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Abstract
We present a new encoding of the Battle of Hercules and Hydra as a rewrite system with AC
symbols. Unlike earlier term rewriting encodings, it faithfully models any strategy of Hercules to
beat Hydra. To prove the termination of our encoding, we employ type introduction in connection
with many-sorted semantic labeling for AC rewriting and AC-RPO.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Rewrite systems; Theory of computation → Computability

Keywords and phrases battle of Hercules and Hydra, term rewriting, termination

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.12

Funding Nao Hirokawa: JSPS KAKENHI Grant Number JP22K11900.
Aart Middeldorp: Part of this work was performed when the second author was employed at the
Future Value Creation Research Center of Nagoya University, Japan.

1 Introduction

The mythological monster Hydra is a dragon-like creature with multiple heads. Whenever
Hercules in his fight chops off a head, more and more new heads can grow instead, since the
beast gets increasingly angry. Here we model a Hydra as an unordered tree. If Hercules cuts
off a leaf corresponding to a head, the tree is modified in the following way: If the cut-off
node h has a grandparent n, then the branch from n to the parent of h gets multiplied, where
the number of copies depends on the number of decapitations so far. Hydra dies if there are
no heads left, in that case Hercules wins. The following sequence shows an example fight:

✂

0

✂

1

✂

2

✂

3 4

Though the number of heads can grow considerably in one step, it turns out that the fight
always terminates, and Hercules will win independent of his strategy. Proving termination
of the Battle is challenging since Kirby and Paris proved in their landmark paper [11] that
termination for an arbitrary (computable) strategy is independent of Peano arithmetic.
In [11] a termination argument based on ordinals is used.

Starting with [4, p. 271], several TRS encodings of the Battle of Hercules and Hydra
have been proposed and studied [3, 5, 7, 17, 21]. Touzet [21] was the first to give a rigorous
termination proof and in [24] the automation of ordinal interpretations is discussed. In this
paper we present yet another encoding. In contrast to earlier TRS encodings that model a
specific strategy, it uses AC matching to represent arbitrary battles. To prove its termination,
we apply and extend existing termination methods for AC rewriting.
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12:2 Hydra Battles and AC Termination

The remainder of the paper is organized as follows. After recalling some basic definitions
in Section 2, we present our new encoding of the Battle in Section 3. We give a rigorous
proof that our encoding faithfully represents the Battle. In Section 4 we present many-sorted
semantic labeling for AC rewriting and apply it to our encoding. This results in an infinite
AC rewrite system, which is subjected to AC-RPO [20] in Section 5. Related work is discussed
in Section 6. In particular, we comment on earlier encodings of the Battle. We conclude in
Section 7 with suggestions for future research.

2 Preliminaries

Let S be a set of sorts. An S-sorted signature F consists of function symbols f having a
sort declaration S1 × · · · × Sn → S. Here S1, . . . , Sn and S are sorts in S and n is the arity
of f . By f (n) we indicate that f has arity n. Let V be a countably infinite set of variables,
where every variable has its own sort. We assume the existence of infinitely many variables
of each sort. Terms of sort S are inductively defined as usual: Every variable of sort S is
a term of sort S and if f has sort declaration S1 × · · · × Sn → S and ti is a term of sort
Si for all 1 ⩽ i ⩽ n then f(t1, . . . , tn) is a term of sort S. Ground terms are terms without
variables. By T ({f1, . . . , fm }) we denote the set of all ground terms over {f1, . . . , fm }. The
root symbol root(t) of a term t is t if it is a variable, and f if t = f(t1, . . . , tn). For every sort
S we introduce a fresh constant □S , called the hole. A term over F ⊎ {□S | S ∈ S} is a
context over F if it contains exactly one hole. Given a context C and a term t, we write C[t]
for the term resulting from replacing the hole in C by t. A mapping σ that associates each
variable to a term of the same sort is a substitution if its domain {x ∈ V | σ(x) ̸= x} is finite.
The application tσ of σ to a term t is defined as σ(t) if t is a variable and f(t1σ, . . . , tnσ)
if t = f(t1, . . . , tn). A binary relation → on terms is closed under substitutions if sσ → tσ

whenever s → t, for all substitutions σ. It is closed under contexts if C[s] → C[t] whenever
s → t, for all contexts C. Moreover, the relation → is said to be a rewrite relation if it is
closed under contexts and substitutions.

A rewrite rule ℓ → r consists of two terms ℓ and r of the same sort such that all variables
in r occur in ℓ. A (many-sorted) term rewrite system (TRS) is a set of rewrite rules. We
denote by →R the smallest rewrite relation that contains the pairs of the TRS R. A rule
ℓ → r is non-collapsing if r is not a variable. A TRS is called non-collapsing if all rules
are non-collapsing. Let FAC be a subset of the binary function symbols in F that have sort
declarations of the form S × S → S. We denote by AC the set of equations

f(f(x, y), z) ≈ f(x, f(y, z)) f(x, y) ≈ f(y, x)

expressing the associativity and commutativity of each f ∈ FAC. The relation →AC is defined
as expected and its reflexive, transitive, and symmetric closure is denoted by =AC. Let
R be a TRS. The relation =AC · →R · =AC is called AC rewriting and abbreviated by
→R/AC. We say that R is AC terminating if →R/AC is well-founded. A rewrite relation is a
reduction order if it is a well-founded order. A reduction order > is AC-compatible if the
inclusion =AC · > · =AC ⊆ > holds. AC termination of a TRS R can be shown by finding an
AC-compatible reduction order such that R ⊆ > holds.

The above definitions specialize to the usual unsorted setting when the set of sorts is a
singleton set.

Finally, we recall two order extensions. Let > be a strict order on a set A. The lexicographic
extension >lex of > is defined on tuples over A as follows: (a1, . . . , am) >lex (b1, . . . , bn) if
n = m and there exists an index 1 ⩽ k ⩽ n such that ak > bk and ai = bi for all i < k. The
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multiset extension >mul of > is defined on multisets over A as follows: M >mul N if there
exist multisets X and Y such that M = (N − X) ⊎ Y , ∅ ̸= X ⊆ M , and every b ∈ Y admits
an element a ∈ X with a > b.

3 Encoding

▶ Definition 1. To represent Hydras, we use a signature containing a constant symbol h
representing a head, a binary symbol | for siblings, and a unary function symbol i representing
the internal nodes. We use infix notation for | and declare it to be an AC symbol.

▶ Example 2. The Hydras in the above example fight are represented by the terms

H0 = i(i(h) | i(i(i(h) | i(h))) | h)
H1 = i(i(h) | i(i(i(h) | h | h)) | h)
H2 = i(i(h) | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h)
H3 = i(h | h | h | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h | h)
H4 = i(h | h | i(i(i(h) | h) | i(i(h) | h) | i(i(h) | h)) | h | h) ⌟

▶ Definition 3. The TRS H consists of the following 14 rewrite rules:

A(n, i(h)) 1−→ A(s(n), h) D(n, i(i(x))) 8−→ i(D(n, i(x)))

A(n, i(h | x)) 2−→ A(s(n), i(x)) D(n, i(i(x) | y)) 9−→ i(D(n, i(x)) | y)

A(n, i(x)) 3−→ B(n, D(s(n), i(x))) D(n, i(i(h | x) | y)) 10−→ i(C(n, i(x)) | y)

C(0, x) 4−→ E(x) D(n, i(i(h | x))) 11−→ i(C(n, i(x)))

C(s(n), x) 5−→ x | C(n, x) D(n, i(i(h) | y)) 12−→ i(C(n, h) | y)

i(E(x) | y) 6−→ E(i(x | y)) D(n, i(i(h))) 13−→ i(C(n, h))

i(E(x)) 7−→ E(i(x)) B(n, E(x)) 14−→ A(s(n), x) ⌟

The Battle is started with the term A(0, t) where t is the term representation of the initial
Hydra. Rule 1 takes care of the dying Hydra . Rule 2 cuts a head without grandparent
node, and so no copying takes place. Due to the power of AC matching, the removed head
need not be the leftmost one. With rule 3, the search for locating a head with grandparent
node starts. The search is performed with the auxiliary symbol D and involves rules 8–13.
When the head to be cut is located (in rules 10–13), copying begins with the auxiliary symbol
C and rules 4 and 5. The end of the copying phase is signaled with E, which travels upwards
with rules 6 and 7. Finally, rule 14 creates the next stage of the Battle. Note that we make
extensive use of AC matching to simplify the search process.

▶ Theorem 4. If H and H ′ are the encodings in T ({h, i, |}) of successive Hydras in an
arbitrary battle then A(n, H) →+

H/AC A(s(n), H ′) for some n ∈ T ({0, s}).

Before presenting the proof, we illustrate how the rewrite rules transform H0 to H1 in
Example 2.

▶ Example 5. The following sequence simulates the first step in the example fight:

A(0, H0) 3−→ B(0, D(s(0), H0))

=AC · 9−→ B(0, i(D(s(0), i(i(i(h) | i(h)))) | i(h) | h))
8−→ B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h))
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12:4 Hydra Battles and AC Termination

12−→ B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h))
5−→ B(0, i(i(i(h | C(0, h) | i(h))) | i(h) | h))
4−→ B(0, i(i(i(h | E(h) | i(h))) | i(h) | h))

=AC · 6−→ B(0, i(i(E(i(h | h | i(h)))) | i(h) | h))
7−→ B(0, i(E(i(i(h | h | i(h)))) | i(h) | h))
6−→ B(0, E(i(i(i(h | h | i(h))) | i(h) | h)))

14−→ A(s(0), i(i(i(h | h | i(h))) | i(h) | h)) =AC A(s(0), H1) ⌟

It is important to note that the TRS H defined above is unsorted and we establish in
this paper the result that it is AC terminating on all terms. When simulating a battle, like
in the statement of the Theorem 4, we deal with well-behaved terms adhering to the sort
discipline introduced shortly. The restriction to sorted terms is crucial for our termination
proof, but entails no loss of generality. This is due to the following result, which is a special
case of [15, Corollary 3.9].

▶ Theorem 6. A non-collapsing TRS over a many-sorted signature is AC terminating if and
only if the corresponding TRS over the unsorted version of the signature is AC terminating.

The idea of using sorts to simplify termination proof goes back to Zantema [25]. The
TRS H can be seen as a TRS over the many-sorted signature F ′:

h : O i, E : O → O | : O × O → O A, B : N × O → S
0 : N s : N → N C, D : N × O → O

where N, O and S are sort symbols. Since H is non-collapsing, Theorem 6 guarantees that
AC termination of H follows from AC termination of well-sorted terms over F ′.

In the remainder of this section we present a proof of Theorem 4 and its converse.

▶ Definition 7. Let n be a natural number. The TRS Rn operates on encodings of Hydras
and consists of the following four rules:

i(i(h)) 1−→ i(hn+2) i(i(h) | y) 3−→ i(hn+2 | y)

i(i(h | x)) 2−→ i(i(x)n+2) i(i(h | x) | y) 4−→ i(i(x)n+2 | y)

Here tk for k ⩾ 1 is defined inductively as follows:

tk =
{

t if k = 1
tk−1 | t if k > 1

The following lemma relates successive Hydras in a battle to the rules in Definition 7.
The easy proof is omitted.

▶ Lemma 8. If H and H ′ be the encodings of Hydras at stages n and n + 1 in a battle then
1. H = i(h) and H ′ = h, or
2. H =AC i(h | t) and H ′ = i(t) for some term t, or
3. H →Rn/AC H ′.

In the following we write n for sn(0). Moreover, TH denotes the set of ground terms over
{h, i, |}, and CH denotes the set of ground contexts over {h, i, |}.
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▶ Lemma 9. If n > 0 then C(n, t) →∗
H/AC tn | E(t) for all terms t.

Proof. We use induction on n. If n = 1 then

C(n, t) 5−→ t | C(0, t) 6−→ t | E(t) = tn | E(t)

Suppose the result holds for n ⩾ 1 and consider n + 1. The induction hypothesis yields
C(n, t) →∗

H/AC tn | E(t). Hence

C(n+1, t) 5−→ t | C(n, t) →∗
H/AC t | (tn | E(t)) =AC tn+1 | E(t) ◀

▶ Lemma 10. If n ⩾ 0 then D(n+1, H) →∗
H/AC E(H ′).

Proof. We use structural induction on H and consider the following two cases.
First suppose H →Rn/AC H ′ is a root step. If the first rule of Rn is used then H = i(i(h))
and H ′ =AC i(hn+2). We have D(n+1, H) 13−→ i(C(n+1, h)). Using Lemma 9 we obtain

i(C(n+1, h)) →∗
H/AC i(hn+1 | E(h)) =AC · 6−→ E(i(h | hn+1)) =AC E(H ′)

If the second rule of Rn is used then H =AC i(i(h | t)) and H ′ =AC i(i(t)n+2) for some
term t. We have D(n+1, H) =AC · 11−→ i(C(n+1, i(t))). Using Lemma 9 we obtain

i(C(n+1, i(t))) →∗
H/AC i(i(t)n+1 | E(i(t))) =AC · 6−→ E(i(i(t) | i(t)n+1)) =AC E(H ′)

If the third rule of Rn is used then H =AC i(i(h) | t) and H ′ =AC i(hn+2 | t) for some term
t. We have D(n+1, H) =AC · 12−→ i(C(n+1, h) | t). The remaining argument is the same
as in the preceding cases. If the fourth rule of Rn is used then H =AC i(i(h | s) | t) and
H ′ =AC i(i(s)n+2 | t) for some terms s and t. Using Lemma 9 we obtain

D(n+1, H) =AC · 10−→ i(C(n+1, i(s)) | t) →∗
H/AC i((i(s)n+1 | E(i(s))) | t)

=AC · 6−→ E(i(i(s) | (i(s)n+1 | t))) =AC E(H ′)

Otherwise, H =AC i(H1 | H2 | · · · | Hm) and H ′ =AC i(H ′
1 | H2 | · · · | Hm) for some m ⩾ 1

and Hydras H1, . . . , Hm, H ′
1 with H1 →Rn/AC H ′

1. We obtain D(n+1, H1) →∗
H/AC E(H ′

1)
from the induction hypothesis. Note that root(H1) = i. If m = 1 then

D(n+1, H) =AC D(n+1, i(H1)) 8−→ i(D(n+1, H1)) →∗
H/AC i(E(H ′

1)) 7−→ E(i(H ′
1))

=AC E(H1)

and if m > 1 we reach the same conclusion using rules 9 and 6 instead of 8 and 7. ◀

Proof of Theorem 4. Our task is to show

A(n, H) →∗
H/AC A(n+1, H ′)

For the first two cases in Lemma 8 the claim is immediate by rules 1 and 2 of H. To verify the
third case, assume H →Rn/AC H ′. This implies root(H) = i. Using rules 3 and 14 together
with Lemma 10 yields

A(n, H) 3−→ B(n, D(n+1, H)) →∗
H/AC B(n, E(H ′)) 14−→ A(n+1, H ′) ◀

In the remaining part of this section we prove the converse of Theorem 4.

FSCD 2023



12:6 Hydra Battles and AC Termination

▶ Theorem 11. Let H, H ′ ∈ TH be encodings of Hydras and let n be a natural number. If
A(n, H) →∗

H/AC A(n+1, H ′) then H and H ′ are successive Hydras in a battle.

In order to show the claim we need a few auxiliary lemmata.

▶ Definition 12. We define U as the set consisting of all terms of the forms A(n, t),
B(n, C[C(m, t)]), B(n, C[D(n+1, t)]), and B(n, C[E(t)]), where n, m ∈ N, t ∈ TH, and C ∈ CH.

The set U contains all terms reachable from A(n, H).

▶ Lemma 13. If t ∈ U and t →∗
H∪AC u then u ∈ U .

In order to analyze the rewrite sequence A(n, H) →∗
H/AC A(n+1, H ′) we define three

subsets of H: H1 = {1, 2}, H2 = {3, 4, 5, 6, 7, 8, 9, 14}, and H3 = {10, 11, 12, 13}. The
rewrite sequence in Example 5 can then be described as follows:

A(0, H0) →∗
H2/AC B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h))

→H3/AC B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h))

→∗
H2/AC A(1, H1)

▶ Definition 14. We define V as the extension of U with TH and all terms of the forms
C[C(n, t)] C[D(n, t)], and C[E(t)] where n ∈ N, t ∈ TH, and C ∈ CH. The mapping
π : V → TH is defined as follows:

π(t) =



h if t = h
i(π(u)) if t = i(u)
π(u) | π(v) if t = u | v

u if t = A(n, u) or t = D(n, u) or t = E(u)
π(u) if t = B(n, u)
un+1 if t = C(n, u)

Taking the role of C into account, the mapping π computes the Hydra in a given term.
Applying π to the terms in the above rewrite sequence of H2/AC and H3/AC, we obtain

H0 = π(A(0, H0)) =AC π(B(0, i(i(D(s(0), i(i(h) | i(h)))) | i(h) | h)))
→R0/AC π(B(0, i(i(i(C(s(0), h) | i(h))) | i(h) | h)))

=AC π(A(1, H1)) = H1

This verifies that H1 is a successor of H0.

▶ Lemma 15. The following properties hold.
1. π(t) = t for all terms t ∈ TH,
2. π(C[t]) = C[π(t)] for all terms t ∈ V and contexts C ∈ CH,
3. π(C[t]) =AC π(D[u]) for all terms t, u ∈ TH and contexts C, D ∈ CH with t =AC u and

C =AC D.

Proof. The first statement is proved by induction on t ∈ TH. If t = h then π(t) = h = t.
If t = i(u) with u ∈ TH then π(t) = i(π(u)) = i(u) = t. If t = u | v with u, v ∈ TH
then π(t) = π(u) | π(v) = u | v = t. For the second statement we use induction on the
context C ∈ CH. If C = □ then π(C[t]) = π(t) = C[π(t)]. If C = i(D) then π(C[t]) =
i(π(D[t])) = i(D[π(t)]) = C[π(t)]. If C = D | u then D ∈ CH and u ∈ TH and thus
π(C[t]) = π(D[t])|π(u) = D[π(t)]|u = C[π(t)]. If C = u|D then D ∈ CH and u ∈ TH and thus
π(C[t]) = π(u) | π(D[t]) = u | D[π(t)] = C[π(t)]. The third statement follows from statements
(1) and (2): π(C[t]) = C[π(t)] = C[t] =AC D[t] =AC D[u] = D[π(u)] = π(D[u]). ◀
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The following lemma relates AC rewriting of H to rewriting of Hydras according to
Definition 7.

▶ Lemma 16. The following statements hold for all terms s ∈ U .
1. If s =AC t then π(s) =AC π(t).
2. If s →H2 t then π(s) =AC π(t).
3. If s →H3 t then π(s) →Rn/AC π(t) with s = B(n, s′) for some n ⩾ 0.

Proof. Let s ∈ U .
1. If s = A(n, u) with u ∈ TH then t = A(n, v) for some term v ∈ TH with u =AC v.

Since π(s) = u and π(t) = v, π(s) =AC π(t) follows. If s = B(n, C[C(m, u)]) with
n, m ∈ N, C ∈ CH and u ∈ TH then t = B(n, D[C(m, v)]) with C =AC D and u =AC v.
Using Lemma 15(1,2) we obtain π(s) = π(C[C(m, u)]) = C[π(C(m, u))] = C[um+1] and
π(t) = D[vm+1]. From u =AC v we infer um+1 =AC vm+1 and thus π(s) =AC π(t) by
Lemma 15(3). The cases s = B(n, C[D(n+1, u)]) and s = B(n, C[E(u)]) are treated in the
same way.

2. For the second statement we make a case analysis based on the employed rule in H2.
If s

3−→ t then s = A(n, i(u)) and t = B(n, D(n+1, i(u))) for some n ⩾ 0 and u ∈ TH.
We have π(s) = i(u) = π(D(n+1, i(u))) = π(t) by the definition of t.
If s

4−→ t then s = B(n, C[C(0, u)]) and t = B(n, C[E(u)]) for some n ⩾ 0, C ∈ CH and
u ∈ TH. We have π(s) = π(C[C(0, u)]) = C[u1] = C[u] = π(C[u]) = π(t).
If s

5−→ t then s = B(n, C[C(m, u)]) and t = B(n, C[u | C(m−1, u)]) for some n ⩾ 0,
m > 0, C ∈ CH and u ∈ TH. We have π(s) = C[um+1] =AC C[u | um] = C[π(u | um)] =
π(C[u | C(m−1, u)]) = π(t).
If s

6−→ t then s = B(n, C[i(E(u)|v)]) and t = B(n, C[E(i(u|v))]) for some n ⩾ 0, C ∈ CH
and u, v ∈ TH. We have π(s) = π(C[i(E(u) | v)]) = C[i(u | v)] = π(C[E(i(u | v))]) = π(t).
If s

7−→ t then s = B(n, C[i(E(u))]) and t = B(n, C[E(i(u))]) for some n ⩾ 0, C ∈ CH
and u ∈ TH. We have π(s) = π(C[i(E(u))]) = C[i(u)] = π(C[E(i(u))]) = π(t).
If s

8−→ t then s = B(n, C[D(n+1, i(i(u)))]) and t = B(n, C[i(D(n+1, i(u)))]) for some
n ⩾ 0, C ∈ CH and u ∈ TH. We have π(s) = C[i(i(u))] = π(t).
If s

9−→ t then s = B(n, C[D(n+1, i(i(u) | v))]) and t = B(n, C[i(D(n+1, i(u)) | v)]) for
some n ⩾ 0, C ∈ CH and u, v ∈ TH. In this case we obtain π(s) = C[i(i(u) | v)] = π(t).
If s

14−→ t then s = B(n, E(u)) and t = A(n+1, u) for some n ⩾ 0 and u ∈ TH. In this
case we have π(s) = π(E(u)) = u = π(t).

3. Again we make a case analysis on the applied rewrite rule.
If s

10−→ t then s = B(n, C[D(n+1, i(i(h | u) | v))]) and t = B(n, C[i(C(n+1, i(u)) | v)])
for some n ⩾ 0, C ∈ CH and u, v ∈ TH. We obtain π(s) = C[i(i(h | u) | v)] and
π(t) = C[i(i(u)n+2 | v)]. Hence π(s) →Rn π(t) by applying rule 4 of Rn.
If s

11−→ t then s = B(n, C[D(n+1, i(i(h | u)))]) and t = B(n, C[i(C(n+1, i(u)))]) for some
n ⩾ 0, C ∈ CH and u, v ∈ TH. We obtain π(s) = C[i(i(h | u))] and π(t) = C[i(i(u)n+2)].
Hence π(s) →Rn π(t) by applying rule 2 of Rn.
If s

12−→ t then s = B(n, C[D(n+1, i(i(h) | v))]) and t = B(n, C[i(C(n+1, h) | v)]) for some
n ⩾ 0, C ∈ CH and v ∈ TH. We obtain π(s) = C[i(i(h) | v)] and π(t) = C[i(hn+2 | v)].
Hence π(s) →Rn

π(t) by applying rule 3 of Rn.
If s

13−→ t then s = B(n, C[D(n+1, i(i(h)))]) and t = B(n, C[i(C(n+1, h))]) for some
n ⩾ 0 and C ∈ CH. We obtain π(s) = C[i(i(h))] and π(t) = C[i(hn+2)]. Hence
π(s) →Rn

π(t) by applying rule 1 of Rn. ◀
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So we are ready to prove the main claim.

Proof of Theorem 11. Suppose s = A(n, H) →+
H/AC A(n+1, H ′) = t. Inspection of H

reveals that one of the following two cases holds:
(a) s →H1/AC t, or
(b) s →∗

H2/AC · →H3/AC · →∗
H2/AC t.

We first consider (a). If s →H1/AC t is a root step using rule 1 then H = i(h) and H ′ = h. If
s →H1/AC t is a root step using rule 2 then H =AC i(h | u) and H ′ =AC i(u) for some term u.
Next we consider (b). We have s →∗

H2/AC s′ →H3/AC t′ →∗
H2/AC t for some s′ and t′. From

Lemma 13 we obtain s, s′, t′, t ∈ U . Hence

H = π(s) =AC π(s′) →Rn/AC π(t′) =AC π(t) = H ′

is obtained by Lemma 16 and thus also H →Rn/AC H ′. ◀

4 Many-Sorted Semantic Labeling modulo AC

The mutual dependence between the function symbols A and B in rules 3 and 14 of H makes
proving termination of H/AC a non-trivial task. We use the technique of semantic labeling
(Zantema [26]) to resolve the dependence by labeling both A and B by the ordinal value of
the Hydra encoded in their second arguments. Semantic labeling for rewriting modulo has
been investigated in [19]. We need, however, a version for many-sorted rewriting since the
distinction between ordinals and natural numbers is essential for the effectiveness of semantic
labeling for H/AC.

Before introducing semantic labeling, we recall some basic semantic definitions. An algebra
A for an S-sorted signature F is a pair ({SA }S∈S , {fA }f∈F ), where each SA is a non-empty
set, called the carrier of sort S, and each fA is a function of type f : (S1)A×· · ·×(Sn)A → SA,
called the interpretation function of f : S1 × · · · × Sn → S. A mapping that associates each
variable of sort S to an element in SA is called an assignment. We write AV for the set of
all assignments. Given an assignment α ∈ AV , the interpretation of a term t is inductively
defined as follows:

[α]A(t) =
{

α(t) if t is a variable
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn)

Let A = ({SA }S∈S , {fA }f∈F ) be an S-sorted F -algebra. We assume that each carrier set SA
is equipped with a well-founded order >S such that the interpretation functions are weakly
monotone in all argument positions, and call (A, {>S }S∈S) a weakly monotone many-sorted
algebra. Given terms s and t of sort S, we write s ⩾A t (s =A t) if [α]A(s) ⩾S [α]A(t)
([α]A(s) =S [α]A(t)) holds for all α ∈ AV .

A labeling L for F consists of sets of labels Lf ⊆ SA for every f : S1 × · · · × Sn → S.
The labeled signature Flab consists of function symbols fa : S1 × · · · × Sn → S for every
function symbol f : S1 × · · · × Sn → S in F and label a ∈ Lf together with all function
symbols f ∈ F such that Lf = ∅. A labeling (L, lab) for (A, {>S }S∈S) consists of a labeling
L for the signature F together with a mapping labf : (S1)A × · · · × (Sn)A → Lf for every
function symbol f : S1 × · · · × Sn → S in F with Lf ̸= ∅. We call (L, lab) weakly monotone
if all its labeling functions labf are weakly monotone in all coordinates. The mapping labf

determines the label of the root symbol f of a term f(t1, . . . , tn), based on the values of
its arguments t1, . . . , tn. Formally, for every assignment α ∈ AV we define a mapping labα

inductively as follows:
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labα(t) =


t if t ∈ V
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf ̸= ∅

where a denotes the label labf ([α]A(t1), . . . , [α]A(tn)). Note that labα(t) and t have the same
sort. Given a TRS R over a (many-sorted) signature F , we define the labeled TRS Rlab over
the signature Flab as follows:

Rlab = { labα(ℓ) → labα(r) | ℓ → r ∈ R and α ∈ AV }

Since the AC symbol | in the encoding of the Hydra battle is a constructor, there is no need
to label it. Hence we assume for simplicity that Lf = ∅ for every AC symbol f ∈ F . The
TRS Dec consists of all rewrite rules

fa(x1, . . . , xn) → fb(x1, . . . , xn)

with f : S1 × · · · × Sn → S a function symbol in F , a, b ∈ Lf such that a >S b, and pairwise
different variables x1, . . . , xn. A weakly monotone algebra (A, >) is a quasi-model of R/AC
if ℓ ⩾A r for all rewrite rules ℓ → r in R and ℓ =A r for all equations ℓ ≈ r in AC.

▶ Theorem 17. Let R/AC be a TRS over a many-sorted signature F , (A, {>S }S∈S) a quasi-
model of R/AC with a weakly monotone labeling (L, lab). If (Rlab ∪ Dec)/AC is terminating
then R/AC is terminating.

Proof. We show
1. if t →R u then labα(t) →∗

Dec · →Rlab labα(u)
2. if t =AC u then labα(t) =AC labα(u)
for all sorts S, terms t, u ∈ TS(F , V), and assignments α ∈ AV . First suppose t →R u is a root
step using the rewrite rule ℓ → r. So t = ℓσ and u = rσ for some substitution σ. Define the
assignment β = [α]A ◦ σ and the (labeled) substitution τ = labα ◦ σ. An easy induction proof
yields labα(sσ) = labβ(s)τ for all terms s. By definition labβ(ℓ) → labβ(r) ∈ Rlab. Hence
labα(t) = labβ(ℓ)τ →Rlab labβ(r)τ = labα(u). Next suppose t →R u takes place below the root.
So t = f(t1, . . . , ti, . . . tn) and u = f(t1, . . . , ui, . . . tn) with ti →R ui. Let S1 × · · · × Sn → S

be the sort declaration of f . The induction hypothesis yields labα(ti) →∗
Dec · →Rlab labα(ui).

We obtain [α]A(ti) ⩾Si
[α]A(ui) from the quasi-model assumption. If Lf = ∅ then

labα(t) = f(labα(t1), . . . , labα(ti), . . . , labα(tn)) →∗
Dec · →Rlab

f(labα(t1), . . . , labα(ui), . . . , labα(tn)) = labα(u)

Suppose Lf ̸= ∅ and let

a = labf ([α]A(t1), . . . , [α]A(ti), . . . , [α]A(tn))
b = labf ([α]A(t1), . . . , [α]A(ui), . . . , [α]A(tn))

We obtain a ⩾S b from the weak monotonicity of the labeling function labf . Therefore, the
following rewrite sequence is constructed:

labα(t) = fa(labα(t1), . . . , labα(ti), . . . , labα(tn)) →∗
Dec

fb(labα(t1), . . . , labα(ti), . . . , labα(tn)) →∗
Dec · →Rlab

fb(labα(t1), . . . , labα(ui), . . . , labα(tn)) = labα(u)
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This concludes the proof of the first statement. For the second statement we use induction
on the number of applications of AC axioms in t =AC u. If this number is one, the conclusion
is reached by reasoning as above (with Lf = ∅ because AC symbols are not labeled and
hence the rules of Dec do not come into play). ◀

After these preliminaries, we are ready to put many-sorted semantic labeling to the test.
Consider the many-sorted algebra A with carriers N for sort N and O, the set of ordinal
numbers smaller than ϵ0, for sorts O and S and the following interpretation functions:

0A = hA = 1 sA(n) = n + 1 iA(x) = ωx

x |A y = x ⊕ y EA(x) = x + 1 CA(n, x) = x · n + 1
AA(n, x) = BA(n, x) = DA(n, x) = x

Here ⊕ denotes natural addition on ordinals, which is strictly monotone in both arguments.

▶ Lemma 18. The algebra (A, {>O, >N }) is a quasi-model of H/AC.

Proof. First note that the interpretation functions are weakly monotone. The rewrite rules
in H are oriented by ⩾O:

AA(n, iA(hA)) = ω >O 1 = AA(sA(n), hA) (1)
AA(n, iA(hA |A x)) = ωx+1 >O ωx = AA(sA(n), iA(x)) (2)

AA(n, iA(x)) = ωx =O ωx = BA(n, DA(sA(n), iA(x))) (3)
CA(0A, x) = x + 1 =O x + 1 = EA(x) (4)

CA(sA(n), x) = x · n + x + 1 =O x · n + x + 1 = x |A CA(n, x) (5)
iA(EA(x) |A y) = ωx⊕y +1 >O ωx⊕y + 1 = EA(iA(x |A y)) (6)

iA(EA(x)) = ωx+1 >O ωx + 1 = EA(iA(x)) (7)
DA(n, iA(iA(x))) = ωωx

=O ωωx

= iA(DA(n, iA(x))) (8)
DA(n, iA(iA(x) |A y)) = ωωx ⊕y =O ωωx ⊕y = iA(DA(n, iA(x)) |A y) (9)

DA(n, iA(iA(hA |A x) |A y)) = ωωx+1 ⊕y >O ωωx·n⊕y +1 = iA(CA(n, iA(x)) |A y) (10)

DA(n, iA(iA(hA |A x))) = ωωx+1
>O ωωx·n+1 = iA(CA(n, iA(x))) (11)

DA(n, iA(iA(hA) |A y)) = ωω ⊕y >O ω(n+1)⊕y = iA(CA(n, hA) |A y) (12)
DA(n, iA(iA(hA))) = ωω >O ωn+1 = iA(CA(n, hA)) (13)

BA(n, EA(x)) = x + 1 >O x = AA(sA(n), x) (14)

Note that inequalities (10) – (13) use the fact that ω >O n holds for n ∈ N. The compatibility
of A with AC follows from the associativity and the commutativity of ⊕:

(x |A y) |A z = (x ⊕ y) ⊕ z =O x ⊕ (y ⊕ z) = x |A (y |A z)
x |A y = x ⊕ y =O y ⊕ x = x |A y

Therefore, A is a quasi-model of H/AC. ◀

We now label A and B by the value of their second argument. Let LA = LB = O and
Lf = ∅ for the other function symbols f , and define lab as follows:

labA(n, x) = labB(n, x) = x
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The labeling (L, lab) results in the infinite rewrite system Hlab ∪ Dec with Hlab consisting of
the rewrite rules

Aω(n, i(h)) 1−→ A1(s(n), h) D(n, i(i(x))) 8−→ i(D(n, i(x)))

Aωv+1(n, i(h | x)) 2−→ Aωv (s(n), i(x)) D(n, i(i(x) | y)) 9−→ i(D(n, i(x)) | y)

Aωv (n, i(x)) 3−→ Bωv (n, D(s(n), i(x))) D(n, i(i(h | x) | y)) 10−→ i(C(n, i(x)) | y)

C(0, x) 4−→ E(x) D(n, i(i(h | x))) 11−→ i(C(n, i(x)))

C(s(n), x) 5−→ x | C(n, x) D(n, i(i(h) | y)) 12−→ i(C(n, h) | y)

i(E(x) | y) 6−→ E(i(x | y)) D(n, i(i(h))) 13−→ i(C(n, h))

i(E(x)) 7−→ E(i(x)) Bv+1(n, E(x)) 14−→ Av(s(n), x)

for all v ∈ O and Dec consisting of the rewrite rules

Av(n, x) → Aw(n, x) Bv(n, x) → Bw(n, x)

for all v, w ∈ O with v > w. According to Theorem 17, the AC termination of H on
many-sorted terms follows from the AC termination of Hlab ∪ Dec.

▶ Corollary 19. If Hlab ∪ Dec is AC terminating then H is AC terminating on sorted terms.

5 AC-RPO

In order to show AC termination of Hlab ∪ Dec we use the AC version of recursive path
orders (AC-RPO), introduced by Rubio [20]. In this section we first recall the definition of
AC-RPO, following the presentation in [23]. AC-RPO is a relation on terms constructed from
a strict order > on function symbols, called precedence. AC-RPO collects the arguments of
successive occurrences of the same AC symbols in a multiset. This operation is captured by
top-flattening. Let FAC be the set of AC symbols in F . The top-flattening of a term t with
respect to f ∈ FAC is the multiset ▽f (t) defined inductively as follows:

▽f (t) =
{
▽f (t1) ⊎ ▽f (t2) if t = f(t1, t2)
{t} otherwise

Multisets resulting from top-flattening are first compared by an embedding-like relation. Let
t be a term with root(t) = f ∈ FAC and ▽f (t) = {t1, . . . , tn }. We write t ▷f

emb u for all terms
u such that ▽f (u) = {t1, . . . , ti−1, sj , ti+1, . . . , tn } for some ti = g(s1, . . . , sm) with g ≯ f

and 1 ⩽ j ⩽ m. Then terms in the multisets are grouped according to their forms, and
compared in a sophisticated way. For this sake we define the following submultisets of a
multiset T of terms:

T ↾V = {x ∈ T | x ∈ V } T ↾>
f = {g(t1, . . . , tn) ∈ T \ V | g > f }

T ↾≮f = {g(t1, . . . , tn) ∈ T \ V | g ≮ f }

Let T = {t1, . . . , tn }. By #(T ) we denote the linear polynomial #(t1) + · · · + #(tn). Here
#(t) is defined as follows:

#(t) =
{

t if t is a variable
1 otherwise

Note that #(S) > #(T ) and #(S) ⩾ #(T ) denote comparisons of integer polynomials. After
these preliminaries, we are ready to present the definition of AC-RPO.
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▶ Definition 20. Let > be a precedence and let F \ FAC = Fmul ⊎ Flex. We define >acrpo
inductively as follows: s >acrpo t if one of the following conditions holds:
1. s = f(s1, . . . , sn) and si ⩾acrpo t for some 1 ⩽ i ⩽ n,

2. s = f(s1, . . . , sn), t = g(t1, . . . , tm), f > g, and s >acrpo tj for all 1 ⩽ j ⩽ m,

3. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, s >acrpo tj for all 1 ⩽ j ⩽ n, and either
(a) f ∈ Flex and (s1, . . . , sn) >lex

acrpo (t1, . . . , tn), or

(b) f ∈ Fmul and {s1, . . . , sn } >mul
acrpo {t1, . . . , tn },

4. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and s′ ⩾acrpo t for some s′ such that s ▷f
emb s′,

5. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, s >acrpo t′ for all t′ such that t ▷f
emb t′, S↾≮f ⊎

S↾V ⩾mul
acrpo,f T ↾≮f ⊎ T ↾V for S = ▽f (s) and T = ▽f (t), and

(a) S↾>
f >mul

acrpo T ↾>
f , or

(b) #(S) > #(T ), or

(c) #(S) ⩾ #(T ), and S >mul
acrpo T .

Here s >acrpo,f t means s >acrpo t and if root(s) ⩾̸ f then root(s) ⩾ root(t). The relation
=AC is used as preorder in >lex

acrpo, >mul
acrpo, and ⩾mul

acrpo,f as equivalence relation in ⩾acrpo.

▶ Theorem 21 ([20], Theorem 4). The relation >acrpo is a AC-compatible rewrite order with
the subterm property.

As a consequence, >acrpo is an AC-compatible reduction order when the underlying
signature is finite. As noted in [20, Section 8.2], this also holds for infinite signatures,
provided the precedence > is well-founded. This is important because the signature of Hlab
is infinite. Below, we will formally prove the correctness of the extension, by adopting the
approach of [16].

A strict order > on a set A is a partial well-order if for every infinite sequence a0, a1, . . .

of elements in A there exist indices i and j such that i < j and ai ⩽ aj . Well-founded total
orders (well-orders) are partial well-orders. Given a partial well-order > on F , the embedding
TRS Emb(F , >) consists of the rules f(x1, . . . , xn) → xi for every n-ary function symbol and
1 ⩽ i ⩽ n, together with the rules f(x1, . . . , xn) → g(xi1 , . . . , xim

) for all function symbols f

and g with arities m and n such that f > g, and indices 1 ⩽ i1 < i2 < · · · < im ⩽ n. Here
x1, . . . , xn are pairwise distinct variables.

▶ Theorem 22 ([16], Theorem 5.3). A rewrite order ≻ is well-founded if Emb(F , >) ⊆ ≻
for some partial well-order >.

▶ Theorem 23. The relation >acrpo is an AC-compatible reduction order for every well-
founded precedence >.

Proof. Let > be a well-founded precedence. We only need to show well-foundedness of >acrpo
because the other properties follow by Theorem 21. Let ⊐ be an arbitrary well-order that
contains >. Trivially, ⊐ is a partial well-order. The inclusion Emb(F ,⊐) ⊆ ⊐acrpo is easily
verified. Hence the well-foundedness of ⊐acrpo is obtained from Theorem 22. Since > ⊆ ⊐,
the incrementality of AC-RPO [20, Lemma 22] yields >acrpo ⊆ ⊐acrpo. It follows that >acrpo
is well-founded. ◀
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We show the termination of Hlab ∪Dec by AC-RPO. To this end, we consider the following
precedence > on the labeled signature:

Av > Aw for all v, w ∈ O with v > w

Bv > Bw for all v, w ∈ O with v > w

Bv+1 > Av > Bv for all v ∈ O
B0 > D > C > i > E > s > |

Note that > is well-founded.

▶ Theorem 24. Hlab ∪ Dec ⊆ >acrpo

Proof. We show the compatibility verification for rules 3 and 6 of Hlab. The other rewrite
rules are handled in a similar fashion. For rule 3 we have (the numbers next to the inference
steps refer to the cases in Definition 20)

Av > Bv

n ⩾acrpo n
2

ℓ3 >acrpo n

Aωv > D
Aωv > s

n ⩾acrpo n
1

ℓ3 >acrpo n
2

ℓ3 >acrpo s(n)
i(x) ⩾acrpo i(x)

1
ℓ3 >acrpo i(x)

2
ℓ3 >acrpo D(s(n), i(x)))

2
ℓ3 = Aωv (n, i(x)) >acrpo Bωv (n, D(s(n), i(x)))

For rule 6 we have

i > E

x ⩾acrpo x
1

E(x) >acrpo x

{E(x), y} ⩾mul
acrpo {x, y} {E(x)} >mul

acrpo ∅
5(a)

E(x) | y >acrpo x | y
3(a)

i(E(x) | y) >acrpo i(x | y)
2

i(E(x) | y) >acrpo E(i(x | y))

The multiset comparisons in 5(a) correspond to S↾≮f ⊎S↾V ⩾mul
acrpo,f T ↾≮f ⊎T ↾V and S↾>

f >mul
acrpo

T ↾>
f for f = |, S = ▽f (E(x) | y), and T = ▽f (x | y). These multisets are calculated as follows:

S = {E(x), y} S↾>
f = S↾≮f = {E(x)} S↾V = {y} S↾≮f ⊎ S↾V = {E(x), y}

T = {x, y} T ↾>
f = T ↾≮f = ∅ T ↾V = {x, y} T ↾≮f ⊎ T ↾V = {x, y} ◀

From Theorems 4 and 24 we conclude that Hercules eventually beats Hydra in any battle.
Theorems 24 and 6 in connection with Corollary 19 yield the AC termination of H on
arbitrary terms.

6 Related Work

In an influential survey paper, Dershowitz and Jouannaud [4, p. 270] introduced a 5-rule
rewrite system to simulate the Hydra Battle. The proposed rewrite system was later shown
to be erroneous. A corrected version together with a detailed termination analysis has been
given by Dershowitz and Moser [5], see also Moser [17]. Earlier, Touzet [21] presented an
11-rule rewrite system that encodes a specific battle with weakened Hydras (whose height is
bounded by 4) and proved total termination by a semantic termination method. It is worth
noting that our rewrite system H is not even simply terminating on unsorted terms. In fact,
we have the following cyclic sequence with respect to H ∪ Emb(F ,∅):
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A(E(i(x)), i(x)) 3−→ B(E(i(x)), D(s(E(i(x))), i(x))) →∗
Emb(F,∅) B(E(i(x)), i(x))

14−→ A(s(E(i(x))), i(x)) →Emb(F,∅) A(E(i(x)), i(x))

So the TRS H is not simply terminating (see [16, Lemma 4.6]).
The rewrite systems referred to above model the so-called standard battle, which corres-

ponds to a specific strategy for Hercules. In this regard it is interesting to quote Kirby and
Paris [11], who introduced the battle as an accessible example of an independence result for
Peano arithmetic (P):

A strategy is a function which determines for Hercules which head to chop off at each
stage of any battle. It is not hard to find a reasonably fast winning strategy (i.e. a
strategy which ensures that Hercules wins against any hydra). More surprisingly,
Hercules cannot help winning:

Theorem 2. (i) Every strategy is a winning strategy.

[. . . ]

Theorem 2. (ii) The statement “every recursive strategy is a winning strategy” is not
provable from P.

In a recent paper [6, Section 6], rules are presented to slay Hydras, independent of the strategy.
These rules do not constitute a term rewrite system in the usual sense (they operate on
terms with sequence variables). More importantly, the infinitely many rules do not faithfully
represent the battle. Earlier, Ferreira and Zantema [7, Section 10] presented an infinite
rewrite system to model the standard strategy and gave a direct ordinal interpretation to
conclude its termination. In neither of the latter two papers stages of the battle are modeled.

7 Conclusion

We presented a new TRS encoding of the Battle of Hydra and Hercules. Unlike earlier
encodings, it makes use of AC symbols. This allows to faithfully model any strategy of
Hercules, as envisaged in the paper by Kirby and Paris [11] in which the Battle was first
presented. To prove the termination of the encoding we employed many-sorted rewriting
modulo AC and we extended semantic labeling modulo AC to many-sorted TRSs. The
infinite TRS produced by semantic labelling was proved terminating by suitably instantiating
AC-RPO.

The finite TRS H poses an interesting challenge for automatic termination tools. None of
the tools (AProVE [8], muterm [1], NaTT [22]) competing in the “TRS Equational” category
of last year’s Termination Competition1 succeeds on H/AC. This is not really surprising
since most methods implemented in termination tool come with a multiple recursive upper
bound on the derivation height (e.g. [10, 13, 18]). The tools even fail to prove termination of
H without AC. The tool TTT2 [12] has support for ordinal interpretations [24] but also fails
on H.

Formalizing the techniques used in this paper in a proof assistant is an important task
to ensure the correctness of the results. Interestingly, the informal paper [9] in which we
announced our encoding also presents a termination proof, essentially extending a semantic

1 https://termcomp.github.io/Y2022/

https://termcomp.github.io/Y2022/
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method of Touzet [21] and Zantema [27] to AC rewriting. Although we believe the non-trivial
extension to be correct, its use in proving the AC termination of H has a critical mistake,
which we recently discovered.

Another topic for future research is to investigate the scope of many-sorted semantic
labeling. Can the termination of earlier encodings of the battle be established with many-
sorted semantic labeling followed by some standard simplification order? Variants of the
battle by Buchholz [2] and Lepper [14] are also of interest here.
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