) time using Lemmas 15
and 14.

Putting all together, we get the theorem. ◀

▶ Theorem 17. Let T be a string of length n over an alphabet of size σ and ∆ be an integer
in [1..n]. There is a data structure of 2n lg min(σ, lg n) + n

∆ lg n + 3n + o(n) bits of space to
support the locating queries for the pal-matching problem in O(m + ∆occ) time, where m is
the length of a given pattern P and occ is the number of occurrences to report.

S. Nagashita and T. I 23:13

Proof. We use the data structure and the algorithm of Theorem 16 to compute P -interval in
2n(1+lg min(σ, lg n))+o(n) bits of space and O(m) time. The occurrences of P (in the sense
of pal-matching) can be answered by the SApal-values in P -interval. We employ exactly the
same sampling technique used in the FM-index to retrieve SA-values (e.g., see [7]): We make
a bit vector B of length n + 1 marking the positions i in SApal such that SApal[i] = ∆k + 1
for some integer k, and the sparse suffix array S holding only the marked SApal-values in the
order. B is equipped with a data structure to support the rank queries and the additional
space to Theorem 16 is n

∆ lg n + n + o(n) bits in total.
If position i is marked, SApal[i] is retrieved by S[rankB(i, 1)] in O(1) time. If position i is

not marked, we apply LF-mapping k times from i until we reach a marked position j and
retrieve SApal[i] by S[rankB(j, 1)] + k. Since text positions are marked every ∆ positions,
the number k of LF-mapping steps is at most ∆, and hence, SApal[i] can be retrieved in
O(∆) time. Therefore we can report each occurrence of P in O(∆) time, and the theorem
follows. ◀

6 Conclusions and future work

In this paper, we developed new encoding schemes for pal-matching and proposed the
PalFM-index, a space-efficient index for pal-matching based on the FM-index. Future work
includes to present an efficient construction algorithm of the PalFM-index, and to reduce
the space requirement (e.g. by incorporating with the idea of [13]). Another interesting
research direction would be to develop a general framework to design FM-index type indexes
in generalized pattern matching. We believe that switching encoding from lpal to ssp to
design the PalFM-indexes gives a good hint to pursue this direction, and conjecture that any
generalized pattern matching under a substring consistent equivalent relation [27] admits
such shortest positional encodings to design FM-index type indexes.

References
1 Jean-Paul Allouche, Michael Baake, Julien Cassaigne, and David Damanik. Palindrome

complexity. Theor. Comput. Sci., 292(1):9–31, 2003.
2 Mira-Cristiana Anisiu, Valeriu Anisiu, and Zoltán Kása. Total palindrome complexity of finite

words. Discrete Mathematics, 310(1):109–114, 2010. doi:10.1016/j.disc.2009.08.002.
3 Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palindromic

length in linear time. In Proc. 28th Annual Symposium on Combinatorial Pattern Matching
(CPM) 2017, pages 23:1–23:12, 2017. doi:10.4230/LIPIcs.CPM.2017.23.

4 Srecko Brlek, Sylvie Hamel, Maurice Nivat, and Christophe Reutenauer. On the palindromic
complexity of infinite words. Int. J. Found. Comput. Sci., 15(2):293–306, 2004. doi:10.1142/
S012905410400242X.

5 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
Technical report, HP Labs, 1994.

6 Xavier Droubay, Jacques Justin, and Giuseppe Pirillo. Episturmian words and some
constructions of de luca and rauzy. Theor. Comput. Sci., 255(1-2):539–553, 2001. doi:
10.1016/S0304-3975(99)00320-5.

7 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
FOCS, pages 390–398, 2000.

8 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed repres-
entations of sequences and full-text indexes. ACM Trans. Algorithms, 3(2), 2007.

9 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic algorithm
for minimum palindromic factorization. Journal of Discrete Algorithms, 28:41–48, 2014.
StringMasters 2012 & 2013 Special Issue (Volume 1). doi:10.1016/j.jda.2014.08.001.

CPM 2023

https://doi.org/10.1016/j.disc.2009.08.002
https://doi.org/10.4230/LIPIcs.CPM.2017.23
https://doi.org/10.1142/S012905410400242X
https://doi.org/10.1142/S012905410400242X
https://doi.org/10.1016/S0304-3975(99)00320-5
https://doi.org/10.1016/S0304-3975(99)00320-5
https://doi.org/10.1016/j.jda.2014.08.001

23:14 PalFM-Index: FM-Index for Palindrome Pattern Matching

10 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.

11 Travis Gagie, Giovanni Manzini, and Rossano Venturini. An encoding for order-preserving
matching. In Proc. 25th Annual European Symposium on Algorithms (ESA) 2017, pages
38:1–38:15, 2017. doi:10.4230/LIPIcs.ESA.2017.38.

12 Zvi Galil and Joel I. Seiferas. A linear-time on-line recognition algorithm for “palstar”. J.
ACM, 25(1):102–111, 1978. doi:10.1145/322047.322056.

13 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT: Achieving succinct
data structures for parameterized pattern matching and related problems. In Proc. 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2017, pages 397–407, 2017.
doi:10.1137/1.9781611974782.25.

14 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Structural pattern matching -
succinctly. In Proc. 28th International Symposium on Algorithms and Computation (ISAAC)
2017, pages 35:1–35:13, 2017. doi:10.4230/LIPIcs.ISAAC.2017.35.

15 Amy Glen, Jacques Justin, Steve Widmer, and Luca Q. Zamboni. Palindromic richness. Eur.
J. Comb., 30(2):510–531, 2009. doi:10.1016/j.ejc.2008.04.006.

16 Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao. On the redundancy of succinct
data structures. In Joachim Gudmundsson, editor, Proc. 11th Scandinavian Workshop on
Algorithm Theory (SWAT) 2008, volume 5124 of Lecture Notes in Computer Science, pages
148–159. Springer, 2008.

17 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text
indexes. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2003,
pages 841–850. ACM/SIAM, 2003.

18 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Counting and verifying
maximal palindromes. In Proc. 17th International Symposium on String Processing and
Information Retrieval (SPIRE) 2010, pages 135–146, 2010.

19 Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda. Palindrome pattern matching. Theor.
Comput. Sci., 483:162–170, 2013. doi:10.1016/j.tcs.2012.01.047.

20 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Comput-
ing palindromic factorizations and palindromic covers on-line. In Proc. 25th Annual Symposium
on Combinatorial Pattern Matching (CPM) 2014, volume 8486 of Lecture Notes in Computer
Science, pages 150–161. Springer, 2014.

21 Ignacio Tinoco Jr., Olke C. Uhlenbeck, and Mark D. Levine. Estimation of secondary structure
in ribonucleic acids. Nature, 230:362–367, 1971.

22 Sung-Hwan Kim and Hwan-Gue Cho. A compact index for cartesian tree matching. In
Pawel Gawrychowski and Tatiana Starikovskaya, editors, Proc. 32nd Annual Symposium on
Combinatorial Pattern Matching (CPM) 2021, volume 191 of LIPIcs, pages 18:1–18:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

23 Sung-Hwan Kim and Hwan-Gue Cho. Simpler FM-index for parameterized string matching.
Inf. Process. Lett., 165:106026, 2021. doi:10.1016/j.ipl.2020.106026.

24 Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings.
SIAM J. Comput., 6(2):323–350, 1977.

25 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Pal k is linear recognizable online.
In SOFSEM 2015: Theory and Practice of Computer Science - 41st International Conference on
Current Trends in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech Republic,
January 24-29, 2015. Proceedings, pages 289–301, 2015. doi:10.1007/978-3-662-46078-8_24.

26 Glenn K. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, 1975. doi:10.1145/321892.321896.

27 Yoshiaki Matsuoka, Takahiro Aoki, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Generalized pattern matching and periodicity under substring consistent equivalence relations.
Theor. Comput. Sci., 656:225–233, 2016.

https://doi.org/10.4230/LIPIcs.ESA.2017.38
https://doi.org/10.1145/322047.322056
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.4230/LIPIcs.ISAAC.2017.35
https://doi.org/10.1016/j.ejc.2008.04.006
https://doi.org/10.1016/j.tcs.2012.01.047
https://doi.org/10.1016/j.ipl.2020.106026
https://doi.org/10.1007/978-3-662-46078-8_24
https://doi.org/10.1145/321892.321896

S. Nagashita and T. I 23:15

28 Antonio Restivo and Giovanna Rosone. Burrows-wheeler transform and palindromic richness.
Theor. Comput. Sci., 410(30-32):3018–3026, 2009. doi:10.1016/j.tcs.2009.03.008.

29 Mikhail Rubinchik and Arseny M. Shur. EERTREE: an efficient data structure for processing
palindromes in strings. Eur. J. Comb., 68:249–265, 2018. doi:10.1016/j.ejc.2017.07.021.

CPM 2023

https://doi.org/10.1016/j.tcs.2009.03.008
https://doi.org/10.1016/j.ejc.2017.07.021

	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Notations
	2.2 Toolbox
	2.3 FM-index

	3 Encodings for pal-matching
	4 Computational results for new encodings
	5 PalFM-index
	6 Conclusions and future work

