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Abstract
We revisit the Heaviest Induced Ancestors (HIA) problem that was introduced by Gagie,
Gawrychowski, and Nekrich [CCCG 2013] and has a number of applications in string algorithms.
Let T1 and T2 be two rooted trees whose nodes have weights that are increasing in all root-to-leaf
paths, and labels on the leaves, such that no two leaves of a tree have the same label. A pair of
nodes (u, v) ∈ T1 × T2 is induced if and only if there is a label shared by leaf-descendants of u and v.
In an HIA query, given nodes x ∈ T1 and y ∈ T2, the goal is to find an induced pair of nodes (u, v)
of the maximum total weight such that u is an ancestor of x and v is an ancestor of y.

Let n be the upper bound on the sizes of the two trees. It is known that no data structure of
size Õ(n) can answer HIA queries in o(log n/ log log n) time [Charalampopoulos, Gawrychowski,
Pokorski; ICALP 2020].1 This (unconditional) lower bound is a polyloglog n factor away from the
query time of the fastest Õ(n)-size data structure known to date for the HIA problem [Abedin,
Hooshmand, Ganguly, Thankachan; Algorithmica 2022]. In this work, we resolve the query-time
complexity of the HIA problem for the near-linear space regime by presenting a data structure that
can be built in Õ(n) time and answers HIA queries in O(log n/ log log n) time. As a direct corollary,
we obtain an Õ(n)-size data structure that maintains the LCS of a static string and a dynamic
string, both of length at most n, in time optimal for this space regime.

The main ingredients of our approach are fractional cascading and the utilization of an
O(log n/ log log n)-depth tree decomposition. The latter allows us to break through the Ω(log n)
barrier faced by previous works, due to the depth of the considered heavy-path decompositions.
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1 Introduction

The solutions to algorithmic problems on texts frequently involve the construction of text
indexes that can be built efficiently and offer a broad functionality, without significantly
increasing space usage. A prime example of such an index is the suffix tree, which is
ubiquitous in stringology. The work of Weiner [22] that introduced it, showed that it can be
used to efficiently solve a number of fundamental open problems such as the computation
of occurrences of patterns (given in an online manner) in a text or the computation of
the longest common substring of two strings. However, it is usually the case that a suffix
tree needs to first be augmented with other data structures before it can efficiently answer

1 The Õ(·) notation hides factors polylogarithmic in n.
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more sophisticated queries, e.g., returning the longest common prefix of two substrings or
the longest palindrome centered at some position; an augmentation with a lowest common
ancestors data structure suffices for these examples [16,17].

Crucially, a text index, such as the suffix tree, is built once and can then be queried an
arbitrary number of times. This is increasingly relevant: in many real-world scenarios, large
pieces of information are stored on servers and are constantly queried by a large number of
remote clients. From this perspective, it makes sense to devote some time to preprocess the
data stored on the server in order to be able to provide quick responses to remote users later.

The Heaviest Induced Ancestors problem, which was introduced by Gagie et al. [14] and
is defined next, has been proved to be useful in solving several variants of the problem of
computing a longest common substring of two strings [1, 4, 5, 8, 14].

We say that a tree is weighted if there is a weight associated with each node u of the tree,
such that weights along root-to-leaf paths are increasing, i.e., for any node u other than the
root the weight of u is larger than the weight of u’s parent. Further, we say that a tree is
labelled if each of its leaves is given a distinct label from [n], where n is the number of leaves.
As an example of a rooted, weighted, and labelled tree, consider the suffix tree of a string
S$, where $ does not occur in S, with the label of each leaf being the starting position of the
corresponding suffix and the weight of each node being the length of the string it represents.

▶ Definition 1. For two rooted and weighted trees T1 and T2 on n leaves, we say that two
nodes u ∈ T1 and v ∈ T2, are induced (by label ℓ) if and only if there are leaves x and y

labelled with ℓ, such that x and y are weak descendants of u and v, respectively.

Heaviest Induced Ancestors (HIA)
Input: Two rooted, weighted, and labelled trees T1 and T2 on n leaves.
Query: Given a pair of nodes u ∈ T1 and v ∈ T2, return a pair of induced nodes (u′, v′)
with the largest total weight, such that u′ is an ancestor of u and v′ is an ancestor of v.

Previous results and our contribution. Table 1 shows the state-of-the-art size vs. query-time
tradeoffs for the HIA problem prior to our work and our result. Gagie et al. [14] presented
several tradeoffs which have been since improved. We stress that the O(n log2 n)-size data
structure with query-time O(log n) included in Table 1 was only sketched in [14]. We briefly
discuss this sketch in Appendix A, as some of the ideas involved are similar to the ones we
use. The remaining Õ(n)-size known data structures found in Table 1 are due to Abedin et
al. [1]. Charalampopoulos et al. [8] showed an unconditional lower bound for near-linear size
data structures and a data structure with query-time O(1) and size O(n1+ϵ) for any constant
ϵ > 0. We now formally state our main result, which matches the lower bound of [8].

▶ Theorem 2. For any ϵ > 0, there is an O(n log2+2ϵ n)-size data structure for the HIA
problem that can be constructed in Õ(n) time and answers queries in O(log n/ log log n) time.

Applications of HIA. Before discussing some concrete applications of the HIA problem
in string algorithms and the consequences of our results for them, we give a high-level
description of how the HIA problem comes up in variants of computing an LCS.

Consider a string S and a chosen subset A of its positions, that we call anchors. Further,
consider the following two tries: a trie T ← for the strings in {S[1 . . k−1]R : k ∈ A}, where UR

denotes the reversal of U , and a trie T → for the strings in {S[k . . |S|] : k ∈ A}. In other
words, for every anchor k ∈ A, we have a path in the first trie for every prefix of S[1 . . k−1]R
and a path in the second trie for every prefix of S[k . . |S|]. We label each leaf of the two tries
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Table 1 Size vs. query-time tradeoffs for the HIA problem; the size is measured in machine words.

Size Query time Paper

Õ(n) Ω(log n/ log log n) [8]

O(n) O(log2 n/ log log n) [1]

O(n log n) O(log n log log n) [1]

O(n log2 n) O(log n) sketched in [14], see Appendix A

O(n log2+ϵ n) O(log n/ log log n) this work

O(n1+ϵ) O(1) [8]

with the anchor it corresponds to. Now, observe that a substring S[i . . j] that crosses an
anchor k, i.e., i < k ≤ j, corresponds to an induced pair of nodes in the tries. Indeed, there
is a path representing S[i . . k − 1]R in the first trie and a path representing S[k . . j] in the
second trie. An illustration of this idea is provided in Figure 1. The set of anchors and the
HIA queries performed in an application of this technique depends on the specific problem it
is used for. For some of the usages, one may consider using a compressed form of tries [18].

As a first application, consider the maintenance of an LCS of a static string T and a
dynamic string S. By plugging our HIA data structure into the approach of [8], we obtain
the following result, improving the state-of-the-art by polyloglog n factors, and matching the
lower bound for the update-time when nearly-linear space is available [8, Theorem 1].

▶ Corollary 3. We can maintain an LCS of a dynamic string S and a static string T , each
of length at most n, in O(log n/ log log n) time per substitution operation using Õ(n) space,
after an Õ(n)-time preprocessing.

Further, the authors of [14] (implicitly) reduced to the HIA problem, the problem of
preprocessing a text given in LZ77 compressed form so that one can compute its LCS with
uncompressed patterns given online. Our HIA data structure yields the following result.

▶ Corollary 4. Let S be a string of length N whose LZ77 parse consists of n phrases. We can
store S in O(n log N + n polylog n) space such that, given a pattern P of length m, we can
compute the LCS of S and P in O(m log n/ log log n) time. For each pattern P , the returned
result may be (consistently) incorrect with probability inverse polynomial in n.2

2 Randomization is only used in the construction; all queries for the same pattern give identical results.

T ← T →

u

v

k

k

Figure 1 An illustration of the anchoring technique for LCS computation, with the constructed
tries T ← and T → drawn so that their roots are attached (in the middle). Any substring anchored
at k, can be obtained by reading in a left-to-right manner the edge-labels from some node u ∈ T ←
to some node v ∈ T →, that both have a leaf-descendant labelled with k.
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Other applications of the HIA problem in string algorithms can be found in [1].

Tree Decompositions. One of the obvious divide-and-conquer techniques for efficiently
solving algorithmic problems on trees is that of decomposing the tree(s) into smaller pieces
and treating each of them separately. The most important attributes of a tree decomposition
are usually its depth, i.e., the maximum number of pieces that one path can intersect, and
the structure of each individual piece (e.g., pieces being paths may offer an advantage). We
next describe some tree decompositions for a tree T with n nodes. For a node v, denote by
s(v) the number of nodes in v’s subtree.

Arguably, the most well-known tree decomposition is the heavy-path decomposition [17].
Abstractly, this decomposition is a partition of the edges into light and heavy, such that:

all connected components after deleting the light edges are paths, called heavy paths;
each root-to-leaf path consists of O(log n) prefixes of heavy paths and O(log n) light
edges, i.e., the depth of the decomposition is O(log n).

A heavy-path decomposition can be realized in several ways; two of which are as follows:
HP1: Each non-leaf node u of the tree chooses a child v with maximum s(v) and the
edge from u to v is designated as heavy. The remaining edges outgoing from u are light.
HP2: An edge (u, v) is designated as heavy if and only if ⌊log s(u)⌋ = ⌊log s(v)⌋.3

Intuitively, using a heavy-path decomposition, one may often lift an algorithm that only works
for paths and/or balanced trees to work for arbitrary trees – usually with some overhead.

All previous works on the HIA problem used heavy-path decompositions, which, as
discussed, are of depth Ω(log n). This adversely affects their query times as one may have
to traverse the decomposition along a root-to-leaf path at query time. Thus, in order to
achieve sublogarithmic query time, we considered tree decompositions of smaller depths.
There are a couple of generalizations of heavy-path decompositions that have the sought
depth, i.e., O(log n/ log log n). We next discuss two such decompositions that are also based
on partitioning the edges into light and heavy. The caveat is that, for each of them, the
connected components after the removal of the light edges are trees, which we call heavy
trees, instead of paths and hence some extra work is required.4

The heavy α-tree decomposition, introduced by Bille et al. [6], is of depth O(logα n) and
is defined analogously to HP1: each non-leaf node u chooses its (at most) α heaviest (with
respect to subtree-sizes) children; the edge from u to each of these children is designated
as heavy, while all remaining edges outgoing from u are designated as light. By setting
α = ⌊log n⌋ one gets the sought depth.

An alternative is the so-called ART decomposition due to Alstrup et al. [2], which, for an
input integer parameter b, has depth O(logb n). For ease of presentation, we consider b to be
equal to ⌊log n⌋ so that the depth of the decomposition is O(log n/ log log n). A partition of
the edges yields such an ART decomposition if and only if each heavy tree contains O(log n)
nodes that have more than one child (in the heavy tree). Alstrup et al. [2] showed how to
compute an ART decomposition by computing a set of leafmost light edges (in the spirit of

3 In some works this has been called a centroid decomposition [10]. It should not be confused with the
hierarchical decomposition of the tree obtained by recursively deleting a centroid node, that is, a node
whose removal splits the tree into three roughly equal components [7, 15].

4 Heavy trees are sometimes called micro trees, while the tree obtained from T by contracting each micro
tree is called a macro tree. We avoid this notation to not confuse with the so-called micro-macro
decomposition [3], which, for a positive integer k ≤ n, is a partition of the vertices of T into O(n/k)
sets, such that each set S is of size O(k) it induces a subtree of T and has at most two vertices that
have neighbours that are not in S.
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HP2 with the base of the logarithm changed from 2 to ⌊log n⌋), removing them along with
their descendants from the tree, and recursing. Here, for convenience, we compute an ART
decomposition similar to the HP2-realization of a heavy-path decomposition: an edge (u, v)
is heavy if and only if both s(u) and s(v) are in (n/⌊log n⌋k+1

, n/⌊log n⌋k]. For each heavy
tree, we call branches its maximal down-the-tree paths in which all nodes except the deepest
one have exactly one child (in the heavy tree); each heavy tree has O(log n) branches.

Our techniques. In order to answer an HIA query for nodes u and v, we consider
O(log n/ log log n) pairs of heavy trees that consist of a heavy tree in the root-to-u path and
a heavy tree in the root-to-v path. For each such pair, we compute an induced pair (x, y) of
nodes in these heavy trees that are ancestors of u and v, respectively, and have maximum
total weight. Similarly to previous work, we observe that not every pair of heavy trees needs
to be considered. Instead, it suffices to consider a number of pairs of heavy trees linear to
the depth of the tree decompositions by a procedure analogous to the natural algorithm for
checking whether there are two elements of a sorted list that sum to a target t: start with
two pointers, one at the beginning of the list and one at the end and move each of them in
only one direction (either to the right or left). For each pair of heavy trees, we construct
data structures that can efficiently handle each of the cases of how the locations of the lowest
ancestors of u and v in the heavy trees relate to the locations of the lowest ancestors (in the
heavy trees) of same-label leaves. Each data structure considers similar cases as previous
work, however now we are working with two trees instead of two paths, and hence need
to be more careful. This way, we reduce an HIA query to O(log n/ log log n) predecessor
queries. By answering each of these predecessor queries independently, we obtain a data
structure that answers HIA queries in O(log n) time. Indeed, in our case, each predecessor
query requires Ω(log log n) time to be answered independently.

However, crucially, we show how to design the data structures so that all predecessor
queries need only two values: the preorder number of u or the preorder number of v. This
is achieved by reordering the trees so that heavy edges come last. Then, larger preorder
numbers correspond to a larger depth of the lowest ancestor on a branch. This means that
the combination of our techniques with fractional cascading would yield a faster algorithm
for answering all the predecessor queries; the first one for each queried value would take
O(log log n) time, while all subsequent ones would take O(1) time each. The final technical
hurdle is that fractional cascading requires the so-called underlying catalog graph to have
polylogarithmic degree [21]. The construction of such a graph is straightforward if T1 and T2
are of polylogarithmic degree: roughly speaking, it suffices to consider the Cartesian product
of two trees whose nodes represent branches and heavy trees of each of T1 and T2. We
overcome this difficulty in the general case by reducing the maximum degree of these trees
prior to taking their Cartesian product while maintaining all of their desirable properties.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Throughout the paper, we perform the same
operations on T1 and T2 and define objects in these trees, so we are going to use T⋆ to denote
any of the trees. Similarly, we are going to use v⋆ to denote a node v1 ∈ T1 or a node v2
in T2 etc. as an abbreviation of writing that some property holds for vi for both i ∈ {1, 2}.

Lowest Common Ancestor. LCA queries can be answered in constant time after an
O(n)-time preprocessing [17].

CPM 2023
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LowestCommonAncestor (LCA)
Input: A rooted tree T .
Query: What is the node of largest depth that is an ancestor of both u and v?

Predecessor query. For a static set S, a combination of x-fast tries [23] and deterministic
dictionaries [20] yields an O(n)-size data structure that can be built in O(n) time and answers
predecessor queries in O(log log U) time deterministically (cf., [12, Proposition 2]); this is
optimal [19].

PredecessorQuery
Input: A set S of n integers from [U ].
Query: For a given integer y, what is the largest x ∈ S such that x ≤ y?

Range Minimum Query. RMQs can be answered in constant time after an O(n)-time
preprocessing [11, 13]. By setting, for each i, S[i] := |U | − S[i], we get a structure for the
symmetric RangeMaximumQuery problem.

RangeMinimumQuery (RMQ)
Input: A sequence S of n integers from [U ].
Query: For given positions i and j, with 1 ≤ i ≤ j ≤ n, what is (the position of) the
minimum among S[i], S[i + 1], . . . , S[j]?

Deterministic Static Dictionary. A dictionary is a structure that stores a set of keys (often
with associated values) and allows answering membership queries (or getting the value of
a given key). There are multiple randomized solutions, but there is even a deterministic
solution with O(n) space, Õ(n)-time preprocessing, and constant-time queries [20].

Fractional cascading. Consider a directed graph C, called the catalog graph, which has a
sorted list (also called a catalog) in each of its nodes. Let the total size of the lists be n.
Now, suppose that we want to answer queries of the following type: for a connected subgraph
G of C and a query value v, find the predecessor of v in each of the lists stored in the nodes
of G.

A naive way of solving this problem would be to ignore any preprocessing and run a
separate binary search in the sorted list of each of the nodes of G, for a total of O(|G| log n)
time. Fractional cascading is a general optimization technique that allows the speed-up of
multiple binary searches for the same value over multiple related sorted sequences of objects.

If the degree of each node of the catalog graph is bounded by a constant, the original
solution of Chazelle and Guibas [9] answers a query in O(log n + |G|) time after a linear-time
preprocessing in the comparison model. To be precise, it is sufficient for the catalog graph
to have locally bounded degree (as per Definition 1 of [9]). Unfortunately, in our case, this
is not useful. A subsequent work of Shi and JáJá [21] achieved the same complexities for
graphs of polylogarithmic maximum degree in the word RAM model of computation (in the
original description, the graph is a tree, however, there is no difficulty in extending this to
the general setting considered by Chazelle and Guibas [9]). Crucially, these data structures
can also handle the case where the nodes of G are given one by one in an online manner;
the only requirement is that each node (other than the first) must be a neighbour of some
previous one. Note that the O(log n) term in the complexities comes from performing a
binary search in the first of the considered lists. Then, the predecessor of the query value v

in each of the subsequently considered lists is obtained by following a constant number of
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pointers, which can be retrieved in O(1) time. (During the preprocessing phase, the catalogs
are augmented in an appropriate manner and said pointers are constructed.) In the word
RAM model of computation, the first query can be solved faster using other data structures,
e.g., in O(log log U) time with the structure discussed above for the PredecessorQuery
problem.

3 An Õ(n)-size Data Structure with Optimal Query Time

Let b > 1 be a parameter to be chosen later. Consider a rooted, weighted, and labelled
tree T . The weight of a node u is denoted by weight(u). For a node v, we denote by s(v)
the number of nodes in v’s subtree, including v. For an integer k, a node v is on layer k if
and only if n/bk+1 < s(v) ≤ n/bk. An edge that connects nodes of the same layer is called
heavy and the other edges are light. Each maximal subtree that does not contain any light
edges is called a heavy tree. We stress that a heavy tree might be a singleton.

We decompose each heavy tree into branches, that is, maximal down-the-tree paths of
nodes, where every node apart from the deepest one has one child (in the heavy tree). The
last node is either a leaf of the heavy tree or has at least two children. Note that there can
be branches consisting of a single node. We call a node implicit if it is an internal (non-leaf)
node of the heavy tree with one child; otherwise, we call it explicit. For a heavy tree, we
obtain a compacted version of it, called compacted heavy tree, by eliminating all the implicit
nodes through the contraction of either of their incident edges. See an example in Figure 2.
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Figure 2 An example tree with n = 26 is shown. Each node is labelled with its subtree size,
while b = 3. On the left, the heavy edges are thick, while the light edges are thin. On the right,
the tree is decomposed into heavy trees (marked with ellipses). The compaction of heavy trees is
illustrated as follows: empty circles denote implicit nodes, while full circles denote explicit nodes.

Observe that in a compacted tree, every non-leaf node has at least two children. Hence,
there are fewer internal nodes than there are leaves of the tree. As every leaf in a heavy tree
has a sufficiently big subtree underneath it, we obtain a bound on the total number of nodes
inside a single compacted heavy tree; this shows that we obtain an ART decomposition [2].

▶ Lemma 5. There are at most O(log n/ log b) layers in a tree T on n leaves and each heavy
tree has O(b) branches.

Proof. Consider a heavy tree H of T and its compacted form HC . Let r be the root of H.
For every leaf ℓ of H, we have that s(ℓ) > s(r)/b as ℓ and r are nodes of the same heavy tree,
and hence they are in the same layer of T . As the subtrees of T rooted at the leaves of H are

CPM 2023
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disjoint and their total size is at most s(r), H contains at most b leaves. Further, as there
are no internal nodes with one child in HC , there are at most b− 1 non-leaf nodes in HC ,
and hence HC has O(b) nodes. All branches in H are disjoint, so there are O(b) of them.

Consider the k-th layer of the tree T and a node u in this layer. As the subtree of u has
at least one node, we have 1 ≤ s(u) ≤ n/bk, so k ≤ logb n = log n/ log b. ◀

For an HIA query (v1, v2), the paths from v1 and v2 to the roots of their respective trees
are called query paths. The result of an HIA query is a pair of nodes (u1, u2), that are on
the query paths from v1 and v2, respectively. To answer a query (v1, v2), we identify the
sequences of heavy trees B1 and B2 that contain nodes on the query paths from v1 and v2,
respectively, and perform restricted HIA queries for some pairs of those heavy trees. More
precisely, in each step of the algorithm, having chosen two heavy trees B1[i] and B2[j], we try
to find the pair of induced ancestors (u1, u2) ∈ B1[i]×B2[j] of (v1, v2) with the maximum
combined weight or determine that there is no such pair. A pseudocode for this procedure is
given as Algorithm 1.

Algorithm 1 Algorithm for answering HIA queries.

1 function hia(T1, T2, v1, v2)
2 (r1, r2)← null
3 (B1, B2)← sequences of heavy trees on paths from v1 and v2 down-the-tree
4 i← 0
5 j ← |B2| − 1
6 repeat
7 x1 ← lowest ancestor of v1 in B1[i]
8 x2 ← lowest ancestor of v2 in B2[j]
9 (u1, u2)← restricted-hia(v1, v2, B1[i], B2[j], x1, x2)

10 if (r1, r2) = null or weight(u1) + weight(u2) > weight(r1) + weight(r2)
then

11 (r1, r2)← (u1, u2)
12 if (i = |B1| − 1) and (j = 0) then
13 return (r1, r2)
14

15 if i + 1 < |B1| and roots of B1[i + 1] and B2[j] are induced then
16 i← i + 1
17 else
18 j ← j − 1
19 until false

To make the description more modular, we provide x1 and x2 to the restricted HIA query,
where x⋆ is the lowest ancestor of v⋆ in the considered heavy tree. Note that x1 is either
the parent of the root of B1[i + 1] if i + 1 < |B1| or x1 equals to v1 otherwise, and similarly
for x2. We note that in Algorithm 1, we ask restricted HIA queries about the same pair
(v1, v2) for various pairs (B1[i], B2[j]) of heavy trees and it may be that v1 ̸∈ B1[i] and/or
v2 ̸∈ B2[j], whereas we also provide nodes x⋆, in which v⋆ connects to the respective heavy
subtree in B⋆

▶ Lemma 6. Algorithm 1 performs O(log n/ log b) restricted HIA queries to find the heaviest
induced ancestors of nodes u and v.
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Proof. The paths from v⋆ to the roots pass heavy trees with monotonically decreasing indices
of layers, so the sequences B1 and B2 contain at most O(log n/ log b) elements. After every
restricted HIA query, we either increase i or decrease j by 1, so the total number of restricted
HIA queries that we perform is at most |B1|+ |B2| = O(log n/ log b).

The correctness follows from the monotonicity of being induced. For an induced pair of
nodes, any pair of their (weak) ancestors is also induced. Conversely, if a pair is not induced,
any pair of their (weak) descendants is also not induced.

This implies that if the roots of B1[i] and B2[j] are induced then there is no need to
query for any pair (B1[i′], B2[j′]) with (i′ < i)∧ (j′ < j), as such a query would return a pair
of (strict) ancestors of the pair returned by the restricted HIA query for (B1[i], B2[j]). We
call a pair of trees (B1[i′], B2[j′]) dominated, if there exist i > i′ and j > j′ such that the
roots of B1[i] and B2[j] are induced. We show that the algorithm performs restricted HIA
queries at Line 9 exactly for those pairs of heavy trees that (i) are not dominated and (ii) for
which the result of the restricted HIA query is not null.

The algorithm maintains the invariant that each of the restricted HIA queries is called
for the pairs of trees for which their roots are induced and that the pair (B1[i], B2[j]) is
not dominated. This is true for the first iteration, where the pair (B1[0], B2[|B2| − 1]) is
considered, because B2[|B2| − 1] has a leaf and the root of B1[0] is the root of T1. Now we
show that the invariant is maintained later. We start with the assumption that the result of
restricted-hia(v1, v2, B1[i], B2[j], x1, x2) is not null and this pair is non-dominated. Now,
we have to distinguish between two cases.
Case 1: We next consider pair (B1[i + 1], B2[j]). It means that the check in Line 15

confirmed that the roots of the the trees are induced, so the the result of calling
restricted-hia(v1, v2, B1[i + 1], B2[j], x1, x2) is not null. Further, this pair of heavy
paths is not dominated since (B1[i], B2[j]) is not dominated.

Case 2: We next consider pair (B1[i], B2[j − 1]). This can only happen if i = |B1| − 1 or the
roots of B1[i + 1] and B2[j] are not induced; in either of these cases, (B1[i], B2[j − 1]) is
not dominated. Further, as the answer to the HIA query for pair (B1[i], B2[j]) is not null,
the answer for (B1[i], B2[j − 1]) cannot be null either.

Thus, the invariant is maintained in both cases.
Clearly, the heaviest induced pair of ancestors of v1, v2 belongs to a pair of heavy trees

that satisfy conditions (i) and (ii). We claim that we process all such pairs. Observe that
for a fixed j there are two indices 0 ≤ i1 < i2 ≤ |B1| such that the pair B1[i], B2[j] is
dominated for 0 ≤ i < i1, non-dominated for i1 ≤ i < i2, and corresponds to a null answer for
i2 ≤ i < |B1|. By the invariant, just after any decrease of j in Line 18 it holds that i ≥ i1, as
B1[i], B2[j] is non-dominated. Actually i = i1, because the pair B1[i− 1], B2[j] is dominated
as in the previous step we considered the pair B1[i], B2[j + 1] for which the answer was not
null. As in the next steps we process all i up to (but excluding) i2, the claim follows. ◀

3.1 Restricted HIA Queries
In this subsection, we present a data structure that efficiently answers restricted HIA queries.

▶ Theorem 7. For every two trees T1, T2 on n leaves and an integer parameter b ∈ [n],
there exists an O(nb2 log2 n/ log2 b)-size data structure that can be computed in Õ(nb2/ log2 b)
time and answers (i) queries about whether the roots of two given heavy trees are induced
in constant time, (ii) any restricted HIA query restricted-hia(v1, v2, H1, H2, x1, x2) in
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constant time plus the time required to answer a predecessor query about pre(v1) and one
about pre(v2); these predecessor queries are performed on two out of O(b2) (preprocessed)
lists stored for the pair of heavy trees (H1, H2).

We divide the proof into three parts: we first describe the preprocessing phase, then
discuss the properties of the created data structure, and, finally, present the query procedure.

Preprocessing. First, we compute the partition of the edges of each of T1, T2 into heavy
and light, and the implied heavy trees. For each node, we store its assignment to the heavy
tree and to the branch to which it belongs. Further, for each T⋆, we build a linear-size data
structure for answering LCA queries in O(1) time [17]. For each node in T⋆, we fix the order
of its children such that the children that are in the same heavy tree are last. (The order
of children that are connected to the parent with the same type of edge, heavy or light, is
arbitrary.) Next, we compute preorder traversals of T⋆, for each node u, we denote by pre(u)
the preorder number of u and by T⋆[p] the node of T⋆ whose preorder number is p; we have
T⋆[pre(u)] = u. Additionally, for each label, we identify the leaves of T1 and T2 with that
label (recall the labels in a single tree are pairwise distinct).

Next, for each pair (ℓ1, ℓ2) of leaves with the same label, we iterate over all pairs
(Bℓ1

1 [i1], Bℓ2
2 [i2]) of heavy trees on their query paths and insert a point to the data structure

for each pair of branches in Bℓ1
1 [i1]×Bℓ2

2 [i2]. This procedure is formalized as Algorithm 2.

Algorithm 2 Preprocessing for a pair of leaves (ℓ1, ℓ2) with the same label.

1 procedure add label(T1, T2, ℓ1, ℓ2)
2 (Bℓ1

1 , Bℓ2
2 )← sequence of heavy trees on query paths from ℓ1 and ℓ2

3 for i1 ← 0, 1, . . . , |Bℓ1
1 | − 1 do

4 for i2 ← 0, 1, . . . , |Bℓ2
2 | − 1 do

5 for e1 ← branch of Bℓ1
1 [i1] do

6 for e2 ← branch of Bℓ2
2 [i2] do

7 w1 ← LCA(ℓ1, lowest node on e1)
8 w2 ← LCA(ℓ2, lowest node on e2)
9 insert point (pre(w1), pre(w2)) to DB

ℓ1
1 [i1],Bℓ2

2 [i2][e1, e2]

We call pairs (B1, B2) of heavy trees that are processed by Algorithm 2 relevant. We first
run this algorithm once just to record all relevant pairs of heavy trees, without inserting any
points to any structures. We then sort the relevant pairs, remove duplicates, and construct
a deterministic dictionary over them [20]. This allows us to check in constant time if the
roots of two trees are induced because this is equivalent to checking if the pair of trees is
relevant. For each relevant pair of heavy trees, we initialize an array DB1,B2 indexed by pairs
of branches (e1, e2), where e1 is a branch in B1 and e2 is a branch in B2. In each entry of the
array, we create (store a pointer to) a data structure for the corresponding pair of branches.
We then re-run Algorithm 2, inserting the points to the structures as needed, with the help
of the deterministic dictionary built for relevant pairs of heavy trees. As each branch e⋆

belongs to a unique heavy tree, we often drop the superscript and write D[e1, e2] instead of
DB1,B2 [e1, e2]. We call a pair (e1, e2) of branches relevant if and only if pair of their assigned
heavy trees is relevant. By Lemma 5, every query path is decomposed into O(log n/ log b)
parts on different layers and each heavy tree has O(b) branches. Hence, for every pair (ℓ1, ℓ2)
of leaves with the same label, we insert a point to O(b2 log2 n/ log2 b) structures.
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Finally, for each relevant pair of branches (e1, e2), we perform the following postprocessing
of structure D[e1, e2]:

Remove all points (x, y) for which there exists another point (x′, y′) such that x ≤ x′, y ≤ y′

and (x, y) ̸= (x′, y′). This can be done in Õ(|D[e1, e2]|) time by sorting the points and
processing them in the left-to-right order.
Let Dx[e1, e2] and Dy[e1, e2] be the sets of x- and y-coordinates of the remaining points,
respectively. We build a data structure for the PredecessorQuery problem for each of
Dx[e1, e2] and Dy[e1, e2] separately.
We build a data structure for the RangeMaximumQuery problem for the points
remaining in D[e1, e2] sorted by x-coordinate, where the weight of a point (x, y) is
weight(T1[x]) + weight(T2[y]).

We call the above stage the postprocessing of D[e1, e2].
To summarize the whole preprocessing stage for trees T⋆, for each of the n labels we

add O(b2 log2 n/ log2 b) points to structures D[·, ·], for a total number of O(nb2 log2 n/ log2 b)
points. The postprocessing of all the structures D[·, ·] takes nearly linear time in their size and
hence the total running time is Õ(nb2/ log2 b). The structures for the PredecessorQuery
and RangeMaximumQuery problems have size linear in the number of elements they are
built over and hence the total space is O(nb2 log2 n/ log2 b).

Properties of structures D[e1, e2]. In this paragraph, we show some properties of the
structures D[e1, e2] that are useful for answering restricted HIA queries efficiently.

▶ Property 8. For every pair (w1, w2) added to DB
ℓ1
1 [i1],Bℓ2

2 [i2][e1, e2], w⋆ is either on e⋆ or
on the path from the highest node of e⋆ to the root of Bℓ⋆

⋆ [i⋆].

Proof. Recall that w⋆ is the lowest common ancestor of ℓ⋆ and the lowest node q on e⋆.
Observe that as Bℓ⋆

⋆ [i⋆] is on the query path from ℓ⋆, the root r of Bℓ⋆
⋆ [i⋆] is an ancestor of

both ℓ⋆ and q. Hence, w⋆ lies on the r-to-q path, which directly yields the statement. ◀

Note that after the first step of postprocessing, D[e1, e2] satisfies the following property:

▶ Property 9. After the postprocessing, for every pair (e1, e2) of branches, after sorting
the points of D[e1, e2] increasingly by x-coordinate, the sequence of points is also sorted
decreasingly by y-coordinate.

Informally, we can now consider a one-dimensional problem, with points forming a sequence
that can be efficiently navigated both in x- and y-coordinates via predecessor queries.

We next show how the computed data structures D[e1, e2] enable us to answer restricted
HIA queries efficiently.

Answering a restricted HIA query. We are now ready to present how to answer a restricted
HIA query for a pair (v1, v2) of nodes and heavy trees B1 and B2 on the query paths from v1
and v2. Let (r1, r2) = restricted-hia(v1, v2, B1, B2, x1, x2) be a pair of ancestors of v1 and
v2 within the trees B1 and B2 that are induced and have the maximum total weight. Recall
that x⋆ is the lowest weak ancestor of v⋆ that is in B⋆ and let e⋆ be the branch containing x⋆.
Further, let ℓ be the label inducing (r1, r2) and let leaves ℓ⋆ share this label.

First, we show that we can find an induced pair of ancestors of v1 and v2 with the
maximum combined weight using the structure D[e1, e2] before postprocessing. Then, we
show that after the postprocessing stage, we can still retrieve the correct answer but more
efficiently, by performing predecessor queries for pre(x1) and pre(x2). Finally, we show that

CPM 2023



8:12 Optimal Near-Linear Space Heaviest Induced Ancestors

we can call predecessor queries for pre(v1) and pre(v2) instead of pre(x1) and pre(x2). The
last step is not important for the correctness or efficiency of a single restricted HIA query
but improves the complexity of Algorithm 1. Indeed, as all predecessor queries are for one
of pre(v1) or pre(v2), we can use fractional cascading. We explain this final component in
detail in Section 3.2.

Recall that in Algorithm 2, we insert point (pre(w1), pre(w2)) to D[e1, e2], where w⋆ =
LCA(ℓ⋆, lowest node on e⋆). In the proof of Property 8, we mention that w⋆ always belongs
to B⋆ as the root of B⋆ is an ancestor of both ℓ⋆ and the lowest node on e⋆. There are two
possible relative locations of w⋆ and x⋆ within a heavy tree:

ℓ is below x⋆ when w⋆ is a (not necessarily proper) descendant of x⋆;
ℓ is attached above x⋆ when w⋆ is a proper ancestor of x⋆.

There are four cases for the relative locations of ℓ with respect to x1 and x2:
Case 1: ℓ is attached above x1 and x2,
Case 2: ℓ is attached above x1 and ℓ is below x2,
Case 3: ℓ is attached above x2 and ℓ is below x1,
Case 4: ℓ is below x1 and x2.

We next treat each of these cases. For each of them, we retrieve the pair of induced
ancestors of x1 and x2 with the largest total weight among all pairs of ancestors induced by
a label ℓ appropriately located with respect to x1 and x2. Each of these variants gives us
a candidate pair for the restricted heaviest induced ancestors of x1 and x2. In the end, we
return the candidate with the largest total weight. Similar case analysis was performed in
previous solutions for the HIA problem, e.g., in [14].

▶ Lemma 10. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] before the postprocessing.

Proof. By Property 8, for every two points (pre(w1), pre(w2)) and (pre(w′1), pre(w′2)) added
to D[e1, e2], we have that w1 is either a weak ancestor or a descendant of w′1, and similarly
for w2 and w′2. Hence, the preorder numbers of the nodes correspond to their depths and we
can check the ancestry relation by comparing them: for nodes u, u′ on a path, u is a weak
ancestor of u′ if and only if pre(u) ≤ pre(u′).

Using this property, we show how to reduce each of the four cases listed above to finding a
specific point in a particular rectangular subset of points. For now, we ignore the efficiency of
the queries (a trivial implementation takes linear time) and focus on showing that the correct
answer to the restricted HIA query can be retrieved from D[e1, e2] before the postprocessing.
Case 1: Every leaf ℓ that is attached above x1 and x2 in nodes w1 and w2 makes the pair

(w1, w2) a candidate result of the restricted HIA query. Hence we need to find a point
(x, y) in D[e1, e2] such that x < pre(x1), y < pre(x2), and weight(T1[x]) + weight(T2[y])
is maximum. Then, (T1[x], T2[y]) is a restricted HIA candidate pair for (v1, v2).

Case 2: We need to find a point (x, y) ∈ D[e1, e2] such that x < pre(x1), y ≥ pre(x2) and
weight(T1[x]) is maximized. Then, (T1[x], x2) is a restricted HIA candidate pair for
(v1, v2).

Case 3: This case is symmetric to Case 2. We need to find a point (x, y) ∈ D[e1, e2] such
that x ≥ pre(x1), y < pre(x2) and weight(T2[y]) is maximized. Then, (x1, T2[y]) is a
restricted HIA candidate pair for (v1, v2).

Case 4: We need to check if there exists a point (x, y) such that x ≥ pre(x1) and y ≥ pre(x2).
If so, the pair (x1, x2) is a restricted HIA candidate pair for (v1, v2).
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In each of the cases, we return a pair, if one exists, of induced ancestors of (x1, x2) and
hence also of (v1, v2). The label ℓ of leaves ℓ1 and ℓ2 that induces the pair (r1, r2) of heaviest
induced ancestors of (v1, v2) in B1 × B2 inserted the point to D[e1, e2], since B1 and B2
are on the query paths from ℓ1 and ℓ2, respectively. Hence, the pair (r1, r2) is found while
considering one of the four cases. ◀

Now, we show that it suffices to run the above algorithm only for the points in D[e1, e2] after
the postprocessing stage.

▶ Lemma 11. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] after the postprocessing.

Proof. As discussed in the proof of Lemma 10, for any two points (pre(w1), pre(w2)) and
(pre(w′1), pre(w′2)) added to D[e1, e2], wi and w′i lie on a single root-to-leaf path, so their
preorder numbers are in the same order as their depths in the tree. Recall that the trees are
monotonically weighted, that is, the weights along each root-to-leaf path are increasing, so
we have that pre(wi) ≤ pre(w′i) implies weight(wi) ≤ weight(w′i).

Let w = (pre(w1), pre(w2)) be the point corresponding to the answer found by the
algorithm presented in Lemma 10. Note that the returned induced pair of ancestors is
not necessarily (w1, w2), e.g., it can be (w1, x2). Suppose that w was removed during the
postprocessing phase. If so, it happened because there exists a point w′ = (pre(w′1), pre(w′2))
where pre(w⋆) ≤ pre(w′⋆) and w ̸= w′. If w′ is processed in a different case than w, then
the pair of ancestors corresponding to w′ has a larger total weight than the one returned,
yielding a contradiction. If w′ is processed in the same case as w, then the pair of ancestors
corresponding to w′ gives a pair of ancestors whose total weight is not smaller than that of
the returned pair. Hence, the reduction presented in the proof of Lemma 10 still holds for
the set D[e1, e2] after the postprocessing. ◀

Next, we present how to implement each of the four cases in Lemma 10 efficiently using the
fact that the points in D[e1, e2] have been postprocessed.

▶ Lemma 12. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] after the postprocessing, with two predecessor queries: one
for pre(x1) and one for pre(x2).

Proof. By computing the predecessor of pre(x1) in Dx[e1, e2], we obtain intervals Ix<pre(x1)
x

and Ix≥pre(x1)
x of Dx[e1, e2]. Similarly, intervals Iy<pre(x2)

y and Iy≥pre(x2)
y of Dy[e1, e2] are

obtained by computing the predecessor of pre(x2) in Dy[e1, e2]. Note that by Property 9,
points from Iy≥pre(x2)

y (resp. Iy<pre(x2)
y ) of Dy[e1, e2] correspond to points from the interval

of Dx[e1, e2] that we denote Iy≥pre(x2)
x (Iy<pre(x2)

x ). Hence, we can translate each of the
conditions on points in the cases of Lemma 10 to an intersection ICase i

x of two intervals on
Dx[e1, e2]. This reduces each of the four cases to:
Case 1: Find the point with maximum weight weight(T1[x]) + weight(T2[y]) in ICase 1

x

using an RMQ.
Case 2: By the monotonicity of weights with respect to x-coordinates, the point with

maximum weight weight(T1[x]) in ICase 2
x is the rightmost element of ICase 2

x .
Case 3: By the monotonicity of weights with respect to y-coordinates and Property 9, the

point with maximum weight weight(T2[y]) in ICase 3
x is the leftmost element of ICase 3

x .
Case 4: It suffices to check if ICase 4

x is non-empty. ◀
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▶ Lemma 13. The answer to restricted-hia (v1, v2, B1, B2, x1, x2) can be retrieved from
the information stored in D[e1, e2] after the postprocessing, with two predecessor queries: one
for pre(v1) and one for pre(v2).

Proof. Recall that in the approach presented in Lemma 12 we compute the predecessor of
pre(x1) in Dx[e1, e2] in order to divide Dx[e1, e2] into Ix<pre(x1)

x and Ix≥pre(x1)
x and that all

elements in Dx[e1, e2] are of the form pre(w1) for a node w1 on the path from the lowest
node on e1 to the root of B1.

We consider only v1 and x1 as the analysis for v2 and x2 is symmetric. We can focus on the
case where v1 ̸= x1, as the other case is immediate. We clearly have that pre(v1) ≥ pre(x1)
as v1 is a descendant of x1. Recall that in the preprocessing stage, we reordered children of
every node in such a way that children connected by a light edge are before those connected
by a heavy edge, so if there is a child x′1 of x1 on e1 we have pre(x1) ≤ pre(v1) < pre(x′1), as
v1 is a descendant of a light child of x1 (by the definition of x1). Hence, the predecessor of
pre(v1) is the same as the predecessor of pre(x1) in Dx[e1, e2]. ◀

This concludes the proof of Theorem 7.
Finally, by setting the value of b to ⌊logϵ n⌋ for any constant ϵ > 0, we obtain a data

structure using O(n log2+2ϵ n/(log logϵ n)2) = O(1/ϵ2 ·n log2+2ϵ n/(log log n)2) space capable
of answering restricted HIA queries in constant time plus the time required for answering two
predecessor queries: one for pre(v1) and one for pre(v2). Algorithm 1 performs O(log n/ log b)
restricted HIA queries in order to answer an HIA query, so the total time required is
O(1/ϵ · log n). However, as all the predecessor queries ask about one of two values in different
lists that are related to each other, we can make use of fractional cascading.

We omit the 1/ϵ factor in further sections and use the Oϵ(·) notation instead to indicate
a dependency on ϵ.

3.2 Fractional Cascading
For most of the cases described in the previous subsection, our structures are issuing
predecessor queries. This is the only reason why the time complexity of an HIA query with
our approach is not yet Oϵ(log n/ log log n). We will exploit the fact that all these queries
look for the same target value (pre(v1) for structures built for T1 and pre(v2) for structures
for T2) but for different pairs of branches, which enables us to use fractional cascading.

We can think of creating two catalog graphs from T1 × T2 with nodes representing pairs
(e1, e2) of branches, storing the contents of Dx[e1, e2] in one catalog graph and those of
Dy[e1, e2] in the other one. The execution of Algorithm 1 can be then seen as the traversal
of a path in such a graph where, for a pair (B1[i], B2[j]) of heavy trees for which a restricted
HIA query is performed by the algorithm, we query the catalogs of the nodes representing the
pair of branches (e1, e2) that contain the lowest weak ancestors of (v1, v2) that are in B1[i]
and B2[j], respectively. The problem with this direct approach is that it is not guaranteed
that the degree of all vertices in each catalog graph is polylogarithmic: we might need to
move from the node corresponding to two branches (e1, e2) to any node corresponding to
two branches (e′1, e′2), where the heavy tree containing e′1 is attached to e1, and there could
be even Ω(n) such branches e′1.

We need to create catalog graphs in which the length of the considered path for each HIA
query is Oϵ(log n/ log log n), while the degree of each node is O(polylog n) in order to be
able to apply the result of Shi and JáJá [21]. This would ensure that all predecessor queries
in Dx[·, ·] and Dy[·, ·] take constant time, apart from the first ones, which take O(log log n)
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time using an x-fast trie. We describe how to build the appropriate catalog graphs below. As
the shape of the graph for Dx[·, ·] and Dy[·, ·] is the same and only the contents of catalogs
differ, we will only describe how to build one of them.

We preprocess T1 and T2 separately, first to compute trees B(T⋆) and then to build catalog
graphs C(T⋆). From this, we build the catalog graph C that can be seen as a Cartesian
product of C(T1) and C(T2). More precisely, each node in C is a pair (v, w) for v ∈ C(T1)
and w ∈ C(T2). For an edge between nodes v1 and v2 in C(T1), in the final catalog graph,
we create edges between nodes (v1, w) and (v2, w) for each w ∈ C(T2). Analogically, for an
edge between nodes w1 and w2 in C(T2), in the final catalog graph we create edges between
nodes (v, w1) and (v, w2) for each v ∈ C(T1). This way, if the degrees of C(T1) and C(T2)
are polylogarithmic, so is the degree of C.

We now explain how to build tree B(T⋆) from T⋆. B(T⋆) contains nodes representing
heavy trees (called heavy tree nodes) and nodes representing branches (called branch nodes):

for each heavy tree H, we connect all branch nodes representing branches in H as children
of the heavy tree node representing H,
for each heavy tree H, except the tree containing the root of T⋆, we connect the heavy
tree node representing H as child of the branch node representing the branch containing
the parent of the root of H.

▶ Proposition 14. The depth of B(T⋆) is Oϵ(log n/ log log n) and each heavy tree node has
O(logϵ n) children.

Recall that every heavy tree has O(b) = O(logϵ n) branches, so every heavy tree node
has O(logϵ n) children. Any root-to-leaf path in B(T⋆) alternates between heavy tree nodes
and branch nodes. For any root-to-v path p in T⋆, there is a corresponding path p′ in B(T⋆)
that visits the heavy tree nodes that correspond to the heavy trees that intersect p and the
branch nodes for which Algorithm 1 (when called for a pair of nodes containing v) could call
predecessor queries for Dx[·, ·] and Dy[·, ·]. For any p, p′ is of length Oϵ(log n/ log log n) and
can be found in O(|p′|) time by following the path from the heavy tree containing v to the
root of B(T⋆).

We now describe how to create a catalog graph C(T⋆) from B(T⋆). The construction
is recursive and follows from the proof of Lemma 15 applied with d = Oϵ(log n/ log log n)
and b = ⌊logϵ n⌋. The idea is to replace the structure of children of branch nodes having
too many children with appropriate gadgets that roughly preserve the structure of the tree,
do not increase the depth of the tree asymptotically and reduce the degree of each node to
O(polylog n). Due to Proposition 14, we do not need to alter the structure of children for
heavy tree nodes.

▶ Lemma 15. For any depth-d tree B(T⋆) with O(n) nodes and parameter b, there is a tree
C(T⋆) satisfying all the following conditions:

C(T⋆) has O(n) nodes,
all nodes of C(T⋆) have degree O(b),
C(T⋆) has depth d +O(log n/ log b),
for each simple path p in B(T⋆), we can compute in O(|p′|) time a simple path p′ in
C(T⋆), such that p is a subsequence of p′ and |p′| ≤ d +O(log n/ log b).

Proof. Consider a (branch) node e of B(T⋆) whose children, read left-to-right, are heavy
tree nodes h1, h2, . . . , hk for k > b. We replace this subgraph that contains k + 1 nodes with
a gadget graph whose root is e and whose set of nodes is a superset of {e} ∪ {hi : i ∈ [k]}.
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For each node u, let s(u) be the number of nodes in the subtree of u in the considered
tree. Let s0 = 0 and, for i ≥ 1, let si be the prefix sum s(h1) + s(h2) + . . . + s(hi). If there
is an integer ℓ such that si−1 < ℓ · s(e)/b and si ≥ ℓ · s(e)/b, we mark hi. We call each set of
consecutive unmarked nodes an interval. As ℓ ≤ b, there are O(b) marked nodes and O(b)
intervals.

We create a gadget for e (and, recursively, for some other nodes created in the construction,
as described later) as follows:

We attach as a child of e every node that is either marked or is the only element of its
interval.
For each interval of more than one node, we create a new node ij , called an interval node,
attach it as a child of e, and attach all the nodes of the interval as children of ij .

We recursively apply the same construction for any of the newly created interval nodes
i1, i2, . . . , im whose degree is larger than b. See Figure 3 in Appendix B for an illustration.

From the construction, it follows that the degree of each node of C(T⋆) is O(b) and that
the size of C(T⋆) is O(n), as all new nodes are of out-degree at least 2.

Let u be a node in T⋆. We now show that the depth for a node eu ∈ C(T⋆) representing
a branch containing u is at most d + O(log n/ log b) by considering the edges above eu in
C(T⋆). The edges can be of two types:

Edges that are incident to at least one node that is not an interval node. By the depth of
B(T⋆), we have at most d such edges.
Edges between interval nodes. For each such edge (v, z), we have s(v) ≥ s(z) · b. Thus,
similarly to the proof of Lemma 5, there are O(log n/ log b) such edges on the path from
the root of C(T⋆) to eu.

This concludes the proof of the bound on the depth of C(T⋆).
Each simple path p in B(T⋆) naturally corresponds to a simple path p′ in C(T⋆). In

particular, for each edge (v, w) in B(T⋆), one can explicitly store a path C(T⋆) to which
(v, w) corresponds. The concatenation of all such paths for edges on p yields a simple path p′

in O(|p′|) time. As the depth of C(T⋆) is d +O(log n/ log b), the bound on |p′| follows. ◀

From C(T1) and C(T2) constructed as in Lemma 15, we create the catalog graph C as
described earlier. Only nodes that represent pairs of branches contain non-empty original
catalogs. After the original catalogs are filled, we run the preprocessing of fractional cascading
and appropriate augmented catalogs are created for all nodes in C as described in [9, 21].
The Oϵ(log n/ log log n) predecessor queries coming from restricted HIA queries performed in
Algorithm 1 are naturally reduced to a constant number of queries to the x-fast tries and the
traversal of a path of length Oϵ(log n/ log log n) in C. This takes Oϵ(log n/ log log n) time in
total and concludes the description of our data structure and the proof of Theorem 2.
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19 Mihai Pătraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011. doi:10.1137/09075336X.
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A Description of the O(log n)-Query-Time Data Structure of [14]

As mentioned in the introduction, Gagie et al. [14] sketched an O(n log2 n)-size data structure
that answers HIA queries in O(log n) time, in the last paragraph of Subsection 2.1 of their
work. They construct a data structure for each pair of heavy trees of T1 and T2 and reduce an
HIA query for nodes u and v to a predecessor query in the data structure of each of O(log n)
pairs of heavy trees. The idea for improving the (fully-described) O(log n log log n)-time
procedure for answering queries with a more efficient one is similar to ours and involves
fractional cascading. They would need to build a catalog graph with nodes being pairs of
heavy paths, reduce its degree, and make sure that the predecessor queries have the same
target (by asking for the preorder numbers of u and v). This is similar to what we describe
in Section 3.2 for a different tree decomposition.

B Omitted Figure from Section 3.2
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Figure 3 On the left there is a branch e of T⋆, with outgoing edges to h1, h2, . . . , hk in B(T⋆).
On the right, there is a catalog graph gadget created for e, which is part of C(T⋆). Circles denote
interval nodes and rectangles heavy tree nodes. Some of the intervals are recursively replaced with
the gadget to decrease their degree. Heavy tree nodes have degree O(b). In C(T⋆), e’s parent is the
heavy tree to which it belongs, while the children of each hi are the branches in hi.
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