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Abstract
The problem of String Matching to Labeled Graphs (SMLG) asks to find all the paths in a labeled
graph G = (V, E) whose spellings match that of an input string S ∈ Σm. SMLG can be solved in
quadratic O(m|E|) time [Amir et al., JALG 2000], which was proven to be optimal by a recent lower
bound conditioned on SETH [Equi et al., ICALP 2019]. The lower bound states that no strongly
subquadratic time algorithm exists, even if restricted to directed acyclic graphs (DAGs).

In this work we present the first parameterized algorithms for SMLG on DAGs. Our parameters
capture the topological structure of G. All our results are derived from a generalization of the
Knuth-Morris-Pratt algorithm [Park and Kim, CPM 1995] optimized to work in time proportional
to the number of prefix-incomparable matches.

To obtain the parameterization in the topological structure of G, we first study a special class of
DAGs called funnels [Millani et al., JCO 2020] and generalize them to k-funnels and the class ST k.
We present several novel characterizations and algorithmic contributions on both funnels and their
generalizations.
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1 Introduction

Given a labeled graph G = (V, E)1 and a string S of length m over an alphabet Σ of size σ,
the problem of String Matching to Labeled Graph (SMLG) asks to find all paths in G spelling
S in their characters; such paths are known as occurrences or matches of S in G. This problem
is a generalization of the classical string matching (SM) to a text T of length n, which can
be encoded as an SMLG instance with a path labeled with T . Labeled graphs are present in
many areas such as information retrieval [28, 73, 14], graph databases [11, 10, 75, 16] and
bioinformatics [27], and SMLG is a primitive operation to locate information on them.

It is a textbook result [2, 29, 81] that the classical SM can be solved in linear O(n + m)
time. For example, the well-known Knuth-Morris-Pratt algorithm (KMP) [60] preprocesses
S and then scans T while maintaining the longest matching prefix of S. However, for SMLG
a recent result [12, 34] shows that there is no strongly subquadratic O(m1−ϵ|E|), O(m|E|1−ϵ)
time algorithm unless the strong exponential time hypothesis (SETH) fails, and the most

1 We consider the case where each vertex is labeled with a single character from Σ.
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7:2 Parameterized Algorithms for String Matching to DAGs

efficient current solutions [8, 72, 77, 52] match this bound, thus being optimal in this sense.
Moreover, these algorithms solve the approximate version of SMLG (errors in S only) showing
that both problems are equally hard under SETH, which is not the case for SM [13].

The history of (exact) SMLG. SMLG can be traced back to the publications of Manber
and Wu [67] and Dubiner et al. [33] where the problem is defined for the first time, and
solved in linear time on directed trees by using an extension of KMP. Later Akutsu [4] used
a sampling on V and a suffix tree of S to solve the problem on (undirected) trees in linear
time and Park and Kim [74] obtained an O(N + m|E|)2 time algorithm for directed acyclic
graphs (DAGs) by extending KMP on a topological ordering of G (we call this the DAG
algorithm). Finally, Amir et al. [8] showed an algorithm with the same running time for
general graphs with a simple and elegant idea that was later used to solve the approximate
version [77, 52], and that has been recently generalized as the labeled product [78]. The
lower bound of Equi et al. [34] shows that the problem remains quadratic (under SETH)
even if the problem is restricted to deterministic DAGs with vertices of two kinds: indegree
at most 1 and outdegree 2, and indegree 2 and outdegree at most 1 [34, Theorem 1], or if
restricted to undirected graphs with degree at most 2 [34, Theorem 2]. Furthermore, they
show how to solve the remaining cases (in/out-trees whose roots can be connected by a cycle)
in linear time by an extension of KMP. Later they showed [35, 36] that the quadratic lower
bound holds even when allowing polynomial indexing time.

An (important) special case. Gagie et al. [42] introduced Wheeler graphs as a generalization
of prefix sortable techniques [38, 45, 37, 22, 83] applied to labeled graphs. On Wheeler graphs,
SMLG can be solved in time O(m log |E|) [42] after indexing, however, it was shown that the
languages recognized by Wheeler graphs (intuitively the set of strings they encode) are very
restrictive [5, 6]. Later, Cotumaccio and Prezza [31] generalized Wheeler graphs to p-sortable
graphs, capturing every labeled graph by using the parameter p: the minimum width of a
colex relation over the vertices of the graph. On p-sortable graphs, SMLG can be solved in
time O(mp2 log (pσ)) after indexing, however, the problems of deciding if a labeled graph is
Wheeler or p-sortable are NP-hard [44]. In a recent work, Cotumaccio [30] defined q-sortable
graphs as a relaxation of p-sortable (q < p), which can be indexed in O(|E|2 + |V |5/2) time
but still solve SMLG in time O(mq2 log (qσ)).

1.1 Our results
We present parameterized algorithms for SMLG on DAGs. Our parameters capture the
topological structure of G. These results are related to the line of research “FPT inside
P” [43, 26, 40, 61, 1, 23, 25, 24, 66, 64] of finding parameterizations for polynomially-solvable
problems.

All our results are derived from a new version of the DAG algorithm [74], which we
present in Section 3. Our algorithm is optimized to only carry prefix-incomparable matches
(Definition 3) and process them in time proportional to their size (Lemma 5 further optimized
in Lemma 6 and Theorem 7). Prefix-incomparable sets suffice to capture all prefix matches

2 N is the total length of the labels in G in a more general version of the problem where vertices are
labeled with strings.
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of S ending in a vertex v (Definition 4). By noting that the size of prefix-incomparable sets is
upper-bounded by the structure of S (Lemma 27 in Appendix A), we obtain a parameterized
algorithm (Theorem 28 in Appendix A) that beats the DAG algorithm on periodic strings.

To obtain the parameterization on the topological structure of the graph we first study
and generalize a special class of DAGs called funnels in Section 4.

Funnels. Funnels are DAGs whose source-to-sink paths contain a private edge that is
not used by any other source-to-sink-path. Although more complex that in/out-forests,
their simplicity has allowed to efficiently solve problems that remain hard even when the
input is restricted to DAGs, including: DAG partitioning [70], k-linkage [70], minimum flow
decomposition [57, 56], a variation of network inhibition [62] and SMLG (this work). Millani
et al. [70] showed that funnels can also be characterized by a partition into an in-forest plus
an out-forest (the vertex partition characterization), or by the absence of certain forbidden
paths (the forbidden path characterization), and propose how to find a minimal forbidden
path in quadratic O(|V |(|V | + |E|)) time and a recognition algorithm running in O(|V | + |E|)
time. They used the latter to develop branching algorithms for the NP-hard problems of
vertex and edge deletion distance to a funnel, obtaining a fix-parameter quadratic solution.
Analogous to the minimum feedback set problem [54], the vertex (edge) deletion distance
to a funnel problem asks to find the minimum number of vertices (edges) that need to be
removed from a graph so that the resulting graph is a funnel.

We propose three (new) linear time recognition algorithms of funnels (Section 4.1), each
based on a different characterization, improving the running time of the branching algorithm
to parameterized linear time (see Appendix B). We generalize funnels to k-funnels by allowing
private edges to be shared by at most k source-to-sink paths (Definitions 14 and 15). We
show how to recognize them in linear time (Lemma 16) and find the minimum k for which a
DAG is a k-funnel (Corollary 17 and Lemma 18). We then further generalize k-funnels to
the class of DAGs ST k (Definition 20 and Lemma 21), which (unlike k-funnels for k > 1, see
Figure 2) can be characterized (and efficiently recognized, see Lemma 22) by a partition into
a graph of the class Sk (generalization of out-forest, see Definition 19) and a graph of the
class Tk (generalization of in-forest, see Definition 19).

We obtain our parameterized results in Section 5 by noting that, analogous to the fact
that in KMP we only need the longest prefix match, in the DAG algorithm we can bound
the size of the prefix-incomparable sets by the number of paths from a source or the number
of paths to a sink, µs(v) and µt(v), respectively (Lemma 23).

▶ Theorem 1. Let G = (V, E) be a DAG, Σ a finite alphabet (σ = |Σ|), ℓ : V → Σ a labeling
function and S ∈ Σm a string. We can decide whether S has a match in (G, ℓ) in time
O((|V | + |E|)k + σm), where k = min(maxv∈V µs(v), maxv∈V µt(v)).

In particular, this implies linear time algorithms for out-forests and in-forests, and for
every DAG in Sk or Tk for constant k. Finally, we solve the problem on DAGs in ST k (thus
also in k-funnels), by using the vertex partition characterization of ST k (Lemma 22), solving
the matches in each part separately with Theorem 1, and resolve the matches crossing from
one part to the other with a precomputed data structure (Lemma 26).

▶ Theorem 2. Let G = (V, E) be a DAG, ℓ : V → Σ a labeling function and S ∈ Σm a
string. We can decide whether S has a match in (G, ℓ) in time O((|V | + |E|)k2 + m2), where
k = maxv∈V (min(µs(v), µt(v))).

CPM 2023



7:4 Parameterized Algorithms for String Matching to DAGs

2 Preliminaries

We work with a (directed) graph G = (V, E), a function ℓ : V → Σ labeling the vertices of G

with characters from a finite alphabet Σ of size σ, and a sequence S[1..m] ∈ Σm.

Graphs. A graph H = (VH , EH) is said to be a subgraph of G if VH ⊆ V and EH ⊆ E.
If V ′ ⊆ V , then G[V ′] is the subgraph induced by V ′, defined as G[V ′] = (V ′, {(u, v) ∈
E : u, v ∈ V ′}). We denote Gr = (V, Er) to be the reverse of G (Er = {(v, u) | (u, v) ∈ E}).
For a vertex v ∈ V we denote by N−

v (N+
v ) the set of in(out)-neighbors of v, and by d−

v = |N−
v |

(d+
v = |N+

v |) its in(out)degree. A source (sink) is a vertex with zero in(out)degree. The
edge contraction of (u, v) ∈ E is the graph operation that removes (u, v) and merges u and
v. A path P is a sequence v1, . . . , v|P | of different vertices of V such that (vi, vi+1) ∈ E

for every i ∈ {1, . . . , |P | − 1}. We say that P is proper if |P | ≥ 2, a cycle if (v|P |, v1) ∈ E,
and source-to-sink if v1 is a source and v|P | is a sink. We say that u ∈ V reaches v ∈ V

if there is a path from u to v. If G does not have cycles it is called directed acyclic graph
(DAG). A topological ordering of a DAG is a total order v1, . . . , v|V | of V such that for every
(vi, vj) ∈ E, i < j. It is known [53, 84] how to compute a topological ordering in O(|V | + |E|)
time, and we assume one (v1, . . . , v|V |) is already computed if G is a DAG3. An out(in)-forest
is a DAG such that every vertex has in(out)degree at most one, if it has a unique source
(sink) it is called an out(in)-tree. The label of a path P = v1, . . . , v|P | is the sequence of the
labels of its vertices, ℓ(P ) = ℓ(v1) . . . ℓ(v|P |).

Strings. We say that S has a match in (G, ℓ) if there is a path whose label is equal to S,
every such path is an occurrence of S in (G, ℓ). We denote S[i..j] (also S[i] if i = j, and the
empty string if j < i) to be the substring of S between position i and j (both inclusive),
we say that it is proper if i > 1 or j < m, a prefix if i = 1 and a suffix if j = m. We
denote Sr to be the reverse of S (Sr[i] = S[m − i + 1] for i ∈ {1, . . . , m}). A substring
of S is called a border if it is a proper prefix and a proper suffix at the same time. The
failure function of S, fS : {1, . . . , m} → {0, . . . , m} (just f if S is clear from the context), is
such that fS(i) is the length of the longest border of S[1..i]. We also use fS to denote the
in-tree ({0, . . . , m}, {(i, fS(i)) | i ∈ {1, . . . , m}}), also known as the failure tree [46] of S. By
definition, the lengths of all borders of S[1..i] in decreasing order are fS(i), f2

S(i), . . . , 0. The
matching automaton of S, AS : {0, . . . , m} × Σ → {0, . . . , m}, is such that AS(i, a) is the
length of the longest border of S[1..i] · a. It is known how to compute fS in time O(m) [60]
and AS in time O(σm) [2, 29, 81], and we assume they are already computed4.

3 The DAG algorithm on prefix-incomparable matches

A key idea in our linear time parameterized algorithm is that of prefix-incomparable sets of
the string S. We will show that one prefix-incomparable set per vertex suffices to capture all
the matching information. See Figure 1 for an example of these concepts.

▶ Definition 3 (Prefix-incomparable). Let S ∈ Σm be a string. We say that i, j ∈
{0, . . . , m}, i < j are prefix-incomparable (for S) if S[1..i] is not a border of S[1..j]. We
say that B ⊆ {0, . . . , m} is prefix-incomparable (for S) if for every i < j ∈ B, i and j are
prefix-incomparable (for S).

3 Our algorithms run in Ω(|V | + |E|) time.
4 Our algorithms run in Ω(σm) time.
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Figure 1 A string S = abaababaaba and its failure tree fS , with w = |{i ∈ {0, . . . , 11} |̸ ∃j, fS(j) =
i}| = |{7, 8, 9, 10, 11}| = 5. On the string it is shown in segmented (blue) and solid (red) lines that
prefix S[1..3] = aba is a border of prefix S[1..8] = abaababa, which can also be seen in the tree
since 3 is an ancestor (parent in this case) of 8. In the tree two sets are shown B1 = {1, 8} in
segmented (blue) circles, which is prefix-comparable, and B2 = {2, 3} in solid (red) circles, which is
prefix-incomparable. If B1 ∪ B2 ∪ {0} is Bv for some v ∈ V , then P Iv = {2, 8}.

In our algorithm we will compute for each vertex v a prefix-incomparable set representing
all the prefixes of S that match with a path ending in v. More precisely, if Bv is the set of
all the prefixes of S that match with a path ending in v, then the algorithm will compute
PIv ⊆ Bv such that PIv is prefix-incomparable and for every i ∈ Bv there is a j ∈ PIv such
that i is ancestor of j. Note that such a set always exists and it is unique, it corresponds
to the leaves of fS [Bv]. To obtain a linear time parameterized algorithm we show how to
compute PIv from the sets PIu, u ∈ N−

v , in time parameterized by the size of these sets.

▶ Definition 4 (Bv, P Iv). Let G = (V, E) be a DAG, ℓ : V → Σ a labeling function, and
S ∈ Σm a string. For every v ∈ V we define the sets:

Bv = {i ∈ {0, . . . , m} | ∃P path of G ending in v and ℓ(P ) = S[1..i]}5

PIv ⊆ Bv as the unique prefix-incomparable set such that for every i ∈ Bv there is a
j ∈ PIv such that i = j or S[1..i] is a border of S[1..j]

▶ Lemma 5. Let G = (V, E) be a DAG, v ∈ V , S ∈ Σm a string, fS its failure tree and
AS its matching automaton. We can compute PIv from PIu for every u ∈ N−

v in time

O
(
w2 · d−

v

)
or in time O

((
kv :=

∑
u∈N−

v
|PIu|

)2
)

, after O(m) preprocessing time, where

w = |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|.

Proof. We precompute constant time lowest common ancestor (LCA)6 queries [3] of fS in
O(m) time [41, 79, 20, 17, 18, 7, 39]. Note that with this structure we can check whether
i < j are prefix-incomparable in constant time (LCA(i, j) < i).

If v is a source we have that either Bv = PIv = {0} if ℓ(v) ̸= S[1] or PIv = {1} if
ℓ(v) = S[1], otherwise we proceed as follows. To obtain the O

(
k2

v

)
time, we first append

all the elements of every PIu for u ∈ N−
v into a list L (of size kv), then we replace every

i ∈ L by AS(i, ℓ(v)), and finally we check (at most) every pair i < j of elements of L and
test (in constant time) if they are prefix-incomparable, if they are not we remove i from the
list. After these O(|L|2) = O(k2

v) tests L = PIv.
To obtain the O

(
w2 · d−

v

)
time, we process the in-neighbors of v one by one and maintain a

prefix-incomparable set representing the prefix matches incoming from the already processed
in-neighbors. That is, we maintain a prefix-incomparable set PI ′, and when we process the
next in-neighbor u ∈ N−

v we append all elements of PI ′ and {AS(i, ℓ(v)) | i ∈ PIu} into a

5 Here we consider that the empty path always exists and its label is the empty string, thus 0 ∈ Bv.
6 LCA(i, j) returns the lowest node in the tree fS that is ancestor of both i and j.

CPM 2023
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list L′ of size O(w) (by Lemma 27), then we use the same quadratic procedure applied on L
in time O(w2) to obtain the new PI ′. After processing all in-neighbors in time O(d−

v · w2),
we have PI ′ = PIv. Next, we show the correctness of both procedures.

Let PI ′
v be the result after applying one of the procedures explained before (that is the

final state of PI ′ or L), by construction PI ′
v is prefix-incomparable. Now, consider i ∈ Bv

and a path P ending in v with ℓ(P ) = S[1..i]. If P is of length zero (only one vertex), then
i = 1 and ℓ(P ) = ℓ(v) = S[1]. Consider any u ∈ N−

v , and any j ∈ PIu (there is at least one
since 0 ∈ Bu), this value is mapped to AS(j, ℓ(v)) = AS(j, S[1]) = j′. By definition of the
matching automaton, j′ is the longest border of S[1..j] · S[1], thus S[1] is a border of S[1..j′]
or j′ = 1, in both procedures j′ can only be removed from PI ′

v if a longer prefix contains
S[1..j′] as a border and also S[1]. If P is a proper path and i > 1, consider the second to
last vertex u of P . Note that i − 1 ∈ Bu, and thus there is j ∈ PIu, such that S[1..i − 1] is a
border of S[1..j], this value is mapped to j′ = AS(j, ℓ(v)) = AS(j, S[i]), which is the length
of the longest border of S[1..j] · S[i], but since S[1..i] is also a border of S[1..j] · S[i], then
S[1..i] is also a border of S[1..j′] or j′ = i. Again, in both procedures j′ can only be removed
from PI ′

v if a longer prefix contains S[1..j′] as a border and also S[1..i]. Finally, we note
that PI ′

v ⊆ Bv since every i ∈ PI ′
v corresponds to a match of S[1..i] by construction. ◀

We improve the dependency on w and kv by replacing the quadratic comparison by
sorting plus a linear time algorithm on the balanced parenthesis representation [51, 71] of fS .

▶ Lemma 6. We can obtain Lemma 5 in time O(sort(w, m) · d−
v ) or in time O(sort(kv, m)),

where sort(n, p) is the time spent by an algorithm sorting n integers in the range {0, . . . , p}.

Proof. We compute the balanced parenthesis (BP) [51, 71] representation of the topology of
fS , that is, we traverse fS from the root in preorder, appending an open parenthesis when
we first arrive at a vertex, and a closing one when we leave its subtree. As a result we obtain
a balanced parenthesis sequence of length 2(m + 1), where every vertex i ∈ fS is mapped
to its open parenthesis position open[i] and to its close parenthesis position close[i], which
can be computed and stored at preprocessing time. Note that in this representation, i is
ancestor of j (and thus prefix-comparable) if and only if open[i] ≤ open[j] ≤ close[i]. As
such, if we have a list of O(kv) (or O(w)) (L and L′ from Lemma 5) values, we can compute
the corresponding prefix-incomparable sets as follows.

First, we sort the list by increasing open value, this can be done in O(sort(kv, m)) (or
O(sort(w, m)), since this sorting is equivalent to sort by increasing open/2 ∈ {0, . . . , m}
value. Then, we process the list in the sorted order, if two consecutive values i and j in the
order are prefix-comparable (that is, if open[j] ≤ close[i]) then we remove i and continue to
the next value j. At the end of this O(kv) (or O(w)) time processing we obtain the desired
prefix-incomparable set. ◀

If we use techniques for integer sorting [87, 90, 59] we can get O(kv log log m) (or
O(w log log m)) time for sorting, however introducing m into the running time. We can solve
this issue by using more advanced techniques [48, 9, 47] obtaining an O(kv log log kv) (or
O(w log log w)) time for sorting. However, we show that by using the suffix-tree [89, 68, 85]
of Sr we can obtain a linear dependency on w and kv.

▶ Theorem 7. We can obtain the result of Lemma 5 in time O(w · d−
v ) or in time O(kv).

Proof. We reuse the procedure of Lemma 6 but this time on the BP representation of the
topology of the suffix-tree Tr of Sr, which has O(m) vertices and can be built in O(m)
time [89, 68, 85]. Note that every suffix represented in Tr corresponds to a prefix of S (spelled
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in the reverse direction). Moreover, i ≤ j are prefix-comparable if and only if the vertex
representing i in Tr (Tr[i]) is a ancestor of Tr[j], the same property as in fS . Furthermore,
if B is prefix-incomparable and A(j, a) = j + 1 for every j ∈ B, then the positions of the
vertices in A(B, a) in Tr follow the same order as the ones in B, since the suffix-tree is
lexicographically sorted.

Now, we show how to obtain the prefix-incomparable set representing A(PIu, ℓ(v)) in
|PIu| time assuming that PIu is sorted by increasing (open) position in Tr.

We first separate PIu into the elements i ∈ M with S[i + 1] = ℓ(v) and i ∈ E with
S[i + 1] ̸= ℓ(v) (in the same relative order as in PIu, which is supposed to be in increasing
order). Since M is prefix-incomparable the positions of the vertices in A(M, ℓ(v)) in Tr follow
the same order as the ones in M . We then obtain the list Eu by applying Tr[A(i, ℓ(v)) − 1]
for every i ∈ E (if A(i, ℓ(v)) = 0 we do not process i), and then for any pair of consecutive
elements x before y in Eu such that y ≤ x we remove y from Eu, and repeat this until no
further such inversion remains, thus obtaining an increasing list in Eu representing vertices
in Tr. Next, since Eu is sorted we can obtain the list PIE of prefix-incomparable elements
representing Eu, and finally apply A(PIE , ℓ(v)) (which also follows an increasing order in
Tr), merge it with A(M, ℓ(v)), and compute the prefix-comparable elements of this merge.

The correctness of the previous procedure follows by the fact that if there is an inversion
y < x in Eu, then the prefix A(j, ℓ(v)) − 1 represented by y in Tr is a border of the prefix
A(i, ℓ(v)) − 1 represented by x (and thus is safe to remove y). For this, first note that i

appears before j in E, then S[i..1] <lex S[j..1], and since i is prefix-incomparable with j

there is a k ≥ 1 such that S[i..i + k − 1] = S[j..j + k − 1] and S[i + k] <lex S[j + k]. Then,
since y appears before x in Eu, then S[A(j, ℓ(v)) − 1..1] <lex S[A(i, ℓ(v)) − 1..1], but since
A(i, ℓ(v)) − 1 is a border of i and A(j, ℓ(v)) − 1 is a border of j, S[A(j, ℓ(v)) − 1..1] must be
a prefix of S[A(i, ℓ(v)) − 1..1], and thus S[1..A(j, ℓ(v)) − 1] is a border of S[1..A(j, ℓ(v)) − 1].

The corollary is obtained by maintaining the PIv sets sorted by position in Tr, and noting
that the previous procedure runs in linear O(|Pu|) time. ◀

In Appendix A we show how to use Theorem 7 to derive a parameterized algorithm using
parameter w = |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|, improving on the classical DAG algorithm
when S is a periodic string. Next, we will present our results on recognizing funnels and their
generalization (Section 4), and how to use these classes of graphs and Theorem 7 to obtain
parameterized algorithms using parameters related to the topology of the DAG (Section 5).

4 Funnels and beyond

Recall that funnels are DAGs whose source-to-sink paths have at least one private edge7,
that is, an edge used by only one source-to-sink path. More formally,

▶ Definition 8 (Private edge). Let G = (V, E) be a DAG and P the set of source-to-sink
paths of G. We say that e ∈ E is private if µ(e) := |{P ∈ P | e ∈ P}| = 1. If µ(e) > 1, we
say that e is shared.

▶ Definition 9 (Funnel). Let G = (V, E) be a DAG and P the set of source-to-sink paths of
G. We say that G is a funnel if for every P ∈ P there exists e ∈ P such that e is private.

Millani et al. [70] showed two other characterizations of funnels.

7 For the sake of simplicity, we assume that there are no isolated vertices, thus any source-to-sink path
has at least one edge.
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▶ Theorem 10 ([70]). Let G = (V, E) be a DAG. The following are equivalent:
1. G is a funnel
2. There exists a partition V = V1∪̇V2 such that G[V1] is an out-forest, G[V2] is an in-forest

and there are no edges from V2 to V1
3. There is no path P such that its first vertex has more than one in-neighbor (a merging

vertex) and its last vertex more than one out-neighbor (a forking vertex). Such a path is
called forbidden

They also gave an O(|V | + |E|) time algorithm to recognize whether a DAG G is a funnel,
and an O(|V |(|V | + |E|)) time algorithm to find a minimal forbidden path in a general graph,
that is, a forbidden path that is not contained in another forbidden path.

4.1 Three (new) linear time recognition algorithms
We first show how to find a minimal forbidden path in time O(|V | + |E|) in general graphs,
improving on the quadratic algorithm of Millani et al. [70].

▶ Lemma 11. Let G = (V, E) be a graph. In O(|V | + |E|) time, we can decide if G contains
a forbidden path, and if one exists we report a minimal forbidden path.

Proof. In the bioinformatics community minimal forbidden paths are a subset of unitigs and
it is well known how to compute them in O(|V | + |E|) time (see e.g. [55, 50, 58, 69]), here we
include a simple algorithm for completeness. We first compute the indegree and outdegree
of each vertex and check whether there exists a forbidden path of length zero or one, all in
O(|V | + |E|) time, in the process we also mark all vertices except the ones with unit indegree
and outdegree. If no path is found we iterate over the vertices one last time. If the current
vertex is not marked we extend it back and forth to the closest marked vertices and mark
the vertices in these extensions, finally we check whether the first vertex is merging and the
last forking. This last step takes O(|V |) time in total. ◀

Lemma 11 provides our first linear time recognition algorithm and, as opposed to the
algorithm of Millani et al. [70], it also reports a minimal forbidden path given a general graph.
Moreover, in Appendix B, we show that Lemma 11 provides a linear time parameterized
algorithm for the NP-hard (and inapproximable) problem of deletion distance of a general
graph to a funnel [63, 70]. Millani et al. [70] solved this problem in (parameterized) quadratic
time and in (parameterized) linear time only if the input graph is a DAG.

Next, we show another linear time recognition algorithm, which additionally finds the
partition V = V1∪̇V2 from Theorem 10. Finding such a partition will be essential for our
solution to SMLG. From now we will assume that the input graph is a DAG since this
condition can be checked in linear time [53, 84].

▶ Lemma 12. Let G = (V, E) be a DAG. We can decide in O(|V | + |E|) time whether G is
a funnel. Additionally, if G is a funnel, the algorithm reports a partition V = V1∪̇V2 such
that G[V1] is an out-forest, G[V2] is an in-forest and there are no edges from V2 to V1.

Proof. We start a special BFS traversal from all the source vertices of G. The traversal
only adds vertices to the BFS queue if they have not been previously visited (as a typical
BFS traversal) and if its indegree is at most one. After the search we define the partition V1
as the set of vertices visited during the traversal and V2 = V \ V1. Finally, we report the
previous partition if there are no edges from V2 to V1, and if every vertex of V2 has outdegree
at most one. All these steps run in time O(|V | + |E|).
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Note that if the algorithm reports a partition, then this satisfies the required conditions
to be a funnel (G[V1] is an out-forest since every vertex visited in the traversal has indegree
at most one). Moreover, if G is a funnel, we prove that V2 is an in-forest and that there are
no edges from V2 to V1. For the first, suppose by contradiction that there is a vertex v ∈ V2
with d+

v > 1, since every vertex is reached by some source in a DAG then there is a u ∈ V2
with d−

u > 1 (a vertex that was not added to the BFS queue) that reaches v, implying the
existence of a forbidden path in G, a contradiction. Finally, there cannot be edges from
V2 to V1 since the indegree (in G) of vertices of V1 is at most one and its unique (if any)
in-neighbor is also in V1 by construction. ◀

Next, we present another characterization of funnels based on the structure of
private/shared edges of the graph, which can be easily obtained by manipulating the
original Definition 9.

▶ Definition 13 (Funnel). Let G = (V, E) be a DAG. We say that G is a funnel if there is
no source-to-sink path using only shared edges.

As such, another approach to decide whether a DAG G is a funnel is to compute µ(e)
for every e ∈ E and then perform a traversal that only uses shared edges. Computing the
number of source-to-sink paths containing e, that is µ(e), can be done by multiplying the
number of source-to-e paths, µs(e), by the number of e-to-sink paths, µt(e), each of which can
be computed in O(|V | + |E|) time for all edges. The solution consists of a dynamic program
on a topological order (and reverse topological order) of G with the following recurrences.

µs(u) = 1d−
u =0 +

∑
u′∈N−

u

µs(u′)

µt(v) = 1d+
v =0 +

∑
v′∈N+

v

µt(v′)

µ((u, v)) = µs(u) · µt(v)

(1)

Where 1A is the characteristic function evaluating to 1 if A is true and to 0 otherwise. It is
simple to observe that the previous dynamic programs can be computed in time O(|V | + |E|)
each and that for every e = (u, v) ∈ E, µs(e) = µs(u) and µt(e) = µt(v). By simplicity, in the
following we will use µs(e) and µs(u) (also µt(e) and µt(v)) interchangeably. The previous
algorithm assumes constant time arithmetic operations on numbers up to maxe∈E µ(e), which
can be O(2|V |). To avoid this issue, we note that it is not necessary to compute µ(e), but only
to verify that µ(e) > 1. As such, we can recognize shared edges as soon as we identify that
µ(e) > 1, that is whenever µs(e) or µt(e) is greater than one in their respective computation.
A formal description of this algorithm can be found in Lemma 16.

4.2 Generalizations of funnels
To generalize funnels we will allow source-to-sink paths to use only shared edges, but require
to have at least one edge shared by at most k different source-to-sink paths.

▶ Definition 14 (k-private edge). Let G = (V, E) be a DAG. We say that e ∈ E is k-private
if µ(e) ≤ k. If µ(e) > k we say that e is k-shared.

▶ Definition 15 (k-funnel). Let G = (V, E) be a DAG. We say that G is a k-funnel if there
is no source-to-sink path using only k-shared edges.
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The next algorithm is a generalization of the last algorithm in Section 4.1 to decide if a
DAG is a k-funnel. It assumes constant time arithmetic operations on numbers up to k.

▶ Lemma 16. We can decide if a DAG G = (V, E) is a k-funnel in O(|V | + |E|) time,
assuming constant time arithmetic operations on numbers up to Θ(k).

Proof. We process the vertices in a topological ordering and use Equation (1) to compute
µs(e) in one pass, µt(e) in another pass and µ(e) in a final pass. To avoid arithmetic
operations with numbers greater than k, we mark the edges having µs and µt greater than
k as k-shared during the computations of µs, µt. Note that if µs(e) > k or µt(e) > k then
µ(e) > k. As such, before computing µs(e) (µt(e)) we check if some of the edges from
(to) the in(out)-neighbors is marked as k-shared. If that is the case we do not compute
µs(e) (µt(e)) and instead mark e as k-shared, otherwise we compute the respective sum of
Equation (1), and if at some point the cumulative sum exceeds k we stop the computation
and mark e as k-shared. Finally, we find all k-shared edges as the marked plus the unmarked
with µ(e) = µs(e) · µt(e) > k, perform a traversal only using k-shared edges, and report
that G is not a k-funnel if there is a source-to-sink path using only k-shared edges in time
O(|V | + |E|). ◀

We can use the previous result and exponential search [19, 15] to find the minimum k

such that a DAG is a k-funnel.

▶ Corollary 17. Let G = (V, E) be a DAG. We can find the minimum k such that G is
a k-funnel in O((|V | + |E|) log k) time, assuming constant time arithmetic operations on
numbers up to Θ(k).

Assuming constant time arithmetic operations on numbers up to maxe∈E µ(e) the problem
is solvable in linear time by noting that the answer is equal to the weight of a widest path.

▶ Lemma 18. Let G = (V, E) be a DAG. We can find the minimum k such that G is a
k-funnel in O(|V | + |E|) time, assuming constant time arithmetic operations on numbers up
to Θ(maxe∈E µ(e)).

Proof. We compute µ(e) for every e ∈ E by using the dynamic programming algorithm
specified by Equation (1) on a topological ordering of G. Since constant time arithmetic
operations are assumed for numbers up to maxe∈E µ(e), the previous computation takes
linear time. Then, we compute the weight of a source-to-sink path P maximizing mine∈P µ(e),
and report this value. This problem is known as the widest path problem [76, 82, 65, 86, 80]
and it can be solved in linear time on DAGs [88, 49] by a dynamic program on a topological
order of the graph. By completeness, we show a dynamic programming recurrence to compute
W [e], the weight of a source-to-e path P maximizing mine′∈P µ(e′).

W [e = (u, v)] = µ(e) · 1d−
u =0 +

∑
u′∈N−

u

min(W [(u′, u)], µ((u′, u)))

Finally, note that if we denote w to the weight of a widest path, then there is a source-to-sink
path using only w − 1-shared edges, G is not w − 1-funnel. Moreover, there cannot be a
source-to-sink path using only w-shared edges, since such a path would contradict w being
the weight of a widest path. As such, w is the minimum k such that G is k-funnel. ◀

We now define three classes of DAGs closely related to k-funnels.

▶ Definition 19. We say that a DAG G = (V, E) belongs to the class Sk (Tk) if for every
v ∈ V , µs(v) (µt(v)) ≤ k.
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Figure 2 A DAG in ST k that is not a k-funnel, for every k > 1. The central edge is a forbidden
path whose first vertex has indegree k and outdegree 2, and last vertex has indegree 2 and outdegree
k, the rest of the edges have either a source tail or a sink head. The blue label next to each vertex v

corresponds to min(µs(v), µt(v)), since the maximum of these labels is k the graph belongs to ST k.
The red label next to each edge e corresponds to µ(e), since there is a source-to-sink path with no
k-private edge the graph is not a k-funnel.

▶ Definition 20. We say that a DAG G = (V, E) belongs to the class ST k if for every v ∈ V ,
µs(v) ≤ k or µt(v) ≤ k.

▶ Lemma 21. Sk, Tk ⊆ k-funnels ⊆ ST k.

Proof. We first prove that Sk, Tk ⊆ k-funnels. Consider G ∈ Sk (G ∈ Tk), and take any
source-to-sink path P of G. Let (u, v) be the last (first) edge of P , then by Equation (1)
µ((u, v)) = µs(u)·µt(v), but since µt(v) = 1 (v is a sink) and µs(u) ≤ k (G ∈ Sk) (analogously,
µs(u) = 1 and µt(v) ≤ k), then µ((u, v)) ≤ k, and thus (u, v) is a k-private edge. To prove
that k-funnels ⊆ ST k, suppose that G is a k-funnel, and by contradiction that there exists
v ∈ V with µs(v), µt(v) > k. Consider any source-to-sink path P using v. Now, let (u, w)
be any edge in P before (after) v, then µt(w) ≥ µt(v) > k (µs(u) ≥ µs(v) > k), and thus
µ((u, w)) = µs(u) ·µt(w) > k. As such, P does not have a k-private edge, a contradiction. ◀

For k = 1, S1 describes out-forests and T1 in-forests, thus being more restrictive than
funnels. Moreover, we note that the in(out)-star of k + 2 vertices, that is k + 1 vertices
pointing to a sink (pointed from a source), ̸∈ Sk (Tk), but this graph is a funnel. On the
other hand, from the vertex partition characterization of funnels (Theorem 10 [70]) we have
that ST 1 = (1-)funnels. However, for k > 1, the containment k-funnels ⊆ ST k is strict
(Figure 2).

By noting that the minimum k such that a DAG is in Sk, Tk and ST k is maxv∈V µs(v),
maxv∈V µt(v) and maxv∈V min(µs(v), µt(v)), respectively, we obtain the same results as in
Lemmas 16 and 18 and Corollary 17 (with analogous assumptions on the cost of arithmetic
operations) for recognition of Sk, Tk and ST k.

Next, we prove that although the vertex partition characterization of funnels does not
generalize to k-funnels, it does for the class ST k and it can be found efficiently.

▶ Lemma 22. Let G = (V, E) ∈ ST k and k given as inputs. We can find, in O(|V | + |E|)
time, a partition V = V1∪̇V2 such that G[V1] ∈ Sk, G[V2] ∈ Tk and there are no edges from
V2 to V1. Moreover, if such a partition of a DAG G exists, then G ∈ ST k.

Proof. We set V1 = {v ∈ V | µs(v) ≤ k} and V2 = V \ V1. Note that finding V1 takes linear
time, since we can apply the algorithm described in Lemma 16 to compute the µs values
(or decide that they are more than k)8. By construction we know that every v ∈ V1 has

8 Recall that this procedure assumes constant time arithmetic operations of numbers up to Θ(k).
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µs(v) ≤ k, and since G ∈ ST k also every v ∈ V2 has µt(v) ≤ k, thus G[V1] ∈ Sk, G[V2] ∈ Tk.
Suppose by contradiction that there exists e = (u, v) ∈ E ∩ (V2 × V1). As such, µs(u) > k,
but since µs(u) ≤ µs(v), then µs(v) > k, a contradiction. Finally, if such a partition exists
then µs(v) ≤ k for every v ∈ V1 and µt(v) ≤ k for every v ∈ V2, and thus G ∈ ST k. ◀

5 Parameterized algorithms: The DAG

The main idea to get the parameterized algorithms in this section is to bound the size of the
PIv sets by a topological graph parameter and use Lemma 5 and Theorem 7 to obtain a
parameterized solution. As in the KMP algorithm [60] only one prefix-incomparable value
suffices (the longest prefix match until that point), we show that µs(v) prefix-incomparable
values suffice to capture the prefix matches up to v.

▶ Lemma 23. Let G = (V, E) be a DAG, v ∈ V , Psv the set of source-to-v paths, ℓ : V → Σ
a labeling function, S ∈ Σm a string, and PIv as in Definition 4. Then, |PIv| ≤ µs(v).

Proof. Since any path ending in v is the suffix of a source-to-v path we can write Bv as:

Bv =
⋃

Psv∈Psv

BPsv
:= {i ∈ {0, . . . , m} | ∃P suffix of Psv, ℓ(P ) = S[1..i]}

However, for every pair of values i < j ∈ BPsv
, S[1..i] is a border of S[1..j] (it is a suffix

since they are both suffixes of ℓ(Psv)). As such, at most one value of BPsv
appears in PIv,

and then |PIv| ≤ |Psv| = µs(v). ◀

This result directly implies a parameterized string matching algorithm to DAGs in Sk.

▶ Lemma 24. Let G = (V, E) ∈ Sk, ℓ : V → Σ a labeling function and S ∈ Σm a string. We
can decide whether S has a match in (G, ℓ) in time O(|V |k + |E| + σm).

Proof. We compute the matching automaton AS in O(σm) time. Then, we process the
vertices in topological order, and for each vertex v we compute PIv, the unique prefix-
incomparable set representing Bv (all prefix matches of S with paths ending in v). We
proceed according to Lemma 5 and Theorem 7 in O(m) preprocessing time plus O(kv)
time per vertex. There is a match of S in (G, ℓ) if and only if any PIv contains m. The
claimed running time follows since kv =

∑
u∈N−

v
|PIu| ≤

∑
u∈N−

v
µs(u) ≤ µs(v) ≤ k,

by Lemma 23, Equation (1) and since G ∈ Sk. ◀

A simple but interesting property about string matching to graphs is that we obtain the
same problem by reversing the input (both the graph and the string), that is, S has a match
in (G, ℓ) if and only if Sr has a match in Gr, ℓ. This fact, plus noting that G ∈ Sk if and
only if Gr ∈ Tk gives the following corollary of Lemma 24.

▶ Corollary 25. Let G = (V, E) ∈ Tk, ℓ : V → Σ a labeling function and S ∈ Σm a string.
We can decide whether S has a match in (G, ℓ) in time O(|V |k + |E| + σm).

With these two results and the fact that we can compute the minimum k such that a
DAG is in Sk, Tk in time O((|V | + |E|) log k) (see Corollary 17) we obtain our first algorithm
parameterized by the topology of the DAG.

▶ Theorem 1. Let G = (V, E) be a DAG, Σ a finite alphabet (σ = |Σ|), ℓ : V → Σ a labeling
function and S ∈ Σm a string. We can decide whether S has a match in (G, ℓ) in time
O((|V | + |E|)k + σm), where k = min(maxv∈V µs(v), maxv∈V µt(v)).
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Our final result is a parameterized algorithm for DAGs in ST k (in particular for k-funnels).
We note that the algorithm of Corollary 25 computes PIv for Sr for every vertex in Gr.
Recall that PIv represents all the prefix matches of Sr with paths ending in v in Gr. In
other words, it represents all suffix matches of S with paths starting in v in G. For clarity,
let us call this set SIv. The main idea of the algorithm for ST k is to use Lemma 22 to
find a partitioning V = V1∪̇V2 into Sk and Tk, use Lemma 24 and Corollary 25 to search
for matches within each part and also to compute PIv for every v ∈ V1 and SIv for every
v ∈ V2, and finally, to find matches using the edges from V1 to V2. The last ingredient of our
algorithm consists of preprocessing the answers to the last type of matches.

▶ Lemma 26. Let G = (V, E) a DAG, (u, v) ∈ E, ℓ : V → Σ a labeling function, S ∈ Σm a
string and PIu and SIv as in Definition 4. We can decide if there is a match of S in (G, ℓ)
using (u, v) in O(|PIu| · |SIv|) time, after O(m2) preprocessing time.

Proof. We precompute a boolean table PS of m × m entries, such that PS[i, j] is true
if there is a length i′ of a (non-empty) border of S[1..i] (or i′ = i) and a length j′ of a
(non-empty) border of S[m − j + 1..m] (or j′ = j) such that i′ + j′ = m, and false otherwise.
This table can be computed by dynamic programming in O(m2) time as follows.

PS[i, j] =
{

false if i + j < m ∨ i = 0 ∨ j = 0
i + j = m ∨ PS[i, fSr (j)] ∨ PS[fS(i), j] otherwise

We then use this table to test every PS[i, j] with i ∈ PIu, j ∈ SIv and report a match if any
of these table entries is true, in total O(|PIu| · |SIv|) time.

Since every match of S using (u, v) must match a prefix S[1..i] with a path ending in u

and a suffix S[i + 1..m] with a path starting in v, the previous procedure finds it (if any). ◀

▶ Theorem 2. Let G = (V, E) be a DAG, ℓ : V → Σ a labeling function and S ∈ Σm a
string. We can decide whether S has a match in (G, ℓ) in time O((|V | + |E|)k2 + m2), where
k = maxv∈V (min(µs(v), µt(v))).

Proof. We first compute the minimum k such that the input DAG is in ST k in time
O((|V | + |E|) log k) (see Corollary 17). Then, we obtain the partition of G into G[V1] ∈
Sk, G[V2] ∈ Tk and no edges from V2 to V1. We then search matches within G[V1] and G[V2]
in time O(|V |k + |E| + σm) (Lemma 24 and Corollary 25) and we also keep PIu for every
u ∈ V1 and SIv for every v ∈ V2. Finally, we process the matches using the edges (u, v) with
u ∈ V1, v ∈ V2 in total O(|E|k2 + m2) time (Lemma 26) since O(|PIu| · |SIv|) = O(k2). ◀

6 Conclusions

In this paper we introduced the first parameterized algorithms for matching a string to a
labeled DAG, a problem known (under SETH) to be quadratic even for a very special type
of DAGs. Our parameters depend on the structure of the input DAG.

We derived our results from a generalization of KMP to DAGs using prefix-incomparable
matches, which allowed us to bound the running time to parameterized linear. Further
improvements on the running time of our algorithms remain open: is it possible to get rid of
the automaton? or to combine prefix-incomparable and suffix-incomparable matches in better
than quadratic (either in the size of the sets or the string)? (e.g. with a different tradeoff
between query and construction time of the data structure answering these queries) and is
there a (conditional) lower bound to combine these incomparable sets? (see e.g. [21]). Another
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interesting question with practical importance is whether our parameterized approach can
be extended to string labeled graphs with (unparameterized) linear time in the total length
of the strings or extended to counting and reporting algorithms in linear time in the number
of occurrences.

We also presented novel algorithmic results on funnels as well as generalizations of them.
These include linear time recognition algorithms for their different characterizations, which
we showed useful for the string matching problem but hope that can also help in other graph
problems. We also showed how to find the minimum k for which a DAG is a k-funnel or
∈ ST k (assuming constant time arithmetic operations on numbers up to O(k)) using an
exponential search, but it remains open whether there exists a linear time solution.
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A A parameterized algorithm: The String

A simple property about prefix-incomparable sets is that their sizes are bounded by the
number of prefixes that are not a border of other prefixes of the string, equivalently, the
number of leaves in the failure function of the string.

▶ Lemma 27. Let S ∈ Σm be a string, fS its failure function/tree, and B ⊆ {0, . . . , m} prefix-
incomparable for S. Then, |B| ≤ w such that w is the number of leaves of fS, equivalently
w := |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|.

Proof. First note that i < j are prefix-incomparable if and only if i is not ancestor of j in fS .
Suppose by contradiction that |B| > w, and consider the w leaf-to-root paths of fS . Note
that these w leaf-to-root paths cover all the vertices of fS . By pigeonhole principle, there
must be i < j ∈ B in the same leaf-to-root path, that is i is ancestor of j, a contradiction. ◀
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▶ Theorem 28. Let G = (V, E) be a DAG, Σ a finite alphabet (σ = |Σ|), ℓ : V → Σ a
labeling function, S ∈ Σm a string and fS its failure function. We can decide whether S has a
match in (G, ℓ) in time O((|V | + |E|)w + σm), where w = |{i ∈ {0, . . . , m} |̸ ∃j, fS(j) = i}|.

Proof. We compute the matching automaton AS in O(σm) time. Then, we process the
vertices in topological order, and for each vertex v we compute PIv, the unique prefix-
incomparable set representing Bv (all prefix matches of S with paths ending in v). We
proceed according to Lemma 5 and Theorem 7 in O(m) preprocessing time plus O(w · d−

v )
time per vertex, adding up to O(w(|V | + |E|)) time in total. There is a match of S in (G, ℓ)
if and only if any PIv contains m. ◀

We note that w ≤ m, thus our algorithm is asymptotically as fast as the DAG algorithm,
which runs in time Ω((|V | + |E|)m). However, we note that for w to be o(m), a (very) long
prefix of S must be a (highly) periodic string. To see this, consider the longest prefix S[1..i]
of S, such that there exists j > i with i = fS(j). By definition, S[1..i] is a border of S[1..j],
thus S[k] = S[k + j − i] for k ∈ {1, . . . , i}, that is S[1..j] is a periodic string with period j − i.
Finally, note that if w = o(m), then m − i ∈ o(m), and thus the period j − i ∈ o(m).

B A linear time parameterized algorithm for the distance problems

Millani et al. [70] gave an O(|V |(|V | + |E|)) time algorithm to find a minimal forbidden path
in a general graph. They used this algorithm to design branching algorithms (see e.g. [32])
for the problems of finding maximum sized sets V ′ ⊆ V, dv := |V ′| and E′ ⊆ E, de := |E′|,
such that G[V ′] and (V, E′) are funnels, known as vertex and edge distance to a funnel. It
is know that (unless P = NP) there is an ϵ > 0 such that there is no polynomial time |V |ϵ
approximation [63] for the vertex version nor (1 + ϵ) approximation [70] for the edge version.
The authors [70] noted that if we consider a minimal forbidden path P of G of length |P | > 1,
then the edges of P can be contracted until |P | = 1 without affecting the size of the solution.
Moreover, they noted that if we consider such a P , two in-neighbors of the first vertex and
two out-neighbors of the last9, then V ′ must contain at least one of those 6 vertices and E′

one of those 5 edges, deriving O(6dv |V |(|V | + |E|)) and O(5de |V |(|V | + |E|)) time branching
algorithms for each problem10 [70, Corollary 1]. The authors also developed a more involved
branching algorithm, only for the edge distance problem on DAG inputs, running in time
O(3de(|V | + |E|)) [70, Theorem 4].

By noting that minimal forbidden paths can be further contracted to length zero (one
vertex) in the vertex distance problem, and that a minimal forbidden path can be found in
time O(|V | + |E|) (Lemma 11) we obtain the following result.

▶ Theorem 29. Let G = (V, E) be a graph. We can compute the vertex (edge) deletion
distance to a funnel in time O(5d(|V | + |E|)), where d is the deletion distance.

Proof. We follow the branching approach as in [70, Corollary 1], but in the case of vertex
distance we further contract the forbidden paths to length 0, the correctness of this step
follows by noting that any solution containing two different vertices in a forbidden path is
not minimum, since we still get a funnel by removing one of them (from the solution). As
such, the number of recursive calls is ≤ 5 for both problems. Moreover, by Lemma 11, we
can find a minimal forbidden path in time O(|V | + |E|). ◀

9 This structure is known as a butterfly.
10 After removing forbidden paths all cycles are vertex-disjoint thus the rest of the problem can be solved

by removing one vertex (edge) per cycle in one O(|V | + |E|) time traversal.
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