
On Distances Between Words with Parameters
Pierre Bourhis #

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Aaron Boussidan #

LIGM, Université Gustave Eiffel, CNRS, Marne-la-Vallée, France

Philippe Gambette #

LIGM, Université Gustave Eiffel, CNRS, Marne-la-Vallée, France

Abstract
The edit distance between parameterized words is a generalization of the classical edit distance where
it is allowed to map particular letters of the first word, called parameters, to parameters of the second
word before computing the distance. This problem has been introduced in particular for detection
of code duplication, and the notion of words with parameters has also been used with different
semantics in other fields. The complexity of several variants of edit distances between parameterized
words has been studied, however, the complexity of the most natural one, the Levenshtein distance,
remained open.

In this paper, we solve this open question and close the exhaustive analysis of all cases of
parameterized word matching and function matching, showing that these problems are np-complete.
To this aim, we also provide a comparison of the different problems, exhibiting several equivalences
between them. We also provide and implement a MaxSAT encoding of the problem, as well as a
simple FPT algorithm in the alphabet size, and study their efficiency on real data in the context of
theater play structure comparison.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases String matching, edit distance, Levenshtein, parameterized matching,
parameterized words, parameter words, instantiable words, NP-completeness, MAX-SAT

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.6

Supplementary Material Software (Source Code): https://github.com/AaronFive/paramatch
archived at swh:1:dir:3a72b0d85a4a2be9126900473b8f3e6d03c12a52

Funding ANR-18-CE23-0003 CQFD

1 Introduction

Measuring the similarity between text strings is a fundamental problem in computer
science, and has applications in bioinformatics [23], databases [1, 16] and natural language
processing [27]. Among the measures of similarities between strings, the Levenshtein
distance [28] is the most commonly used, both for its practicality and its ease of computation.
This distance quantifies the minimum number of operations of insertion, deletion, and
substitution needed to transform a string into another one. It has a wide range of applications,
ranging from biological sequence alignment [33] to dialect pronunciation differences [25] or
signature authentication [34]. Computing the edit distance between two strings of length
n and m can be achieved in time O(nm), by computing the distance between all their
prefixes, and storing the results in a dynamic programming fashion [37]. The success of the
Levenshtein distance generated many extensions and generalization on more complex models,
such as trees [38] or automata [32].

However, a limitation of the Levenshtein distance is that it only captures proximity
between strings (or objects) written on the same alphabet. Evaluating the proximity of
strings written on different alphabets is a problem that arises in various applications, such as
bioinformatics [35], image processing [17] and code duplication [6, 7]. In all those contexts,

© Pierre Bourhis, Aaron Boussidan, and Philippe Gambette;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.bourhis@cnrs.fr
https://orcid.org/0000-0001-5699-0320
mailto:aaronboussidan@univ-eiffel.fr
mailto:philippe.gambette@univ-eiffel.fr
https://orcid.org/0000-0001-7062-0262
https://doi.org/10.4230/LIPIcs.CPM.2023.6
https://github.com/AaronFive/paramatch
https://archive.softwareheritage.org/swh:1:dir:3a72b0d85a4a2be9126900473b8f3e6d03c12a52;origin=https://github.com/AaronFive/paramatch;visit=swh:1:snp:1a60100151a642c323fa86677bce2527116c7f12;anchor=swh:1:rev:10d4a500cc97e3f6f4ed07a8d437ecaa6cfbf9ad
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On Distances Between Words with Parameters

the technique used is the one of parameterized matching [6, 7]. Instead of using classical
strings, parameterized matching uses “parameterized words” written using both constant
parts, which are expensive to rename, and parameters, which are meant to be renamed freely.
Formally, two equal-length strings u and v over an alphabet Π are said to be parameterized
matching if there exists a 1-to-1 function f : Π → Π such that f(u) = v, where f(u) is
defined as f(u1) . . . f(u|u|).

Words with parameters also occur in other frameworks, and are often used in slightly
different ways. The first of those frameworks was initially introduced in the context of
Ramsey theory in the 80s [36], and is called “parameter words”. In this context, parameters
are labelled according to their order of first occurrence. Parameter words are also equipped
with a composition operation, where parameters of the first word can be instantiated by
characters or parameters of the second word. Parameter words can also be seen as equivalence
classes of parameterized words, which are the main focus of this article.

A second framework using parameters is the one of parameterized regular expressions
introduced in [10], where parameters can only be instantiated by constants, and not by other
parameters. The focus in this context is therefore made on the set of all possible valuations
of the parameters. Then, when defining algorithmic problems on such objects, two distinct
semantics can be studied: either the “certainty semantics”, where all valuations need to
have some property, or the “possibility semantics”, where at least one valuation needs to
have this property. To make a difference with the parameterized word framework mentioned
below, we choose to call these words “instantiable words”. Finally, this notion of words with
parameters can also be seen as a refined version of partial words (words containing a wildcard
character) [15]. The notion of partial words is also important in the context of databases
where paths of incomplete graphs can be interpreted as instantiable words [9].

This article aims at studying similarity by using edit distances in the framework of words
with parameters. In this framework, the pattern matching problem, which consists in looking
for the first string as a subword of the second string, has been extensively studied, either
looking for exact occurrences, with efficient algorithms [4, 19, 30] or approximate ones, which
is often NP-hard [21, 22]. In the case where we compare the two input strings in their
entirety, various exact parameterized matching problems have been studied for parameterized
pattern matching, namely string parameterized matching [7], single pattern parameterized
matching [7, 3], multiple pattern parameterized matching, or 2-dimensional parameterized
matching, many of those works being compiled in [29] and [31]. Different approximate variants
of parameterized matching using edit distance have already been studied, but the problem
has not been completely solved: the first work on the topic is [8], in which Baker introduces
a form of approximate parameterized pattern matching in which the replacement of any
substring by another one that is in parameterized matching with it is considered as a base
edit operation. Parameterized matching under the Hamming distance, i.e., with a distance
allowing only substitutions, has been covered in [24], where the authors prove that the string
matching problem with at most k mismatches can be solved in time O(m + k1.5). The LCPS
(Longest Common Parameterized Subsequence) problem, equivalent to the parameterized
pattern matching problem with insertions and deletions, is shown to be np-hard in [26],
which also provides an approximation algorithm. Those two different complexity classes for
these problems raise the question of the complexity of the problem under the Levenshtein
distance. This problem was left as an open question in the conclusion of [24].

Our paper establishes that this problem is np-complete. Moreover, the result also extends
to any possible edit distances obtained from deletion, insertion, and substitution as soon
as substitution is not the only operation allowed, as summarized in Figure 1. Our main

P. Bourhis, A. Boussidan, and P. Gambette 6:3

d ∅ D I DI
∅ P [8] np-complete (Th. 12) np-complete (Cor. 14) np-complete [26]
S P [24] np-complete (Cor. 14) np-complete (Cor. 14) np-complete (Th. 13)

Figure 1 Complexity of the variants of parameterized matching P Md, depending on the kind of
operations (D: deletion, I: insertion, S: substitution) allowed in the edit distance d.

proof also implies the main theorem of [26] with a different np-completeness reduction.
This contrasts with the problems of exact parameterized pattern matching which are all
polynomial-time solvable, as well as all variants of the string matching problem with deletions,
insertions or substitutions.

We also extend these results to function matching, which is the problem obtained by
relaxing the 1-to-1 restriction in parameterized matching, as defined in [2]. This generalization,
by breaking the symmetry of parameterized matching, actually gives rise to two close but
different problems, depending of the order of operations that are considered. We study the
links between all these problems and their computational complexity, and study two practical
ways to solve them, parameterized complexity and the use of maxSAT solvers.

We also make a direct connection with the framework of instantiable words, more precisely
with a natural problem of distance between languages. We show how instantiable word
problems can be reduced to parameterized matching ones, under the right assumptions. This
allows us to open new perspectives on the complexity of several language repair problems.

In Section 2, we give basic definitions and notations, and recall the existing formalism
of parameterized matching and instantiable words. In Section 3 we discuss approximate
parameterized matching and its various generalizations. We also link it to instantiable
words. In Section 4, we first prove a collection of technical results that build up to the
np-completeness proofs for parameterized matching and function matching problems defined
above. In Section 5, we study two approaches to solve one of the variants of parameterized
matching in practice, a simple FPT algorithm parameterized by the alphabet size and a
MaxSAT encoding. We show in Section 6 that these implementations can solve real instances
of the problem, motivated by structure comparison of theater plays.

Finally, in Section 7, we conclude the paper and give a few perspectives on the notion of
distance between parameterized languages.

2 Notations and Definitions

2.1 Basic Notations on Words and Editions
Words
An alphabet is a set of letters. A word on an alphabet A is a finite sequence of letters from
A, indexed starting from 1. Let u be a word on A. Unless defined differently, we note ui the
i-th letter of u, and |u| is the length of u. If i /∈ [1, |u|], ui is defined as the empty word ε. If x

is a letter from A, |u|x is the number of times x appears in u. Similarly, if X is a set of letters,
|u|X =

∑
x∈X

|u|x is the number of occurrences of letters of X in u. If f is a function defined

on an alphabet A, we extend it to A∗ in the usual way, so that f(u) = f(u1) . . . f(u|u|).
If f is a function, we denote by D(f) the domain of f . Two functions f and g are said
to be compatible if f |D(g)∩D(f) = g|D(g)∩D(f). The identity function on D is defined as
IdD(x) = x for all x in D.

CPM 2023

6:4 On Distances Between Words with Parameters

Edit Operations
In this paper, we consider the three classical edit operations which are deletion, substitution
and insertion. Let u = u1 . . . un be a word of size n. Let i be an integer between 0 and n and
x be a letter of the alphabet, the insertion at position i is the operation that transforms u

to u1 . . . uixui+1 . . . un Let j be an integer between 1 and n, the deletion at position j is
the operation that transforms u into u1 . . . uj−1uj+1 . . . un. Let y be a letter of the alphabet
and y ̸= uj , the substitution to y at position j is the operation that transforms u into
u1 . . . uj−1yuj+1 . . . un. A sequence of operations or rewriting sequence ρ is a sequence
of edit operations. We denote by ρ(u) the word obtained by applying the edit operations of
ρ one after another, in the order defined by ρ, to u.

Distances
Given a set of edit operations E and two words u and v, the edit distance between u and
v is defined as the length of a shortest sequence of operations of E changing u into v. We
denote by D the distance obtained on words by allowing only deletion operations: that is to
say D(u, v) = k iff v can be obtained by deleting k letters from u. Similarly, we note I and S

the distances obtained by allowing only insertions and substitutions respectively (note that
S is the Hamming distance). We also combine these notations to define DI as the distance
with insertions and deletions, and so on. We also denote the Levenshtein distance DIS by L.
Note that some of these edit distances are not metrics, because they are not symmetrical.
We emphasize this by calling symmetric edit distances the distances DI, S, and L.

2.2 Comparing Words with Parameters
Conceptually, a word with parameters is a word in which some letters are not yet determined.
In order to distinguish the parameters from the constants, we split the alphabet into Σ,
the alphabet of the constants and Π, the alphabet of the parameters. By definition, these
alphabets are finite. A word with parameters can either be seen as representing a “word
template” (i.e., a word with variable parts), or a set of words (determined by all possible
affectations of its parameters). Depending on the definition chosen, comparing two words
w1 and w2 is done in two different ways. In the first setting [6, 7, 8, 31, 2, 5, 24, 29, 26, 17],
parameters of w1 are renamed through a function f that maps the set of parameters to itself,
and acts as identity on the set of constants. It is then possible to compare f(w1) and w2,
which are written on the same alphabet. In the second setting, constants are seen as the
concrete values parameters can take [11]. Parameters are instantiated through two functions
f1 and f2 that map constants to themselves, but also map parameters to constants. The
words f1(w1) and f2(w2) are then made only of constants, and can be compared. Formally,
this gives rise to the two following different definitions:

On the one hand, a parameterized word is a word on an alphabet Σ ∪Π. In all that
follows, Σ and Π are two disjoint alphabets, respectively called the alphabet of constants
and the alphabet of parameters. Alphabets Σ and Π are considered to be finite, unless
specified otherwise.

Two parameterized words u and v are said to be in function matching if there exist
fΠ : Π → Π and f : Π ∪ Σ → Π ∪ Σ such that f |Π = fΠ, f |Σ = IdΣ, and f(u) = v. In
the classical setting [6], f is also constrained to be 1-to-1, and this relationship is called
parameterized matching. Note that parameterized matching is an equivalence relation on
parameterized words. Testing if two words are parameterized matching can be achieved in
linear time [7].

P. Bourhis, A. Boussidan, and P. Gambette 6:5

P MDIS F MDIS
1 F MDIS

2

u = aabba u = aabba u = aabbay L : (u1 → b, u2 → b)
y L : (u1 → b, u2 → b)

y f : [a → a, b → a]

u′ = bbbba u′ = bbbba v′ = aaaaay f : [b → a, a → b]
y f : [b → a, a → b]

x L : (v5 → a)

v = aaaab v = aaaab v = aaaab

Figure 2 Side-by-side comparison of P MDIS , F MDIS
1 and F MDIS

2 .

On the other hand, an instantiable word is a word on the alphabet Σ ∪ Π. Given
f : Π→ Σ, we extend it to constants by setting f(x) = x for all x ∈ Σ, and we then define
the language of an instantiable word u to be L(u) = {w ∈ Σ∗ | ∃f : Π→ Σ, f(u) = w}.
This definition is akin to the L⋄ semantic of a parameterized regular expression defined
in [11], but restricted here to a single instantiable word. Two instantiable words w1 and w2
describe the same elements if their languages are equal, i.e. L(w1) = L(w2).

3 Different Definitions for Different Semantics and Problems

In this section, we introduce various new approximate variants of parameterized matching,
and compare them, highlighting their differences on examples.

3.1 Variants of Parameterized Matching
In parameterized matching, the function f renaming parameters is generally considered to
be 1-to-1. In this paper, we also consider the function matching problem, which is the
case where f is not constrained to be injective anymore, as defined in [2]. We also introduce
multiple approximate variants of the parameterized matching problems, depending on several
edit distances obtained by combining insertion, deletion and substitution operations.

3.1.1 Edit distances for parameterized matching between two strings:
P Md

▶ Definition 1. If d is an edit distance, we denote by PMd the parameterized matchingproblem
under d, which is the following:

Input: two parameterized words u, v, a parameter alphabet Π , an alphabet Σ of constants,
and a natural number k.
Problem: Does there exist u′ such that d(u, u′) ≤ k and u′ and v are parameterized
matching, i.e. there exists a 1-to-1 function f : Π ∪ Σ → Π ∪ Σ such that f |Σ = IdΣ,
f(Π) = Π, and f(u′) = v ?

In that case, we say that u′ and f realize the matching between u and v. We sometimes
write that only f or u′ realize the matching if the other one is not relevant to a proof.

In cases where Σ and Π are already defined, we omit them and simply call PMd(u, v, k)
the result of the decision problem. Furthermore, PMd(u, v) denotes the minimum integer k

(potentially infinite) such that PMd(u, v, k) is true.
We can note that this problem can be solved in polynomial time adapting the classical

dynamic programming algorithm [33, 37] when the alphabet sizes are fixed.

CPM 2023

6:6 On Distances Between Words with Parameters

3.1.2 Edit distances for function matching between 2 strings: F Md
i

To denote function matching problems, we use FM instead of PM : FMD denotes the
function matching problems with deletions.

Furthermore, if P is one of the problems defined above, we note P1 the problem where
edit operations are only applied to the first argument, and P2 the one where they are only
applied to the second argument.

▶ Definition 2. The FMd
1 and FMd

2 problems are defined as follows. For both problems,
the input is the following:

Input: two parameterized words u, v, a parameter alphabet Π, a constant alphabet Σ, and
a natural number k.

The problems are then:
Problem F Md

1 : ∃u′ such that d(u, u′) ≤ k and u′ and v are function matching?
Problem F Md

2 : ∃v′ such that d(v, v′) ≤ k and u and v′ are in function matching?

Note that the renaming function f is always applied to one input only. These definitions are
illustrated on an example in Figure 2.

3.2 Comparing Variants of P M

In this subsection, we compare the different variants of our problem.
Regarding the one-to-one parameterized matching PM , note that the definition we

give above is designed to be easily extended to the different variants when we drop the
one-to-one restriction. In [24], the authors consider that the “correct way for defining the
edit distance problem” is “to allow the operations and then apply the edit distance”. By
extending the definition of FMd

1 and FMd
2 to define PMd

1 and PMd
2 in the case of one-to-one

matching, we see that it is actually possible to switch the order of operations, and to reverse
them (deletions then become insertions and vice versa, and the renaming function f−1 is
well-defined), in this case. This makes our definition consistent with the quote from [24]
above. Formally, this gives the following equalities, for all parameterized words u and v:
PM I

1 (u, v) = PMD
1 (v, u) = PMD

2 (u, v) = PM I
2 (v, u).

More generally, it holds that for every edit distance d, PMd
1 (u, v) = PMd−1

1 (v, u) =
PMd−1

2 (u, v) = PMd
2 (v, u), where d−1 denotes the converse distance of d, i.e. d−1 contains

deletions if d contains insertions, insertions if d contains deletions, and substitutions if d

contains substitutions.
However, for function matching, we only have the following equalities: FM I

1 (u, v) =
FMD

2 (u, v) and FMD
1 (u, v) = FM I

2 (u, v).
By taking u = ab and v = cc, we can notice that FM I

1 (u, v) = 0 and FMD
1 (v, u) =∞,

so the equality FM I
1 (u, v) = FMD

1 (v, u) does not hold.
Finally, note the following inequalities:

▶ Proposition 3. Let u and v be parameterized words over Σ ∪Π. Then:
1. FMd

1 (u, v) ≤ PMd(u, v);
2. If d is a symmetric edit distance, FMd

2 (u, v) ≤ FMd
1 (u, v).

Proof. The first point comes from the fact that any solution to PMd is also a solution to
FMd

1 . For the second point, let k = FMd
1 (u, v), and let u′ and f realize FMd

1 (u, v). We
construct a word v′, obtained by applying to v the same operations applied to u to obtain
u′, but “mirrored”. That is to say, for every operation used in u, we apply an operation in v,
in the following way:

P. Bourhis, A. Boussidan, and P. Gambette 6:7

If a letter a is inserted in u, there exists a position i in u′ such that u′
i = a, and f(u′

i) = vi.
Hence, we delete vi in v.
Similarly, if a letter is substituted for another letter a′ in u, there exists i such that
u′

i = a, and we substitute vi to f(a).
If a letter a is deleted in u at position i, we insert f(a) in v at position i instead.

It then holds that f(u) = v′, and hence PMd
2 (u, v) ≤ k. ◀

Note that the above proof does not work to prove the converse inequality between FMd
1

and FMd
2 , as it would require to consider an element of f−1(a), which might be empty. This

is illustrated in the following example, on the alphabet Π = {a, b}:

▶ Example 4. Let N ∈ N and consider u = aN bN b and v = aN aN b. u and v are not in
parameterized matching, hence FMDIS

1 (u, v) > 0 and FMDIS
2 (u, v) > 0. By substituting

the last b in v for a a, and picking a function f such that f(a) = f(b) = a, we get
FMDIS

2 (u, v) = 1 (see Figure 2 for an example with N = 2). For FMDIS
1 , since b appears

in v, it holds that for any function f realizing FMDIS
1 , f(a) = b or f(b) = b. Hence, at least

N occurrences of b appear in f(u). Since there is only one occurrence of b in v, it is clear
that FMDIS

1 (u, v) ≥ N − 1.

The difference between FMd
1 and FMd

2 comes from the fact that Π is fixed in the input.
In the case where Π could be extended, both problems can be shown equivalent (for example
if we allow a new letter c in the example of Figure 2, we also get FMDIS

1 (u, v) = 1 by setting
u5 → c and f : [a→ a, b→ a, c→ b]), by using the same proof as Proposition 3.

3.3 Instantiable Words versus Parameterized Words
The parameterized word formalism and the instantiable word formalism give rise to two
different definitions of distances between words. Given an edit distance d on words, there are
two ways to extend it to words with parameters. Let w1 and w2 be two words over Σ ∪Π.
The two possible extensions are the following:

The distance between w1 and w2 is defined as d(w1, w2) = PMd(w1, w2). Alternatively,
the function distance between w1 and w2 is defined as FMd

1 (w1, w2).
The distance between w1 and w2 is the distance between their respective languages
seen as sets, that is to say d(w1, w2) = d(L(w1), L(w2)) = supu∈L(w1) infv∈L(w2) d(u, v).
Equivalently, d(w1, w2) ≤ k if and only if for all f1 : Π→ Σ, there exists f2 : Π→ Σ such
that d(f1(w1), f2(w2)) ≤ k.

This second definition stems from the definition of distance between languages, as defined
and studied in [12, 13, 14].

▶ Example 5. Consider the words u = axyb and v = xbby, on the alphabets Σ = {a, b}
and Π = {x, y}, and consider the distance S. On the one hand, FMS

1 (u, v) = 4, because
regardless of the matching chosen, every letter of f(u) has to be substituted. On the other
hand, for any function f1 : Π→ Σ, choosing f2 such that f2(x) = a and f2(y) = b yields a
distance d(f1(u), f2(v)) of at most 2, by substituting the 2 middle letters.

Given a big enough alphabet, those two definitions can in fact be shown equivalent:

▶ Proposition 6. Let w1 and w2 be words over Σ∪Π, and let d be a symmetric edit distance
on Σ ∪ Π. Suppose |Σ| ≥ |w1| + |w2|, and let k be an integer. Then, the following are
equivalent:
1. FMd

1 (w2, w1) ≤ k

2. d(L(w1), L(w2)) ≤ k

CPM 2023

6:8 On Distances Between Words with Parameters

Notice how w1 and w2 change position between the two distances. This is not benign, as
FMd

1 is not symmetric.

Proof. Suppose FMd
1 (w2, w1) ≤ k. There exists f : Π→ Π such that d(f(w2), w1) ≤ k. For

this proof, we will use the characterization of the distance betweeen languages with f1 and f2.
Let f1 : Π→ Σ. Define f2 = f1◦f . Since d(w1, f(w2)) ≤ k, we have d(f1(w1), f1◦f(w2)) ≤ k,
by following the same edit operations. Hence d(f1(w1), f2(w2)) ≤ k.

Suppose now d(L(w1), L(w2)) ≤ k. Let f1 : Π → Σ be a 1-to-1 function such that for
all parameters x in w1, f(x) does not appear in w1 or w2. This is possible since Σ is large
enough. There exists f2 : Π→ Σ such that d(f1(w1), f2(w2)) ≤ k. Let h : Σ→ Π∪Σ be such
that if x ∈ Π, h(f1(x)) = x, and if x /∈ f1(Π), h(x) = x. We then have h ◦ f1 = Id. What
is more, since h is injective, d(f1(w1), f2(w2)) = d(h(f1(w1)), h(f2(w2)) = d(h(f2(w2)), w1).
Hence, FMd

1 (w2, w1) ≤ k. ◀

4 Hardness Results for Approximate Parameterized Matching

In this section, we study the complexity of the various parameterized matching problems.
We show the np-completeness of the simplest problems using only deletions, which will be
sufficient to show the np-completeness of all the other problems. We start by proving some
practical lemmas, and then proceed to the reductions.

4.1 “Block by block” Lemmas
In this section, we regroup a few useful technical lemmas. We start of by stating two simple
results on distance and words, for which the proofs can be found in Appendix A. We then
turn to block lemmas, which will later be useful in the proofs of Theorems 12,17 and 15, to
combine the various gadgets defined during the reduction.

This lemma simply states a commutativity result between the application of a matching
f and the rewriting steps.

▶ Lemma 7. Let d be a distance, k an integer and u, v two parameterized words such that
PMd(u, v) ≤ k, and let f realize this parameterized match. Then: d(f(u), v) ≤ k. The same
result holds for FMd

1 (u, v).

Proof Idea. The proof is done by induction on k. We discuss whether the (k+1)-th operation
is an insertion, a deletion, or a substitution, and show that a corresponding operation can be
used in f(u). ◀

▶ Lemma 8. Let z, u and v be (parameterized) words, and let d be a distance. Then
d(zu, zv) = d(u, v).

Proof Idea. We show that we can consider every rewriting operation to be applied in u only:
if z is modified during an optimal rewriting sequence, the words have some redundancy, and
the same operations could have been carried in u instead. We proceed again by induction, and
focus on the base case by studying the 3 possible cases, one for each type of operation. ◀

Next, we turn to prove “block by block” matching lemmas. Those results state that it is
possible to encode multiple parameterized matching instances into a single one. They hold
for every type of problems considered here, but their proofs vary slightly; we present them
in order of increasing complexity. Note that all the constructions given can be achieved in
polynomial time.

P. Bourhis, A. Boussidan, and P. Gambette 6:9

▶ Lemma 9. Let u1, . . . un and v1, . . . vn be parameterized words over Σ ∪Π such that for
1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =

n∑
i=1

ki. There exist u and v two parameterized words

over {#} ∪ Σ ∪Π, where # is a fresh variable, such that the following are equivalent:
1. PMD(u, v) = k

2. For all 1 ≤ i ≤ n, PMD(ui, vi) = ki and the applications fi realizing those matchings are
all compatible.

Proof. The idea behind this proof and all the following ones is that we can introduce a
separator # to concatenate all the words, and that this separator will never be touched by
any deletions or applications of f .

Let # be a fresh constant. We define u = u1#u2# . . . #un, and v = v1#v2# . . . #vn.
2. =⇒ 1.: For every 1 ≤ i ≤ n, take u′

i and fi to realize the matchings. We can obtain
u′ = u′

1#u′
2 . . . #u′

n from u by applying the same deletions. Taking f to be the smallest
function extending all the fi, we get PMD(u, v) ≤ k.

1. =⇒ 2.: Assume PMD(u, v) ≤ k. Let u′ and f realize this parameterized match.
Since the # symbols are constants, we have f(#) = #. Since u′ is obtained from u by
deletions, we have |u′|# ≤ |u|#. Since f is injective and f(#) = #, |f(u′)|# ≤ |f(u)|#.
Hence, it holds that |v|# = |f(u′)|# ≤ |f(u)|# = |u|#. Since |u|# = |v|#, this is an equality,
and |f(u′)|# = |f(u)|#. Hence |u′|# = |u|#, and no # character is deleted. The word u′

is then of the form u′
1#u′

2# . . . #u′
n, where |u′

i|# = 0 and D(ui, u′
i) = ki for all i. Thus,

f(u′) = f(u′
1)#f(u′

2)# . . . #f(u′
n) = v1#v2# . . .# vn. Since no other # letter appear in any

f(u′
i) and vi, we can deduce that f(u′

i) = vi for all i. Finally, this yields PMD(ui, vi) = k,
and taking all the fi = f gives all compatible functions, which concludes the proof. ◀

In this proof, we used a constant #. However, it can also be conducted without using
a constant alphabet; indeed, constants can be encoded with parameters, as shown in
Appendix B.

Lemma 9 is still valid if PMD is replaced by FMD
2 . This time, we conduct this proof

without resorting to the use of constants. This result will be used twice: once for the proof
of theorem 17, and again to show that we can once more encode constants into Π using
Lemma 25 in Appendix B.

▶ Lemma 10. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that ki =
|vi| − |ui| ≥ 0, and k =

n∑
i=1

ki. Then there exist u and v, two parameterized words over

Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:
1. FMD

2 (u, v) ≤ k

2. For all 1 ≤ i ≤ n, FMD
2 (ui, vi) ≤ ki, and the applications fi realizing those matchings

are all compatible.

Proof Idea. The same technique as Lemma 9 is used but u and v are defined as u =
#k+1u1#u2# . . . #un and v = #k+1v1#v2# . . . #vn where #k+1 denotes k + 1 repetitions
of the character #. The full proof can be found in Appendix A. ◀

Finally, the same block result holds for FMD
1 , and will be used in the proof of theorem 15.

▶ Lemma 11. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that for every
1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =

n∑
i=1

ki. Then there exist u and v two parameterized

words over Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:
1. FMD

1 (u, v) ≤ k

2. For all 1 ≤ i ≤ n, FMD
1 (ui, vi) ≤ ki, and the applications fi realizing those matchings

are all compatible.

CPM 2023

6:10 On Distances Between Words with Parameters

Proof Idea. The difference with Lemma 10 is that some # symbols might be deleted, while
some base letters could be mapped to #. To ensure this does not happen, we define
u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . The full proof can be found
in Appendix A. ◀

The technique of block-by-block matching will be used in all the reductions, to encode
multiple constraints in a single PM or FM instance.

4.2 1-to-1 Parameterized Matching P M

We now focus on the complexity of the PMd problems. These problems, as well as function
matching problems, are all clearly in np: given the list of deletion, insertion or substitution
operations to do and the matching to apply, it is easy to check that the solution is correct.

For the reductions in this paper, we always assume that words are written without
constants, that is to say Σ = ∅, since this is sufficient for np-completeness results. This
choice is also motivated by the results of Appendix B, which show that Σ can in most cases
be coded into Π.

▶ Theorem 12. The 1-to-1 Parameterized Matching with deletions PMD is np-complete.

The proof is a reduction from the np-complete problem 3-coloring[20]. Given an instance
G of 3-coloring, we will construct two words u and v. The word v will represent the list of
vertices and edges of G, while the word u will list the color of each vertex, and the possible
coloring of each pair of vertices joined by an edge. By deleting characters from u, we make a
choice for the coloring of each vertex, and thus each edge. The function f answering the
parameterized matching problem will assign a choice of color to each vertex. The instance
that we define should be positive iff G is 3-colorable. More formally:

Proof. The 3-Coloring problem is defined as follows:
Input: G = (V, E) a graph with vertices V and edges E

Output: A coloring c : V → {c1, c2, c3} such that for all {u, v} ∈ E, c(u) ̸= c(v)
Let G = (V, E) be an instance of 3-Coloring, and let V = {x1, . . . , xn} be the set of its
n vertices, and E = {e1, . . . , em} be the set of its edges. The parameter alphabet Π, of
polynomial size in O(|G|) will contain:

x1, . . . xn, corresponding to the vertices of G;
n copies of the parameters corresponding to the colors c1, c2 and c3: ci

1, ci
2, ci

3 for 1 ≤ i ≤ n;
for every edge e, the delimiters Y e and □e

1, . . .□e
6;

2n bottom symbols, ⊥i
1, ⊥i

2 for 1 ≤ i ≤ n, which will be used to fix the image of some
parameters.

First, we define words that will encode the constraint that each vertex is colored, and
we make sure that the unused color variables cannot be assigned elsewhere. For 1 ≤ i ≤ n,
ui

1 = ui
⊥ = ci

1ci
2ci

3, vi
1 = xi and vi

⊥ = ⊥i
1⊥i

2. We then define words that include all
possible colorings of each edge, and we make sure to use enough brackets. For every edge
e = {xi, xj}, we define ue

2 = □e
1ci

1cj
2□

e
1 □e

2ci
1cj

3□
e
2 □e

3ci
2cj

1□
e
3 □e

4ci
2cj

3□
e
4 □e

5ci
3cj

1□
e
5 □e

6ci
3cj

2□
e
6

and ve
2 = Y exixjY e.

Applying Lemma 9 to u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 , . . . uem

2 and v1
1 . . . vn

1 , v1
⊥, . . . vn

⊥,

ve1
2 , . . . vem

2 , we obtain u and v. Let k = |u| − |v| = 3n + 20m. We now show that G

is 3-colorable ⇔ PMD(u, v) ≤ k.

P. Bourhis, A. Boussidan, and P. Gambette 6:11

⇒: Suppose G is 3-colorable. Let c : V → {c1, c2, c3} be a 3-coloring of G. We define f

in the following way, for 1 ≤ y ≤ 3:

f(ci
y) =

xi if c(xi) = cy,

⊥i
1 if y is the smallest integer in {1, 2, 3} such that c(xi) ̸= cy,

⊥i
2 otherwise.

For every edge e = {xi, xj} ∈ E, since c is a valid coloring, and since every
allowed arrangements of the colors is in ue

2, there exists a unique factor of the form
□e

yf−1(xi)f−1(xj)□e
y in ue

2, for some 1 ≤ y ≤ n. Hence, we define f(□e
y) = Y e. The

function f can then be extended in any way to be 1-to-1 (the remaining characters whose
image under f are not yet defined will all be deleted in what follows, so their image doesn’t
matter).

By using f defined in this way:
For 1 ≤ i ≤ n, PMD(ui

1, vi
1) ≤ 2, by deleting the 2 colors not matching the color of xi;

For 1 ≤ i ≤ n, PMD(ui
⊥, vi

⊥) ≤ 1;
For every edge e ∈ E, PMD(ue

2, ve
2) ≤ 20, by keeping only the factor delimited by the

□e
y symbols defined above.

Thus Lemma 9 yields PMD(u, v) ≤ k.
⇐: We now suppose u and v are a parameterized match with k deletions. The following

can then be derived about f :
1. Since the ui

1 and vi
1 are matching for 1 ≤ i ≤ n, there exists an element c ∈ {ci

1, ci
2, ci

3}
such that f(c) = xi. Each of these matchings is done with exactly 2 deletions, for a total
of 2n.

2. Since the ui
⊥ and vi

⊥ are in matching, the two other colors that are not sent to xi are sent
to ⊥i

1 and ⊥i
2. Each of these matchings is done with exactly one deletion, for a total of n.

3. For every edge e ∈ E, ue
2 and ve

2 are in matching. Let ue′
2 realize this matching. For every

1 ≤ i ≤ n and 1 ≤ i′ ≤ 3 the colors ci
i′ have images that are different from Y e, so there

necessarily exists 1 ≤ y ≤ 6 such that f(□e
y) = Y e. Furthermore, since f is injective,

|ve
2|Y e = |ue′

2 |□e
y
. Since |ve

2|Y e = |ue
2|□e

y
= 2, no □e

y is deleted from u. Since there are two
characters between the Y e in ve

2 and none outside, ue′
2 has the same structure, and all

other □e
y′ for y′ ̸= y and all other colors are deleted from ue

2.
Finally, ue′

2 is of the form □e
yctct′□e

y, where t ̸= t′ are elements of {1, 2, 3}. Each of these
matchings is done with exactly 20 deletions, for a total of 20m.

The function f then implies a coloring of G. Formally, we define col(ci
y) = cy for 1 ≤ i ≤ n

and 1 ≤ y ≤ 3. We can then define c : V → {c1, c2, c3} such that c(xi) = col(f−1(xi)).
Point 1 above ensures that this function definition is correct. Furthermore, for every edge
e = {xi, xj}, point 3 ensures that c(xi) ̸= c(xj), and thus c is a valid coloring of G. ◀

This first np-completeness results yields a few immediate corollary results, and in
particular, the np-completeness of the problem under the Levenshtein distance:

▶ Theorem 13. The problem PMDIS of parameterized matching under the Levenshtein
distance is np-complete.

Proof. We do a simple reduction from PMD. Let u, v, k be an instance of PMD. If the
instance is trivially false (that is to say, k ̸= |u| − |v|), answer negatively. Else, consider
u, v, k as an instance of PMDIS . If this is a negative instance for PMDIS , it is also negative

CPM 2023

6:12 On Distances Between Words with Parameters

for PMD. Furthermore, if it is a positive instance for PMDIS , exactly k deletions should be
applied, and so no substitution or insertion are used in that solution. Hence, that solution is
also a solution to PMD, and the reduction holds. ◀

The same result in fact holds for all other distances, and in particular the longest common
sub-word distance ID. This proves once again the result shown in [26]:

▶ Corollary 14. The problems PM I , PMDI , PM IS, PMDS are all np-complete.

Proof. From Section 3.2, PM I and PMD are equivalent in the 1-to-1 case. For the other
problem, we do an immediate reduction from PM I or PMD analog to the proof of Theorem 13.

◀

We now turn to proofs of np-completeness without the restriction asking f to be injective.

4.3 Function Matching F Md
1

The problem considered in this section is the one where both deletions and f are applied to
the first word. A reduction very similar to the one given for PMD is used.

▶ Theorem 15. FMD
1 is np-complete.

Proof Idea. The reduction follows the same idea as in Theorem 12. Since the function f

realizing the matchings is not injective in this version, it will be used to send every vertex to
its color. Moreover, we add more “sink” ⊥ letters to force the image of every unused letter.
The full proof can be found in Appendix A. ◀

This again ensures the np-completeness of the problem for all edit distances, using the
same proof as for Theorem 13.

▶ Corollary 16. The problem FMDIS
1 of function matching under the Levenshtein distance

is np-complete. The problems FM I
1 , FM ID

1 , FM IS
1 , FMDS

1 are all np-complete too.

We can notice that the problem FMS
1 , where substitution is the only operation allowed,

is polynomial-time solvable. Intuitively, for each parameter, consider the possible parameters
that it could be mapped to, and their respective number of occurrences. Then, choose the
letter with the highest number of occurrences for the mapping. The remaining letters are
then substituted.

4.4 Function Matching F Md
2

The problem considered in this section is the one where deletions are applied to the second
word, while f is applied to the first word.

▶ Theorem 17. FMD
2 is np-complete.

Proof Idea. The proof is very similar to the previous case, but the bracketing has to be
adapted. Separators Y e are duplicated enough times to ensure that no vertex variable is
mapped to them. The full proof can be found in Appendix A. ◀

▶ Corollary 18. FM I
1 , FMDI

2 , and FML
2 are all np-complete.

Proof. FM I
1 is equivalent to FMD

2 . For the two other problems, we use a reduction from
FMD

2 exactly like in Corollary 14. ◀

P. Bourhis, A. Boussidan, and P. Gambette 6:13

This last result completes the picture of np-completeness proofs, and indicates that
computing the distances between parameterized words defined in Section 3.3 is in general an
np-complete problem.

Similarly to FMS
1 , FMS

2 is also polynomial-time solvable.

5 Approaches to Solve Parameterized Matching

In this section, we discuss two ways to get around the difficulty of the parameterized matching
problems. The first one is to design an FPT algorithm in the alphabet size, and the second
one is to translate the problem into a SAT formalism, with the intent of using a SAT-solver.

5.1 An FPT Algorithm in the Alphabet Size
The fact that Σ and Π are part of the input is what makes the various parameterized matching
problems NP-hard. When the alphabet size is considered fixed, a simple polynomial algorithm
can be used, which generalizes the “naïve” brute force algorithm of Theorem 1 of [26]:

Algorithm 1 Simple FPT algorithm for F Md.

m← 0
for all functions f : Π→ Π do

dist← d(f(u), v)
if dist ≤ m then

m← dist

end if
end for

▶ Theorem 19. Let d be a distance. Algorithm 1 computes FMd(u, v) in time O(|Π||Π||u||v|)

Proof. Algorithm 1 uses an exhaustive search and finds min
f :Π→Π

d(f(u), v), which is the

definition of FMd(u, v). Furthermore, there are |Π||Π| functions from Π to Π, and
computing d(f(u), v) is done in time O(|f(u)||v|) = O(|u||v|), hence a total running time in
O(|Π||Π||u||v|). ◀

Note that this also leads to a similar algorithm for PMd by iterating over injective
functions rather than all functions from Π to Π.

5.2 A MaxSat Formulation of Parameterized Matching
In this section, we encode PMd problems into SAT problems, with the intent of solving them
with a SAT solver. More precisely, we will use the weighted max-SAT variant of SAT, which
is defined in the following way:

Input: a set V of literals, a formula φ =
n∧

i=1
φi on V in conjunctive normal form (CNF),

a weight function w : J1, nK→ N.
Output: a valuation ν : V → {0, 1} such that

∑
ν⊨φi

w(i) is maximal.

Moreover, we will sometimes use a partially weighted variant of Max-SAT, which is
defined in the following way:

CPM 2023

6:14 On Distances Between Words with Parameters

Input: a set V of literals, a satisfiable formula φc on V in CNF, a formula φw =
n∧

i=1
φi

on V in CNF and a weight function w : J1, nK→ N.
Output: a valuation ν : V → {0, 1} such that ν ⊨ φc and

∑
ν⊨φi

w(i) is maximal.

In that case, clauses of φc are called “hard” clauses while clauses of φw are called “soft
clauses”. We give a proof of the equivalence in Proposition 26 of Appendix C.

We will define an encoding of an instance (u, v) of PMd such that an assignment of the
variables of V will define an alignment between u and v. First, we make a link between the
ID edit distance and the length of the optimal alignment between two strings.

▶ Definition 20. Let u and v be two words on Π, such that p = |u| and p′ = |v|. A set
A ⊂ J1, |u|K× J1, |v|K is an alignment between u and v iff the following are true:
1. Each position of u appears at most once: For all 1 ≤ i ≤ p and 1 ≤ j, j′ ≤ p′, if (i, j) ∈ A

and (i, j′) ∈ A, then j = j′.
2. Each position of v appears at most once: For all 1 ≤ j ≤ p′ and 1 ≤ i, i′ ≤ p, if (i, j) ∈ A

and (i′, j) ∈ A, then i = i′.
3. There are no crossings: if (i, j) ∈ A, (i′, j′) ∈ A, and i′ > i, then j′ > j.
4. Aligned positions match in u and v: if (i, j) ∈ A, then ui = vj

An alignment relates to the insertion/deletion distance ID in the following way:

▶ Theorem 21. Let u, v be words on Π and k ≤ |u|+ |v| be an integer. The following are
equivalent:
1. There exists an alignment A such that 2|A| = |u|+ |v| − k

2. ID(u, v) ≤ k.

Proof. The proof, which works by induction, can be found in Appendix C. ◀

We now turn to the max-SAT encoding of our problem.

▶ Theorem 22. Let u and v be two words over Π. There exists a formula φu,v = φc ∧ φw

and a weight function w, instance of the partially weighted Max-SAT problem such that the
following are equivalent:

ν is a solution to this partially weighted Max-SAT instance and satisfies k clauses of φw

There exists a function f : Π→ Π and an alignment between f(u) and v of size k.

The formula φ uses |m||p|+ |Π|2 variables and is of size O(m2p2) , where m = |u| and
p = |v|. Moreover, there exists φinj of size O(|Π|3) such that the above result is true for f

injective by replacing φc with φ′
c = φc ∧ φinj.

In particular, finding the valuation maximizing k gives a maximal alignment between u

and v, and with Theorem 21, the distance ID(u, v).

Proof. For this proof, we fix an ordering on the alphabet Π = {a1, . . . , an}.
We define the set of literals V as V = {xi,j | 1 ≤ i ≤ |u|, 1 ≤ j ≤ |v|} ∪ {ya,b | a ∈ Π, b ∈ Π}.
Intuitively, xi,j represents a match between position i and j in the alignment, and ya,b will
represent the fact that f(a) = b. We define the following sets of formulas, where all indices i

are taken between 1 and m and all j between 1 and p, and a and b are taken in Π:

P. Bourhis, A. Boussidan, and P. Gambette 6:15

∀i ∀j′ ̸= j, φA1
i,j,j′ ≡ xi,j =⇒ ¬xi,j′ (NoDouble i)

∀j ∀i′ ̸= i, φA2
i,i′,j ≡ xi,j =⇒ ¬xi′,j (NoDouble j)

∀i′ > i ∀j′ < j, φC
i′,i,j,j′ ≡ xi,j =⇒ ¬xi′,j′ (NoCrossing)

∀a∀b ̸= b′, φf
a,b,b′ ≡ ya,b =⇒ ¬ya,b′ (Function)

∀a ̸= a′∀ ≠ b, φinj
a,a′,b ≡ ya,b =⇒ ¬ya′,b (Injectivity)

∀i∀j, φM
i,j ≡ xi,j =⇒ yui,vj (Match)

∀i, φ∃
i ≡

∨
1≤j≤p

xi,j (ExistsMatch)

We then define φc as the conjunction of all the formulas (NoDouble i), (NoDouble j),
(NoCrossing), (Function), and (Match). Furthermore, we define φinj as the conjunction of
all the (Injectivity) formulas. Lastly, we define φw =

∧
1≤i≤m

φ∃
i , and set w(C) = 1 for every

clause C of φw.
There are m

(
p
2
)

(NoDouble i) formulas, p
(

m
2
)

(NoDouble j),
(

m
2
)(

p
2
)

(NoCrossing), n
(

n
2
)

(Function) and (Injectivity) formulas, pm (Match) formulas and n (ExistsMatch) formulas.
We now prove both implications of the theorem. Suppose ν is a valuation satisfying φc

and k clauses of φw. We define, for all a, b ∈ Pi, f(a) = b if and only if ν(ya,b) = ⊤. Since ν

satisfies all the (Function) formulas, this is a correct definition of a (partial) function. We
define A = {(i, j) | ν(xi,j)=⊤}. A is an alignment between f(u) and v. Indeed: (NoDouble i)
and (NoDouble j) ensures point 1. and 2. of Definition 20, (NoCrossing) ensures point 3.,
and Match ensures point 4. The size of A is the number of xi,j instantiated to ⊤, which is
exactly the number of clauses of φc satisfied, i.e., k.
Suppose now that there exists a function Π → Π and an alignment A between f(u) and
v. Similarly, we define ν(ya,b) = ⊤ if and only if f(a) = b, and ν(xi,j) = ⊤ if and only if
(i, j) ∈ A. Since A is an alignment, ν satisfies (NoDouble i),(NoDouble j), and (NoCrossing).
Since f is a function, (Function) is satisfied. Finally, if ν(xi,j) = ⊤, then (i, j) ∈ A, and
since A is a matching, f(u)i = f(ui) = vj and ν(yui,vj) = ⊤.

The proof for φb is the same, and (Injectivity) ensures the injectivity of f . ◀

What is more, this proof can be adapted to change the ID distance to the Levenshtein
distance, simply by choosing to consider all the (Match) formulas as soft clauses.

6 Experiments

The two approaches presented in Section 5 were implemented in Python to solve PM ID.
They are available under the GPL license at https://github.com/AaronFive/paramatch.
The FPT algorithm of Section 5.1 is implemented in the function parameterizedAlignment
of file fpt_alphabet_size.py. The MaxSAT-reduction of Section 5.2 is implemented in the
function make_sat_instance of file sat_instance.py. The MaxHS solver [18] available at
http://www.maxhs.org is used by our script to solve the MaxSAT instances derived from
the PM ID instances.

Our initial motivation to introduce parameterized matching under various distances
is theater play comparison. To represent the structure of a theater play, we represent
each character by a letter of the alphabet, and create the parameterized word obtained by
considering the succession of all consecutive speakers. To check their adequacy with real data,

CPM 2023

https://github.com/AaronFive/paramatch
http://www.maxhs.org

6:16 On Distances Between Words with Parameters

we use a corpus of theater plays in which each character is represented by one letter of the
alphabet, and each act of the play is represented by a string corresponding to the sequence of
speaking characters. A letter may be duplicated in this string if the corresponding characters
has lines in the end of a scene and in the beginning of the next one. Therefore, the edit
distance between two parameter words representing acts will be small if both acts have a
similar structure in terms of succession of speaking characters. We selected a corpus of 10
pairs of plays where one inspired the other, and performed 47 comparisons between pairs
of acts. Among those comparisons, 26 were solved by the maxSAT algorithm and all by
the FPT algorithm (detailed results are presented in the supplementary material available
at https://github.com/AaronFive/paramatch/tree/main/corpus10pairs), with a 800
second timeout. The computation times are obtained on a XMG laptop running on Windows,
with a 2.60 Ghz processor and 16 Gb RAM. Only the running time of MaxHS is provided,
the encoding into a MaxSAT formula usually runs in approximately 1 second. Note that
all instances are solved faster by the FPT algorithm than by the MaxSAT approach. The
analysis of running times depending on the product of the lengths of the input strings (see
supplementary material) shows that the MaxSAT approach may be relevant for strings with
more than 10 distinct characters, but where the product of the length of input strings may
not exceed 2000.

7 Conclusion

In this paper, we studied the complexity of several variants of the edit distance problem
between parameterized words. We proved the np-completeness of all previously unsolved cases,
including the Levenshtein distance left open in [24], and provided practical approaches to
solve real instances of those problems. We also studied similar problems for various definitions
of words with parameters, namely parameter words and parameterized expressions, proving
some relationships with parameterized word problems.

As future work, we will study the restrictions introduced in [21, 22] for a pattern matching
problem with patterns in the parameter, in order to obtain polynomial time algorithms for
the edit distance between parameterized words. Moreover, we will explore the question of
distance between sets of words, in particular when they are defined through generalizations of
automata. These problems are variants of the notion of distance between regular languages
as defined in [12]. In this context, we can notice that different notions of automata can be
considered: either automata generating parameterized words, or automata using parameters
to define languages over classical words, with two different semantics as defined in [11].

References
1 Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in sequence

databases. In International conference on foundations of data organization and algorithms,
pages 69–84. Springer, 1993.

2 Amihood Amir, Yonatan Aumann, Richard Cole, Moshe Lewenstein, and Ely Porat. Function
matching: Algorithms, applications, and a lower bound. In Proceedings of the 30th International
Conference on Automata, Languages and Programming, pages 929–942, 2003. doi:10.1007/
3-540-45061-0_72.

3 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in parameterized
matching. Information Processing Letters, 49(3):111–115, 1994. doi:10.1016/0020-0190(94)
90086-8.

4 Dana Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21(1):46–62,
1980. doi:10.1016/0022-0000(80)90041-0.

https://github.com/AaronFive/paramatch/tree/main/corpus10pairs
https://doi.org/10.1007/3-540-45061-0_72
https://doi.org/10.1007/3-540-45061-0_72
https://doi.org/10.1016/0020-0190(94)90086-8
https://doi.org/10.1016/0020-0190(94)90086-8
https://doi.org/10.1016/0022-0000(80)90041-0

P. Bourhis, A. Boussidan, and P. Gambette 6:17

5 Alberto Apostolico, Péter L. Erdős, and Moshe Lewenstein. Parameterized matching with
mismatches. Journal of Discrete Algorithms, 5(1):135–140, 2007. doi:10.1016/j.jda.2006.
03.014.

6 Brenda S. Baker. A theory of parameterized pattern matching: Algorithms and applications.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 71–80, New York, NY, USA, 1993. Association for Computing Machinery. doi:
10.1145/167088.167115.

7 Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application to
software maintenance. SIAM Journal on Computing, 26:1343–1362, 1997.

8 Brenda S. Baker. Parameterized diff. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’99, pages 854–855, USA, 1999. Society for Industrial
and Applied Mathematics.

9 Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying graph patterns. In Maurizio
Lenzerini and Thomas Schwentick, editors, Proceedings of the 30th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS 2011), pages 199–210. ACM,
2011. doi:10.1145/1989284.1989307.

10 Pablo Barceló, Juan Reutter, and Leonid Libkin. Parameterized regular expressions and their
languages. Theoretical Computer Science, 474:21–45, 2013. doi:10.4230/LIPIcs.FSTTCS.
2011.351.

11 Pablo Barceló, Leonid Libkin, and Juan Reutter. Parameterized regular expressions and their
languages. Theoretical Computer Science, 474:21–45, 2011. doi:10.1016/j.tcs.2012.12.036.

12 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. The cost of traveling between
languages. In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Automata, Languages
and Programming, pages 234–245, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

13 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Regular repair of specifications.
In 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pages 335–344, 2011.
doi:10.1109/LICS.2011.43.

14 Michael Benedikt, Gabriele Puppis, and Cristian Riveros. Bounded repairability of word
languages. Journal of Computer and System Sciences, 79(8):1302–1321, 2013. doi:10.1016/j.
jcss.2013.06.001.

15 Francine Blanchet-Sadri. Algorithmic Combinatorics on Partial Words (Discrete Mathematics
and Its Applications). Chapman, Hall/CRC, 2007.

16 William W. Cohen. Integration of heterogeneous databases without common domains using
queries based on textual similarity. SIGMOD Rec., 27(2):201–212, 1998. doi:10.1145/276305.
276323.

17 Richard Cole, Carmit Hazay, Moshe Lewenstein, and Dekel Tsur. Two-dimensional
parameterized matching. ACM Trans. Algorithms, 11(2), October 2014. doi:10.1145/2650220.

18 Jessica Davies. Solving MAXSAT by Decoupling Optimization and Satisfaction. PhD thesis,
University of Toronto, Canada, 2014. URL: http://hdl.handle.net/1807/43539.

19 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Pbwt: Achieving succinct data
structures for parameterized pattern matching and related problems. In Proceedings of the
2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 397–407, 2017.
doi:10.1137/1.9781611974782.25.

20 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition
edition, 1979.

21 Pawel Gawrychowski, Florin Manea, and Stefan Siemer. Matching patterns with variables
under hamming distance. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27,
2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 48:1–48:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.48.

CPM 2023

https://doi.org/10.1016/j.jda.2006.03.014
https://doi.org/10.1016/j.jda.2006.03.014
https://doi.org/10.1145/167088.167115
https://doi.org/10.1145/167088.167115
https://doi.org/10.1145/1989284.1989307
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.351
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.351
https://doi.org/10.1016/j.tcs.2012.12.036
https://doi.org/10.1109/LICS.2011.43
https://doi.org/10.1016/j.jcss.2013.06.001
https://doi.org/10.1016/j.jcss.2013.06.001
https://doi.org/10.1145/276305.276323
https://doi.org/10.1145/276305.276323
https://doi.org/10.1145/2650220
http://hdl.handle.net/1807/43539
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.4230/LIPIcs.MFCS.2021.48

6:18 On Distances Between Words with Parameters

22 Pawel Gawrychowski, Florin Manea, and Stefan Siemer. Matching patterns with variables
under edit distance. In Diego Arroyuelo and Barbara Poblete, editors, String Processing
and Information Retrieval - 29th International Symposium, SPIRE 2022, Concepción, Chile,
November 8-10, 2022, Proceedings, volume 13617 of Lecture Notes in Computer Science, pages
275–289. Springer, 2022. doi:10.1007/978-3-031-20643-6_20.

23 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, 1997. URL: https://www.wikidata.
org/entity/Q55980413.

24 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.
ACM Trans. Algorithms, 3(3):29–es, 2007. doi:10.1145/1273340.1273345.

25 Wilbert Jan Heeringa. Measuring dialect pronunciation differences using Levenshtein distance.
PhD thesis, University of Groningen, 2004.

26 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. On the longest common parameterized
subsequence. Theoretical Computer Science, 410(51):5347–5353, 2009. doi:10.1016/j.tcs.
2009.09.011.

27 Lillian Jane Lee. Similarity-based approaches to natural language processing. PhD thesis,
Harvard University, 1997.

28 Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10(8), pages 707–710. Soviet Union, 1966.

29 Moshe Lewenstein. Parameterized Matching, pages 635–638. Springer US, Boston, MA, 2008.
doi:10.1007/978-0-387-30162-4_282.

30 Florin Manea and Markus L. Schmid. Matching patterns with variables. In Robert Mercas
and Daniel Reidenbach, editors, Combinatorics on Words - 12th International Conference,
WORDS 2019, Loughborough, UK, September 9-13, 2019, Proceedings, volume 11682 of Lecture
Notes in Computer Science, pages 1–27. Springer, 2019. doi:10.1007/978-3-030-28796-2_1.

31 Juan Mendivelso, Sharma V. Thankachan, and Yoan Pinzón. A brief history of parameterized
matching problems. Discrete Applied Mathematics, 274:103–115, 2020. Stringology Algorithms.
doi:10.1016/j.dam.2018.07.017.

32 Mehryar Mohri. Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science, 14(06):957–982, 2003.

33 Saul B Needleman and Christian D Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

34 Sascha Schimke, Claus Vielhauer, and Jana Dittmann. Using adapted levenshtein distance
for on-line signature authentication. In Proceedings of the 17th International Conference on
Pattern Recognition (ICPR 2004), volume 2, pages 931–934. IEEE, 2004.

35 T. Shibuya. Generalization of a suffix tree for RNA structural pattern matching. Algorithmica
(New York), 39(1):1–19, 2004. doi:10.1007/s00453-003-1067-9.

36 Bernd Voigt. The partition problem for finite abelian groups. Journal of Combinatorial Theory,
Series A, 28(3):257–271, 1980.

37 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, 1974. doi:10.1145/321796.321811.

38 Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245–1262, 1989.

A Details of the proofs

Proof of Lemma 7. We proceed by induction on k. If k = 0, then u and v are parameterized
matching, and f(u) = v, thus d(f(u), v) = 0. Suppose the result holds until a fixed k. Suppose
PMd(u, v) = k + 1. There exist f , u′′ and u′ such that d(u, u′′) = 1, d(u′′, u′) = k, and
f(u′) = v. Hence PMd(u′′, v) ≤ k, and by induction hypothesis d(f(u′′), v) ≤ k. Moreover,

https://doi.org/10.1007/978-3-031-20643-6_20
https://www.wikidata.org/entity/Q55980413
https://www.wikidata.org/entity/Q55980413
https://doi.org/10.1145/1273340.1273345
https://doi.org/10.1016/j.tcs.2009.09.011
https://doi.org/10.1016/j.tcs.2009.09.011
https://doi.org/10.1007/978-0-387-30162-4_282
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1016/j.dam.2018.07.017
https://doi.org/10.1007/s00453-003-1067-9
https://doi.org/10.1145/321796.321811

P. Bourhis, A. Boussidan, and P. Gambette 6:19

since d(u, u′′) = 1, we get u′′ from u by applying only one operation. We prove that regardless
of this operation, d(f(u), f(u′′)) = 1, and thus d(f(u), v) ≤ d(f(u), f(u′′))+d(f(u′′), v) ≤ k+1
which will conclude the proof. There are 3 cases to consider:

If the operation is a deletion, u = v1xv2 and u′′ = v1v2 for some words v1 and v2 and
some letter x. Then f(u) = f(v1)f(x)f(v2) and we can obtain f(v1)f(v2) = f(u′′) by
deleting f(x).
If it is an insertion, u = v1v2 and u′′ = v1xv2, and we can similarly go from f(u) to f(u′′)
by inserting f(x).
If it is a substitution, u = v1xv2 and u′′ = v1yv2, and we can go from f(u) to f(u′′) by
replacing f(x) with f(y).

Hence d(f(u), f(u′′)) = 1, which concludes the proof for PMd.
Since this proof does not use the fact that f is 1-to-1, it also stands for FMd

1 . ◀

Proof of Lemma 8. It is obvious that d(zu, zv) ≤ d(u, v), so we only prove d(u, v) ≤
d(zu, zv). We prove that any rewriting sequence from zu to zv can be modified such that no
edit operation is applied in z. This will be enough to prove the result, as the edit sequence
obtained can be seen as an edit sequence between u and v. We proceed by induction on
the size of z. Suppose |z| = 1. Then z = a ∈ Σ ∪Π. We can consider that no character is
modified twice in an edit sequence (i.e. no character is inserted and then deleted, or inserted
and then substituted etc.), as that is always sub-optimal. Suppose z is modified. There are 3
possible cases:
1. There is an insertion in z, hence a word w ends up being inserted before a. Since zv = av

starts with a, w must start with an a, hence w = aw′. We insert w′a to the right of z

instead with the same operations. If z should be deleted or substituted, we apply the
same operation to the new a instead. These operations yield the same result, and do not
modify z.

2. There is a deletion in z, and hence a is deleted. Since this an optimal rewriting sequence,
no a is created at that position through insertion or substitution afterwards. Since av

starts with an a, u must be of the form u = sau′, where all the characters in s are deleted,
and a isn’t. Deleting sa instead of as yields the same result, and doesn’t modify z.

3. There is a substitution in z, hence a is modified into a character b ̸= a, that will not be
further modified. Since av starts with a, an a has to be inserted in z, which is handled in
case 1.

Hence, we can consider that every edit operations is done in u, and d(au, av) = d(u, v).
Suppose now that the result is proven for |z| = k, and let z = az′, with |z′| = k. Using the
base case and the case for |z| = k, we have d(zu, zv) = d(azu, azv) = d(zu, zv) = d(u, v),
which concludes the proof. ◀

Proof of Lemma 10. Let # be a fresh parameterized letter. Let then u = #k+1u1#u2# . . .

#un and v = #k+1v1#v2# . . . #vn, where #k+1 denotes k + 1 repetitions of the character #.
The proof of the reverse direction is the same as in Lemma 9, so we only prove the other one.

Assume FMD
2 (u, v) ≤ k. Let v′ and f realize this parameterized match.

We prove that f(#) = #, and that no other character is sent to # by f . Indeed,
v starts with k + 1 symbols #, which ensure that v′ starts with the letter #. Since u

starts with # and f(u) = v′, f(#) = #. Furthermore, this implies that since |u|# = k + n,
|f(u)|# = |v′|# ≥ k+n. Since v′ is obtained from v by deletions, we have |v′|# ≤ |v|# = k+n.
Hence |v′|# = k + n and all those inequalities are equalities, which is only the case when no
symbols is deleted from v, and that for all x ̸= #, f(x) ̸= #.

CPM 2023

6:20 On Distances Between Words with Parameters

Since all the # symbols are left untouched, the rest of the proof is the same as in Lemma 9,
and all of the factors ui and vi are parameterized matching. ◀

Proof of Lemma 11. Let # be a fresh parameterized letter, and N = k + 2.
Let then u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . Once again,

we only prove the non-trivial implication.
Suppose FMD

1 (u, v) ≤ k, and let f and u′ realize this matching. Since u starts with k + 1
copies of #, u′ starts with #. Since v starts with # too, f(#) = #.
We now prove that we can consider that for all x ̸= #, f(x) ̸= #. This will also imply that
no # symbol is deleted from u. Let S = {a ∈ Π | f(a) = #} be the set of symbols (different
from #) sent to #. Since |u|# = |v|#, the number of deleted # symbols from u is exactly
|u|S , hence |u|S ≤ k. Let us now consider the leftmost occurrence of an element of S in u′,
that we denote by a. The letter a appears in u in a factor of the form #N w1aw2#N . Since
all # in v appear in blocks of size N , a must contribute to such a block, after deletions and
application of f . We distinguish two cases:
1. The entirety of the word w1 is deleted. In this case, at least one symbol # from the

left #N block is deleted; otherwise f(#N)f(a) = #N+1 would be a factor of v, which is
impossible. Thus, choosing not to delete # and to delete a instead yields the same result.

2. w1 is not deleted. Since no character from S appears to the left of a, f(a) is the start of
a #N block. Furthermore, since |u|S ≤ k, it is not possible to form #N with only a and
w2, and characters from the right #N contribute to it. Hence, at least one # symbol
from this right block is deleted. Like before, the same result can be obtained by not
deleting it, and deleting a instead.

Either way, we can repeat this process to eliminate all occurrences of characters of S and of
deletions of #, which proves that we can consider that for all x ≠ #, f(x) ̸= #. Once again,
we are taken back to the conditions of Lemma 9, and the rest of the proof follows. ◀

Proof of Theorem 15. We define Π like in Theorem 12, and we add the letters ⊥1,⊥2,⊥3,⊥4
and ⊥5. Similarly, we define ui

1, vi
1, ui

⊥, vi
⊥, ue

2, and ve
2 just like in Theorem 12. Additionally,

we define for every edge e,

ue
⊥ = □e

1□
e
2□

e
3□

e
4□

e
5□

e
6 and ve

⊥ = ⊥1⊥2⊥3⊥4⊥5.

We then apply Lemma 11 with

u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 . . . uem

2 , ue1
⊥ , . . . uem

⊥

and

v1
1 , . . . vn

1 , u1
⊥, . . . vn

⊥, ve1
2 . . . vem

2 , ve1
⊥ , . . . vem

⊥

to obtain u, v, and k. We show that G is 3-colorable ⇔ FMD
1 (u, v) ≤ k.

⇒ Suppose G is 3 colorable. Define f like in Theorem 12 on the ci
y and □e

y. Let e be an
edge and ke ∈ [1, 6] be the integer such that f(□e

ke
) is defined. We map every remaining □e

y

in the following way:

f(□e
i) =

⊥i if i < ke,
Y e if i = ke,
⊥i−1 if i > ke.

(1)

It is then easy to check that d(f(u), v) = k, and thus FMD
1 (u, v) ≤ k.

P. Bourhis, A. Boussidan, and P. Gambette 6:21

⇐ Suppose FMD
1 (u, v) ≤ k, and let f and u′ realize it. We define a coloring of G based

on f . We note, for 1 ≤ i ≤ n and 1 ≤ t ≤ 3, col(ci
t) = ct. If xi is a vertex of G, define c(xi)

to be col(ci
k), where ci

k is the only element such that f(ci
k) = xi. We show in what follows

that (1) this function definition is correct and (2) it is a valid coloring, i.e. if e = {xi, xj} is
an edge, c(xi) ̸= c(xj).

(1): The same points 1. and 2. from the proof of Theorem 12 apply, hence for every
1 ≤ i ≤ n, exactly one element from {ci

1, ci
2, ci

3} is sent to xi, while the two others are sent to
⊥i

1 and ⊥i
2, hence the result.

(2): Let e be an edge. The words ue
⊥ and ve

⊥ are in matching, which is done with exactly
one deletion. Hence, there exists ke such that

f(□e
i) =

{
⊥i if i < ke,
⊥i−1 if i > ke.

(2)

Moreover, ue
2 and ve

2 are in matching. Since Y e appears in ve
2 and all the characters in ue

2
apart from □e

ke
have an image different from Y e, f(□e

ke
) = Y e. Hence, the only characters

that are not suppressed from ue
2 are the two characters between the □e

ke
. Denoting them by

c and c′, the construction of the word ensures that col(c) ̸= col(c′). Hence, if e = {xi, xj},
we have proven c(xi) ̸= c(xj), which is (2).

The coloring c is therefore valid, which concludes the proof. ◀

Proof of Theorem 17. Let G = (V, E), with V = {x1, . . . , xn} and {e1, . . . , em}. Like in
the 1-to-1 case, we construct factors ui and vi to encode vertex coloring. The parameter
alphabet contains:

x1, . . . xn, corresponding to V ,
the colors c1, c2, c3,
for every e ∈ E, the delimiters Y e,
for every e ∈ E and every 1 ≤ i, j ≤ 3, i ̸= j, the delimiters Y e

i,j .
We define for 1 ≤ i ≤ n, ui

1 = xi and vi
1 = c1c2c3. If e is an edge and

ci and cj are two colors, we denote we(ci, cj) = Y e
i,jY e

i,jY e
i,j cicj Y e

i,jY e
i,jY e

i,j For
every edge e = {xi, xj}, we now define ue

2 = Y eY eY e xixj Y eY eY e and ve
2 =

we(c1, c2)we(c1, c3)we(c2, c1)we(c2, c3)we(c3, c1)we(c3, c2).
We now apply Lemma 10 with u1

1, . . . un
1 , ue1

2 . . . uem
2 , v1

1 , . . . vn
1 , ve1

2 . . . vem
2 , to obtain u and v.

⇒ Suppose G is 3-colorable, and let c : V → {c1, c2, c3} be a valid coloring. Define
f |V = c. For every edge e = {xi, xj}, let s and t be such that c(xi) = cs and c(xj) = ct.
We then define f(Y e) = Y e

s,t. It is easy to check now that d(f(u), v) = k, and hence
FMD

2 (u, v) ≤ k.
⇐ Suppose now that FMD

2 (u, v) ≤ k. We will show that f |V defines a 3-coloring of G,
by showing that (1) for all x ∈ V , f(x) ∈ {c1, c2, c3} and (2) If {x, y} ∈ E, then f(x) ̸= f(y).

Lemma 10 ensures that the words ui and vi are in matching, which proves (1).
Lemma 10 also ensures that the words ue and ve are in matching. Let e ∈ E, with
e = xs, xt. We have |ue

2|Y e = 6, hence |f(ue
2)|f(Y e) ≥ 6. Since c1, c2 and c3 each occur

exactly 4 times in ve
2, they cannot occur 6 times after deletions, and f(Ye) /∈ {c1, c2, c3}.

Hence, there exist i ̸= j with 1 ≤ i, j ≤ 3 such that f(Y e) = Y e
i,j . This implies that all

but one of the we factors from ve
2 are suppressed, and that the remaining one is we(ci, cj).

Hence f(xs) = ci and f(xt) = cj , which proves (2). ◀

CPM 2023

6:22 On Distances Between Words with Parameters

B Encoding Constant Alphabet Σ in Π

We show why it is always possible to consider that Σ = ∅ for certain problems. These results
use the lemmas proved in Section 4.1.

▶ Lemma 23. Let d be a distance, k an integer and u and v be two parameterized words
over the alphabet of constants Σ and the alphabet of parameters Π. There exist words ũ and
ṽ over the alphabet of constants ∅ and the alphabet of parameters Π′ = Π ⊎ Σ such that the
following are equivalent:

PMd(u, v, k) is realized by f ;
PMd(ũ, ṽ, k) is realized by f .

In particular, this implies that if PMd(ũ, ṽ) ≤ k, all functions f realizing this matching
verify that for all x ∈ Σ, f(x) = x, and for all x ∈ Π, f(x) ∈ Π.

Proof. Let N = k + 1. If Σ = {a1, . . . , an}, we define z to be aN
1 aN

2 . . . aN
n u and ũ = zu,

ṽ = zv. It is clear that if PMd(u, v) ≤ k then PMd(ũ, ṽ) ≤ k, by following the same
operations, and applying the same renaming function.

Suppose now that PMd(ũ, ṽ) ≤ k, and let f and u′ realize it. Let i ∈ [1, n]. All the letters
of u between position Ni and N(i + 1) are ai. At most k of these positions can be modified
with an edit operation. Since N > k, at least one of these positions is not modified, and thus
there exists j ∈ [Ni, N(i + 1)] such that u′

j = ai. Since all letters in v between position Ni

and N(i + 1) are ai, in particular vj = ai, and hence f(ai) = ai. This proves that for all
x ∈ Σ, f(x) = x, and thus f(z) = z. Since f is 1-to-1, this entails f(Π) ⊆ Π. By Lemma 7,
d(f(ũ), ṽ) ≤ k. Hence d(f(zu), zv) = d(zf(u), zv) ≤ k and by Lemma 8, d(f(u), v) ≤ k.
Hence PMd(u, v) ≤ k. ◀

▶ Remark 24. Note that the words ũ and ṽ have a size increased by NΣ. If less operations
are considered, it is possible to reduce this overhead. For example, in the case of PMD, we
can take z to be of the form a1 . . . anzN , to reduce the overhead to N + Σ.

Similarly, constants can be encoded in Π in some FM problems. We prove this result for
FMD

2 , with the help of the block decomposition allowed by Lemma 10.

▶ Lemma 25. Let u and v be two parameterized words over the alphabet of constants Σ and
the alphabet of parameters Π. There exist words ũ and ṽ over the alphabet of constants ∅
and the alphabet of parameters Π′ = Π ⊎ Σ such that the following are equivalent:

FMD
2 (u, v, |v| − |u|) is realized by f ;

FMD
2 (ũ, ṽ, |ṽ| − |ũ|) is realized by f .

Proof. We write Σ = {a1, . . . an} and Π = {b1, . . . , bm}. We define zΣ = a1 . . . an, and zΠ =
b1 . . . bm. Let ũ and ṽ be the words obtained by applying Lemma 10 to zΣ, b1, b2, . . . , bm, u and
zΣ, zΠ, zΠ, . . . , zΠ, v. If FMD

2 (u, v, k) is realized by a function f , it realizes FMD
2 (ũ, ṽ, |ṽ|−|ũ|)

too. Indeed, it is enough to apply the same operations in v, and to delete all the characters
but f(bi) in the i-th copy of zΠ.

Suppose now that FMD
2 (ũ, ṽ) ≤ k, and let f realize it. Then, by Lemma 10, we have:

D(z, f(z)) = 0, and hence f(z) = z, which implies that for all x ∈ Σ, f(x) = x.
For every 1 ≤ i ≤ m, D(zΠ, f(bi)) = |Π| − 1. Hence f(bi) is a character of zΠ, which is
some character bj ∈ Π.
D(v, f(u)) ≤ k.

Hence f verifies D(f(v), u) ≤ k and respects the conditions on Π and Σ, which implies that
is also realizes FMD

2 (u, v, k). ◀

P. Bourhis, A. Boussidan, and P. Gambette 6:23

The overhead to pay for this transformation is O(|Σ|+ |Π|2 + k), where the term in k

comes from the proof of Lemma 10.
Transposing the technique used for Lemma 25 is not sufficient to get a similar result for

FMD
1 . The question thus remains open in this context.

C Proofs Regarding the Max-SAT Encoding

Proof of theorem 21. We proceed by induction on |u|+ |v|. If |u|+ |v| = 0, both u and v

are the empty string, and the equivalence is trivial. Fix n ∈ N and suppose now that the
result holds up for all words u, v such that |u|+ |v| ≤ n− 1. Let u and v be two words such
that |u|+ |v| ≤ n. Without loss of generality, consider |u| ≥ |v|.
Suppose ID(u, v) ≤ k. Let ρ be a rewriting sequence between u and v of length k. If there
is no deletion in u in ρ, there are only insertions in v, and v is a sub-word of u, and there
exists another rewriting sequence ρ′ only deleting letters from u. Hence, we can consider
that there is at least a deletion in u in ρ. Let p be a position at which such a deletion occur,
and let a = up. The word u can be written as u = u′au′′ for some words u′ and u′′. Define
w = u′u′′. It holds that d(w, v) ≤ k − 1 and |w| = |u| − 1. By induction, there exists an
alignment A between w and v such that 2|A| = |w|+ |v| − (k − 1) = |u|+ |v| − k. We define

r(i) =
{

i if i < p

i− 1 if i > p
, and B = {(r(i), j) | (i, j) ∈ A}. Since A is an alignment, so is B: it

satisfies conditions 1 to 3 of Definition 20, and since wr(i) = ui, it also satisfies condition 4.
Finally, |B| = |A|, hence 2|B| = |u|+ |v| − k, hence the result.

Suppose now that there exists an alignment A such that 2|A| = |u|+ |v| − k. Similarly,
consider p, a position in u such that there does not exist a j with (p, j) ∈ A. If no such position
exist, since |u| ≥ |v|, u = v and the result is proven. Consider w the word obtained by deleting
up from u. It then holds that |w| = |u| − 1 and that 2|A| = |u|+ |v| − k = |w|+ |v| − (k− 1).
Defining B in the same way as above yields an alignment between w and v of the same size,
and thus by induction, d(w, v) ≤ k − 1, and since d(u, w) = 1, d(u, v) ≤ k. ◀

▶ Proposition 26. Weighted Max-SAT and partial weighted Max-SAT are equivalent.

Proof. Encoding a weighted Max-SAT instance as a partially weighted Max-SAT instance is
straightforward, as we just have to choose φc to be empty.
Conversely, given a satisfiable CNF formula φc, a CNF formula φw, and a weight function w

on the clauses of φw, we can define a weighted Max-Sat instance in the following way:
We define φ = φc ∧ φw

We set W = 1 +
∑

Ciclause ofφc

w(Ci), and extend w to clauses of φc such that w(Cj) = W

for all clauses Cj of φc

If ν is a valuation, we denote by w(ν) the sum of the weights of all clauses it satisfies
∑

ν⊨Ci

w(Ci).

Since φc is satisfiable, there exists a valuation νc such that νc ⊨ φc, and w(νc) ≥ |φc|W . Let
now ν be a valuation no satisfying a clause of φc. Then w(νc) ≤ (|φc|−1)W +(W−1) < w(νc),
hence nuc is not maximal and cannot be a solution to the weighted Max-SAT instance. ◀

CPM 2023

	1 Introduction
	2 Notations and Definitions
	2.1 Basic Notations on Words and Editions
	2.2 Comparing Words with Parameters

	3 Different Definitions for Different Semantics and Problems
	3.1 Variants of Parameterized Matching
	3.1.1 Edit distances for parameterized matching between two strings: PM^d
	3.1.2 Edit distances for function matching between 2 strings: FM^d_i

	3.2 Comparing Variants of PM
	3.3 Instantiable Words versus Parameterized Words

	4 Hardness Results for Approximate Parameterized Matching
	4.1 ``Block by block'' Lemmas
	4.2 1-to-1 Parameterized Matching PM
	4.3 Function Matching FM^d_1
	4.4 Function Matching FM^d_2

	5 Approaches to Solve Parameterized Matching
	5.1 An FPT Algorithm in the Alphabet Size
	5.2 A MaxSat Formulation of Parameterized Matching

	6 Experiments
	7 Conclusion
	A Details of the proofs
	B Encoding Constant Alphabet Sigma in Pi
	C Proofs Regarding the Max-SAT Encoding

