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Abstract
In this talk we discuss the nominal approach to the specification of languages with binders and some
applications to programming languages and verification.
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1 Overview

The nominal approach to the specification of languages with binding operators, introduced
by Gabbay and Pitts [27, 21, 20], has its roots in nominal set theory [26]. Its user-friendly
syntax and first-order presentation (indeed, nominal logic [25] is defined as a theory in
first-order logic) makes formal reasoning about binding operators similar to conventional
on-paper reasoning.

Nominal logic uses the well-understood concept of permutation groups acting on sets
to provide a rigorous, first-order treatment of common informal practice to do with fresh
and bound names. Nominal matching and nominal unification [34, 35] (which work modulo
α-equivalence) are decidable and efficient algorithms exist [7, 8, 22, 9], which are the basis
for efficient implementations of nominal rewriting [19, 17, 18].

A number of systems (such as Nominal Isabelle [33]) highlighted the benefits of the
nominal approach, which gave rise to elegant formalisations of Gödel’s theorems [24] and
the π-calculus [5] and to advances in programming language semantics [23]. However, there
are still some obstacles to the inclusion of nominal features in programming languages and
verification environments.

In this talk, I will present our current work towards incorporating nominal techniques
into two widely-used rule-based first-order verification environments: the K specification
framework [29] and the Maude programming language [11, 12].

An important component of rule-based programming and verification environments is
the algorithm used to check equivalence of terms and to solve equations (unification). In
practice, unification problems arise in the context of equational axioms (e.g., to take into
account associative and commutative (AC) operators [32, 31, 13, 14, 6]). The first part of the
talk will discuss notions of α-equivalence modulo associativity and commutativity axioms [1],
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extensions of nominal matching and unification to deal with AC operators [2], and the use
of nominal narrowing [3] to deal with equational theories presented by convergent nominal
rewriting rules.

Another important component of these environments is the type system. In the second
part of the talk, I will discuss type systems for nominal languages (including polymorphic
systems [15] and intersection systems [4]). Dependent type theories, the dominant approach
to formalising programming languages, have been extended with nominal features [10, 28, 30].
A lambda-less nominal dependent type system is available [16] and we are currently working
on a type checker for this system.

The talk is structured as follows: we will start with the definition of nominal logic
(including the notions of fresh atoms and alpha-equivalence) followed by a brief introduction
to nominal matching and unification. We will then define nominal rewriting, a generalisation
of first-order rewriting that provides in-built support for alpha-equivalence following the
nominal approach. Finally, we will discuss notions of nominal unification and rewriting
modulo AC operators and briefly overview typed versions of nominal languages.
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