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Abstract
Suppose we are asked to index a text T [0..n − 1] such that, given a pattern P [0..m − 1], we can
quickly report the maximal substrings of P that each occur in T at least k times. We first show how
we can add O(r log n) bits to Rossi et al.’s recent MONI index, where r is the number of runs in the
Burrows-Wheeler Transform of T , such that it supports such queries in O(km log n) time. We then
show how, if we are given k at construction time, we can reduce the query time to O(m log n).
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1 Introduction

In his foundational text Compact Data Structures: A Practical Approach [9, Section 11.6.1],
Navarro posed the following problem:

“Assume we have the suffix tree of a collection of genomes T [0..n − 1]. We then
receive a short DNA sequence P [0..m − 1] and want to output all the maximal
substrings of P that appear at least k times in T . . . Those substrings of P are likely
to have biological significance.”1

He described how to solve the problem with a suffix tree for T in O(m polylog(n)) time.
Since T is a collection of genomes, it is likely to be highly repetitive and the theoretically
best suffix-tree implementation is likely to be the O(r log(n/r))-space one by Gagie, Navarro
and Prezza [5], where r is the number of runs in the Burrows-Wheeler Transform (BWT)
of T . That full data structure is complicated, however, and has never been implemented.

1 We have changed T to T [0..n− 1] and P [1..m] to P [0..m− 1] for consistency with the rest of this paper,
and omitted a parameter bounding from below the length of the substrings (since we can filter them
afterwards).
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Very recently, Navarro [10] also gave solutions not based on a suffix tree, with the following
bounds:

O(grl) space and O(km2 logϵ n) query time;
O(δ log(n/δ)) space and O(m log m(log m + k logϵ n)) query time;
O(g) space and O(m2 log2+ϵ n) query time when k = ω(log2 n);
O(γ log(n/γ)) space and O(m log m log2+ϵ n) query time when k = ω(log2 n).

We refer readers to Navarro’s paper and the references therein for definitions of grl , δ, g

and γ.
In this paper we first show how we can add O(r log n) bits to Rossi et al.’s [13] recent

MONI index to obtain a solution with O(km log n) query time. We then show how, if we are
given k at construction time, we can reduce the query time to O(m log n), simultaneously
using less space than Gagie et al.’s compressed suffix tree and less time than Navarro’s
solutions. The rest of the paper is laid out as follows: in Section 2 we review MONI in
enough depth to build on it; in Section 3 we show how we can extend ϕ queries to support
sequential access to the LCP array; in Section 4 we show how to use ϕ and ϕ−1 queries and
LCP access to obtain a solution with O(km log n) query time; in Section 5 we show how, if
we are given k at construction time, we can precompute some answers, reducing the query
time to O(m log n); and we conclude in Section 6. For the sake of brevity we assume readers
are familiar with the concepts in Navarro’s text.

2 MONI

Bannai, Gagie and I [1] designed an index for T that takes O(r log n) bits plus the space
needed to support fast random access to T , and lists all the maximal exact matches (MEMs)
of P with respect to T – that is, all the substrings P [i..j] of P occurring in T such that
i = 0 or P [i − 1..j] does not occur in T , or j = m − 1 or P [i..j + 1] does not occur in T – in
O(m log log n) time plus the time needed for O(m) random accesses to T . MEMs are widely
used in DNA alignment [8] and they are the substrings of P Navarro asks for when k = 1.
Generalizing to arbitrary k, we refer to the substrings he asks for as k-MEMs.

Bannai et al. did not give an efficient construction algorithm or an implementation, but
Rossi et al. later did. They called their implementation MONI, the Finnish word for “multi”,
since it is intended to store a multi-genome reference. Boucher et al. [2] then gave a version of
MONI that processes P online using longest common extension (LCE) queries on T instead
of random access. We can support those LCE queries in O(log n) time with a balanced
straight-line program for T , which in practice takes significantly less space than the rest of
MONI.

We now sketch how Boucher et al.’s version of MONI works, incorporating ideas from
Nishimoto and Tabei [12] and Brown, Gagie and Rossi [4] about replacing rank queries by
table lookup and assuming we have an LCE data structure. Suppose

T = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$

with $ ≺ # ≺ A ≺ · · · ≺ T, and consider Table 1, in which the permutation FL is just the
inverse of the more familiar permutation LF.

For each of the value j between 0 and r − 1 = 13, we conceptually extract from this table
the starting and ending positions head(j) and tail(j) of run j in the BWT, SA[head(j)],
SA[tail(j)], BWT[head(j)], LF[head(j)] and the rank of the predecessor of LF[head(j)] in
the set

{head[0], . . . , head[r − 1]} .
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Table 1 The full table from which we conceptually start when building MONI for our example
text T = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.

i SA[i] LCP[i] lexicographically ith cyclic shift of T BWT[i] LF(i) FL(i)

0 44 0 $GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA A 5 29
1 8 0 #AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT T 32 11
2 17 1 #GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT T 33 28
3 25 4 #GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT T 34 30
4 34 9 #GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT T 35 31
5 43 0 A$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGAT T 36 0
6 4 1 ACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATT T 37 22
7 13 5 ACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGAT T 38 23
8 21 8 ACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GAT T 39 24
9 30 1 AGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATT T 40 25
10 39 4 AGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATT T 41 26
11 9 5 AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT# # 1 27
12 6 1 AT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTAC C 22 32
13 15 3 AT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATAC C 23 33
14 23 6 AT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATAC C 24 34
15 32 11 AT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAG G 25 35
16 41 2 ATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAG G 26 36
17 11 3 ATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AG G 27 38
18 19 10 ATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#G G 28 39
19 1 2 ATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$G G 29 42
20 27 4 ATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#G G 30 43
21 36 7 ATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#G G 31 44
22 5 0 CAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTA A 6 12
23 14 4 CAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATA A 7 13
24 22 7 CAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATA A 8 14
25 31 0 GAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTA A 9 15
26 40 3 GATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTA A 10 16
27 10 4 GATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#A A 11 17
28 18 11 GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT# # 2 18
29 0 3 GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$ $ 0 19
30 26 5 GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT# # 3 20
31 35 8 GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT# # 4 21
32 7 0 T#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACA A 12 1
33 16 2 T#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACA A 13 2
34 24 5 T#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACA A 14 3
35 33 10 T#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGA A 15 4
36 42 1 TA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGA A 16 5
37 3 2 TACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GAT T 42 6
38 12 6 TACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGA A 17 7
39 20 9 TACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GA A 18 8
40 29 2 TAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GAT T 43 9
41 38 5 TAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GAT T 44 10
42 2 1 TTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GA A 19 37
43 28 3 TTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GA A 20 40
44 37 6 TTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GA A 21 41

CPM 2023
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Table 2 The values we extract from Table 1, with the last two columns sorted.

j head(j) SA[head(j)] tail(j) SA[tail(j)] BWT[head(j)] µ(j) finger(j)

0 0 44 0 44 A 0 0
1 1 8 10 39 T 1 1
2 11 9 11 9 # 2 1
3 12 6 14 23 C 3 1
4 15 32 21 36 G 5 1
5 22 5 27 10 A 6 1
6 28 18 28 18 # 12 3
7 29 0 29 0 $ 17 4
8 30 26 31 35 # 19 4
9 32 7 36 42 A 22 5

10 37 3 37 3 T 25 5
11 38 12 39 20 A 32 9
12 40 29 41 38 T 42 13
13 42 2 44 37 A 43 13

In practice we can compute the values directly without building Table 1, using prefix-free
parsing [3].

We build Table 2 with these values but we sort the last two columns, which we refer to
as µ(j) and finger(j). An equivalent way to define µ(j) and finger(j), illustrated in Table 1,
is to draw boxes corresponding to the runs in the BWT, permute those boxes according to
LF, and write their starting positions in order as the µ(j) values and the numbers of the
runs in the BWT covering their starting positions as the finger(j) values. Storing Table 2
takes about

2r lg(n/r) + 2r lg n + r lg σ + 2r

bits, where σ is the size of the alphabet. (We do not actually need to store tail(j) =
head(j + 1) − 1, of course, but we include it in Table 2 to simplify our explanation.) It is
within a reasonable constant factor of the most space-efficient implementation and simple to
build.

For each suffix P [i..m − 1] of P from shortest to longest, MONI finds the length ℓi of
the longest prefix P [i..i + ℓi − 1] of P [i..m − 1] that occurs in T , the lexicographic rank qi

of a suffix of T starting with P [i..i + ℓi − 1], the starting position SA[qi] of that suffix in T ,
and the row ji of Table 2 such that head(ji) is the predecessor of qi in that column. We
note that the (pos, len) pairs (SA[q0], ℓ0), . . . , (SA[qm−1], ℓm−1) are the matching statistics
MS[0..m − 1] of P with respect to T .

Suppose we know i, ℓi, qi, SA[qi] and ji, and we want to find ℓi−1, qi−1, SA[qi−1]
and ji−1. If BWT[head(ji)] = P [i − 1] then we perform an LF step, as we describe in
a moment. If BWT[head(ji)] ̸= P [i − 1] then we find the last row j′

i above row ji with
BWT[head(j′

i)] = P [i − 1], and the first row j′′
i below row ji with BWT[head(j′′

i )] = P [i − 1],
using rank and select queries on column BWT[head(j)] in Table 2. We use LCE queries to
check whether T [SA[qi]..n − 1] has a longer common suffix with T [SA[tail(j′

i)]..n − 1] or with
T [SA[head(j′′

i )]..n − 1] and, depending on that comparison, either reset

ℓi = LCE(SA[qi], SA[tail(j′
i)])

qi = tail(j′
i)

SA[qi] = SA[tail(j′
i)]

ji = j′
i
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or reset

ℓi = LCE(SA[qi], SA[head(j′′
i )])

qi = head(j′′
i )

SA[qi] = SA[head(j′′
i )]

ji = j′′
i .

Now BWT[head(ji)] = P [i − 1], so we can proceed with the LF step.
For example, suppose P [0..11] = TAGATTACATTA, i = 2 and we have already found ℓ2 = 8

(because GATTACAT occurs in T but GATTACATT does not), q2 = 29, SA[q2] = 0 and j2 = 7.
Since BWT[head(7)] = $ ̸= P [1] = A, we find j′

2 = 5 and j′′
2 = 9 and compare

LCE(0, SA[tail(5)]) = LCE(0, 10) = 3

against

LCE(0, SA[head(9)]) = LCE(0, 7) = 0 .

Since the former LCE is longer, we set ℓ2 = 3, q2 = 27, SA[q2] = 10 and j2 = 5.
To perform an LF step with Table 2 when we know i, ℓi, qi, SA[qi] and ji, we first set

ℓi−1 = ℓi + 1
qi−1 = µ(π(ji)) + qi − head(ji)

SA[qi−1] = SA[qi] − 1 ,

where π is the permutation on {0, . . . , r − 1} that stably sorts the column BWT[head(j)]. If
we keep BWT[head(j)] in a wavelet tree then we have fast access to π.

For our example, consider i = 2, ℓ2 = 3, q2 = 27, SA[q2] = 10 and j2 = 5. Since
BWT[head(5)] is the second A in the column BWT[head(j)] and there are 4 characters in
the column lexicographically strictly less than A, π(5) = 5 and µ(5) = 6, so we set ℓ1 = 4,
q1 = 6 + 27 − 22 = 11 and SA[11] = 9. Notice π is similar to an LF mapping for the sequence
obtained by sampling one character from each run of the BWT (but in our example π has
a fixed point at 5); in fact, it permutes the coloured boxes in Table 1 according to LF. It
follows that µ(π(ji)) = LF(head(ji)). Since LF maintains the relationship between elements
in the same box,

LF(qi) − LF(head(ji)) = qi − head(ji) ;

substituting and rearranging, we obtain our formula for qi−1.
The last thing left for us to do during an LF step is find ji−1. For this, we use the

finger(j) column. By construction, head(finger(π(ji))) is the predecessor of LF(head(ji)) in
the set

{head[0], . . . , head[r − 1]} .

Therefore, since qi−1 = LF(qi) ≥ LF(head(ji)), we can find the row ji−1 of Table 2 such that
head(ji−1) is the predecessor of qi−1 in that column, by starting an exponential search at
row finger(π(ji)). This takes O(log r) time in the worst case and in practice it takes constant
time. Nishimoto and Tabei showed how to guarantee it takes constant time at the cost of
increasing the size of Table 2 slightly.

For more formal discussions, we refer readers to previous papers on MONI [13] and the
r-index [5, 12, 4, 11].

CPM 2023
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Table 3 The table we use for ϕ queries and access to the LCP.

j SA[head(j)] SA[tail(j)] LCP[head(j)] finger(j)

0 0 18 3 9
1 2 38 1 12
2 3 42 2 12
3 5 36 0 12
4 6 9 1 7
5 7 35 0 12
6 8 44 0 13
7 9 39 5 12
8 12 3 6 2
9 18 10 11 7

10 26 0 5 0
11 29 20 2 9
12 32 23 11 9
13 44 37 0 12

3 LCP access

We can support ϕ queries with table lookup as well: for each run BWT[i..j] in the BWT,
we store SA[i] and SA[(i − 1) mod n] as a row; we sort the rows by their first components;
and we add to each row the number of the row containing the predecessor of the second
component in the first column. Abusing notation slightly, we refer to the columns of the
resulting table as SA[head(j)], SA[tail(j)] and finger(j). Table 3 is for our running example,
augmented with a column LCP[head(j)] that stores the length of the longest common prefix
of T [SA[head(j)]..n − 1] and T [SA[tail(j)]..n − 1]. Since we are storing the row containing
the predecessor of each entry in SA[tail(j)] in the column SA[head(j)], we can encode each
entry in SA[tail(j)] as the difference between it and its predecessor in SA[head(j)].

Analysis shows the table then takes about 3r lg(n/r) + r lg r bits: we essentially gap-code
the interleaving of column SA[head(j)] and the sorted column SA[tail(j)], which consists of 2r

sorted numbers between 0 and n−1 and thus takes about 2r lg(n/r) bits; Kärkkäinen, Kempa
and Piątkowski [6] showed that the entries in LCP[head(j)] sum to O(n log r) so, by Jensen’s
Inequality, we can store them in a total of about r lg O(n log n)

r = r lg(n/r) + r lg lg r + O(r)
bits; and finger(j) takes about r lg r bits.

To see how we use Table 3 to answer ϕ queries, suppose we know that the predecessor of
24 in SA[head(j)] is in row 9. Then we have

ϕ(24) = SA[tail(9)] + 24 − SA[head(9)] = 10 + 24 − 18 = 16 .

We know that the predecessor of 10 in SA[head(j)] is in row finger(9) = 7, but the predecessor
of 16 could be in a later row. Again, we perform an exponential search starting in row
finger(9) = 7 and find the predecessor 12 of 16 in row 8. Then we have

ϕ(16) = SA[tail(8)] + 16 − SA[head(8)] = 3 + 16 − 12 = 7 .

Looking at rows 32 to 34 in Table 1, we see that indeed ϕ(24) = 16 and ϕ(16) = 7. This
works because, similar to the equation for LF, if BWT[j − 1] = BWT[j] then ϕ(SA[j] − 1) =
ϕ(SA[j]) − 1. Again, for more formal discussions, we refer readers to previous papers on the
r-index [5, 12, 4, 11].
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We do not know how to support random access to the LCP array quickly in O(r log n)
bits, but we can use Table 3 to provide a kind of sequential access to it. Specifically, as we
use ϕ to enumerate the values in the SA – without necessarily knowing the positions of the
cells of the SA those values appear in – we can use similar computations to enumerate the
corresponding values in the LCP array. In our example, since the predecessor 18 of 24 in
SA[head(j)] is in row 9, we can compute the LCP value corresponding to the SA value 24 as

LCP[SA−1[24]] = LCP[head(9)] + SA[head(9)] − 24 = 11 + 18 − 24 = 5 .

Checking this, we see that LCP[SA−1[24]] = LCP[34] = 5. Since the predecessor 12 of
ϕ(24) = 16 in SA[head(j)] is in row 8 of Table 3,

LCP[SA−1[16]] = LCP[head(8)] + SA[head(8)] − 16 = 6 + 12 − 16 = 2 .

Checking this, we see that LCP[SA−1[16]] = LCP[33] = 2.
Notice we do not use the SA row numbers 34 and 33 to compute the LCP value, as

the SA value 24 is sufficient. We could avoid using the inverse suffix array SA−1 in our
formula by writing LCP[SA−1[24]] as PLCP[24], for example, where PLCP[0..n − 1] denotes
the permuted LCP array [7] of T . The kind of sequential access we obtain to the LCP is
actually random access to the PLCP array, and it is easier to explain why it works from that
perspective – because if BWT[j − 1] = BWT[j] then PLCP[SA[j] − 1] = PLCP[SA[j]] + 1.2
Nevertheless, we present our results in terms of the LCP and SA−1 because we will use them
later in conjunction with ϕ queries to enumerate the values in LCP intervals.

Symmetric to using Table 3 to support ϕ queries, we can use a table to support ϕ−1

queries. In fact, the (SA[head(j)], SA[tail(j)]) pairs in the table are the same, but sorted
by their second components; now we add to each row the number of the row containing
the predecessor in the second column of the first component. Since we are storing the
row containing the predecessor of each entry in SA[head(j)] in the column SA[tail(j)], we
can encode each entry in SA[head(j)] as the difference between it and its predecessor in
SA[tail(j)]. Analysis then shows the table takes about 2r lg(n/r) + r lg r bits. Table 4 is
for supporting ϕ−1 queries on our running example. For example, if we know that the
predecessor of 7 in SA[tail(j)] is in row 1, then we can compute

ϕ−1(7) = SA[head(1)] + 7 − SA[tail(1)] = 12 + 7 − 3 = 16

and we can find the row containing the predecessor of 16 in SA[tail(j)] with an exponential
search starting at row finger(1) = 3 (and ending in the same row). We can then compute

ϕ−1(16) = SA[head(3)] + 16 − SA[tail(3)] = 18 + 16 − 10 = 24

and we can find the row 6 containing the predecessor of 24 in SA[tail(j)] with an exponential
search starting at row finger(3) = 4.

2 The formula for PLCP has a +1 where the formula for ϕ has a −1,

ϕ(SA[j]− 1) = ϕ(SA[j])− 1
PLCP[SA[j]− 1] = PLCP[SA[j]] + 1 ,

because if BWT[j− 1] = BWT[j] then moving from j to LF (j) decrements the SA entry but increments
the LCP entry.

CPM 2023
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Table 4 The table we use for ϕ−1 queries.

j SA[head(j)] SA[tail(j)] finger(j)

0 26 0 6
1 12 3 3
2 6 9 1
3 18 10 4
4 0 18 0
5 29 20 6
6 32 23 6
7 7 35 11
8 5 36 1
9 44 37 13

10 2 38 0
11 9 39 2
12 3 42 1
13 8 44 1

With these two O(r log n)-bit tables, given k, j and SA[j], we can compute SA[j − k +
1..j + k − 1] and LCP[j − k + 1..j + k − 1] in O(k log r) ⊆ O(k log n) time. (Actually, we can
achieve that bound even without the finger(j) columns in the tables, but Brown et al.’s results
suggest those will provide a significant speedup in practice.) With Nishimoto and Tabei’s
modification, we can reduce that to O(k) time while keeping the tables in O(r log n) bits;
this would slightly improve the time bound we give in the next section to O(m(k + log n)).

▶ Lemma 1. We can store two O(r log n)-bit tables such that, given k, j and SA[j], we can
compute SA[j − k + 1..j + k − 1] and LCP[j − k + 1..j + k − 1] in O(k log n) time.

4 Finding k-MEMs with Lemma 1

We store the tables described in Sections 2 and 3 for T , which add O(r log n) bits to MONI.
Given P and k, we find the MEMs of P with respect to T as before but then, from each
SA[qi], we use Lemma 1 to find LCP[qi − k + 2..qi + k − 1] in O(k log n) time.

For example, suppose that P [0..11] = TAGATTACATTA, as in Section 2, and k = 3. Starting
with q12 = 22, with MONI we compute the values shown in columns qi, SA[qi], ℓi and
BWT[qi] of Table 5. (It is important that we choose qi to be one of the endpoints of a run,
since we store SA entries only at those positions, but this is true also for MONI.) The crossed
out values are the ones we replace because BWT[qi] ̸= P [i]. If we look at the original SA[qi]
and ℓi values, before any replacements, we obtain the matching statistics

MS[0..11] = (38, 5), (9, 4), (0, 8), (1, 7), (2, 6), (20, 5), (21, 4), (22, 3), (1, 4), (2, 3), (3, 2), (4, 1)

of P with respect to T , with (pos, len) pair MS[i] indicating the starting position MS[i].pos
in T of an occurrence of the longest prefix of P [i..m − 1] that occurs in T , and the length
MS[i].len of that prefix.

From the matching statistics, it is easy to compute the MEMs P [0..4] = TAGAT, P [2..9] =
GATTACAT and P [8..11] = ATTA of P with respect to T : a MEM starts at any position i

such that i = 0 or MS[i − 1].len ≤ MS[i].len. For each i, after we compute qi, SA[qi] and
ℓi (and before we replace them, if we do), we use Lemma 1 to compute the sub-interval
LCP[qi − 1..qi + 2] of length 4 = 2k − 2.
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Table 5 With MONI we compute the values shown in columns qi, SA[qi], ℓi and BWT[qi] on the
left side of the table, and from those we can compute the matching statistics and MEMs of P [0..11] =
TAGATTACATTA with respect to T [0..44] = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.
After we have computed the values on the left side of the table, we can also compute the values
in columns LCP[qi − k + 2..qi + k − 1], Li and min(ℓi, Li) on the right side of the table, and from
those we can compute the 3-MEMs of P with respect to T .

i P [i] qi SA[qi] ℓi BWT[qi] LCP[qi − 1..qi + 2] Li min(ℓi, Li)
12 22 5 0 A
11 A 6 4 1 T [0, 1, 5, 8] 5 1
10 T 37 3 2 T [1, 2, 6, 9] 6 2
9 T 42 2 3 A [5, 1, 3, 6] 3 3
8 A 14 19 23 1 2 4 C G [10, 2, 4, 7] 4 4
7 C 24 22 3 A [4, 7, 0, 3] 4 3
6 A 8 21 4 T [5, 8, 1, 4] 5 4
5 T 37 39 3 20 5 T A [6, 9, 2, 5] 6 5
4 T 42 2 6 A [5, 1, 3, 6] 3 3
3 A 19 1 7 G [10, 2, 4, 7] 4 4
2 G 27 29 10 0 3 8 A $ [11, 3, 5, 8] 5 5
1 A 10 11 39 9 4 T # [4, 5, 1, 3] 4 4
0 T 41 38 5 T [2, 5, 1, 3] 2 2

We scan each interval LCP[qi − k + 2..qi + k − 1] in O(k) time and find a sub-interval
of length k − 1 such that the minimum LCP value Li in that sub-interval is maximized.
This LCP sub-interval corresponds to a sub-interval of length k in SA[qi − k + 1..qi + k − 1]
containing the starting positions of k suffixes of T – including T [SA[qi]..n − 1] itself – whose
common prefix with T [SA[qi]..n − 1] has the maximum possible length Li.

In our example, we scan each interval in column LCP[qi − 1..qi + 2] of Table 5 and find
the sub-interval of length 2 such that the minimum LCP value Li is maximized. If we check
Table 1, we find that the longest prefix of T [4..44] = ACAT#AGATA . . . that occurs at least 3
times in T indeed has length L11 = 5, the longest prefix of T [3..44] = TACAT#AGATA . . . that
occurs at least 3 times in T indeed has length L10 = 6, and so on.

Since the common prefix of P [i..m − 1] and T [SA[qi]] has the maximum possible length
ℓi, the longest prefix of P [i..m − 1] that occurs at least k times in T has length min(ℓi, Li).
Computing min(ℓi, Li) for each i takes a total of O(km log n) time. The values min(ℓi, Li) are
something like a parameterized version of the lengths in the matching statistics: min(ℓi, Li)
is the length of the longest prefix of P [i..m − 1] that occurs at least k times in T .

We can compute the k-MEMs of P with respect to T from the min(ℓi, Li) values in the
same way we compute MEMs from the lengths in the matching statistics: a k-MEM starts
at any position i such that i = 0 or min(ℓi−1, Li−1) ≤ min(ℓi, Li). In our example,

min(ℓ0, ℓ′
0) ≤ min(ℓ1, ℓ′

1) = 4
min(ℓ1, ℓ′

1) ≤ min(ℓ2, ℓ′
2) = 5

min(ℓ4, ℓ′
4) ≤ min(ℓ5, ℓ′

5) = 5
min(ℓ7, ℓ′

7) ≤ min(ℓ8, ℓ′
8) = 4

and so the k-MEMs are P [0..1] = TA, P [1..4] = AGAT, P [2..6] = GATTA, P [5..9] = TACAT and
P [8..11] = ATTA.

We can compute min(ℓi, Li) as soon as we have computed SA[qi] and ℓi, so we can
compute the k-MEMs of P with respect to T online.
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▶ Theorem 2. Suppose we have MONI for a text T [0..n − 1] whose BWT consists of r runs.
We can add O(r log n) bits to MONI such that, given P [0..m − 1] and k, we can find the
k-MEMs of P with respect to T online in O(k log n) time per character of P .

5 Finding k-MEMs with precomputed values

Suppose the interval of length k that we find in SA for P [i..m − 1], following the procedures
in Section 4, is SA[si..si + k − 1] and BWT[si] = · · · = BWT[si + k − 1] = P [i − 1]. Then
min(ℓi−1, Li−1) = min(ℓi, Li) + 1 and we can find the interval for P [i − 1..m − 1] with an LF
query for si, in O(log n) time. This means we need the results of Section 3 only when at
least one character in BWT[si..si + k − 1] is not equal to P [i − 1].

First, suppose BWT[qi] ̸= P [i − 1]. Following the procedures in Section 2, MONI resets qi

to the endpoint b of a run in the BWT, resets ℓi, and then computes qi−1 = LF(b). Following
the procedures in Section 4, we compute LCP[qi−1 − k + 2..qi−1 + k − 1] and scan it to
compute the interval SA[si−1..si−1 + k − 1] for P [i − 1..m − 1].

If we are given k at construction time, however, then for every endpoint b of a run in the
BWT, we can precompute

the sub-interval of length k − 1 of LCP[LF(b) − k + 2..LF(b) + k − 1] that maximizes the
minimum value L(b) in the sub-interval,
that value L(b).

With this information, we do not need the results of Section 3 for this case either, and
can handle it in O(log n) time as well. Since the sub-interval we store for b starts between
LF(b) − k + 2 and LF(b) + k − 1, we can store it in O(log k) bits as an offset. This means we
store O(r log k) bits on top of at most 2r LCP values, or O(r log n) bits in total.

The remaining case is when BWT[qi] = P [i − 1] but some of the other characters in
BWT[si..si + k − 1] are not equal to P [i − 1]. If BWT[qi] is the end of a run, then we
can proceed as in the previous case in O(log n) time, using our precomputed values for
qi (but without resetting qi and ℓi). Otherwise, we claim we can choose such a character
BWT[b] = P [i − 1] at the end of a run, set

ℓi = min(LCE(SA[qi], SA(b)), ℓi)

and qi = b, and then proceed as in the previous case in O(log n) time, and still be sure of
obtaining the correct k-MEMs of P with respect to T . (Continuing to run MONI with the
new values of qi and ℓi may not give us the correct MEMs, however.) To be able to change
qi and ℓi this way, it is important that we now work online, instead of running MONI on P

and then using the results to find the k-MEMs.
To see why our claim holds, assume our query has worked correctly so far, so

T [SA[qi]..SA[qi] + min(ℓi, Li) − 1] = T [SA[b]..SA[b] + min(ℓi, Li) − 1]

is the longest prefix of P [i..m − 1] that occurs at least k times in T . Therefore, the k-MEMs
starting in P [0..i − 1] are all completely contained in P [0..i + min(ℓi, Li) − 1]. It follows that
resetting

ℓi = min(LCE(SA[qi], SA(b)), ℓi)

and qi = b does not affect the set of k-MEMs we find that start in P [0..i − 1].
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if BWT[si] = · · · = BWT[si + k − 1] = P [i− 1] then
qi−1 ← LF(qi)
ℓi−1 ← ℓi + 1
Li−1 ← Li + 1
si−1 = LF(si)

else
if BWT[qi] ̸= P [i− 1] then

reset qi and ℓi as MONI does
else if BWT[qi] is not at the end of a run

choose b in [si..si + k − 1] with BWT[b] = P [i− 1] at the end of a run
ℓi ← min(LCE(SA[qi], SA[b]), ℓi)
qi ← b

end if
qi−1 ← LF(qi)
ℓi−1 ← ℓi + 1
Li−1 ← L(qi)
si−1 ← LF(qi)− offset(qi)

end if

Figure 1 Pseudo-code for how we find k-MEMs with precomputed values.

Figure 1 shows pseudo-code for how we find k-MEMs with precomputed values. Table 6
shows the offsets and L(b) values for our example, surrounded by coloured boxes on the
right, with each offset indicating how far above LF(b) the sub-interval starts. The coloured
boxes on the left indicate the sub-interval itself and the longest common prefix of the suffixes
starting in the sub-interval of the SA.

For our example, suppose we again start with q12 = 22 and ℓ12 = 0. Since BWT[q12] =
P [11] = A, we set q11 = LF(22) = 6 and ℓ11 = ℓ12 + 1 = 1. The values offset(22) = 0 and
L(22) = 5 in the black rectangle in Table 6 tell us to set s11 = LF(22) − 0 = 6 and L11 = 5.
This means the suffixes of T with starting points in

SA[6..8] = [4, 13, 21]

have a longest common prefix of length 5, which starts with the longest prefix of P [11] that
occurs at least 3 times in T . This longest prefix has length min(ℓ11, L11) = 1 – so it is just
P [11] = A. After this initial setup, we can fill in Table 7 according to the pseudo-code in
Figure 1, with crossed out values again indicating those that are replaced.

▶ Theorem 3. Suppose we have MONI for a text T [0..n − 1] whose BWT consists of r runs.
Given k, we can add O(r log n) bits to MONI such that, given P [0..m − 1], we can find the
k-MEMs of P with respect to T online in O(log n) time per character of P .

6 Conclusion

We have shown, first, how we can add O(r log n) bits to MONI for a text T [0..n − 1], where
r is the number of runs in the BWT of T , such that if we are given k at query time with
P [0..m − 1], then we can find the k-MEMs of P with respect to T online in O(k log n) time
per character of P . We have then shown how, if we are given k at construction time, we can
add O(r log k) bits and at most 2r LCP values – which are O(r log n) bits in total – such
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Table 6 The table showing the precomputed values we use to find 3-MEMs with respect to our
example T = GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.

i SA[i] LCP[i] lexicographically ith cyclic shift of T BWT[i] LF(i) offset(i) L(i)

0 44 0 $GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA A 5 0 1
1 8 0 #AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT T 32 0 2
2 17 1 #GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT T 33
3 25 4 #GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT T 34
4 34 9 #GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT T 35
5 43 0 A$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGAT T 36
6 4 1 ACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATT T 37
7 13 5 ACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGAT T 38
8 21 8 ACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GAT T 39
9 30 1 AGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATT T 40
10 39 4 AGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATT T 41 2 2
11 9 5 AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT# # 1 0 1
12 6 1 AT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTAC C 22 0 4
13 15 3 AT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATAC C 23
14 23 6 AT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATAC C 24 2 4
15 32 11 AT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAG G 25 0 3
16 41 2 ATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAG G 26
17 11 3 ATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AG G 27
18 19 10 ATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#G G 28
19 1 2 ATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$G G 29
20 27 4 ATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#G G 30
21 36 7 ATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#G G 31 2 5
22 5 0 CAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTA A 6 0 5
23 14 4 CAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATA A 7
24 22 7 CAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATA A 8
25 31 0 GAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTA A 9
26 40 3 GATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTA A 10
27 10 4 GATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#A A 11 2 4
28 18 11 GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT# # 2 0 4
29 0 3 GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$ $ 0 0 0
30 26 5 GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT# # 3 1 4
31 35 8 GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT# # 4 2 4
32 7 0 T#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACA A 12 0 3
33 16 2 T#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACA A 13
34 24 5 T#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACA A 14
35 33 10 T#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGA A 15
36 42 1 TA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGA A 16 0 3
37 3 2 TACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GAT T 42 0 3
38 12 6 TACAT#GATACAT#GATTAGAT#GATTAGATA$GATTACAT#AGA A 17 1 3
39 20 9 TACAT#GATTAGAT#GATTAGATA$GATTACAT#AGATACAT#GA A 18 2 3
40 29 2 TAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GAT T 43 1 3
41 38 5 TAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GAT T 44 2 3
42 2 1 TTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$GA A 19 0 4
43 28 3 TTAGAT#GATTAGATA$GATTACAT#AGATACAT#GATACAT#GA A 20
44 37 6 TTAGATA$GATTACAT#AGATACAT#GATACAT#GATTAGAT#GA A 21 2 4
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Table 7 The values we compute (except BWT[si..si + 2], which we include here only for
clarity) while finding the 3-MEMs of P [0..11] = TAGATTACATTA with respect to our example T =
GATTACAT#AGATACAT#GATACAT#GATTAGAT#GATTAGATA$.

i qi ℓi Li min(ℓi, Li) si P [i− 1] BWT[qi] BWT[si..si + 2]
12 22 0 A A
11 6 1 5 1 6 T T TTT
10 37 2 6 2 37 T T TAA
9 42 3 3 3 42 A A AAA
8 14 19 2 4 4 4 19 C C G GGG
7 24 3 4 3 22 A A AAA
6 8 4 5 4 6 T T TTT
5 37 39 5 6 5 37 T T A TAA
4 42 6 3 3 42 A A AAA
3 19 7 4 4 19 G G GGG
2 27 29 3 8 5 5 29 A A $ $##
1 10 11 4 4 4 9 T T # TT#
0 41 5 2 2 39 T ATT

that we can find the k-MEMs of P with respect to T online in O(log n) time per character
of P . Along the way, we have also shown how to extend ϕ queries to support sequential
access to the LCP, which may be of independent interest.

Although we have not discussed construction, we expect it will not be difficult to modify
prefix-free parsing [2] to build our tables for ϕ, LCP and ϕ−1 queries. Once we can support
those queries, we can use them to compute k-MEMs in O(km log n) time, or to build in
O(kr) time the table of precomputed values that we need to compute k-MEMs in O(m log n)
time. In fact, once we have built the tables for ϕ, LCP and ϕ−1 queries – which take O(r)
space but may be significantly larger than our table of precomputed values – then we can
store them in external memory and recover them only when we want to build a table of
precomputed values for a different choice of k.

We believe our approach is a practical extension of MONI and we are currently imple-
menting it. One possible application might be to index two genomic databases (possibly
with two different values of k), one of haplotypes from people with symptoms of a genetic
disease and one of haplotypes from people without; then, as the first step in a bioinformatics
pipeline, we could use those indexes to mine for substrings that are common in one database
and not in the other. We think this application is interesting because, except for a remark
in Bannai et al.’s paper about potentially applying MEM-finding to rare-disease diagnosis,
the r-index and MONI have so far been considered only as tools for pangenomic alignment,
and this is an application to pangenomic analysis. If the disease is recessive or multifactorial
then variations associated with it are likely to be present in both databases, so MEM-finding
is unlikely to detect them; those variations could be more frequent in the first database,
however, so k-MEM-finding may still be useful.
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