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Abstract
In order to use them for compression, we extend L-systems (without ε-rules) with two parameters d

and n, and also a coding τ , which determines unambiguously a string w = τ(φd(s))[1 : n], where
φ is the morphism of the system, and s is its axiom. The length of the shortest description of an
L-system generating w is known as ℓ, and it is arguably a relevant measure of repetitiveness that
builds on the self-similarities that arise in the sequence.

In this paper, we deepen the study of the measure ℓ and its relation with a better-established
measure called δ, which builds on substring complexity. Our results show that ℓ and δ are largely
orthogonal, in the sense that one can be much larger than the other, depending on the case. This
suggests that both mechanisms capture different kinds of regularities related to repetitiveness.

We then show that the recently introduced NU-systems, which combine the capabilities of
L-systems with bidirectional macro schemes, can be asymptotically strictly smaller than both
mechanisms for the same fixed string family, which makes the size ν of the smallest NU-system the
unique smallest reachable repetitiveness measure to date. We conclude that in order to achieve
better compression, we should combine morphism substitution with copy-paste mechanisms.
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1 Introduction

In areas like Bioinformatics, it is often necessary to handle big collections of highly repetitive
data. For example, two human genomes share 99.9% of their content [23]. In another
scenario, for sequencing a genome, one extracts so-called reads (short substrings) from it,
with a “coverage” of up to 100X, which means that each position appears on average in 100
reads.1 There is a need in science and industry to maintain those huge string collections in
compressed form. Traditional compressors based exclusively on Shannon’s entropy are not
good for handling repetitive data, as they only exploit symbol frequencies when compressing.
Finding good measures of repetitiveness and also compressors exploiting this repetitiveness
has then become a relevant research problem.

1 https://www.illumina.com/science/technology/next-generation-sequencing/
plan-experiments/coverage.html
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A strong theoretical measure of string repetitiveness introduced by Kociumaka et al. [12]
is δ, based on the substring complexity function. This measure has several nice properties: it
is computable in linear time, monotone, resistant to string edits, insensitive to simple string
transformations, and it lower-bounds almost every other theoretical or ad-hoc repetitiveness
measure considered in the literature. Further, although O(δ) space is unreachable, there exist
O(δ log(n/δ))-space representations supporting efficient pattern matching queries [12, 11],
and this space is tight: no o(δ log(n/δ))-space representation can exist [12].

The idea that δ is a sound lower bound for repetitiveness is reinforced by the fact that it
is always O(b), where b is the size of the smallest bidirectional macro scheme generating a
string [26]. Those macro schemes arguably capture every possible way of exploiting copy-paste
regularities in the sequences. Some very recent works [19], however, explore other sources of
repetitiveness, in particular self-similarity, and are shown to break the lower bound of δ.

The simplest of those schemes, which reuse the name L-system for simplicity [19], builds
upon Lindenmayer systems [15, 16], in particular on the variant called CPD0L-systems. A
CPD0L-system describes the language of the images, under a coding τ , of the powers of
a non-erasing morphism φ starting from an string s (called the axiom), that is, the set
{τ(φi(s)) | i ≥ 0}. The L-systems extend CPD0L-systems with two parameters d and n,
so as to unambiguously determine the string w = τ(φd(s))[1 : n]. The size of the shortest
description of an L-system generating w in this fashion is called ℓ. Intuitively, ℓ works as
a repetitiveness measure because any occurrence of the symbol a at level i expands to the
same string at level i + j for every j.

Since ℓ is a reachable measure of repetitiveness (because the L-system is a representation
of w of size O(ℓ)), there are string families where δ = o(ℓ). Intriguingly, it has been shown [19]
that there are other string families where ℓ = o(δ), so (1) both measures are not comparable
and (2) the lower bound δ does not capture this kind of repetitiveness. On the other hand, it
is shown that ℓ = O(g), where g is the size of the smallest deterministic context-free grammar
generating only w. This comparison is relevant because L-systems are similar to grammars,
differing in that they have no terminal symbols, so their expansion must be explicitly stopped
at level d and then possibly converted to terminals with τ .

Grammars provide an upper bound to repetitiveness that is associated with well-known
compressors, so this upper bound makes ℓ a good measure of repetitiveness.

A more complex scheme that was also introduced [19] are NU-systems, which combine
the power of L-systems with bidirectional macro schemes. The measure ν, defined as the size
of the smallest NU-system generating w, naturally lower bounds both ℓ and b. The authors
could not, however, find string families where ν is asymptotically better than both ℓ and b,
so it was unclear if NU-systems are actually better than just the union of both underlying
schemes.

In this paper we deepen the study of the relations between these new intriguing measures
and more established ones like δ and g. Our results are as follows:
1. We show that ℓ can be much smaller than δ, by up to a

√
n factor, improving a previous

result [19] and refuting their conjecture that ℓ = Ω(δ/ log n).
2. On the other hand, we expose string families where ℓ is larger than the output of several

repetitiveness-aware compressors like the size grl of the smallest run-length context-free
grammar, the size ze of the greedy LZ-End parse [13], and the number of runs r in the
Burrows-Wheeler Transform of the string [2]. We then conclude that ℓ is uncomparable
to almost all measures other than g, which suggests that the source of repetitiveness it
captures is largely orthogonal to the typical cut-and-paste of macro schemes.
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Figure 1 Asymptotic relations between ℓ, ν, and other repetitiveness measures. A double black
arrow from v1 to v2 means that it always holds that v1 = O(v2), and there exists a string family
where v1 = o(v2). A dashed arrow from v1 to v2 means that there exists a family where v1 = o(v2).

3. We introduce a string family where ν is asymptotically strictly smaller than both ℓ and b,
which shows that NU-systems are indeed relevant and positions ν as the unique smallest
reachable repetitiveness measure to date that captures both kinds of repetitiveness in
non-trivial ways.

4. We study various ways of simplifying L-systems and show that, in most cases, we end up
with a weaker repetitiveness measure. We also study some of those weaker variants of ℓ,
which can be of independent interest.

Overall, our results contribute to understanding how to measure repetitiveness and how
to exploit it in order to build better compressors. We summarize the state of ℓ and ν after
this work in Figure 1.

2 Basic concepts

In this section we explain the basic concepts needed to understand the rest of the paper,
from strings and morphisms to relevant repetitiveness measures.

2.1 Strings
An alphabet is a finite set of symbols and is usually denoted by Σ. A (finite) string w is
a finite sequence w[1]w[2] . . . w[n] of symbols where w[i] ∈ Σ for i ∈ [1, n], and its length
is denoted by |w| = n. The empty string, whose length is 0, is denoted by ε. The set of
all possible finite strings over Σ is denoted by Σ∗. If x = x[1] . . . x[n] and y = y[1] . . . y[m],
the concatenation operation x · y (or just xy) yields the string x[1] . . . x[n] y[1] . . . y[m]. Let
w = xyz. Then y (resp. x, z) is a substring (resp. prefix, suffix) of w. It is proper if it is not
equal to w, and non-trivial if it is distinct from ε and w. The notation w[i : j] stands for the
substring w[i] . . . w[j] if i ≤ j, and ε otherwise. We also use the conventions w[i : j] = w[1 : j]
if i < 1, w[i : j] = w[i : n] if j > n, and w[i : j] = ε if i > n or j < 1. Other convenient
notations are w[: i] = w[1 : i] and w[i :] = w[i : |w|] for prefixes and suffixes, respectively.

A (right) infinite string w (we use boldface to emphasize them) over an alphabet Σ
is a mapping from Z+ to Σ, and its length is called ω, which is greater than n for any
n ∈ Z+. It is possible to define the concatenation x · y if x is finite and y infinite. The
concepts of substring, prefix, and suffix carry over to infinite strings, with proper prefixes
always being finite and suffixes always being infinite. The notations w[i], w[i : j], w[: i], and
w[i :] = w[i]w[i + 1] . . . also carry over to infinite strings.

CPM 2023
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2.2 Morphisms
The set Σ∗ together with the (associative) concatenation operator and the (identity) string
ε form a monoid structure (Σ∗, ·, ε). A morphism on strings is a function φ : Σ∗

1 → Σ∗
2

satisfying φ(x · y) = φ(x) · φ(y) for all x, y (i.e., a function preserving the monoid structure),
where Σ1 and Σ2 are alphabets. To define a morphism on strings, it is sufficient to define
how it acts over the symbols in its domain. The pairs (a, φ(a)) for a ∈ Σ1, usually denoted
a → φ(a), are called the rules of the morphism, and there are |Σ1| of them. If Σ1 = Σ2, then
the morphism is called an endomorphism.

Let φ : Σ∗
1 → Σ∗

2 be a morphism on strings. Some useful definitions are width(φ) =
maxa∈Σ1 |φ(a)| and size(φ) =

∑
a∈Σ1

|φ(a)|. A morphism is non-erasing if ∀a ∈ Σ1, |φ(a)| >

0, expanding if ∀a ∈ Σ1, |φ(a)| > 1, k-uniform if ∀a ∈ Σ1, |φ(a)| = k > 1, and it is a coding if
∀a ∈ Σ1, |φ(a)| = 1 (sometimes called a 1-uniform morphism).

Let φ : Σ∗ → Σ∗ be an endomorphism. Then φ is prolongable on a symbol a if φ(a) = ax

for some string x ̸= ε. If this is the case, then for each i, j with 0 ≤ i ≤ j, it holds that
φi(a) is a prefix of φj(a), and x = φω(a) = axφ(x)φ2(x) . . . is the unique infinite fixed-point
of φ starting with the symbol a. An infinite string w = φω(a) that is the fixed-point of a
morphism is called a purely morphic word, its image under a coding x = τ(w) is called a
morphic word, and if the morphism φ is k-uniform, then x is said to be k-automatic.

2.3 Repetitiveness measures
A repetitiveness measure µ is a function that arguably captures the degree of repetitiveness
of strings. Repetitiveness is an intuitive and elemental concept, yet is still subject to debate.
In general, a repetitive string is understood as one containing many copies of the same
substrings. The more repetitive is a string w, the smaller the value µ(w) should be.

If we can represent every string w[1 : n] within space O(µ(w)) (where the asymptotics
refer to n), then we say the measure µ is reachable. Space is usually measured in Θ(log n)-bit
words following the conventions of the transdichotomous RAM model of computation. Hence,
O(µ(w)) space means O(µ(w) log n) bits. We can represent any symbol in the alphabet of
w[1 : n] using a constant number of words as long as |Σ| = O(nd) for some d ≥ 0.

A repetitiveness measure u1 is smaller or lower-bounds another measure u2 if u1(w) =
O(u2(w)) for every w[1 : n] ∈ Σ∗. If, in addition, there is an infinite string family F ⊆ Σ∗

where u1(w) = o(u2(w)) for every w[1 : n] ∈ F , we say that u1 is strictly smaller or strictly
lower-bounds u2. Two repetitiveness measures u1 and u2 are equivalent if each one is smaller
than the other, and uncomparable if none is (i.e., u1 = o(u2) on a string family F1 and
u2 = o(u1) on another string family F2).

In the following, we explain the most relevant repetitiveness measures to be considered in
the rest of the paper. For a more in-depth review, see a recent survey [17].

Grammar-based measures

There exist several compressors, and measures of repetitiveness associated with their size,
that build on context-free grammars.

A straight-line program (SLP) is a deterministic context-free grammar G in Chomsky
Normal Form whose language is a singleton {w}. We denote the string generated by the SLP
as exp(G) = w, and extend this notation to the unique strings generated by the non-terminals
of the grammar. The measure g is defined as the size of the smallest SLP G generating w.
Finding the smallest SLP is an NP-complete problem [3], although there exist algorithms
providing log-approximations [7, 24].
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A measure based on context-free grammars that strictly lower-bounds g is grl, the size of
the smallest run-length SLP (RLSLP) generating w [20]. RLSLPs allow constant-size rules of
the form A → Bn for n > 1, which can make a noticeable difference in some string families
like {an | n ≥ 0}, where g = Θ(log n), but grl = O(1).

A collage system is an RLSLP that, in addition, supports rules of the form A → B[i : j]
for some i, j ∈ [1, |exp(B)|]. These mean that exp(A) = exp(B)[i : j]. The size c of the
smallest collage system [10] strictly lower-bounds grl.

Parsing-based measures

A parsing of size k produces a factorization of a string w into non-empty phrases, i.e.,
w = w1w2 . . . wk where wi ∈ Σ+ for i ∈ [1, k]. Several compressors work by parsing w in a
way that storing summary information about the phrases enables recovering w.

The Lempel-Ziv (LZ) parsing processes a string greedily from left to right, always forming
the longest phrase that has a copy (called a source) starting inside some previous phrase or
forming an explicit phrase of length 1 otherwise [14]. The source can overlap the new phrase.
The LZ-no parsing, instead, does not allow the source overlap the new phrase. The LZ-end
parsing [13] requires, in addition, that the source ends at a previous phrase boundary. All of
these parsings can be constructed in linear time, and their number of phrases are denoted by
z, zno, and ze, respectively. While z and zno are optimal among the parsings satisfying their
respective conditions, this is not always the case for ze. The optimal factorization where
each phrase wi+1 appears as a suffix of w1 . . . wj for some j ≤ i is denoted by zend. Because
of the optimality of z, zno, and zend, it holds that z ≤ zno ≤ zend ≤ ze for every string.

A bidirectional macro scheme (BMS) [26] is any parsing where each phrase of length
greater than 1 has a copy starting at a different position in such a way that the original
string can be recovered following these pointers (assuming that the phrases of length 1 store
their symbol explicitly). The measure b(w) is defined as the size of the smallest BMS for w.
It strictly lower-bounds all the other reachable repetitiveness measures [18], except for the
ones we focus on in this paper, ℓ and ν [19]. On the other hand, b is NP-hard to compute [5].

Another interesting parsing-based measure is the size of the greedy lexicographic parsing of
w, denoted as v(w) [18]. This parsing processes w from left to right, taking as the next phrase
the longest common prefix between the unprocessed part of the string and a lexicographically
smaller suffix of the processed part (a unique symbol $, smaller than the others, is assumed
to exist at the end of w). It forms an explicit phrase of length one if the longest common
prefix is empty or no predecessor exists.

Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) [2] is a reversible transformation that usually
makes a string more compressible. It is obtained by concatenating the last symbols of the
sorted suffixes of w$, where $ is a symbol smaller than any symbol appearing in w. The
BWT tends to produce long runs of the same symbol when a string is repetitive, and these
(maximal) runs can be compressed into one symbol in the alphabet {(a, k) | a ∈ Σ, k ∈ [1, n]}
using run-length encoding (rle). A repetitiveness measure based on this idea is defined as
r(w) = |rle(BWT (w))|. Although r is not ideal as a repetitiveness measure [6], its size
can be bound in terms of z [8]. It has many practical applications representing repetitive
sequences in Bioinformatics because of its indexing power [4].

CPM 2023
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String attractors

Kempa and Prezza [9] introduced the notion of string attractor as a unifying framework and
lower bound for dictionary-based compressors.

Let w be a string of length n. A string attractor for w is a set of positions Γ ⊆ [1, n]
such that for each substring w[i : j] of w, there exist integers i′, j′ ∈ [1, n] and k ∈ Γ, such
that w[i : j] = w[i′ : j′] and i′ ≤ k ≤ j′. That is, every substring of w has a copy covering a
position in Γ. The measure γ(w) is defined as the size of the smallest string attractor for w.

Computing γ is an NP-complete problem. The measure γ is a lower bound to b and is
also strictly smaller than b when considering the infinite family of Thue-Morse words [1]. On
the other hand, it is unknown if γ space or even o(γ log(n/γ)) space is reachable.

Substring complexity

Let Fw(k) be the set of distinct substrings of w of length k. The complexity function of w

is defined as Pw(k) = |Fw(k)|. Kociumaka et al. [12] introduced a repetitiveness measure
based on the complexity function, defined as δ(w) = max{Pw(k)/k | k ∈ [1..|w|]}.

The measure δ has several nice properties: it is computable in linear time, monotone,
insensitive to reversals, resistant to small edits on w, can be used to construct O(δ log(n/δ))-
space representations supporting efficient access and pattern matching queries [12, 11], and is
a lower bound to almost every other theoretical or ad-hoc repetitiveness measure considered
in the literature, including γ. On the other hand, o(δ log(n/δ)) space is unreachable [12].

3 The measure ℓ

The class of CPD0L-systems is a variant of the original L-systems, the parallel grammars
without terminals defined by Aristid Lindenmayer to model cell divisions in the growth of
plants and algae [15, 16].

Formally, a CPD0L-system is a 4-tuple L = (Σ, φ, τ, s), where Σ is the alphabet, φ is
the set of rules (a non-erasing endomorphism on Σ∗), τ is a coding on Σ∗, and s ∈ Σ+

is the axiom. The system generates the sequence (τ(φd(s)))d∈N. The “D0L” stands for
deterministic L-system with 0 interactions. The “P” stands for propagating, which means
that it has no ε-rules. The “C” stands for coding, which means that the system is extended
with a coding. To define a compressor based on CPD0L-system, we extend them to 6-tuples
by fixing d and using another parameter n, so we can uniquely determine a string of the
sequence generated by a system and then extract a prefix from it. For simplicity, in the rest
of this paper, we refer to these extended CPD0L-systems just as L-systems.

▶ Definition 1 (L-systems). An L-system is a 6-tuple L = (Σ, φ, τ, s, d, n) where Σ is the
alphabet, φ is the set of rules (an endomorphism on Σ∗), τ is a coding on Σ∗, s ∈ Σ+

is the axiom, and d and n are two non-negative integers. The string generated by L is
w = τ(φd(s))[1 : n].

We now define the size of an L-system and the measure ℓ.

▶ Definition 2 (Measure ℓ). The size of an L-system L = (Σ, φ, τ, s, d, n) is size(L) =
size(φ) + |s| + |Σ| + 2. The measure ℓ(w) is defined as the size of the smallest L-system
generating w.

The size of an L-system accounts for the lengths of the right-hand sides of its rules, the
length of the axiom, the coding τ , and the values d and n, so we can effectively represent the
system using O(size(L)) space. Hence, the measure ℓ is reachable.
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As a convention, we always assume that d = nO(1) and that Σ = nO(1). Otherwise, we
could need too many words to represent the integer d or the symbols of the alphabet.

A finer-grained analysis about the number of bits needed to represent an L-system of
size ℓ yields O(ℓ log |Σ| + log n) bits, the second term corresponding to d and n; note that Σ
contains the alphabet of w.

An important result about ℓ is that it always holds that ℓ = O(g) [19]. More importantly,
sometimes ℓ = o(δ), which implies that δ is not a lower bound for ℓ, and questions δ as a
definitive measure of repetitiveness.

To understand the particularities of ℓ, we study several classes of L-systems with different
restrictions and define measures based on them. We define the measure ℓe that restricts
the morphism to be expanding. The measure ℓu restricts the morphism to be k-uniform
for some k > 1. The variant ℓm forces the morphism of the system to be a-prolongable for
some symbol a and the axiom to be s = a. The variant ℓd essentially removes the coding by
forcing it to be the identity function. Finally, ℓp refers to the intersection of ℓm and ℓd, and
ℓa refers to the intersection of ℓm and ℓu, which intuitively perform well in prefixes of purely
morphic words and prefixes of automatic sequences, respectively.

▶ Definition 3. An L-system (Σ, φ, τ, s) is a-prolongable if there exists a symbol a such that
s = a and a → ax with x ≠ ε. An L-system is prolongable if it is a-prolongable for some
symbol a.

▶ Definition 4 (ℓ-variants). We define the following ℓ-variants
1. The variant ℓe denotes the size of the smallest L-system generating w, satisfying that all

its rules have a size at least 2.
2. The variant ℓm denotes the size of the smallest prolongable L-system generating w.
3. The variant ℓd denotes the size of the smallest L-system generating w, satisfying that τ is

the identity function.
4. The variant ℓu denotes the size of the smallest L-system generating w, satisfying that all

its rules have the same size, at least 2.
5. The variant ℓp denotes the size of the smallest prolongable L-system generating w,

satisfying that τ is the identity function.
6. The variant ℓa denotes the size of the smallest prolongable L-system generating w,

satisfying that all its rules have the same size, at least 2.

It is known that different classes of L-systems produce different classes of languages [21].
Some of these classes also differ in the factor complexity of the sequences they can generate [22].
It is interesting to understand how these differences in terms of expressive power and factor
complexity translate into compression power.

We defer the study of ℓ-variants to Section 7. We define them early, as some of our
results relating ℓ to better-established measures in Sections 4 and 5 also apply for some of
the ℓ-variants.

4 Breaking the δ-lower-bound for repetitiveness

It is known that the repetitiveness measure δ is a (strict) lower bound to all the other
repetitiveness measures [17]. It is also known that δ is a lower bound to k-th order empirical
entropy, which plays a role in several compressors [17]. This makes δ an asymptotic lower
bound to the size of almost every existing compressor and compressibility measure.

CPM 2023
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Certainly, we cannot expect to find a reachable measure upper-bounded by O(δ) because
δ-space is unreachable, as shown by Kociumaka et al. [12]. Still, it could be possible to
design measures capturing repetitiveness and going below δ in some restricted but relevant
scenarios. In this context, we raise the following question:

Can we find a competitive and reachable repetitiveness measure achieving space lower
than δ on some restricted but relevant cases?

It is not difficult to design a trivial measure breaking the δ-lower-bound for some specific
string families. We also require, however, this measure to make sense, be reachable, and be
competitive, the latter meaning that it is at least as good as z, g, or r (i.e., the most popular
reachable measures in practice) in terms of space.

The repetitiveness measure ℓ was designed with the conditions above in mind. As we
already mentioned, ℓ cannot lower-bound δ because ℓ is a reachable measure.

▶ Lemma 5 ([19, Theorem 4]). There exist string families where ℓ = Ω(δ log n).

It was shown that ℓ is a competitive repetitiveness measure: the smallest L-system for a
string is always asymptotically smaller than the smallest grammar (their proof applies to the
variant ℓd as well). This shows that the measure ℓ is always reasonable for repetitive strings:

▶ Lemma 6 ([19, Theorem 6]). It always holds that ℓ = O(g).

On the other hand, they [19] showed a string family satisfying that δ = Ω(ℓ log n),
and conjectured that this gap was the maximum possible, that is, that the lower bound
ℓ = Ω(δ/ log n) holds for any string family. We now disprove this conjecture. We show a
string family where δ is Θ(

√
n) times bigger than the size ℓ of the smallest L-system.

▶ Lemma 7. There exists a string family where δ = Θ(ℓ
√

n).

Proof. Consider a c-prolongable L-system Ld = (Σ, φ, τ, s, d, n), where

Σ = {a, b, c}
φ = {a → a, b → ab, c → cb}
τ = {a → a, b → b, c → c}
s = c

n = 1 + (d − 1)d
2 + d

for any d ≥ 0. By iterating the morphism φ we obtain the words

φ0(c) = c

φ1(c) = cb

φ2(c) = cbab

φ3(c) = cbabaab

φ4(c) = cbabaabaaab

φ5(c) = cbabaabaaabaaaab

and so on, from which we extract as a prefix the whole word (depending on the value of d

chosen). It is easy to check by induction that for each d ≥ 0, the string generated by the
system Ld is sd = cΠd−1

i=0 aib and it has length 1 + (d−1)d
2 + d.
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c b a b a a b

c b a b a a b a a a b a a a a b a a a a a b

s3 =

s6 =

Figure 2 All the substrings of length 6 of the string s6 of Lemma 7 starting inside some position
i ≤ |s3| = 7 are distinct, because the runs of a’s considered have all different and increasing lengths,
and d is big enough. The last of the substrings considered is underlined. Extending these substrings
one position to the left yields |s3| different strings of length 7, so the claim holds for even and odd
values of d ≥ 2.

It holds that ℓ is Θ(1) in this family. The system is essentially the same for every string
in the family. The only changes are the integers d and n, which always fit in constant space.

On the other hand, the first |s⌊d/2⌋| = 1 + (⌊d/2⌋ − 1)(⌊d/2⌋)/2 + ⌊d/2⌋ substrings of
length d of sd (for d ≥ 2) are completely determined by the b’s they cross, and the number
of a’s at their extremes, so they are all distinct. An example can be seen in Figure 2.

This gives the lower bound δ = Ω(d) = Ω(
√

n). The upper bound O(
√

n) holds trivially
for run-length grammars as the strings considered have Θ(

√
n) runs of a’s followed by b’s, so

δ = Θ(
√

n). Thus δ = Θ(ℓ
√

n) in this string family. ◀

This string of Lemma 7 is easy to describe yet hard to represent with copy-paste
mechanisms. Intuitively, the simplicity of the sequence relies on the fact that many substrings
can be described in terms of previous ones, so it is arguably highly repetitive, though not via
copy-paste. The repetitiveness in this family is better captured by an L-system, instead.

5 Uncomparability of ℓ with other repetitiveness measures

As a corollary of Lemmas 5 and 7 (and also mentioned in previous work [19]), we obtain
that ℓ and δ are uncomparable as repetitiveness measures.

▶ Corollary 8. The measures ℓ and δ are uncomparable.

Moreover, this is also true for the variant ℓp because, in Lemma 7, we considered a
prolongable L-system with the identity function as the coding. As we prove later in Section 7,
the variant ℓp is, in general, far from ideal for measuring repetitiveness, so the fact that δ is
uncomparable to this weak variant is even more surprising.

A natural question is then to identify which other measures are also uncomparable to ℓ

(and ℓp). We show in this section that this holds for almost any other repetitiveness measure.
To do so, we first recall the string family defined by Kociumaka et al. [12], satisfying that it
needs Ω(log2 n) bits to be represented with any method. This string family will be crucial in
the following proofs.

▶ Definition 9 ([12]). The string family K is formed by all the infinite strings s over {a, b}
constructed as follows:
1. Let s[1] = b.
2. For any i ≥ 2, choose a position ji in [2 · 4i−2 + 1, 4i−1]. Then, s[ji] = b.
3. If j > 1 and j ̸= ji for any i ≥ 2, then s[j] = a.

The family Kn for n ≥ 0 is formed by all the prefixes of length n of some string in K.

It is easy to see that the strings in the family Kn have Θ(log n) symbol b’s. Also, note
that with the possible exception of the first two positions, there are no consecutive b’s.
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Now we are ready to prove that, in general, it does not hold that ℓ = O(grl), making
L-systems uncomparable to RLSLPs.

▶ Lemma 10. There exists a string family where ℓ = Ω(grl log n/ log log n).

Proof. Consider the string family Kn needing Ω(log2 n) bits (or Ω(log n) space) to be
represented with any method [12]. Strings in Kn have O(log n) runs of a’s separated by b’s,
so it is easy to see that grl = O(log n) in this family. Because of this, and because grl is a
reachable measure, it holds that grl = Θ(log n) in Kn. On the other hand, the minimal L-
system for a string in this family can be represented with O(ℓ log |Σ|+log n) ⊆ O(ℓ log ℓ+log n)
bits, which must be in Ω(log2 n) bits because the L-system is also reachable. It follows that
ℓ = Ω(log2 n/ log log n); otherwise,

ℓ log ℓ = o((log2 n/ log log n) log(log2 n/ log log n))
= o(log2 n),

which contradicts ℓ being reachable. Thus, ℓ = Ω(grl log n/ log log n) in this string family. ◀

The same result holds for LZ-like parsings. Even the greedy LZ-End parsing (the largest
of them) can be asymptotically smaller than ℓ in some string families.

▶ Lemma 11. There exists a string family where ℓ = Ω(ze log n/ log log n).

Proof. Take each string in Kn and prepend an to it. This new family of strings still needs
Ω(log2 n) bits to be represented with any method because the size of the family is the same,
and n just doubled. Just as in Lemma 10, it holds that ℓ = Ω(log2 n/ log log n) in this
family. On the other hand, the LZ-End parsing needs Θ(log n) phrases only to represent
the prefix anb, and then for each run of a’s followed by b, its source is aligned with anb, so
ze = Θ(log n). Thus, ℓ = Ω(ze log n/ log log n). ◀

The same result also holds for the number of equal-letter runs of the Burrows-Wheeler
transform of a string.

▶ Lemma 12. There exists a string family where ℓ = Ω(r log n/ log log n).

Proof. Consider the family Kn again. Clearly r = Ω(log n), because r is reachable. Because
a string in this family has O(log n) b’s, its BWT has also O(log n) runs of a’s separated by b’s
(or the unique $). Thus, r = Θ(log n) and ℓ = Ω(r log n/ log log n) in this string family. ◀

We conclude that the measure ℓ is uncomparable to almost every other repetitiveness
measure. We summarize these results in the following theorem.

▶ Theorem 13. The measure ℓ is uncomparable to the repetitiveness measures δ, γ, b, v, c,
grl, z, zno, zend, ze, and r.

Proof. There exist string families where ℓ = o(δ). In these families, it holds ℓ = o(µ) where
µ is any of the measures considered above, because δ is a lower bound to all of them. On the
other hand, all the measures above are upper-bounded by at least one of ze, grl, or r, which
by Lemmas 10, 11, and 12, respectively, can be asymptotically smaller than ℓ for some string
families. ◀

This shows that ℓ, although reachable and competitive as a repetitiveness measure,
captures the regularities in strings in a form that is largely orthogonal to other repetitiveness
measures. As the underlying regularities captured by ℓ and the other measures are apparently
different, we try to combine them to obtain more powerful measures/compressors.
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6 NU-systems and the measure ν

A NU-system [19] is a tuple N = (V, R, Γ, s, d, n) that generates a unique string in a similar
way to an L-system. The key difference is that on the right-hand side of its rules, a NU-system
is permitted to have special symbols of the form a(k)[i : j], whose meaning is to generate the
k-th level from a, then extract the substring starting at position i and ending at position j,
and finally apply the coding to the resulting substring.

The indices in a NU-system (e.g., levels, intervals) must be less or equal to n to fit in
a Θ(log n)-bits word. Also, the NU-system must not produce any loops when extracting
a prefix from some level, which is decidable to detect. The size of a NU-system is defined
analogously to the size of L-systems, with the extraction symbols a(k)[i : j] being symbols of
length 4. The measure ν is defined as the size of the smallest NU-system generating w.

It holds that ν = O(ℓ) and ν = O(b) [19]. Moreover, there exist families where both
asymptotic bounds are strict. We now show that NU-systems exploit the features of L-
systems and macro schemes in a way that, for some string families, can reach sizes that are
unreachable for both L-systems and macro schemes independently.

▶ Theorem 14. There exists a family of strings where ν = o(min(ℓ, b)).

Proof. Let Km be the family of strings defined by Kociumaka et al. [12], needing Ω(log2 m)
bits to be represented with any method, but over the alphabet {0, 1}. We construct a
new family F = {x · y[: m] | x ∈ Km}, where y is the infinite fixed point generated by the
c-prolongable L-system with the identity function as the coding, utilized in Lemma 7.

Let n = 2m. As shown in Lemma 10, it holds that ℓ = Ω(log2 n/ log log n) in this family.
On the other hand, b = Ω(

√
n), because δ = Ω(

√
n) on prefixes of y, and the alphabets

between the prefix in Km and y[: m] are disjoint.
Let x be a string in Km with k symbols 1. Let ij be the number of 0’s in x between the

(j − 1)-th 1 and the j-th 1, for j ∈ [2, k]. Also, let i1 and ik+1 be the number of 0’s at the
left and right extremes of x. We construct a NU-system N = (V, R, Γ, s, d, n) as follows:

V = {0, 1, a, b, c}
R = {0 → 00, 1 → 1, a → a, b → ab, c → cb}
Γ = {0 → 0, 1 → 1, a → a, b → b, c → c}
s = 0(m)[: i1]10(m)[: i2]1 . . . 0(m)[: ik]10(m)[: ik+1]c(m)[: m]
d = 0
n = 2m

By construction, this NU-system generates the string x · y[: m] of length n, and its axiom
has size 4(k + 2) + k, where k = Θ(log n). Hence, it holds that ν is O(log n) for these strings.
Thus, ν = o(min(ℓ, b)) in the family F we constructed. ◀

NU-systems can then be smaller representations than those produced by any other
compression method exploiting repetitiveness. This shows that combining copy-paste
mechanisms with iterated morphisms is an effective way of improving compression from a
theoretical point of view.

On the other hand, though computable, no efficient decompression scheme has been
devised for NU-systems. In turn, finding the smallest NU-system is very likely an NP-complete
problem, and probably very difficult to even approximate.
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7 ℓ-variants are weaker than ℓ

In this section we show that the features we include in the L-systems used in the definition
of ℓ are necessary to obtain a competitive repetitiveness measure; removing any of them
yields an inherent loss in compression power.

We start by showing that ℓ can be asymptotically strictly smaller than ℓm. That is,
restricting L-systems to be prolongable yields a weaker measure.

▶ Lemma 15. There exists a string family where ℓ = o(ℓm).

Proof. Let F = {an−1b | n ≥ 1}. Clearly, ℓ is constant in this string family: the L-system
Ln = (V, φ, τ, s, d, n) where V = {a, b}, φ = {a → a, b → ab}, τ = {a → a, b → b}, s =
b, and d = n−1 produces each string in F by changing only the value of n and d accordingly.
Note that these L-systems are not prolongable on the axiom.

For the sake of contradiction, suppose that ℓm = O(1) in F . Let Ln = (Σn, φn, τn, c, dn, n)
be the the smallest c-prolongable system generating an−1b. Because ℓm = O(1), there exists
a constant C satisfying that |Σn| < C and width(φn) < C for every n. Observe that it is
only necessary to have one symbol c′ ∈ Σn with τn(c′) = b because there is only one b in
an−1b, so w.l.o.g. assume that b ∈ Σn and τn(b) = b. As the system is c-prolongable, each
level is a prefix of the next one. This implies that the morphism should be iterated until b
appears for the first time, and then we can safely extract the prefix. This must happen in the
first C iterations of the morphism; otherwise, b is not reachable from C (i.e., if an iteration
does not yield a new symbol, then no new symbols will appear since then, and there are less
than C symbols). But in the first C iterations, we cannot produce a string longer than the
constant CC . For sufficiently large n, this implies that the symbol b, if it is reachable, will
appear for the first time before the n-th position, which is a contradiction. ◀

Because we used the identity coding in the proof above, we can obtain the following
corollary.

▶ Corollary 16. There exists a string family where ℓd = o(ℓm).

We can prove a similar result for uniform morphisms.

▶ Proposition 17. There exists a string family where ℓu = o(ℓm).

Proof. It is not difficult to see that ℓu is constant in the family {a2k

b | k ≥ 0}: consider the
axiom s = ab and the rules a → aa, b → bb, the level d = k and the prefix length n = 2k + 1.
A similar argument to the one of Lemma 15 yields that ℓu = o(ℓm) for this other string
family. ◀

Further, we can find a concrete asymptotic gap between ℓ and ℓm in the string family of
the proof of the previous lemma.

▶ Lemma 18. There exists a string family where ℓm = Ω(ℓ log n/ log log n).

Proof. Let F = {an−1b | n ≥ 1}. Recall that ℓ = O(1) in this family. Let k = |Σ| and
t = width(φ) obtained from the morphism of the smallest c-prolongable system generating
an−1b (we assume again that the only symbol mapped to b by the coding is b). In the
first k iterations, b must appear (as in the previous proof) and cannot be deleted in the
following levels, so it cannot appear before position n. Hence, tk ≥ n, which implies
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k ≥ logt n. By definition, ℓm ≥ k ≥ logt n and ℓm ≥ t, so ℓm ≥ max(t, logt n). The solution
to the equation t = logt n is the smallest value that max(t, logt n) can take for t ∈ [2..n].
This value is Ω(log n/W (log n)) where W (x) is the Lambert W function, and it holds that
W (log n) = Θ(log log n). Therefore, ℓm = Ω(ℓ log n/ log log n) in this string family. ◀

As a corollary, we obtain the following result.

▶ Corollary 19. There exists a string family where ℓm = Ω(ℓd log n/ log log n).

We now show that if we remove the coding from prolongable L-systems, which corresponds
to the variant ℓp, we end with a much worse measure. We change the usual alphabet for
clarity of presentation.

▶ Lemma 20. There exists a string family where ℓp = Ω(ℓm
√

n).

Proof. We prove that ℓp = Θ(n) whereas ℓm = O(
√

n) on F = {0n−11 | n ≥ 2}. Any
prolongable morphism with an identity coding generating 0n−11 must have the rule 0 →
0n−11, which implies ℓp = Θ(n). The reason is that if the system is prolongable, but it has
no coding, then the axiom must be 0, and in the prolongable rule 0 → 0w, if |φ(0)| ≤ n,
then the non-empty string w could only contain 0’s and 1’s, otherwise undesired symbols
would appear in the final string because the starting level is a prefix of the final level. If w

does not contain 1’s, then 1 is unreachable from 0. If w contains a 1, then the first of them
should be at position n.

On the other hand, we can construct an a-prolongable morphism, with τ(1) = 1 and
τ(a) = 0 for every other symbol a ̸= 1 as follows: Let n − 1 = k⌊

√
n − 1⌋ + j with

⌊
√

n − 1⌋ > 3, k > 1, 0 ≤ j < ⌊
√

n − 1⌋ (k and j integers). We can assume n is sufficiently
big so the requirements are satisfied. Then, define the following rules

a → ab

b → ck−1d

c → 0⌊
√

n−1⌋−1

d → 0⌊
√

n−1⌋−3+j1.

The first four levels are

φ0(a) = a

φ1(a) = ab

φ2(a) = abck−1d

φ3(a) = abck−1d0(⌊
√

n−1⌋−1)(k−1)0⌊
√

n−1⌋−3+j1,

and it holds that

|φ3(a)| = 3 + (k − 1) + (⌊
√

n − 1⌋ − 1)(k − 1) + (⌊
√

n − 1⌋ − 3 + j) + 1 = n.

Hence, τ(φ3(a)) = 0n−11. The system L = ({a, b, c, d, 0, 1}, φ, τ, a, 3, n}) generates 0n−11 as
required for n bigger than some constant. The size of the system is clearly O(

√
n). Thus,

the claim holds. ◀

By using the same family above, the following corollary holds.

▶ Corollary 21. There exists a string family where ℓp = Ω(ℓdn).
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It is surprising that this weak measure ℓp can be much smaller than δ for some string
families. This can be deduced from Lemma 7. On the other hand, it does not hold that
ℓp = O(g) for any string family, because g = Θ(log n) on {0n−11 | n ≥ 1}.

▶ Corollary 22. The variant ℓp is uncomparable to the measures δ and g.

If we restrict L-systems to be expanding, that is, with all its rules having a length of at
least 2, we also end with a weaker measure. This shows that, in general, it is not possible to
transform L-systems into expanding ones without incurring an increase in size.

▶ Lemma 23. There exists a string family where ℓ = o(ℓe).

Proof. Let F = {akba2k | k ≥ 0}. Clearly ℓ is constant in F : the L-system ({a, b, c}, {a →
aa, b → cb, c → c}, {a → a, b → b, c → a}, ba, d = k, n = 2k + k + 1) produces akba2k and
stays constant-size as k (and d and n) grows.

Suppose that ℓe is also constant in F . Then there is a constant C such that the minimal
expanding L-systems generating the strings in this family have at most C rules, each one of
length at most C. Without loss of generality, assume that for each of these systems, the only
symbol mapped to b by the coding is b. Also, assume that the axiom is a single symbol a0.
Note that because the systems are expanding with rules of size at most C, their level must
be d ≥ logC 2k = k

log2 C .
Let a0, a1, . . . , ad be the sequence of the first symbols of φi(a0) for i ≤ d. By the

pigeonhole principle, for sufficiently big values of k (and consequently big values of d), this
sequence has a period of length q starting from ap, with p + q ≤ C ≤ d. Then there exist
indexes t and j such that t = d − jq and p ≤ t < p + q. By the q-periodicity of the sequence
starting at at, it is clear that φq(at) = atw for some w ̸= ε (because the morphism is
expanding), so φq is prolongable on at. This implies that φiq(at) is a prefix of φjq(at) for
i ≤ j. As before, if b is reachable from at via φq, that must happen in the first C iterations,
so φCq(at) contains a b, and so does φjq(at), which is a prefix of φd(a0). This implies that
φd(a0) contains a b before position CCq, which is bounded by CC2 , a contradiction for
sufficiently long strings in the family. So it has to be that b is not reachable via φq from
at, but this is also a contradiction for sufficiently long strings because φjq(at) is a prefix of
φd(a0) of length at least 2d−t = ω(k), yielding too many symbols not mapped to b before
the first b at level d. Thus, ℓe cannot be O(1) in F . ◀

We summarize the results of this section in Figure 3. Overall, we have shown that imposing
restrictions on the length of the rules of an L-system or forcing them to be prolongable
wildly impacts their compression power. We have not yet found an example where ℓd could
be asymptotically smaller than ℓ, which would prove that the coding contributes to the
measure ℓ in a fundamental way (the purpose of the coding is to make ℓ constant in the case
of prefixes of general morphic words, but it is unknown if it is really needed). We conjecture
that such a family exists and the coding is necessary.

8 Conclusions and open questions

The measure ℓ is arguably a strong reachable repetitiveness measure, which can break the
limits of δ (a measure considered a stable lower bound for repetitiveness) by a wide margin
(a factor of

√
n). On the other hand, however, ℓ can be asymptotically weaker than the space

reached by several compressors based on run-length context-free grammars, many Lempel-Ziv
variants, and the Burrows-Wheeler transform. Only the size of context-free grammars is an
upper bound to ℓ. This suggests that the self-similarity exploited by L-systems is mostly
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ℓ ℓe ℓu ℓa

ℓm ℓp

ℓd g

min(ℓ, b)ν

bδ

Figure 3 Asymptotic relations between ℓ-variants and other relevant measures. A black arrow
from v1 to v2 means that it always holds that v1 = O(v2). A double black arrow from v1 to v2

means that it also exists a string family where v1 = o(v2). A dashed arrow from v1 to v2 means that
there exists a family where v1 = o(v2).

independent of the source of repetitiveness exploited by other compressors and measures,
which build on copy-paste mechanisms. We also show that several attempts to simplify or
restrict L-systems lead to weaker measures.

A relevant question about L-systems is whether they can be useful for building compressed
sequence representations that support direct access. More formally, can we build an O(ℓ)-
space representation of a string w[1 : n] providing random access to any position of the
string in O(polylog n) time? The closest result (as far as we know) is an algorithm designed
by Shallit and Swart [25], which computes φd(a)[i] in time bounded by a polynomial in
|Σ|, width(φ), log d and log i. It uses more space and takes more time than our aim. The
main bottleneck is having to store the incidence matrix of the morphism and compute its
powers. As suggested by Shallit and Swart, this could be solved by finding closed forms
for the growth functions (recurrences) of each symbol. If this approach were taken, these
formulas should be easily described within O(ℓ) space.

In terms of improving compression, on the other hand, the recent measure ν [19] aims to
unify the repetitiveness induced by self-similarity and by explicit copies. This measure is the
smallest size of a NU-system, a natural way to combine L-systems (with minimum size ℓ)
with macro schemes (with minimum size b ≥ δ). In line with our finding that ℓ and δ are
mostly orthogonal, we prove in this paper that ν is strictly more powerful than both ℓ and b,
which makes ν the unique smallest reachable measure of repetitiveness to date.

There are several open questions related to NU-systems and ν. For example, does it
hold that ν = Ω(ℓ log log n/ log n), or ν = Ω(δ/

√
n), for every string family? Is ν = O(γ),

or at least o(γ log(n/γ)), for every string family? (recall that γ and o(γ log(n/γ)) space is
unknown to be reachable [9]). And towards having a practical compressor based on ν, can
we decompress a NU-system efficiently?

In a more general perspective, this paper pushes a little further the discussion of what
we understand by a repetitive string. Intuitively, repetitiveness is about copies, and macro
schemes capture those copies pretty well, but there are other aspects in a text that could be
repeated besides explicit copies, such as general patterns and the relative ordering of symbols.
Macro schemes capture explicit copies, L-systems capture self-similarity, and NU-systems
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capture both. What other regularities could we exploit when compressing strings, keeping
the representation (more or less) simple and the associated repetitiveness measure (hopefully
efficiently) computable?
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