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Abstract
Many problems that can be solved in quadratic time have bit-parallel speed-ups with factor w, where
w is the computer word size. A classic example is computing the edit distance of two strings of
length n, which can be solved in O(n2/w) time. In a reasonable classical model of computation,
one can assume w = Θ(log n), and obtaining significantly better speed-ups is unlikely in the light of
conditional lower bounds obtained for such problems.

In this paper, we study the connection of bit-parallelism to quantum computation, aiming to see
if a bit-parallel algorithm could be converted to a quantum algorithm with better than logarithmic
speed-up. We focus on string matching in labeled graphs, the problem of finding an exact occurrence
of a string as the label of a path in a graph. This problem admits a quadratic conditional lower
bound under a very restricted class of graphs (Equi et al. ICALP 2019), stating that no algorithm
in the classical model of computation can solve the problem in time O(|P ||E|1−ϵ) or O(|P |1−ϵ|E|).
We show that a simple bit-parallel algorithm on such restricted family of graphs (level DAGs) can
indeed be converted into a realistic quantum algorithm that attains subquadratic time complexity
O(|E|

√
|P |).
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1 Introduction

Exact string matching problem is to decide if a pattern string P appears as a substring
of a text string T . In the classical models of computation, this problem can be solved in
O(|P | + |T |) time [10]. Different quantum algorithms for this basic problem have been
developed [13,14,16], resulting into different solutions, the best of which finds a match in
O(
√
|T |(log2 |T |+ log |P |)) time [13] with high probability. These assume the pattern and

text are stored in quantum registers, requiring thus O(|P |+ |T |) qubits to function. Moreover,
these approaches may rely on applying a linear number of quantum gates in parallel on
different qubits. For example, Niroula and Nam [13] perform O(log(|T |)) rounds of parallel
swaps, executing O(|T |) swaps in parallel per round.
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In the classical models of computation, an analogy for these assumptions is to assume
that the text has been preprocessed for subsequent queries. For example, one can build a
Burrows-Wheeler transform -based index structure for the text in time O(|T |) [4], assuming
T ∈ {1, 2, . . . , σ}∗, where σ ≤ |T |. Then, one can query the pattern from the index in
O(|P | log log σ) time [4, Theorem 6.2]. In this light, quantum models can offer only limited
benefit over the classical models for exact string matching.

Motivated by this difficulty in improving linear-time solvable problems using quantum
approaches, let us consider problems known to be solved in quadratic time. For example,
approximate string matching problem is such a problem: decide if a pattern string P is within
edit distance k from a substring of a text string T , where edit distance is the number of single
symbol insertions, deletions, and substitution needed to convert a string to another. This
problem can be solved using bit-parallelism in O(⌈|P |/w⌉|T |) time [11], under the Random
Access Memory (RAM) model with computer word size w. A reasonable assumption is that
w = Θ(log |T |), so that this model reflects the capacity of classical computers. Thus, when
|P | = |T | = n, this bit-parallel algorithm for approximate string matching takes time at least
Ω(n2−ϵ) for all ϵ > 0, as logn = o(nϵ) for all ϵ > 0. It is believed that this quadratic bound
cannot be significantly improved, as there is a matching conditional lower bound saying that
if approximate pattern matching could be solved in time O(n2−ϵ) with some ϵ > 0, then the
Orthogonal Vector Hypothesis (OVH) and thus the Strong Exponential Time Hypothesis
(SETH) would not hold [2]. As these hypotheses are about classical models of computation,
it is natural to ask if the quadratic barrier could be broken with quantum computation.

In this quest for breaking the quadratic barrier, we study another problem with a bit-
parallel solution and a conditional lower bound. Consider exact pattern matching on a
graph, that is, consider deciding if a pattern string P ∈ Σ∗ equals a labeled path in a graph
G = (V,E), where V is the set of nodes and E is the set of edges. Here we assume the nodes v
of the graph are labeled by ℓ(v) ∈ Σ and a path v1 → v2 → · · · vt, (vi, vi+1) ∈ E for 1 ≤ i < t,
spells string ℓ(v1)ℓ(v2) · · · ℓ(vt). There is an OVH lower bound conditionally refuting an
O(|P ||E|1−ϵ) or O(|P |1−ϵ|E|) time solution [7]. This conditional lower bound holds even if
graph G is a level DAG: for every two nodes u and v, holds the property that every path
from u to v has the same length. On DAGs, this string matching on labeled graphs (SMLG)
problem can be solved in O(⌈|P |/w⌉|E|) time [15] in the bit-parallel model, so the status
of this problem is identical to that of approximate pattern matching on strings. However,
the simplicity of the bit-parallel solution for SMLG on level DAGs enables a connection to
quantum computation. We consider a specific model of quantum computation, the Quantum
Random Access Memory (QRAM) model [8], in which we have access to “quantum arrays”,
and we assume that integer values like |P |, |V | or |E| fit into a (quantum) memory word.
Under this model, we turn the bit-parallel solution into a quantum algorithm that solves
SMLG on level DAGs with high probability in O(|E|

√
|P |) time, breaking through the

classical quadratic conditional lower bound.
Classical conditional lower bounds are not new to be broken by quantum computing. For

example, the quadratic Orthogonal Vectors problem itself can be solved in subquadratic
time (linear using QRAM) using quantum computing. This is not the only problem to have
a better-than-quadratic solution in the quantum realm [17]. Nevertheless, to the best of
our knowledge, we are the first to propose a subquadratic time algorithm for SMLG, even if
restricted to a specific class of graphs. Moreover, the translation of a bit-parallel strategy
to a quantum-parallel one is an original technique, and we are not aware of any other work
utilising it.
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An earlier work [6] provided a quantum algorithm solving SMLG in time O(
√
|V ||E||P |).

When the graph is non-sparse, that is |V | = O(
√
|E|), the time complexity becomes

O(|E| 34 |P |), which is an improvement over classical algorithms. We offer a different kind of
trade-off, limiting ourselves to a special class of graphs, but obtaining a better time complexity.
We also note that, even if no subquadratic classical algorithm exists for non-sparse graphs,
the existing classical reduction from OV [7] produces a sparse level DAG, for which our
quantum algorithm runs in subquadratic time.

As mentioned above, in some previous works [13,14,16](and references in [16]) algorithms
have been proposed to solve string matching in plain text in the QRAM model, under the
assumption that a large number of quantum gates, possibly linear, can be applied in parallel
when acting on different qubits. We find this assumption to be too restrictive, as even
the classical RAM model does not adopt it, since in such a model of computation many
operations would become trivial. Instead, our algorithm works without the need for such an
assumption.

The paper is structured as follows. We revisit exact pattern matching and derive a simple
quantum algorithm for it, in order to introduce the quantum machinery. Then we give a
brute-force quantum algorithm for SMLG, which we later improve on level DAGs. This
improvement is based on extending the Shift-And algorithm [3], whose quantum version we
extend for level DAGs.

In what follows, we assume the reader is familiar with the basic notions in quantum
computing as covered in textbooks [12].

2 Preliminaries

An alphabet Σ is a set of characters. Throughout the paper we assume Σ is ordered, i.e., for
each a, b ∈ Σ we can decide if a < b. A sequence P ∈ Σn is called a string and its length is
denoted n = |P |. We denote integers i, i+ 1, . . . , j as interval [i..j] and represent a string P
as an array P [0..n− 1], where P [i] ∈ Σ for 0 ≤ i ≤ n− 1, as in this work all indexes start
from 0. String P [i..j] is called a substring and string P [0..i] a prefix of P . With bit-vectors
discussed next, we use 0-based indexing.

Let B be a w-bit integer interpreted as string B[0..w − 1] from alphabet {0, 1} such that
B =

∑w−1
i=0 B[i] · 2i. We call B a bit-vector. Given two bit-vectors B and C, we define the

following Boolean operations A = B ∧ C, O = B ∨ C, and N = ¬B as follows: A[i] = 1 iff
B[i] = C[i] = 1, O[i] = 1 iff B[i] = 1 or C[i] = 1, and N [i] = 1 iff B[i] = 0. When bit-vector
content is visualized, we list the most significant bit first, i.e., B[w−1]B[w−2] · · ·B[0]. With
this in mind, we define the left-shifts L = B ≪ k and right-shifts R = B ≫ k as follows:
L[i + k] = B[i] and R[i] = B[i + k]. Here values out of the domain of the bit-vectors are
assumed to be 0. Logarithms are assumed to be in base two: logn = log2 n.

In directed labelled graph (DAG) G = (V,E, ℓ), V is the set of nodes, E is the sets of
vertices, and ℓ : V → Σ is a labelling function that assigns a character of the alphabet
to each node. We assume the nodes to be indexed as v0, v1, . . . vn−1 in topological order,
where n = |V |. For vi ∈ V , ℓ(vi) is its label. Set of nodes in(vi) = {j | (vj , vi) ∈ E}
contains the indexes of the in-neighbours of vi, and Di = |in(vi)| is the in-degree of vi.
If, for 0 ≤ d ≤ Di − 1, vk is the d-th in-neighbour of vi according to the topological
indexing that we defined above, we express this fact using notation k = ini(d), where
ini : [0, Di − 1]→ [0, n− 1].

CPM 2023
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In this work, we study the problem of string matching in labelled graphs, that consists
in finding a match for a pattern string P [0..m− 1] in a labelled graphs G over alphabet Σ,
where P has a match in G if there is a path v1, . . . , vk such that P = ℓ(v1) · · · ℓ(vk) (we also
say that P occurs in G, and that v1, . . . , vk is an occurrence of P ). Notice that if |P | = 1, a
classic visit of the graph solves the problem in linear time, thus we always assume |P | ≥ 2.

▶ Problem 1 (String Matching in Labeled Graphs (SMLG)).
input: A labeled graph G = (V,E,L) and a pattern string P , both over an alphabet Σ.
output: True if and only if there is at least one occurrence of P in G.

3 Quantum Notation and Preliminaries

In quantum computing, data is represented in quantum bits (qubits), the quantum analogue
to classical bits. A qubit can be in two states, denoted as |0⟩ = ( 1

0 ) and |1⟩ = ( 0
1 ) but, unlike

a classical bit, it can also be a linear combination of the two states, a superposition: |ψ⟩ =
α |0⟩+β |1⟩. The complex values α and β are called the amplitudes of |ψ⟩. Measuring a qubit
in superposition will result in either |0⟩ or |1⟩ with probabilities |α|2 and |β|2, respectively.
Note that this notation can easily be generalised to integer states |n⟩ using the tensor product
between the quantum states of the binary representation on n: |n⟩ =

⊗
i∈binary(n) |i⟩, and

in this case we use the term quantum register. Throughout the paper, we will use notation
|q⟩Q to denote that qubit Q is in state |q⟩. We use lower case letters for quantum states and
capital letters for qubits.

In this work, we mainly use the NOT gate X, the controlled NOT CX, and the Toffoli
gate CCX. We also apply an OR gate, that computes a logical or between two qubits and
stores the results in a third quibit. This can easily be obtained with a simple combination of
X gates with a Toffoli gate.

Furthermore, to define some quantum states, we use Kronecker’s delta function δx,y, which
is δx,y = 1 if x = y and δx,y = 0 otherwise. Given superposition |ψ⟩ =

∑n−1
i=0 αi |i⟩I |δc,i⟩Q,

the delta function specifies that qubit Q is in state |1⟩ iff i = c, as in the following example

3∑
i=0

αi |i⟩I |δ0,i⟩Q = α0 |0⟩I |1⟩Q + α1 |1⟩I |0⟩Q + α2 |2⟩I |0⟩Q + α3 |3⟩I |0⟩Q

where I is a quantum register of at least two qubits.
We assume to have a quantum random access memory (QRAM) able to use a quantum

register as an index to access classical data. Let m0,m1, . . . ,mn−1 be the data stored in
QRAM M . Given quantum register I, the operation that reads data from M into quantum
register Q initialized to |0⟩ using I as index is defined as follows [8]:

n−1∑
i=0

αi |i⟩I |0⟩Q
QRAM read−−−−−−−−→

n∑
i=1

αi |i⟩I |0⊕mi⟩Q =
n∑

i=1
αi |i⟩I |mi⟩Q .

Notice that this is a unitary operation, and thus reading the same data into the same register
twice will reset such a register to the value it had before performing the reading operation. In
terms of time complexity, the execution of the read operation is proportional to the number
of qubits in quantum register I. Under the Word-QRAM model with memory-word size
O(logn) for inputs of size n, we can assume to be able to perform a QRAM read operation
in O(1), because O(logn) qubits are enough for register I to index an input of size n. Indeed,
this reflect the same assumption of the classical Word-RAM model, where operations on
memory words are assumed to be constant.
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4 String Matching in Plain Text

A quantum computer, with access to QRAM, can solve the problem of finding an exact match
for a pattern string P into a text string T in time O(|P |

√
|T |), with high probability. We

explain a simple solution to this problem. Let |T | = n and |P | = m, then T = t0t1 · · · tn−1
and P = p0p1 · · · pm−1 are two strings defined over a binary alphabet, that is ti, pj ∈ {0, 1}
for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. We use qubits CT and CP initialized to |0⟩ to track
the current characters of T and P , and we assume to have the text and the pattern stored in
qubits in the following way:

|0⟩CT
|0⟩CP

|t0⟩T0
|t1⟩T1

· · · |tn−1⟩Tn−1
|p0⟩P0

|p1⟩P1
· · · |pm−1⟩Pm−1

.

We also use auxiliary qubits A−1, A0, A1 · · ·Am−1, and quantum registers I, J , and Q, all
three of logn qubits. We initialize A−1 and Q to |1⟩, while A0, A1 · · ·Am−1, I and J are
all initialized to |0⟩. We prepare quantum register I in an equally balanced superposition
spanning all the text positions, that is |0⟩I → 1/

√
n
∑n−1

i=0 |i⟩I , assuming n to be a power
of 2, without loss of generality. If this is not the case, we generate a superposition as large as
the first power of two greater than n, then standard techniques can be applied to handle the
additional substates, as explained in Appendix A.

Each individual state |i⟩ in the superposition represents a computation starting at position
i in the text. In each of these computations, we scan T [i..i+m− 1] and try to match each
character with P [0..m− 1], storing the intermediate results of such comparisons in registers
A0, A1, · · · , Am−1. More precisely, at iteration j, 0 ≤ j ≤ m− 1, we compute a logical xor
between ti+j and pj storing the result in CP via a CX gate with control CT and target
CP . Then, we apply a X gate to CP , which now stores |¬(ti+j ⊕ pj)⟩CP

= |ti+j = pj⟩CP
.

At this point, we apply a Toffoli gate with controls CP and Aj−1, storing the value in target
qubit Aj . We now reset CT and CP to |0⟩ by applying to them the same gates again, but
in reverse order. As last step in iteration j, we increase both I and J by 1 by performing
transformation 1/

√
n
∑n−1

i=0 |1⟩Q |i⟩I |j⟩J → 1/
√
n
∑n−1

i=0 |1⟩Q |i+ 1⟩I |j + 1⟩J (this of course
requires two separate addition operations), where the addition is intended to be modulo 2n.
This allows us to read the next character of the pattern at the next iteration.

After the last iteration, we can run Grover’s operator [9] where the marked items are
represented by |am−1,i⟩Am−1

= |1⟩, and then measure register |I⟩ to locate the ending position
of a match. Of course, we do not know the exact number of marked items, and we address
this issue by guessing the number of items and rerunning the whole algorithm a constant
number of times. We illustrate the entire procedure in Algorithm 1.

The algorithm is correct because, after each iteration of the for loop, we correctly keep
track of the positions of the text that are active matches for the current prefix of the pattern.

▶ Lemma 1. After iteration j of the for loop of Algorithm 1, let qubits I and Aj be in
superposition 1/

√
n
∑n−1

i=0 |i⟩I |aj,i⟩Aj
. Then, |aj,i⟩Aj

= |1⟩ if and only if T [i..i+ j] = P [0..j],
where 0 ≤ j ≤ m− 1 and 0 ≤ i ≤ n− 1.

Proof. At iteration 0, after applying gates CX and X, CP stores |¬(T [i]⊕ P [0])⟩CP
and

A−1 stores |1⟩A−1
, thus the Toffoli gate simply copies value ¬(T [i]⊕ P [0]) to A0. Because

we are working with a binary alphabet, ¬(T [i]⊕P [0]) equals T [i] = P [0], and thus we obtain
superposition 1/

√
n
∑n−1

i=0 |i⟩I |T [i] = P [0]⟩A0
.

CPM 2023
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I CT CP A0 A1

|1⟩
|2⟩
|3⟩
|4⟩
|5⟩
|6⟩
|7⟩
|0⟩

|B⟩
|A⟩
|A⟩
|A⟩
|B⟩
|B⟩
|A⟩
|B⟩

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

|A⟩
|A⟩
|A⟩
|A⟩
|A⟩
|A⟩
|A⟩
|A⟩

|0⟩
|0⟩
|1⟩
|1⟩
|1⟩
|0⟩
|0⟩
|1⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

+
+
+
+
+
+
+

I CT CP A0 A1

|1⟩
|2⟩
|3⟩
|4⟩
|5⟩
|6⟩
|7⟩
|0⟩

|B⟩
|A⟩
|A⟩
|A⟩
|B⟩
|B⟩
|A⟩
|B⟩

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

|0⟩
|1⟩
|1⟩
|1⟩
|0⟩
|0⟩
|1⟩
|0⟩

|0⟩
|0⟩
|1⟩
|1⟩
|1⟩
|0⟩
|0⟩
|1⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

+
+
+
+
+
+
+

I CT CP A0 A1

|1⟩
|2⟩
|3⟩
|4⟩
|5⟩
|6⟩
|7⟩
|0⟩

|B⟩
|A⟩
|A⟩
|A⟩
|B⟩
|B⟩
|A⟩
|B⟩

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

|0⟩
|1⟩
|1⟩
|1⟩
|0⟩
|0⟩
|1⟩
|0⟩

|0⟩
|0⟩
|1⟩
|1⟩
|1⟩
|0⟩
|0⟩
|1⟩

|0⟩
|0⟩
|1⟩
|1⟩
|0⟩
|0⟩
|0⟩
|0⟩

+
+
+
+
+
+
+

Figure 1 An example of the evolution of the superposition after one iteration of Algorithm 1. The
first arrow represents the application of a CX gate with control T1 and target P1, and the application
of a X gate on P1. The second arrow represents the application of a Toffoli gate with controls P1

and A0, and target A1. Intuitively, in the first step we are checking that T [i + j] = P [j]; in the
second step we combine the result of this check with the contribution of the previous iteration(s).
Characters A and B are to be considered binary values.

At iteration j, we assume by induction that register Aj−1 stores |aj−1,i⟩Aj−1
= |1⟩ if

and only if T [i . . . i+ j − 1] = P [0 . . . j − 1]. Gates CX and X compute ¬(T [i+ j]⊕ P [j])
storing it in CP . We then apply the Toffoli gate with controls CP and Aj−1, and target
Aj , obtaining superposition 1/

√
n
∑n−1

i=0 |i⟩I |aj−1,i ∧ T [i+ j] = P [j]⟩Aj
. Thus, |aj,i⟩Aj

=
|aj−1,i ∧ T [i+ j] = P [j]⟩Aj

is |1⟩ if and only if T [i..i+ j] = P [0..j]. ◀

As mentioned above, we have to be careful in running Grover’s search algorithm at the
end of Algorithm 1. We defer these details to the full proof of Theorem 5 given in Appendix C.
For now, we assume that we are able to retrieve with arbitrarily high probability 1− (7/8)c a
marked substate representing a match. Combining this with Lemma 1, we obtain the claimed
result.

▶ Theorem 2. Given a text string T , pattern string P and integer c > 0, Algorithm 1 finds
a match for P in T in time O(c(|P |

√
|T |)). If there is no match, the algorithm returns a

negative answer with probability p = 1. If there is at least one match, the algorithm returns
the index of the last position of a match with probability p > 1− (7/8)c.

Proof. For the correctness, consider Lemma 1 where j = m = |P |, which is the number of
times we run the for loop. In this case, |a|P |,i⟩A|P |

= |1⟩ if and only if T [i..i + |P | − 1] =
P [0..|P | − 1]. Thus, measuring these substates yields a correct solutions. The details of how
to perform such a measurement respecting the time complexity and probability of success
are deferred to the full proof of Theorem 5 in Appendix C. ◀

5 String Matching in Labeled Graphs

5.1 Quantum Brute-force Algorithm for SMLG
In SMLG we are given pattern string P with characters in alphabet Σ and a node-labeled
graph G = (V,E), with labelling function ℓ : V → Σ. We are asked to find a path (or,
actually, a walk) π = v1, v2, . . . , v|P | in G such that ℓ(v1) ◦ ℓ(v2) ◦ . . . ◦ ℓ(v|P |) = P , where ◦
denotes string concatenation.

One could try to obtain a quantum algorithm for SMLG by generalizing the idea we
presented for plain text. The idea would be to list all possible paths of length |P | in the graph,
and then mark those ones that are actual matches for P . Unfortunately, the superposition
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Algorithm 1 An algorithm for solving exact string matching in plain text that, using
QRAM, achieves O(|P |

√
|T |) time complexity. The details of how to handle Grover’s search

at the end are given in Theorem 5, whose full proof is deferred to Appendix C.

Input: Text T stored as |t0⟩T0
|t1⟩T1

· · · |tn−1⟩Tn−1
, pattern string P stored as

|p0⟩P0
|p1⟩P1

· · · |pm−1⟩Pm−1
, integer c

Output: A position of T where a match for P ends, if any
1 for c times do
2 Initialize quantum registers I, J,A0, A1 · · ·Am−1 as |0⟩I |0⟩J |0⟩A0

|0⟩A1
|0⟩Am−1

;
3 Initialize quantum register A−1 and Q as |1⟩A−1

and |1⟩Q;

// Apply H⊗ log n to register I

4 |0⟩I →
1√
n

∑n−1
i=0 |i⟩I ;

5 for m times do
// Read T [i] in CT and P [j] in CP using registers I and J as

indexes
6 1√

n

∑n−1
i=0 |i⟩I |j⟩J |0⟩CT

|0⟩CP
→ 1√

n

∑n−1
i=0 |i⟩I |j⟩J |ti⟩CT

|pj⟩CP
;

// Apply CX with control CT and target CP

7 1√
n

∑n−1
i=0 |ti⟩CT

|pj⟩CP
→ 1√

n

∑n−1
i=0 |ti⟩CT

|ti ⊕ pj⟩CP
;

// Apply X to CP

8 1√
n

∑n−1
i=0 |ti ⊕ pj⟩CP

→ 1√
n

∑n−1
i=0 |¬(ti ⊕ pj)⟩CP

= 1√
n

∑n−1
i=0 |ti = pj⟩CP

;

// Apply Toffoli with controls CP and Aj−1, and target Aj

9 1√
n

∑n−1
i=0 |ti = pj⟩CP

|aj−1⟩Aj−1
|0⟩Aj

→
1√
n

∑n−1
i=0 |ti = pj⟩CP

|aj−1⟩Aj−1
|(ti = pj) ∧ aj−1⟩Aj

;

// Reset CT and CP to |0⟩ via uncomputation
10 1√

n

∑n−1
i=0 |¬(ti ⊕ pj)⟩CP

→ 1√
n

∑n−1
i=0 |ti ⊕ pj⟩CP

;
11 1√

n

∑n−1
i=0 |ti⟩CT

|ti ⊕ pj⟩CP
→ 1√

n

∑n−1
i=0 |ti⟩CT

|pj⟩CP
;

12 1√
n

∑n−1
i=0 |i⟩I |j⟩J |ti⟩CT

|pj⟩CP
→

1√
n

∑n−1
i=0 |i⟩I |j⟩J |ti ⊕ ti⟩CT

|pj ⊕ pj⟩CP
= 1√

n

∑n−1
i=0 |i⟩I |j⟩J |0⟩CT

|0⟩CP
;

// Increment indexes I and J

13 1√
n

∑n−1
i=0 |1⟩Q |i⟩I |j⟩J →

1√
n

∑n−1
i=0 |1⟩Q |i⊕ 1⟩I |j + 1⟩J ;

14 Apply gate Z to qubit Rn−1, so that the sign of the amplitude is flipped if
|rn−1,j⟩Rn−1

= |1⟩;

15 Choose K ∈ [0, |P |] uniformly at random;
16 Run Grover’s iterate operator the optimal number of times assuming to have K

solutions, with the oracle function being lines 5–14 of this algorithm;
17 Measure Rn−1 into classical register Rcl;
18 if Rcl = 1 then
19 Measure I into classical register Icl and return Icl

20 return no
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would be as large as there are paths of length |P |, and thus the overall time complexity would
be O(|P |

√
|V ||P |). Moreover, an adjacency matrix would be needed to check the existence

of edges between nodes in constant time, yielding a space complexity of O(|V |2) qubits. We
conclude that more involved techniques are needed.

5.2 The Classical Shift-And Algorithm

We first introduce the classical shift-and algorithm [3] for matching a pattern against a text
and generalize it to work on graphs. Then, we show how the bit-vector data structure of
that algorithm can be represented as a superposition of a logaritmic number of qubits. This
approach allows us to achieve better performances than the brute force algorithm.

In the shift-and algorithm, we use bit vector B of the same length of pattern P to represent
which of its prefixes are matching the text during the computation. Assuming integer-alphabet
Σ, we also initialize bidimensional array M of size |P | × |Σ| so that M [j][c] = 1 if and only
if P [j] = c, and M [j][c] = 0 otherwise. The algorithm starts by initializing vector B to
zero and array M as specified above. Then, we scan whole text T performing the next four
operations for each T [i], i ∈ [0, n− 1], where M [∗][c] represents the c-th column of M :
1. B ← B + 1;
2. B ← B ∧M [∗][T [i]];
3. if B[m− 1] = 1, return yes;
4. B ← B << 1.
Operation 1 sets the least significant bit of B to 1, which is needed to test P [0] against
T [i]. Operation 2 computes a bit-wise and between B and the column of M corresponding
to character T [i]. Remember that M [j][T [i]] = 1 means P [j] = T [i], thus this operation
leaves each bit B[j] set to 1 if and only if it was already set to 1 before this step and the the
j-th character of the pattern matches the current character of the text. At this point, if bit
B[m− 1] is set to 1 we have found a match for P , and Operation 3 will return yes. For the
other positions, if bit B[j] is set to 1, then we know that prefix P [0..j] matches T [i− j+ 1..i],
and Operation 4 shifts the bits in B by one position, so that in the next iteration we will
check whether P [j + 1] matches T [i+ 1].

In labeled DAG G = (V,E), each node vi ∈ V has a single-character label ℓ(vi). We
generalize the shift-and algorithm to labeled DAGs by computing a bit-vector Bi for each
node v ∈ V , initializing them to zero. Consider a BFS visit of DAG G. When visiting
node vi, each bit-vector Bk of its in-neighbour vk ∈ in(vi) represents a set of prefixes of P
matching a path in the graph ending at vk. Thus, we merge all of this information together
by taking the bit-wise or of all of the in-neighbours of vi, that is we replace Operation 1
with Bi ← 1 +

∨
vk∈in(vi) Bk. Operations 2, 3 and 4 are performed as before. An example of

the state of the data structures after the execution of the algorithm is shown in Figure 2,
and the body of the iteration now is:
1. Bi ← 1 +

∨
vk∈in(v) Bk;

2. Bi ← Bi ∧M [∗][T [i]];
3. if Bi[m− 1] = 1, return yes;
4. Bi ← Bi << 1.
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Figure 2 The adaptation of the classical algorithm for matching pattern P in level DAG G. Each
bit-vector Dv represent the result after the merging of the bit-vectors of the in-neighbours of v and
before the shifting.

5.3 Quantum Bit-Parallel Algorithm for Level DAGs
We make the classic techniques work in a quantum setting for a special class of DAGs, which
we call level DAGs. A level DAG is a DAG such that, for every two nodes v and w, every
path from v to w has the same length, as for the DAG in Figure 2. We also note that
degenerate strings [1] can be represented as level DAGs. We use a function representing
in-neighbours:

ini(d) = index of the d-th in-neighbour of vi

Our approach aims to represent each bit vector Bi with a single qubit Vi set up in a
proper superposition, and translate the bit-wise operations to parallel operations across such
superposition. In the algorithm, we use the following qubits and quantum registers. Quantum
registers I and J store the index of a node and the position in the pattern, respectively.
Qubit Vi represents, in superposition, the bit-vector of the node vi, and qubit Ei,d stores
the contribution of edge (vini(d), vi) ∈ E in the update of qubit Vi, for, 0 ≤ i ≤ n − 1,
0 ≤ d ≤ Di − 1 and Di = indeg(vi). Quantum register C stores label ℓ(vi) of the node in
the current iteration, and is used to fetch the content of the corresponding matrix column,
which we will store in qubit M . Occurrences of the pattern encountered during the execution
of the algorithm are stored in qubit Ri. Qubits V ′

i and R′
i are auxiliary qubits used to store

intermidiate results, and we also use auxiliary qubits A and B and auxiliary quantum register
Q to implement necessary operations. Moreover, we assume to have access to QRAM.

5.3.1 The algorithm
Assume all the quantum registers and qubits to be initialized to |0⟩, except Q initialized
to |1⟩. The algorithm starts by setting quantum register J in a balanced superposition,
by applying the Hadamard gate on each one of its qubits. Then, we initialize qubits A so
that |aj⟩A = |1⟩ for j = 0, and |aj⟩A = |0⟩ otherwise. We do the same with qubit B, with
the difference that |bj⟩A = |1⟩ for j = m − 1, and |bj⟩A = |0⟩ otherwise. We can do these
operations with two applications of a generalized Toffoli gate, using register J as control and
qubits A and then B as targets. In the case of qubit A, we first apply an X gate to every
qubit of register J , we then apply the Toffoli gate, and finally we undo the applications of
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9:10 From Bit-Parallelism to Quantum String Matching for Labelled Graphs

the X gate. The generalised Toffoli has a cost proportional to the number of qubits in J ,
that is logarithmic in the size of the input, and because this is an operation between a single
quantum register and a qubit, we can assume it to be constant in the Word-QRAM model.
We then initialize the qubits representing the bit-vectors of the nodes at level 0. This is done
with the same operations described below for the main loop, the only difference being that
these nodes do not have in-neighbours and thus we can simplify some operations. Specifically,
we load each entry of the character matrix in superposition and we use it and qubit A as
controls of a Toffoli gate which thus flips to |1⟩ sub-state |vi,j⟩Vi

if P [0] matches ℓ(vi).
The rest of the algorithm maintains almost the same overall structure, with the exception

of one necessary adaptation. In a DAG of L levels where Ll is the set of nodes at level l, for
0 ≤ l ≤ L− 1, we iterate over them one at the time, and for each level we process its nodes
one after the other. As we will better explain later, we wait before applying the quantum
equivalent of the shift operation once we scanned the whole level, not after processing every
node. The overall idea is to translate the classical bit-parallel operations into analogous
quantum operations that work across the superposition. This translation of bit-parallelism
to superposition parallelism is the core of our technique, and we now describe how to apply
it to each operation. The pseudocode of the entire procedure is given in Algorithm 1, where
all the arithmetic operations are to be considere modulo 2|P |. We only omit the pseudocode
for procedures SourceNodesInit(), IncreaseI() and IncreaseJ(), which is to be found
in Appendix B. We also assume |P | to be a power of two. If this is not the case, we generate
a superposition as large as the first power of two greater than |P |, then standard techniques
can be used to handle the additional substates, as explained in Appendix A.

Operation 1 (line 10) can be broken down into two simpler operations: computing
the bit-wise or and adding 1. In our translation to quantum computing, each sub-state
of superposition

∑m−1
j=0 |j⟩J |vi,j⟩Vi

represents an entry of the classical bit-vector used in
the Shift-And algorithm. Thus, what was a bit-wise or is now easily translated into the
application of few quantum gates. Notice that, to compute the logical or between two generic
qubits P and Q and store the result in qubit R, we can follow De Morgan’s rules and apply
an X gate to both P and Q, apply a Toffoli gate with controls P and Q and target R, apply
an X gate to R, and finally apply an X gate to P and Q again to restore their initial values.
In our case, at iteration i, we use qubit Ei,d to store the or computed among the first d+ 1
in-neighbours vini(0), . . . , vini(d) of node vi, and we compute it in the following way. Let

1√
m

m−1∑
j=0
|j⟩J |vini(0),j⟩Vini(0)

|vini(1),j⟩Vini(1)
· · · |vini(d−1),j⟩Vini(d−1)

|ei,d−1,j⟩Ei,d−1

be such that

ei,d−1,j = vini(0),j ∨ vini(1),j · · · ∨ vini(d−1),j .

We compute the value of Ei,d from Ei,d−1 and Vini(d) as

1√
m

m−1∑
j=0
|j⟩J |vini(d),j⟩Vini(d)

|ei,d−1,j⟩Ei,d−1
|0⟩Ei,d

→

1√
m

m−1∑
j=0
|j⟩J |vini(d),j⟩Vini(d)

|ei,d−1,j⟩Ei,d−1
|vini(d),j ∨ ei,d−1,j⟩Ei,d

.

Once we processed the last in-neighbour, Ei,Di−1 stores the or computed among all in-
neighbours, where Di is the number of in-neighbours of node vi.
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We implement the classic operation of adding 1 by computing an or with qubit A and
storing the result in V ′

i . Since |aj⟩A = |δ0,j⟩, we obtain |0⟩V ′
i
→ |v′

i,j⟩V ′
i

where |v′
i,j⟩V ′

i

= |1⟩
for j = 0, while |v′

i,j⟩V ′
i

= |ei,Di−1,j⟩ for 1 ≤ j ≤ m− 1.
Operation 2 (line 11) is implemented as a Toffoli-gate application with qubits M and

V ′
i as control and Vi as target.

1√
m

m−1∑
j=0
|mj,ℓ(vi)⟩M |v

′
i,j⟩V ′

i

|0⟩Vi
→ 1√

m

m−1∑
j=0
|mj,ℓ(vi)⟩M |v

′
i,j⟩V ′

i

|mj,ℓ(vi) ∧ v′
i,j⟩Vi

Operation 3 (line 12) is replaced by storing in register Ri the presence of a match
ending at node vi. This requires an intermediate step in which we use qubit B to filter
the content of Vi. In fact, qubit Vi now is in state |vi,j⟩Vi

= |1⟩ for those values of j such
that P [0..j] has a match ending at vi in the graph, and |vi,j⟩Vi

= |0⟩ otherwise. Since we
only care about potential full matches represented by |vi,m−1⟩Vi

, we use B, which is in state
|δm−1,j⟩B , as control qubit of a Toffoli gate, the other control qubit being Vi and the target
qubit being R′

i.

1√
m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |0⟩R′
i
→ 1√

m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |vi,j ∧ δm−1,j⟩R′
i

Then, using the same technique as in Operation 1, we compute an or between R′
i and Ri−1,

storing the result in Ri.

1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|0⟩Ri
→

1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|(vi,j ∧ δm−1,j) ∨ ri−1,j⟩Ri

After this operation, |ri,m−1⟩Ri
is turned to |1⟩ if there is a full match of P ending at vi,

otherwise |ri,m−1⟩Ri
is left unaltered.

Operation 4 (line 14) consists in shifting all bits of the classical bit-vector by one
position. In the quantum setting, we can perform this operation by adding 1 to index register
J and then reorganising the sum: |1⟩C1

|j⟩J → |1⟩C1
|j + 1⟩J . Notice that this changes value

|j⟩J in every term of the superposition to |j + 1⟩j . This can be interpreted as “shifting”
value kj of generic register K from |j⟩J |kj⟩K to |j + 1⟩J |kj⟩K . Because this operation acts
on every quantum register and qubit in this way, we have to reset qubits A and B to |0⟩
before performing this operation and reinitialize their values afterwards, so that we prevent
their values to be shifted. For the same reason, we also have to wait until having processed
the whole level, otherwise we would shift the values of all the nodes at the previous level and
compromise the computation.

As last step of the algorithm, we run Grover’s search that uses as oracle function the whole
procedure described up to this point, and then applies a Z gate on qubit R. Thus, the marked
sub-states are those such that |ri,j⟩Ri

= |1⟩, which get mapped to − |ri,j⟩Ri
. Sub-states such

that |ri,j⟩Ri
= |0⟩ remain unaltered. As for the case of string matching in plain text, we

rerun the whole algorithm a constant number of times to boost the probability of success, as
explained in Theorem 5 and Appendix C. Algorithm 1 shows the entire procedure.

To prove the correctness of Algorithm 1, we formalise the key properties in the following
lemmas. We start by ensuring that the shift operation provides the desired result. Let l
and y be the total number of times that we started the execution of the middle for-loop

CPM 2023



9:12 From Bit-Parallelism to Quantum String Matching for Labelled Graphs

Algorithm 2 Algorithm for testing whether pattern string P has a match in level DAG
G, running in O(|E|

√
|P |).

1 time.
Input: Graph G, pattern P , and constant c.
Output: Returns yes if P occurs in G, otherwise no.

2 for c times do
3 Initialize quantum register Q to |1⟩;
4 Initialize quantum registers I, J,A,B,C,M, Vi, V

′
i , Ri, R

′
i, Ei,d to |0⟩ where

i ∈ [0, n− 1] and d ∈ [0, Di − 1];
// Apply Hadamard to J

5 |0⟩J →
1√
m

m−1∑
j=0
|j⟩J ;

6 SourceNodesInit(I, J,A,C, V0, . . . , Vn−1, V
′

0 , . . . , V
′

n−1);
7 IncreaseJ(J,A,B);

// L is the number of levels
8 for l ∈ [1, L− 1] do // scan every level
9 for |Ll| times do // scan every node in the level

10 OperationOne(l, I, C,M,Ei,0, . . . , Ei,Di−1, V
′

i );
11 OperationTwo(M,V ′

i , Vi);
// Invariant 1 holds here

12 OperationThree(B, Vi, R
′
i, Ri);

13 IncreaseI(I,M,C);
14 OperationFour(J,A,B);

// Invariant 2 holds here

15 Apply gate Z to qubit Rn−1, so that the sign of the amplitude is flipped if
|rn−1,j⟩Rn−1

= |1⟩;
16 Choose K ∈ [0, |P |] uniformly at random;
17 Run Grover’s iterate operator the optimal number of times assuming to have K

solutions, with the oracle function being lines 6–15 of this algorithm;
18 Measure Rn−1 into classical register Rcl;
19 if Rcl = 1 then
20 return yes

21 return no
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1 Function OperationOne(l, I, C,M,Ei,0, . . . , Ei,Di−1, V
′

i ):
2 for |Ll| times do // scan every node in the level

// scan every node in in(vi)

3 1√
m

m−1∑
j=0
|j⟩J |i⟩I |0⟩C →

1√
m

m−1∑
j=0
|j⟩J |i⟩I |ℓ(vi)⟩C ;

4 1√
m

m−1∑
j=0
|j⟩J |ℓ(vi)⟩C |0⟩M →

1√
m

m−1∑
j=0
|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩M ;

5 k ← ini(0); // Classical operation

6 1√
m

m−1∑
j=0
|vk,j⟩Vk

|0⟩Ei,0
→ 1√

m

m−1∑
j=0
|vk,j⟩Vk

|vk,j⟩Ei,0
;

7 for d ∈ [1, Di − 1] do // scan every node in in(vi)
8 k ← ini(d); // Classical operation

// Add the contribution of the current in-neighbour

9 1√
m

m−1∑
j=0
|vk,j⟩Vk

|ei,d−1,j⟩Ei,d−1
|0⟩Ei,d

→

1√
m

m−1∑
j=0
|vk,j⟩Vk

|ei,d−1,j⟩Ei,d−1
|ei,d−1,j ∨ vk,j⟩Ei,d

;

// Turn to |1⟩ the substate corresponding to j = 0

10 1√
m

m−1∑
j=0
|δ0,j⟩A |ei,Di−1,j ∨ vk,j⟩Ei,Di−1

|0⟩V ′
i
→

1√
m

m−1∑
j=0
|δ0,j⟩A |ei,Di−1,j ∨ vk,j⟩Ei,Di−1

|ei,Di−1,j ∨ vk,j ∨ δ0,j⟩V ′
i
;

11 Function OperationTwo(M,V ′
i , Vi):

// Compute the and with the column of the matrix

12 1√
m

m−1∑
j=0
|mℓ(vi),j⟩M |v

′
i,j⟩V ′

i

|0⟩Vi
→ 1√

m

m−1∑
j=0
|mℓ(vi),j⟩M |v

′
i,j⟩V ′

i

|mℓ(vi),j ∧ v′
i,j⟩Vi

;

13 Function OperationThree(B, Vi, R
′
i, Ri):

// Set |ri,m−1⟩Ri
= |1⟩ if there is a match ending at vi

// Apply Toffoli on Vi, B and R′
i

14 1√
m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |0⟩R′
i
→ 1√

m

m−1∑
j=0
|vi,j⟩Vi

|δm−1,j⟩B |vi,j ∧ δm−1,j⟩R′
i
;

// Apply logic or on R′
i, Ri−1 and Ri

15 1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|0⟩Ri
→

1√
m

m−1∑
j=0
|vi,j ∧ δm−1,j⟩R′

i
|ri−1,j⟩Ri−1

|(vi,j ∧ δm−1,j) ∨ ri−1,j⟩Ri
;

16 Function OperationFour(J,A,B):
17 IncreaseJ(J,A,B);
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(lines 9–13) and of the outer for-loop (lines 8–14), respectively. That is, y = x+
∑l−1

λ=1 |Lλ|
for l ≥ 2, where x ∈ [0, |Ll|] is the number of times that we started the execution of the
middle for-loop during the l-th iteration of the outer for-loop. Notice that y = 0 when l = 0,
and y = x when l = 1.

▶ Lemma 3 (Invariant 1). During the l-th execution of the outer for-loop (lines 8–14) and
the y-th execution of the middle for-loop (lines 9–13) of Algorithm 1, but before the y-th
execution of OperationThree() (line 14), Invariant 1 holds: for every qubit Vi such that
i ∈ Ll and i ≤ t, we have substate |vi,j⟩Vi

= |1⟩ if and only if there exists a path in G ending
at vi and matching P [0, j], where t = |L0|+x− 1 is the index of the last node vt Algorithm 1
visited so far.

Proof. We proceed by strong induction on y, defined as above.

Base case, y = 0. In this case, we executed the initialization but we have not run yet neither
the outer nor the middle for-loop. Thus, l = 0, t = |L0| − 1, and qubits Vi such that i ∈ L0
and i ≤ t are those with in-degree zero, which are initialized by function SourceNodesInit().
For each such i, given that J is in state

∑m−1
j=0 |j⟩J , function SourceNodesInit() first loads

character ℓ(vi) in register C and matrix entry mℓ(vi),j in register M , in superposition. Then,
with regard to t, it performs transformation

m−1∑
j=0
|mℓ(vi),j⟩M |δ0,j⟩A |0⟩Vi

→
m−1∑
j=0
|mℓ(vi),j⟩M |δ0,j⟩A |mℓ(vi),j ∧ δ0,j⟩Vi

,

where, by definition, vt,j = mℓ(vi),j ∧ δ0,j . Thus, |vt,j⟩ = |0⟩ for every j ̸= 0 because of δ0,j ,
and |vt,j⟩Vi

= |mℓ(vi),j⟩Vi
for j = 0, which in turn means that |vt,0⟩Vi

= |1⟩ if and only if
P [0, 0] = ℓ(vi).

Inductive case, y ≥ 1. We further divide our analysis in two sub-cases.

First sub-case, x = |Ll|. In this case, y is the last iteration of the inner for-loop during
the l-th iteration of the outer for-loop. We assume the inductive hypothesis to hold after
the execution of OperationTwo(). We execute OperationThree() and IncreaseI(), which
do not change the state of any Vz, for any z ∈ [0, |V | − 1]. Now, we have to perform
OperationFour() (line 14) before starting iteration y + 1 of the middle for-loop, which
will start iteration l + 1 of the outer for-loop. Assuming the inductive hypothesis, the
application of OperationFour() makes every Vz with z ∈ Ll such that |j′⟩J |vz,j⟩Vz

= |j′⟩ |1⟩,
where j′ = j + 1, if and only if there is a match for P [0, j] in G ending at vz, otherwise
|j′⟩J |vz,j⟩Vz

= |j′⟩ |0⟩. Then, we start iteration y + 1 (l + 1). Notice that we update Vi

if and only if i ∈ Ll+1 and, in any previous iteration of the middle for-loop, this could
have never been the case, thus every |vi,j⟩Vi

, i ∈ Ll+1, is currently set to |0⟩. The same
holds for every V ′

i . The for-loop inside OperationOne() computes a logic or between all
the qubits representing all the in-neighbours of vi. Indeed, before running this for-loop,
we have |j′⟩J |vini(0),j⟩Ei,0

. After one iteration, we have |j′⟩ |vini(0),j ∨ vini(1),j⟩Ei,1
. After

two iteration, we have |j′⟩ |vini(0),j ∨ vini(1),j ∨ vini(2),j⟩Ei,2
. After Di− 1 iterations, we have

|j′⟩ |ei,Di−1,j′⟩Ei,Di−1
, where

ei,Di−1,j′ =
Di−1∨
d=0

vini(d),j .
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We store an intermediate result in V ′
i , |v′

i,j′⟩
V ′

i

, where v′
i,j′ = ei,Di−1,j′ except for j′ = 0,

because we make sure that |v′
i,0⟩V ′

i

= |1⟩ thanks to the or operation with qubit A, which
stores |δ0,j′⟩A. Now we compute the logical and with the entry of the matrix, as in the base
case, obtaining |vi,j′⟩Vi

, where

vi,j′ = mℓ(vi),j′ ∧ (δ0,j′ ∨
Di−1∨
d=0

vini(d),j).

Applying the inductive hypothesis, this translates to

vi,j+1 = (P [j + 1] = ℓ(vi)) ∧
(

(j + 1 = 0) ∨
Di−1∨
d=0

P [0..j] has a match ending at vini(d)

)
= P [0..j + 1] has a match ending at vi

Thus, the statement of the lemma holds for y + 1.

Second sub-case, x < |Ll|. The reasoning is analogous to the previous case, the only
difference being that j does not increase and thus we have to look back by x+ 1 iterations,
when j was increased the last time. This requires to assume that the inductive hypothesis
was holding for iteration y − x, that is correct because, by strong induction, we assume the
inductive hypothesis to hold for every y′ ≤ y while proving the statement for y + 1. ◀

▶ Lemma 4 (Invariant 2). After line 14 of Algorithm 1, Invariant 2 holds: if there exists at
least one match for P in G ending at some vi such that i ≤ t, then there exists at least one
j, 0 ≤ j ≤ m− 1, such that |rt,j⟩Ri

= |1⟩, where vt is the last node we visited in Algorithm 1
before line 14.

Proof. We proceed by induction on the number l of times that we run the for-loop at
lines 8–14.

Base case, l = 0. In this case, nodes vt such that t ∈ Ll′ , l′ ≤ 0 are those with in-degree
zero, while the for-loop at lines 8–14 has never run. Since we are visiting only single-node
paths and we are assuming that pattern P has length at least two, there can be no match
for P ending at these nodes. Correctly, |ri,j⟩Ri

= |0⟩ for every 0 ≤ j ≤ m− 1.

Inductive case, 1 ≤ l ≤ L − 1. By inductive hypothesis, we assume the statement of the
lemma to be true right after running iteration l of the for-loop at lines 8–14, and thus right
before executing IncreaseJ() at line 14. After the execution of IncreaseJ(), the new state
is
∑m−1

j=0 |j′⟩J |ri,j⟩Ri
, where j′ = j + 1 and vi is the last node visited so far. Then, we start

iteration l+ 1, processing i′ ∈ Ll+1, i′ = t+ 1. We execute OperationOne() OperationTwo(),
which do not affect register Ri′ . Then we run the operations at lines 12–12, obtaining
|ri′,j′⟩Ri

where ri′,j′ = (vi′,j′ ∧ δm−1,j′) ∨ rt,j . Let us consider the first time we run the
middle for-loop during iteration l+ 1 of the outer for-loop. If P has a match ending at some
vz, z < i′, the inductive hypothesis guarantees rt,j = 1 for some j. Otherwise, if P does not
have any such match, then rt,j = 0 for all j. In this second case, if P has a match ending at
vi′ , we know by Lemma 3 that vi′,m−1 = 1. This, combined with the fact that δm−1,m−1 = 1,
correctly implies that ri′,m−1 = 1, proving the statement for this specific i′ and j′ = m− 1.
If P has no match ending at vi′ , then vi′,m−1 = 0, and ri′,j′ = 0 for all j′, which must be
the case when no match has been found yet. To conclude the proof, notice that the same
reasoning applies for the subsequent iterations of the middle for-loop by using every time the
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previous instance of this reasoning in place of the inductive hypothesis. That is, we use ri′,j′

when proving the statement for ri′+1,j′ and so on, until we prove the statement for rt′,j′ ,
where vt′ is the last node with index in Ll+1. At this point, we exit the middle for-loop and
the statement of the lemma is proven for l + 1. ◀

The correctness of the algorithm follows from the previous lemma combined with few
additional observations.

▶ Theorem 5. Given pattern string P of length at least 2 and level DAG G, Algorithm 1
returns the right answer for the SMLG problem on P and G with probability p > 1− (7/8)c,
for any given integer c.

Proof. After running the outer for-loop of Algorithm 1 L− 1 times, we exit such a loop, and
we know we have visited all the nodes (nodes in L0 where visited during the initialization).
If we consider Lemma 4 applied in the case of t = n− 1, we are considering all the nodes,
which means that if P has no match ending in G, then no substate of register Rn−1 is such
that |rn−1,j⟩Rn−1

= |1⟩, for any j. Instead, if P has a match in G, then at least one substate
of Rn−1 is such that |rn−1,j⟩Rn−1

= |1⟩, for some j. We use standard techniques that consist
in rerunning the algorithm a constant number of times to boost the probability of measuring
such a state, and achieve the desired one. Appendix C provides a more detailed analysis. ◀

Finally, the time complexity of our algorithm is subquadratic in the size of the graph.

▶ Theorem 6. The time complexity of Algorithm 1 is O(|E|
√
|P |) in the QRAM model, and

the space complexity is O(|E|+ |V |).

Proof. The algorithm uses |V | qubits Vi, and the same amount of qubits V ′
i , Ri, R′

i; qubits
Ei,d are a total of |E| qubits, and the rest are a constant number of qubits and registers.
Thus, the space complexity is O(|E|+ |V |).

With the for-loop in function SourceNodesInit(), the algorithm visits the nodes in L0,
which are at most O(|V |). The iteration conditions at lines 8 and 9 make the algorithm visit
every node. For each such iteration, we perform a constant number of operations except
for the for-loop in OperationOne(). This for-loop visits all the in-neighbours of a node,
each time performing a constant number of operations, and

∑|V |−1
i=0 |in(i)| = |E|. All of the

aforementioned operations can be implemented with a constant number of quantum-gate
applications, each affecting a constant number of qubits (3 at most), or by performing a load
operation from the QRAM, assumed to require constant time. At the end of the algorithm,
we run Grover’s search procedure on a superposition of 2|P | states, using the entire algorithm
as the oracle function.

Summing everything up, we spend O(|V |) time for the initialization, O(|V |+ |E|) time in
the for-loops, and O(|E|

√
|P |) time for Grover’s search procedure. The total time complexity

is thus dominated by O(|E|
√
|P |). ◀
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is always initialized to |1⟩, because this is the neutral value in a logical and, an thus in the
application of the Toffoli gate. Therefore, in these substates, a qubit Ri can and will be set
to value |1⟩Ri

if and only if a previous “shift” carried |1⟩Ri−1
.

Alternatively, if |P | is not a power of two, we can classically reduce the problem to this
case. We add new symbol $ to the alphabet. Then, we pad P with as many $ at the end
as needed to reach the next power of two. For each level in the DAG, we add a new node
with label $, and we place an edge for every node in that level to the new node. We connect
all this new nodes in a chain, and we also add a chain of |P | such nodes after the last level
(they create new levels consisting only of one node). The pattern now can overflow in these
nodes after finding a proper match in the DAG. Finally, we apply the same binary encoding
as in the plain text case, now replacing every node with a chain of two nodes, sending all the
incoming edges to the first node and making all the outgoing edges leave from the second
node. Overall, we add one new node per level, and one new edge per node, plus |P | additional
nodes and edges after the last level. This takes time O(|E|+ |P |).

B Additional pseudo-code

1 Function SourceNodesInit(I, J, A, C, V0, . . . , Vn−1, V ′
0 , . . . , V ′

n−1):
// Initialize |aj⟩A so that aj = 1 if j = 0, aj = 0 otherwise

2 1√
m

m−1∑
j=0

|j⟩J |0⟩A → 1√
m

m−1∑
j=0

|j⟩J |δ0,j⟩A;

// Initialize |bj⟩B so that bj = 1 if j = m − 1, bj = 0 otherwise

3 1√
m

m−1∑
j=0

|j⟩J |0⟩B → 1√
m

m−1∑
j=0

|j⟩J |δm−1,j⟩B ;

// L0 is the set of nodes in level 0.
4 for |L0| times do

// Read node label ℓ(vi) in C

5 1√
m

m−1∑
j=0

|j⟩J |i⟩I |0⟩C → 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi)⟩C ;

// Read the matrix entries for character ℓ(vi) in M

6 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |0⟩M → 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩
M

;

// Apply Toffoli to qubits M, A and Vi

7 1√
m

m−1∑
j=0

|mℓ(vi),j⟩
M

|δ0,j⟩A |0⟩Vi
→ 1√

m

m−1∑
j=0

|mℓ(vi),j⟩
M

|δ0,j⟩A |mℓ(vi),j ∧ δ0,j⟩
Vi

;

// Reset M and C

8 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩
M

→ 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j ⊕ mℓ(vi),j⟩
M

=

1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩Ci
|0⟩M ;

9 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi)⟩C → 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi) ⊕ ℓ(vi)⟩C = 1√
m

m−1∑
j=0

|j⟩J |i⟩I |0⟩C ;

// Increase I by one to visit the next node

10 1√
m

m−1∑
j=0

|1⟩Q |i⟩I → 1√
m

m−1∑
j=0

|1⟩Q |i + 1⟩I ;
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1 Function IncreaseI(I, M, C):
// Reset M and C

2 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j⟩
M

→ 1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩C |mℓ(vi),j ⊕ mℓ(vi),j⟩
M

→

1√
m

m−1∑
j=0

|j⟩J |ℓ(vi)⟩Ci
|0⟩M ;

3 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi)⟩C → 1√
m

m−1∑
j=0

|j⟩J |i⟩I |ℓ(vi) ⊕ ℓ(vi)⟩C = 1√
m

m−1∑
j=0

|j⟩J |i⟩I |0⟩C ;

// Increase I

4 1√
m

m−1∑
j=0

|j⟩J |1⟩Q |i⟩I → 1√
m

m−1∑
j=0

|j⟩J |1⟩Q |i + 1⟩I ;

1 Function IncreaseJ(J, A, B):
// Reset A and B

2 1√
m

m−1∑
j=0

|j⟩J |δ0,j⟩A → 1√
m

m−1∑
j=0

|j⟩J |0⟩A;

3 1√
m

m−1∑
j=0

|j⟩J |δm−1,j⟩B → 1√
m

m−1∑
j=0

|j⟩J |0⟩B ;

// Increase J

4 1√
m

m−1∑
j=0

|1⟩Q |j⟩J → 1√
m

m−1∑
j=0

|1⟩Q |j + 1⟩J ;

// Reinitialize A and B

5 1√
m

m−1∑
j=0

|j⟩J |0⟩A → 1√
m

m−1∑
j=0

|j⟩J |δ0,j⟩A;

6 1√
m

m−1∑
j=0

|j⟩J |0⟩B → 1√
m

m−1∑
j=0

|j⟩J |δm−1,j⟩B ;

C Full proof of Theorem 5

Proof. After running the outer for-loop of Algorithm 1 L− 1 times, we exit such a loop, and
we know we have visited all the nodes (nodes in L0 where visited during the initialization).
If we consider Lemma 4 applied in the case of t = n− 1, we are considering all the nodes,
which means that if P has no match ending in G, then no substate of register Rn−1 is such
that |rn−1,j⟩Rn−1

= |1⟩, for any j. Instead, if P has a match in G, then at least one substate
of Rn−1 is such that |rn−1,j⟩Rn−1

= |1⟩, for some j.
The for loop that we run at the end of the algorithm ensures to achieve high probability

of success. The probability of success p in Grover’s search algorithm is the sinusoidal function
p(K) = sin2((2K+ 1)θ) [5], where θ = sin−1

(√
M
N

)
, N is the search space, M is the number

of good solutions and K is the number of iterations of the Grover’s operator. This function
has period λM ≈ π

2

√
N
M − 1. Consider the case M = 1. If we choose a random number of

iterations K between 1 and λ1, we have p(K) ≥ 1/2 with probability 1/2. This is because
half of the material of the function is above the horizontal line of 1/2. When p(K) ≥ 1/2, the
probability of measuring a wrong result is ptop ≤ 1/2. When p(K) ≥ 1/2, the probability of
measuring a wrong result is greater than 1/2, but anyway pbottom ≤ 1. If we run the process
c times, the overall probability of failure (measuring a wrong result) pf is then
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pf =
(
ptop

1
2 + pbottom

1
2

)c

≤
(

1
2

1
2 + 1 · 1

2

)c

=
(

3
4

)c

Thus, the probability of success (measuring a correct result) is ps = 1− (3/4)c.
In the general case 1 < M ≤ N , the period λM of function p(K) is smaller than period

λ1 of the case M = 1. We can still use the same random number of iterations K between
1 and λ1, as nearly half of the material of the function p(K) is above the horizontal line
of 1/2: the worst case is when λM is little over half of λ1. In this case we know that p(K)
will be sampled uniformly over half of the range of period λ1, but the other half may have
biased sampling. Namely, the other half of the function might have more material below 1/2
than above. To have a safe estimate, we assume that the probability of returning the wrong
result in the biased case is pbiased = 1. That is, if we run the process c times, the overall
probability of failure (measuring a wrong result) pf is then

pf =
(
pbiased

1
2 + (ptop

1
2 + pbottom

1
2)1

2

)c

≤
(

1 · 1
2 + (1

2
1
2 + 1 · 1

2)1
2

)c

=
(

7
8

)c

Thus, the probability of success (measuring a correct result) is ps = 1− (7/8)c. ◀
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