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Abstract
As shown by Tsukada and Ong, simply-typed, normal and η-long resource terms correspond to plays
in Hyland-Ong games, quotiented by Melliès’ homotopy equivalence. Though inspiring, their proof
is indirect, relying on the injectivity of the relational model w.r.t. both sides of the correspondence –
in particular, the dynamics of the resource calculus is taken into account only via the compatibility
of the relational model with the composition of normal terms defined by normalization.

In the present paper, we revisit and extend these results. Our first contribution is to restate
the correspondence by considering causal structures we call augmentations, which are canonical
representatives of Hyland-Ong plays up to homotopy. This allows us to give a direct and explicit
account of the connection with normal resource terms. As a second contribution, we extend this
account to the reduction of resource terms: building on a notion of strategies as weighted sums of
augmentations, we provide a denotational model of the resource calculus, invariant under reduction.
A key step – and our third contribution – is a categorical model we call a resource category, which is
to the resource calculus what differential categories are to the differential λ-calculus.
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1 Introduction

The Taylor expansion of programs translates programs with possibly infinite behaviour to
infinite formal sums of terms of a language with a strongly finitary behaviour called the
resource calculus. Its discovery dates back to Ehrhard and Regnier’s differential λ-calculus
[13], reifying syntactically features of certain vectorial models of linear logic. Since its
inception [15], Taylor expansion was intended as a quantitative alternative to order-based
approximation techniques, such as Scott continuity and Böhm trees. For instance, Barbarossa
and Manzonetto leveraged it to get simpler proofs of known results in pure λ-calculus [2].

Game semantics is another well-established line of work, also representing programs as
collections of finite behaviours. It is particularly well known for its many full abstraction
results [16, 1]. How different is the Taylor expansion of the λ-calculus from its game semantics?

© Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Lison.Blondeau-Patissier@univ-amu.fr
mailto:Pierre.Clairambault@cnrs.fr
https://orcid.org/0000-0002-3285-6028
mailto:Lionel.Vaux@univ-amu.fr
https://orcid.org/0000-0001-9466-418X
https://doi.org/10.4230/LIPIcs.FSCD.2023.13
https://arxiv.org/abs/2302.04685
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Strategies as Resource Terms, and Their Categorical Semantics

Not very different, suggest Tsukada and Ong [23], who show that certain normal and η-long
resource terms correspond bijectively to plays in the sense of Hyland-Ong game semantics [16],
up to Opponent’s scheduling of the independent explorations of separate branches of the
term, as formalized by Melliès’ homotopy equivalence on plays [19].

The account of this insightful result by Tsukada and Ong is inspiring, but it also comes
with limitations. Their focus is on normal resource terms, and the dynamics is treated only
in the form of the composition of terms, i.e. substitution followed by normalization. The
correspondence is also very indirect, relying on the injectivity of the relational model w.r.t.
both normal resource terms and plays up to homotopy. In [23], after laying out the intuitions
supporting the correspondence, Tsukada and Ong motivate this indirect route, writing: “The
idea will now be intuitively clear. However the definition based on the above argument,
which heavily depends on graphical operations, does not seem so easy to handle.”

In the present paper, we handle this very task. We rely on a representation of plays
quotienting out Opponent’s scheduling, recently introduced by the first two authors [4]. This
was inspired by concurrent games [11] – similar causal structures existed before, first suggested
in [17], and fleshed out more in [22]. In [4], plays are replaced by so-called augmentations,
which augment valid states of the game with causal constraints imposed by the program. Our
first contribution is an explicit description of the bijection between normal resource terms
and isomorphism classes of augmentations (called isogmentations, for the sake of brevity), in
a style similar to traditional finite definability arguments: see Section 3.2.

We moreover strive to account for non-normal resource terms and reduction in the resource
calculus, which we recall in Section 2. In game semantics, this typically relies on a category
of strategies, whose composition is defined by interaction between plays. Considering the
interaction of augmentations – which was not addressed in [4] – an interesting phenomenon
occurs. Indeed, there is no canonical way to synchronize two augmentations: they can only
interact via a mediating map, called a symmetry, and the result of the interaction depends
on the chosen symmetry! Composition is then obtained by summing over all symmetries, as
discussed in Section 3.3. This is not an artificial phenomenon arising from our implementation
choices: it is analogous to the non-determinism inherent to the substitution of resource terms.
And this is instrumental in our second contribution: the correspondence between normal
resource terms and isogmentations refines into a denotational interpretation, invariant under
reduction, of resource terms as “strategies” – weighted sums of isogmentations.

To establish this result we expose the structure of the category of strategies that is
relevant to obtain a model of the resource calculus: we call resource categories the resulting
categorical model, which is our third contribution, in Section 4. And, in Section 5, we show
that strategies indeed form a resource category, completing the proof of the previous point.

Related and future work. As mentioned above, Tsukada and Ong [23] considered some
dynamic aspects of the correspondence: they proved their bijection compatible with the
compositions of terms and plays, via composition in the relational model. Nonetheless, they
did not consider an interpretation of non-normal resource terms as strategies: the question
of invariance under reduction could not even be formulated, and the relevant structure of
the category of strategies could not be exposed. Still, they state that the normal form of the
Taylor expansion of a λ-term is isomorphic to its game semantics.

Our results constitute a first step to flesh out this isomorphism into the diagrams:

M T (M) N (T (M))

JMK JT (M)K JN (T (M))K

T

J−K (a)

N

J−K (b) ≃

= =

s N (s)

JsK JN (s)K

N

J−K (c) ≃

=



L. Blondeau-Patissier, P. Clairambault, and L. Vaux Auclair 13:3

where M is a λ-term, s is a resource term, T is Taylor expansion, N is normalization and
J−K is game semantics. Square (a) should commute essentially by definition, while square (b)
should be deduced from (c): we leave the treatment of Taylor expansion for future work (see
also the next paragraphs and Section 6) but (c) already follows from our present results.

A significant aspect of our contributions is to take coefficients into account. This is far
from anecdotal: it requires new methods (we cannot get that via the relational model), it
makes the development significantly more complex, and it is necessary if one expects to apply
these tools to a quantitative setting (e.g., with probabilities) and to provide the basis of a
full game semantical account of quantitative Taylor expansion.

The exact correspondence between differential categories [5] and resource categories is
also left for future work. Anyway, we stress the fact that the resource calculus is the finitary
fragment of the differential λ-calculus: it does not contain the pure λ-calculus. Accordingly,
models of the resource calculus are rather related to those of promotion-free differential linear
logic [14]: the exponential modality (!) need not be a comonad. From such a model, one can
recover an interpretation of the full differential λ-calculus via Taylor expansion, provided the
necessary infinite sums are available. So we are convinced (see our concluding remarks in
Section 6) that our category of games does induce a cartesian closed differential category
[6, 9, 18]; more generally, we plan to study how this generalizes to any resource category –
provided the necessary sums of morphisms are available.

Outline. In Section 2, we detail our resource calculus. In Section 3 we introduce augment-
ations, show the correspondence with normal resource terms, and introduce strategies. In
Section 4 we introduce resource categories, define the interpretation of the resource calculus,
and prove that it is invariant under reduction. In Section 5, we show that strategies form a
resource category. We conclude in Section 6.

2 The Simply-Typed η-Expanded Resource Calculus

Preliminaries. If X is a set, we write X∗ for the set of finite lists, or tuples, of elements of
X, ranged over by a⃗, b⃗, etc. We write a⃗ = ⟨a1, . . . , an⟩ to list the elements of a⃗, of length
|⃗a| = n. The empty list is ⟨⟩, and concatenation is simply juxtaposition, e.g., a⃗⃗b. We write
B(X) for the set of finite multisets of elements of X, which we call bags, ranged over by
ā, b̄, etc. We write [a1, . . . , an] for the bag ā defined by a list a⃗ = ⟨a1, . . . , an⟩ of elements:
we then say a⃗ is an enumeration of ā. We write [] for the empty bag, and use ∗ for bag
concatenation. We also write |ā| for the size of ā: |ā| is the length of any enumeration of ā.

We shall often need to partition bags, which requires some care. For ā ∈ B(X) and k ∈ N,
a k-partitioning of ā is a function p : {1, . . . , |ā|} → {1, . . . , k}: we write p : ā◁ k. Given
an enumeration ⟨a1, . . . , an⟩ of ā, the associated k-partition is the tuple ⟨ā ↾p 1, . . . , ā ↾p k⟩,
where we set ā ↾p i = [aj | p(j) = i] for 1 ≤ i ≤ k, so that ā = ā ↾p 1 ∗ · · · ∗ ā ↾p k. The
obtained k-partition does depend on the chosen enumeration of ā but, for any function
f : B(X)k → M with values in a commutative monoid M (noted additively), the sum∑

ā◁ā1∗···∗āk

f(ā1, . . . , āk) def=
∑
p:ā◁k

f(ā ↾p 1, . . . , ā ↾p k)

is independent of the enumeration. When indexing a sum with ā◁ ā1 ∗ · · · ∗ āk we thus mean
to sum over all partitionings p : ā◁ k, āi being shorthand for ā ↾p i in the summand.

We will also use tuples of bags: we write S(X) for B(X)∗. We denote elements of S(X) as
a⃗, b⃗, etc. just like for plain tuples, but we reserve the name sequence for such tuples of bags.
A k-partitioning p : a⃗◁ k of a⃗ = ⟨ā1, . . . , ān⟩ is a tuple p = ⟨p1, . . . , pn⟩ of k-partitionings

FSCD 2023



13:4 Strategies as Resource Terms, and Their Categorical Semantics

y⟨t̄/x⟩ def=


t if y = x and t̄ = [t]
y if y ̸= x and t̄ = []
0 otherwise

(λz.s)⟨t̄/x⟩ def= λz.s⟨t̄/x⟩

(s ū)⟨t̄/x⟩ def=
∑

t̄◁t̄1∗t̄2

(s⟨t̄1/x⟩) (ū⟨t̄2/x⟩)

[s1, . . . , sn]⟨t̄/x⟩ def=
∑

t̄◁t̄1∗···∗t̄n

[s1⟨t̄1/x⟩, . . . , sn⟨t̄n/x⟩]

Figure 1 Inductive definition of substitution (z is chosen fresh in the abstraction case).

(λx.s) t̄ → s⟨t̄/x⟩
s → S′

λx.s → λx.S′
s → S′

s t̄ → S′ t̄

s → S′

[s] ∗ t̄ → [S′] ∗ t̄
t̄ → T̄ ′

s t̄ → s T̄ ′

Figure 2 Rules of single-step reduction.

pi : āi ◁ k. This defines a partition ⟨⃗a ↾p 1, . . . , a⃗ ↾p k⟩, component-wise: each a⃗ ↾p i is the
sequence ⟨ā1 ↾p1 i, . . . , ān ↾pn

i⟩. We obtain a⃗ = a⃗ ↾p 1 ∗ · · · ∗ a⃗ ↾p k, applying the concatenation
of bags component-wise, to sequences all of the same length n. And, just as before, the result
of the following sum is independent from the enumeration of the bags of a⃗:∑

a⃗◁a⃗1∗···∗a⃗k

f (⃗a1, . . . , a⃗k) def=
∑
p:⃗a◁k

f (⃗a ↾p 1, . . . , a⃗ ↾p k) .

Resource calculus. The terms of the resource calculus [15] are just like λ-terms, except
that, in an application, the argument is a bag of terms instead of just one term. We denote
terms by s, t, u and bags of terms by s̄, t̄, ū, and write ∆ for the set of terms:

∆ ∋ s, t, u, . . . ::= x | λx.s | s [t1, . . . , tn] .

The dynamics relies on a multilinear variant of substitution, that we will call resource
substitution: a redex (λx.s) t̄ reduces to a (non-idempotent) sum s⟨t̄/x⟩ of terms obtained
by substituting each element of t̄ for exactly one occurrence of x in s. The inductive definition
is in Figure 1, relying on an extension of syntactic constructs to finite sums of expressions:

λx.S
def=

∑
i∈I

λx.si [S] ∗ T̄ def=
∑
i∈I

∑
j∈J

[si] ∗ t̄j S T̄
def=

∑
i∈I

∑
j∈J

si t̄j ,

for S =
∑
i∈I si and T̄ =

∑
j∈J t̄j . The actual protagonists of the calculus are thus sums

of terms rather than single terms. We will generally write Σ(X) for the set of finite formal
sums on set X – those may be considered as finite multisets, but we adopt a distinct additive
notation to avoid confusion with bags. Resource substitution is in turn extended by linearity,
setting S⟨T̄ /x⟩ def=

∑
i∈I

∑
j∈J si⟨t̄j/x⟩ with the same notations as above.

The reduction of resource terms → ⊆ ∆ × Σ(∆) is given in Figure 2. It is extended
to Σ(∆) × Σ(∆) by setting S → S′ whenever S = t+ U and S′ = T ′ + U with t → T ′.

▶ Theorem 1 ([15]). The reduction → on Σ(∆) is confluent and strongly normalizing.
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Γ, x⃗ : F⃗ ⊢Base s : o
abs

Γ ⊢Val λx⃗.s : F⃗ → o

Γ ⊢Val s : F⃗ → o Γ ⊢Seq t⃗ : F⃗
hr

Γ ⊢Base s t⃗ : o

Γ ⊢Var x : F⃗ → o Γ ⊢Seq t⃗ : F⃗
hv

Γ ⊢Base x t⃗ : o

id
Γ, x : F ⊢Var x : F

Γ ⊢Val s1 : F · · · Γ ⊢Val sn : F bag
Γ ⊢Bag [s1, . . . , sn] : F

Γ ⊢Bag s̄1 : F1 · · · Γ ⊢Bag s̄n : Fn seq
Γ ⊢Seq ⟨s̄1, . . . , s̄n⟩ : ⟨F1, . . . , Fn⟩

Figure 3 Typing rules for the simply-typed resource calculus.

Typing and expanded terms. In the remainder of the paper, we will consider a simply
typed version of the resource calculus, based on the following grammar of types

F,G,H, . . . ::= o | F → G

for a single base type o. If F⃗ = ⟨F1, . . . , Fn⟩, we write F⃗ → G
def= F1 → · · · → Fn → G =

F1 → (· · · → (Fn → G) · · · ). Then any type H can be written uniquely as H = F⃗ → o.
The above strong normalization result holds in the untyped setting. We use typing only

to enforce a syntactic constraint on terms: our resource expressions are η-expanded, i.e.
values of type F⃗ → o are terms λx1 . . . λx|F⃗ |.s with s of type o. We fix a type for each
variable, so that each type has infinitely many variables – and write x : F for F the type of x.
A typing context Γ is a finite set of typed variables. As usual we write it as any enumeration
x1 : F1, . . . , xn : Fn, abbreviated as x⃗ : F⃗ ; we may then also write λx⃗.s def= λx1 . . . λxn.s. We
call resource sequence any sequence s⃗ ∈ S(∆) = B(∆)∗. Given a term s and a resource
sequence t⃗ = ⟨t̄1, . . . , t̄k⟩, we also define the application s t⃗

def= s t̄1 · · · t̄k = (· · · (s t̄1) · · ·) t̄k.
We extend resource substitution to sequences by setting

⟨s̄1, . . . , s̄n⟩⟨t̄/x⟩ def=
∑

t̄◁t̄1∗···∗t̄n

⟨s̄1⟨t̄1/x⟩, . . . , s̄n⟨t̄n/x⟩⟩

so that (s u⃗)⟨t̄/x⟩ =
∑
t̄◁t̄1∗t̄2(s⟨t̄1/x⟩) (u⃗⟨t̄2/x⟩), as in the application case of Figure 1.

The type system appears in Figure 3. For X ∈ {Val,Base,Bag,Seq}, we write X(Γ;F )
for the set of those s s.t. Γ ⊢X s : F . For X = Base we have F = o, so we set Base(Γ) def=
Base(Γ; o). If Γ ⊢X s : F , then s is in normal form iff the judgment is derived without (hr)
– we write Xnf(Γ;F ) for the elements of X(Γ;F ) in normal form. We write ΣX(Γ;F ) for
Σ(X(Γ;F )).

▶ Lemma 2 (Subject reduction). If S ∈ ΣVal(Γ;F ) and S → S′ then S′ ∈ ΣVal(Γ;F ).

This follows from substitution lemmas for our four kinds of typed terms, proved by mutual
induction: if Γ, x : F ⊢X t : G and Γ ⊢Bag s̄ : F then t⟨s̄/x⟩ ∈ ΣX(Γ;G).

We also consider a many-step variant of resource reduction, following the structure of
expanded terms. We set s⟨⃗t/x⃗⟩ def= s⟨t̄1/x1⟩ · · · ⟨t̄n/xn⟩ when x⃗ = ⟨x1, . . . , xn⟩, t⃗ = ⟨t̄1, . . . , t̄n⟩,
and no xi occurs free in t⃗. The many-step reduction ⇒ is then defined from the base case

(λx⃗.s) t⃗ ∈ Base(Γ) ⇒ s⟨⃗t/x⃗⟩ ∈ ΣBase(Γ) (assuming |x⃗| = |⃗t| ≠ 0),

extended contextually to each syntactic kind of typed expressions, following inductively the
type system of Figure 3, and then to sums as for →. It is clear that ⇒ ⊂ →+ (the transitive
closure of →), and that an expanded term is ⇒-reducible iff it is →-reducible: it follows that
⇒ is strongly normalizing, with the same normal forms as →. In particular ⇒ is confluent.

FSCD 2023



13:6 Strategies as Resource Terms, and Their Categorical Semantics

((o → o) → (o → o) → o) → o
q−

q+

q−

q+

q−

q+

q−

q+

Figure 4 A play in HO games.

((o → o) → (o → o) → o) → o
q−

q+

q−

q+

q−

q+

q−

q+

Figure 5 A homotopic play.

3 Resource Terms as Augmentations

Plays in game semantics. In Hyland-Ong game semantics [16] executions are formalized
as plays, drawn as in Figure 4, read temporally from top to bottom. Nodes are called moves,
negative (from Opponent / the environment) or positive (from Player / the program) – each
corresponds to a resource call, and the dotted lines, called justification pointers, carry the
hierarchical relationship between those calls. Both Figures 4 and 5 represent plays for

⊢ λf (o→o)→(o→o)→o. f (λxo. x) (λyo. y) : ((o → o) → (o → o) → o) → o ,

where Figure 4 reads as follows: Opponent starts computation with the initial q−, to which
Player reacts with the first q+, corresponding to calling f . With q− on the third line,
Opponents prompts f to call its first argument, to which Player responds the q+ on the
fourth line: a call to x. Subsequently Opponent evaluates the second argument of f – Player
responds by calling y – and then Opponent calls the first argument again.

Plays and resource terms. In [23], seeking a syntactic counterpart to the plays of HO
games, Tsukada and Ong state: “plays in HO/N-games are terms of a well-known and
important calculus, the resource calculus”. This is natural as both game semantics and the
resource calculus are quantitative and represent explicitly resource usage: in Figure 4, the
first argument of f is evaluated twice while the second one is evaluated once – following
Tsukada and Ong’s correspondence, the play is written s = λf. f [λx. x, λx. x] [λy. y] in the
resource calculus. However, Figure 5 also corresponds to s! Tsukada and Ong actually
establish a bijection between (normal) resource terms and plays up to Melliès’ homotopy
relation [19], relating plays which, like Figures 4 and 5, only differ via Opponent’s scheduling.
But then, is there a more explicit representation of plays up to homotopy?

As a matter of fact, there is. In [4], Blondeau-Patissier and Clairambault introduced a
causal representation of innocent strategies (inspired from concurrent games [11, 12] – see
also [22]) as a technical tool to prove a positional injectivity theorem for innocent strategies.
There a strategy is not a set of plays, but instead gathers diagrams as in Figure 6 in which
the trained eye can read exactly the same data as in the resource term s : the model replaces
the chronological plays of game semantics with causal structures called augmentations, of
which the plays are just particular linearizations. Thus as the first contribution of this paper,
we refine Tsukada and Ong’s result into a bijection of resource terms with augmentations.
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((o → o) → (o → o) → o) → o

q−
4uu�

q+

$nnu &oov
4uu�

q−

*qqx

q−

+rry

q−
4uu�

q+ q+ q+

Figure 6 An augmentation.

((o→o) → (o→o) →o)→ o

q−

q+

q− q−

q+ q+

Figure 7 An arena.

q−

tt+ ff+

Figure 8 Arena bool.

q−

0+ 1+ 2+ . . .

Figure 9 Arena nat.

(o → o) → o → o
q−

q+ q+

q−

Figure 10 Arena (o ⇒ o) ⇒ o ⇒ o.

3.1 Arenas, Positions, Augmentations
▶ Definition 3. An arena is A = ⟨|A|,≤A,polA⟩ where ⟨|A|,≤A⟩ is a (countable) partial
order, and polA : |A| → {−,+} is a polarity function. These data must satisfy:

finitary: for all a ∈ |A|, [a]A
def= {a′ ∈ |A| | a′ ≤A a} is finite,

forestial: for all a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,
alternating: for all a1 _A a2, then polA(a1) ̸= polA(a2),

where a1 _A a2 means a1 <A a2 with no event strictly in between. A −-arena is additionally
negative, i.e. polA(a) = − for all a ∈ min(A) def= {a ∈ |A| | a minimal}.

Elements of |A| are called events or moves interchangeably. An isomorphism φ : A ∼= B

between arenas is a bijection between events preserving and reflecting all structure.
Arenas present computational events with their causal dependencies: positive moves for

Player, and negative moves for Opponent. We often annotate moves with their polarity. In
arenas we draw the immediate causality _ as dotted lines, read from top to bottom. Figures
8 and 9 show the arenas bool and nat. In those arenas, initial (i.e. minimal) moves are
Opponent moves starting computation, to which Player may respond with a value.

Constructions. We write X + Y for the disjoint union ({1} ×X) ∪ ({2} × Y ) of sets.

▶ Definition 4. The tensor of arenas A1 and A2 is defined in Figure 11.
If additionally A1 and A2 are −-arenas and A2 is pointed, i.e. min(A2) is a singleton,

then the arrow A1 ⇒ A2, a pointed −-arena, is defined in Figure 12.

The tensor directly extends to countable arity, and each arena decomposes as A ∼= ⊗i∈IAi
with Ai pointed. We set A⊥ as A with polarities reversed. We write A ⊢ B for A⊥ ⊗B, 1 is
the empty arena and o has exactly one (negative) move q. We interpret types as arenas via
JoK = o and JA → BK = JAK ⇒ JBK, and contexts via JΓK = ⊗(x:A)∈ΓJAK. Figure 10 shows
the interpretation of (o → o) → o → o, following the longstanding game semantics convention
that keeps moves distinct by attempting to always place them under the corresponding atom.

FSCD 2023



13:8 Strategies as Resource Terms, and Their Categorical Semantics

|A1 ⊗A2| = |A1| + |A2|
(i, a) ≤A1⊗A2 (j, b) ⇔ i = j ∧ a ≤Ai

b

polA1⊗A2(i, a) = polAi
(a) .

Figure 11 Tensor of arenas.

|A1 ⇒ A2| = |A1| + |A2|
(i, a) ≤A1⇒A2 (j, b) ⇔ (i = j ∧ a ≤Ai b)

∨ (i = 2 ∧ a ∈ min(A2))
polA1⇒A2(i, a) = (−1)i · polAi

(a) ,

Figure 12 Arrow of arenas.

Configurations. Next we define the states reached when playing on arena A. Intuitively,
a state is a sub-tree of A but where each branch may be explored multiple times – such
structures were first introduced by Boudes [7] under the name thick subtrees. Here, by
analogy with concurrent games [11], we call them configurations:

▶ Definition 5. A configuration x ∈ C(A) of arena A is x = ⟨|x|,≤x, ∂x⟩ such that ⟨|x|,≤x⟩
is a finite forest, and the display map ∂x : |x| → |A| is a function s.t.:

minimality-respecting: for any a ∈ |x|, a is ≤x-minimal iff ∂x(a) is ≤A-minimal,
causality-preserving: for all a1, a2 ∈ |x|, if a1 _x a2 then ∂x(a1) _A ∂x(a2),

and x is pointed (noted x ∈ C•(A)) if it has exactly one minimal event init(x).

A polarity on x is deduced by pol(a) = polA(∂x(a)). We write a− (resp. a+) for a s.t.
pol(a) = − (resp. pol(a) = +). Ignoring the arrows _, Figure 6 is a configuration on Figure
7 – notice that the branch on the left hand side is explored twice.

For x, y ∈ C(A), the sets |x| and |y| are arbitrary and only related to A via ∂x and ∂y –
their specific identity is irrelevant. So configurations should be compared up to symmetry: a
symmetry φ : x ∼=A y is an order-iso s.t. ∂y ◦ φ = ∂x. Symmetry classes of configurations
are called positions: the set of positions on A is written P(A), and they are ranged over
by x, y, etc. (note the change of font). A position x is pointed, written x ∈ P•(A), if any
of its representatives is. If x ∈ C(A), we write x ∈ P(A) for the corresponding position.
Reciprocally, if x ∈ P(A), we fix x ∈ C(A) a representative. In [4], positions were shown to
correspond to points in the relational model (if o is interpreted as a singleton).

If x ∈ C(A) and y ∈ C(B), then x⊗ y ∈ C(A⊗B) has events the disjoint union |x| + |y|,
and display map inherited. We define x ⊢ y ∈ C(A ⊢ B) similarly.

Augmentations. We finally define our representation of plays up to homotopy:

▶ Definition 6. An augmentation on arena A is a tuple q = ⟨|q|,≤LqM,≤q, ∂q⟩, where
LqM = ⟨|q|,≤LqM, ∂q⟩ ∈ C(A), and ⟨|q|,≤q⟩ is a forest satisfying:

rule-abiding: for all a1, a2 ∈ |q|, if a1 ≤LqM a2, then a1 ≤q a2,
courteous: for all a1 _q a2, if pol(a1) = + or pol(a2) = −, then a1 _LqM a2,

deterministic: for all a− _q a
+
1 and a− _q a

+
2 , then a1 = a2,

+-covered: for all a ∈ |q| maximal in q, we have pol(a) = +,
negative: for all a ∈ min(q), we have pol(a) = −,

we then write q ∈ Aug(A), and call LqM ∈ C(A) the desequentialization of q.
Finally, q is pointed if it has a unique minimal event, written q ∈ Aug•(A).

Figure 6 represents an augmentation q by showing both relations _LqM (as dotted lines)
and _q. An augmentation q ∈ Aug(A) augments a configuration x ∈ C(A) by specifying
causal constraints imposed by the term: for each event, the augmentation gives the necessary
conditions before it can be played. Augmentations are analogous to plays: plays in the
Hyland-Ong sense can be recovered via the alternating linearizations of augmentations [4].



L. Blondeau-Patissier, P. Clairambault, and L. Vaux Auclair 13:9

Isogmentations. Augmentations are also considered up to iso. An isomorphism φ : q ∼= p
is a bijection preserving and reflecting all structure. An isogmentation is an isomorphism
class of augmentations, ranged over by q,p, etc.: we write Isog(A) (resp. Isog•(A)) for
isogmentations (resp. pointed isogmentations). If q ∈ Aug(A), we write q ∈ Isog(A) for its
isomorphism class; reciprocally, if q ∈ Isog(A), we fix a representative q ∈ q.

3.2 Isogmentations are Normal Resource Terms
Now we spell out the link between isogmentations and normal resource terms. We first
show how the structure of each syntactic kind of terms is reflected by augmentations of the
appropriate type. The main result (Theorem 12) follows directly.

Tensors and sequences. To reflect the syntactic formation rule for sequences, we show
that isogmentations on A1 ⊗ . . . ⊗ An are tuples. Consider −-arenas Γ, A1, . . . , An, and
qi ∈ Aug(Γ ⊢ Ai) for 1 ≤ i ≤ n. We set q⃗ = ⟨qi | 1 ≤ i ≤ n⟩ ∈ Aug(Γ ⊢ ⊗1≤i≤nAi) with

|⃗q| =
n∑
i=1

|qi| ,
{
∂q⃗(i,m) = (1, g) if ∂qi(m) = (1, g),
∂q⃗(i,m) = (2, (i, a)) if ∂qi

(m) = (2, a),

with the two orders ≤q⃗ and ≤L⃗qM inherited. It is immediate that this construction preserves
isomorphisms, so that it extends to isogmentations.

▶ Proposition 7. There is a bijection ⟨−, . . . ,−⟩ :
∏n
i=1 Isog(Γ ⊢ Ai) ≃ Isog(Γ ⊢ ⊗1≤i≤nAi).

Proof. By negative and forestial, any q ∈ Aug(Γ ⊢ ⊗1≤i≤nAi) is isomorphic to some
⟨qi | 1 ≤ i ≤ n⟩; this is compatible with isos as they respect display maps. ◀

Bags and pointedness. Likewise, isogmentations are bags of pointed isogmentations.
We start by showing the corresponding construction. Consider −-arenas Γ and A, and

q1, q2 ∈ Aug(Γ ⊢ A). We set q1 ∗ q2 ∈ Aug(Γ ⊢ A) with events |q1 ∗ q2| = |q1| + |q2|,
and display ∂q1∗q2(i,m) = ∂qi

(m), and the two orders ≤q1∗q2 and ≤Lq1∗q2M inherited. This
generalizes to an n-ary operation in the obvious way, which preserves isomorphisms. The
operation induced on isogmentations is associative and admits as neutral element the empty
isogmentation 1 ∈ Isog(Γ ⊢ A) with (a unique representative with) no event.

▶ Proposition 8. There is a bijection − ∗ · · · ∗ − : B(Isog•(Γ ⊢ A)) ≃ Isog(Γ ⊢ A).

Proof. As q ∈ Aug(Γ ⊢ A) is a finite forest, it is isomorphic to a bag of trees. ◀

Currying. For −-arenas Γ, A and B, we have ΛΓ,A,B : Aug(Γ ⊗A ⊢ B) ≃ Aug(Γ ⊢ A ⇒ B)
a bijection compatible with isos, which leaves the core of the augmentation unchanged and
only reassigns the display map in the unique sensible way. Hence we obtain:

▶ Proposition 9. For every −-arenas Γ, A1, . . . , An, there is

ΛΓ,A⃗ : Isog•(Γ ⊗A1 ⊗ . . .⊗An ⊢ o) ≃ Isog•(Γ ⊢ A1 ⇒ . . . ⇒ An ⇒ o).

Head occurrence. The above cases handle syntactic kinds Seq, Bag and Val, following the
rules (seq), (bag) and (abs) of the type system of Figure 3. It remains to treat rule (hv), i.e.
to study the kind Base when the function subterm is a variable occurrence.
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Figure 13 Illustration of □i(q).

∥ − ∥ : Valnf(Γ;F ) ≃ Isog•(JΓK ⊢ JF K)
∥ − ∥ : Basenf(Γ) ≃ Isog•(JΓK ⊢ o)
∥ − ∥ : Bagnf(Γ;F ) ≃ Isog(JΓK ⊢ JF K)
∥ − ∥ : Seqnf(Γ; F⃗ ) ≃ Isog(JΓK ⊢ JF⃗ K)

Figure 14 Four bijections.

As above, we start with the corresponding construction on augmentations. We write B⃗ ⇒
o

def= B1 ⇒ . . . ⇒ Bp ⇒ o for B⃗ = ⟨B1, . . . , Bn⟩ a tuple of objects, and B⃗⊗ def= B1 ⊗ · · · ⊗Bn.
Consider Γ = A1 ⊗ . . . ⊗ An where each Ai is Ai = B⃗i ⇒ o ∼= B⃗⊗

i ⇒ o; consider also
q ∈ Aug(Γ ⊢ B⃗⊗

i ). The i-lifting of q, written □i(q) ∈ Aug•(Γ ⊢ o), is the augmentation
that after the initial Opponent move, starts by playing the initial move in Ai, then proceeds
as q. More precisely:

▶ Definition 10. Consider Γ = A1 ⊗ . . .⊗An, with

Ai = Bi,1 ⇒ . . . ⇒ Bi,pi
⇒ o ∼= B⃗⊗

i ⇒ o ,

writing B⃗⊗
i = Bi,1 ⊗ . . .⊗Bi,pi ; consider also q ∈ Aug(Γ ⊢ B⃗⊗

i ). The i-lifting of q, written
□i(q) ∈ Aug•(Γ ⊢ o), has partial order q prefixed with two additional moves, i.e. ⊖ _ ⊕ _ q.
Its static causality is the least partial order containing dependencies

m ≤L□i(q)M n for m,n ∈ |q| with m ≤LqM n,
⊕ ≤L□i(q)M m for all m ∈ |q| with ∂q(m) = (2,−),

and with display map given by the following clauses:

∂□i(q)(⊖) = (2, q)
∂□i(q)(⊕) = (1, (i, (2, q)))
∂□i(q)(m) = (1, a) if ∂q(m) = (1, a),
∂□i(q)(m) = (1, (i, (1, a))) if ∂q(m) = (2, a),

altogether defining □i(q) ∈ Aug•(Γ ⊢ o) as required.

We illustrate this in Figure 13. This construction again preserves isomorphisms, and
extends to give, for any q ∈ Isog(Γ ⊢ B⃗⊗

i ), its i-lifting □i(q) ∈ Isog•(Γ ⊢ o). Additionally:

▶ Proposition 11. Consider Γ, A1, . . . , An −-arenas and assume A1, . . . , An are as above.
We have a bijection: □ :

∑
1≤i≤n Isog(Γ ⊢ B⃗⊗

i ) ≃ Isog•(Γ ⊢ o).

Proof. Any p ∈ Aug•(Γ ⊢ o) has a unique initial move, which cannot be maximal by +-
covered. By determinism, there is a unique subsequent Player move, displayed to the initial
move of some Ai. The subsequent moves directly inform q ∈ Aug(Γ ⊢ B⃗⊗

i ) s.t. p ∼= □i(q). ◀

▶ Theorem 12. For Γ a context and F a type, there are bijections as in Figure 14.

3.3 Strategies and Composition
Next we extend this correspondence to the dynamics of resource terms, linking syntactic
substitution with an adequate notion of composition of augmentations.

Consider A,B and C three −-arenas, and fix two augmentations q ∈ Aug(A ⊢ B),
p ∈ Aug(B ⊢ C). We shall compose them via interaction, followed by hiding.
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Figure 15 Construction of an interaction p ⊛φ q.

o ⊗ o ⊢ (o → o → o) → o
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Figure 16 p ⊙φ q.

Interaction of augmentations. We can only compose q and p provided they reach the same
state on B, so we first extract this via their desequentializations: observe LqM ∈ C(A ⊢ B)
has form xq

A ⊢ xq
B; likewise we write LpM = xp

B ⊢ xp
C ∈ C(B ⊢ C). But what does it

mean to “reach the same state”? In general xq
B = xp

B is too much: it means q and p not
only agree on a common state, but also on its irrelevant concrete representation. States
in B are not configurations, but positions: symmetry classes of configurations. Thus q
and p are compatible if xq

B and xp
B are symmetric, i.e. if there is φ : xq

B
∼=B xp

B – we
write xq

B
∼=B xp

B for the equivalence. Accordingly, we must define the composition of two
compatible augmentations along with a mediating symmetry. We first form interactions:

▶ Proposition 13. For q, p as above and φ : xq
B

∼=B xp
B, setting |p ⊛φ q| = |q| + |p| with

▷q = {((1,m), (1,m′)) | m <q m
′} ,

▷p = {((2,m), (2,m′)) | m <p m
′} ,

▷φ = {((1,m), (2, φ(m))) | m ∈ xq
B & polA⊢B(∂q(m)) = +}

∪ {((2, φ(m)), (1,m)) | m ∈ xq
B & polB⊢C(∂p(m)) = +} ,

then ▷ = ▷q ∪ ▷p ∪ ▷φ is acyclic: its transitive closure is a strict partial order on |p ⊛φ q|.

We write ≤p⊛φq
def= ▷∗ for the reflexive and transitive closure of ▷. The acyclicity of

▷ corresponds to a subtle and fundamental property of innocent strategies: they always
have a deadlock-free interaction. Our proof is a direct adaptation of a similar fact in
concurrent games on event structures [10]. Figure 15 illustrates the construction of an
interaction. The two augmentations q ∈ Aug(o ⊗ o ⊢ o) – on the left hand side – and
p ∈ Aug(o ⊢ (o → o → o) → o) – on the right hand side – are shown with their common
interface in red, with a symmetry φ : qq ∼=o qq bridging them.

Composing augmentations. We compose q and p via φ, by hiding the interaction.

▶ Proposition 14. Write LqM = xq
A ⊢ xq

B, LpM = xp
B ⊢ xp

C , and φ : xq
B

∼=B xp
B.

Then, the structure p ⊙φ q obtained by restricting p ⊛φ q to events in xq
A + xp

C , with
∂p⊙φq((1,m)) = ∂q(m) and ∂p⊙φq((2,m)) = ∂p(m), is an augmentation on A ⊢ C.

The interaction in Figure 15 yields the augmentation in Figure 16, the composition of q
and p via φ. This extends to isogmentations: p ⊙φ q def= p ⊙φ q for q ∈ Isog(A ⊢ B) with
LqM = xq

A ⊢ xq
B , p ∈ Isog(B ⊢ C) with LpM = xp

B ⊢ xp
C , and φ : xq

B
∼=B xp

B .
One fact is puzzling: the composition of q and p is only defined once we have fixed a

mediating φ : xq
B

∼=B xp
B , which is not unique – for instance there are exactly two symmetries

qq ∼=o qq. Worse, the result of composition depends on the choice of φ: if Figure 15 was
constructed with the symmetry ψ : qq ∼=o qq swapping the two moves, we would get the
variant p ⊙ψ q of Figure 16 with the two final causal links crossed, different even up to iso.
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This reminds of the syntactic substitution (λf. f x x)⟨[y, z]/x⟩ → λf. f y z + λf. f z y. As
syntactic substitution of resource terms yields sums of resource terms, this suggests that
composition of isogmentations should produce sums of isogmentations, called strategies.

Strategies. Roughly speaking, a strategy is simply a weighted sum of isogmentations.

▶ Definition 15. A strategy on arena A is a function σ : Isog(A) → R+, where R+ is the
completed half-line of non-negative reals. We then write σ : A.

We regard σ : A as a weighted sum σ =
∑

q∈Isog(A) σ(q) · q. We lift the composition of
isogmentations to strategies via the formula

τ ⊙ σ
def=

∑
q∈Isog(A⊢B)

∑
p∈Isog(B⊢C)

∑
φ:xq

B
∼=Bx

p
B

σ(q)τ(p) · (p ⊙φ q) (1)

for σ : A ⊢ B and τ : B ⊢ C, i.e. (τ ⊙ σ)(r) is the sum of σ(q)τ(p) over all triples q,p, φ s.t.
r = p ⊙φ q – there are no convergence issues, as we have been careful to include +∞ as a
coefficient in Definition 15 (though this shall not arise in the interpretation).

Identities. We also introduce identities: copycat strategies, formal sums of specific isogmenta-
tions presenting typical copycat behaviour; we start by defining their concrete representatives.

Consider x ∈ C(A) on −-arena A. The augmentation ccx ∈ Aug(A ⊢ A), called the
copycat augmentation on x, has LccxM = x ⊢ x, and as causal order x ⊢ x, augmented with

(1,m) ≤ccx (2, n) if m ≤x n and polA(∂x(m)) = +,
(2,m) ≤ccx

(1, n) if m ≤x n and polA(∂x(m)) = −,

so ccx adds to x ⊢ x all immediate causal links of the form (2,m) _ (1,m) for negative
m, and (1,m) _ (2,m) for positive m. Again, this lifts to isogmentations by setting, for
x ∈ P(A), the copycat isogmentation ccx ∈ Isog(A ⊢ A) as the isomorphism class of ccx.

The strategy idA : A ⊢ A should have the isogmentation ccx for all position x ∈ P(A).
But with which coefficient? To cancel the sum over all symmetries in (1), we set:

idA
def=

∑
x∈P(A)

1
#Sym(x) · ccx (2)

where Sym(x) is the group of endosymmetries of x, i.e. of all φ : x ∼=A x – the cardinal of
Sym(x) does not depend on the choice of x. This use of such a coefficient to compensate for
future sums over sets of permutations is reminiscent of the Taylor expansion of λ-terms [15].

3.4 Proof of the Categorical Laws
In this section, we show the main arguments behind the following result:

▶ Theorem 16. The −-arenas and strategies between them form a category, Strat.

This is proved in several stages. Firstly, we establish isomorphisms corresponding to
categorical laws, working concretely on augmentations – this means that these laws will refer
to certain isomorphisms explicitly. Then, we show that composition of augmentations is
compatible with isomorphisms, so that it carries out to isogmentations. From all that, we
are in position to conclude and prove that Strat is indeed a category.
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Laws on the composition of augmentations. The following lemma specifies in what sense
the copycat augmentation is neutral for composition:

▶ Lemma 17 (Neutrality). Consider q ∈ Aug(A ⊢ B), x ∈ C(B) and φ : xq
B

∼=B x.
Then, ccx ⊙φ q ∼= q. Likewise, for any y ∈ C(A) and ψ : y ∼=A x

q
A, we have q ⊙ψ ccy ∼= q.

Proof. Recall that ccx ⊙φ q is obtained by considering ccx ⊛φ q with events |ccx| + |q|, i.e.
|q| + (x+ x) with causal order as described in Proposition 13. The composition ccx ⊙φ q is
then the restriction to its visible events, i.e. xq

A + (∅ + x). Then

|ccx ⊙φ q| = xq
A + (∅ + x) ≃ xq

A + x
xq

A
+φ−1

≃ xq
A + xq

B ≃ |q|

forms a bijection between the sets of events, which is checked to be an isomorphism of
augmentations by a direct analysis of the causal order of ccx ⊙φ q. ◀

It may be surprising that ccx ⊙φ q ∼= q regardless of φ: the choice of the symmetry is
reflected in the isomorphism ccx ⊙φ q ∼= q, which this lemma ignores. Similarly, we have:

▶ Lemma 18 (Associativity). Consider q ∈ Aug(A ⊢ B), p ∈ Aug(B ⊢ C), r ∈ Aug(C ⊢ D),
and two symmetries φ : xq

B
∼=B xp

B and ψ : xp
C

∼=C xr
C . Then

r ⊙ψ′ (p ⊙φ q) ∼= (r ⊙ψ p) ⊙φ′ q .

with φ′, ψ′ obtained from φ and ψ, ajusting tags for disjoint unions in the obvious way.

Proof. A routine proof, relating the two compositions to a ternary composition r ⊙3
ψ p ⊙3

φ q :
Aug(A ⊢ D), defined in a way similar to binary composition. ◀

Congruence. Consider augmentations q, q′ ∈ Aug(A ⊢ B) with φ : q ∼= q′, we know that φ
is an isomorphism of configurations φ : LqM ∼=A⊢B Lq′M – a symmetry – therefore it has the
form φA ⊢ φB , with φA : xq

A
∼=A x

q′

A and φB : xq
B

∼=B xq′

B .

▶ Lemma 19. Consider q, q′ ∈ Aug(A ⊢ B), p, p′ ∈ Aug(B ⊢ C), isomorphisms θ : xq
B

∼=B xp
B

and θ′ : xq′

B
∼=B xp′

B , φ : q ∼= q′ and ψ : p ∼= p′ such that θ′ ◦ φB = ψB ◦ θ.
Then, we have an isomorphism ψ ⊙θ,θ′ φ : p ⊙θ q ∼= p′ ⊙θ′ q′.

The proof is a direct verification that the obvious morphism between p ⊙θ q and p′ ⊙θ′ q′

is indeed an isomorphism. The main consequence of this lemma is the following. Consider
q, q′ ∈ Aug(A ⊢ B), p, p′ ∈ Aug(B ⊢ C), isomorphisms φ : q ∼= q′ and ψ : p ∼= p′, not
requiring any commutation property as above. Still, φ and ψ project to symmetries

φB : xq
B

∼=B xq′

B , ψB : xp
B

∼=B xp′

B .

inducing a bijection

χ : xq
B

∼=B xp
B ≃ xq′

B
∼=B xp′

B

θ 7→ ψB ◦ θ ◦ φ−1
B ,

so that for any θ : xq
B

∼=B xp
B , we have p ⊙θ q ∼= p′ ⊙χ(θ) q′ by Lemma 19. It ensues that we

can substitute one representative for another when summing over all mediating symmetries:∑
θ:xq

B
∼=Bx

p
B

p ⊙θ q =
∑

θ:xq
B

∼=Bx
p
B

p′ ⊙χ(θ) q′ =
∑

θ:xq′
B

∼=Bxp′
B

p′ ⊙θ q′

using the observation above, and reindexing the sum following χ – or in other words,
the composition of strategies does not depend on the choice of representative used for
isogmentations. This is often used silently throughout the development.
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Figure 17 Monoid laws.

Categorical laws. We are now equipped to show Theorem 16. First, the identity laws:

▶ Proposition 20. Consider σ : A ⊢ B. Then, idB ⊙ σ = σ ⊙ idA = σ.

Proof. We focus on idB ⊙ σ. For any p ∈ Isog(B ⊢ B), we write LpM = xp
l ⊢ xp

r . We have:

idB ⊙ σ =
∑

q∈Isog(A⊢B)

∑
p∈Isog(B⊢B)

∑
φ:xq

B
∼=Bx

p
l

σ(q)idB(p) · p ⊙φ q

=
∑

q∈Isog(A⊢B)

∑
x∈P(B)

∑
φ:xq

B
∼=Bx

σ(q)
#Sym(x) · ccx ⊙φ q

using definition of the composition and of the identity. Next, we compute

idB ⊙ σ =
∑

q∈Isog(A⊢B)

∑
x∈P(B)

∑
φ:xq

B
∼=Bx

σ(q)
#Sym(x) · q

=
∑

q∈Isog(A⊢B)

∑
φ∈Sym(xq

B
)

σ(q)
#Sym(xq

B)
· q

=
∑

q∈Isog(A⊢B)

σ(q) · q

which is σ; by Lemma 17 and direct reasoning on symmetries – σ⊙ idA = σ is symmetric. ◀

Notice how the sum over all symmetries exactly compensates for the coefficient in (2).
Likewise, associativity of the composition of strategies follows from Lemma 18 and bilinearity
of composition, altogether concluding the proof that Strat is a category.

4 Resource Categories

We now develop resource categories, models of the resource calculus inspired by Strat.

4.1 Motivation and Definition
As compositions generate sums, we need an additive structure. Following [5], an additive
symmetric monoidal category (asmc) is a symmetric monoidal category where each
hom-set is a commutative monoid, and each operation preserves the additive structure.

Bialgebras. As for differential categories, resource categories build on bialgebras:

▶ Definition 21. Consider C an additive symmetric monoidal category.
A bialgebra on C is (A, δA, ϵA, µA, ηA) with (A,µA, ηA) a commutative monoid (see

Figure 17), (A, δA, ϵA) a commutative comonoid, with additional bialgebra laws (Figure 18).
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Figure 18 Additional bialgebra laws.
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Figure 19 Laws for (co)multiplication and pointed identity.

In a resource category, all objects shall be bialgebras. This means that for each object A,
we have morphisms δA : A → A⊗A, ϵA : A → I, µA : A⊗A → A, and ηA : I → A satisfying
coherence laws [5]. Comonoids (A, δA, ϵA) are the usual categorical description of duplicable
objects. Intuitively, requests made to δA on either side of the tensor on the rhs, are sent to
the left. Categorically the monoid structure (A,µA, ηA) is dual, but its intuitive behaviour is
different: each request on the rhs is forwarded, non-deterministically, to either side of the
tensor on the left, reflecting the sums arising in substitutions.

In contrast with differential categories, morphisms in a resource category intuitively
correspond to (sums of) bags rather than terms. Morally, the empty bag from A to B is
captured from the bialgebra structure as ηB ◦ϵA ∈ C(A,B), written 1. Likewise, the product
f ∗ g = µB ◦ (f ⊗ g) ◦ δA ∈ C(A,B) of f, g ∈ C(A,B) captures the union of bags. This
makes (C(A,B), ∗, 1) a commutative monoid, altogether turning C(A,B) into a commutative
semiring, though composition and tensor in C only preserve the additive monoid.

A bag of morphisms may be “flattened” into a morphism by the following operation: if
f̄ = [f1, . . . , fn] ∈ B(C(A,B)), we write Πf̄ def= f1 ∗ · · · ∗ fn ∈ C(A,B).

Pointed identities. Resource categories axiomatize categorically the singleton bags. For
that, a pivotal role is played by the pointed identity, a chosen idempotent id•

A ∈ C(A,A)
which we think of as a singleton bag with a linear copycat behaviour. More formally:

▶ Definition 22. Consider C an asmc where each object has a bialgebra structure.
For A ∈ C, a pointed identity on A is an idempotent id•

A ∈ C(A,A) satisfying the
equations shown as string diagrams in Figure 19, plus ϵA ◦ id•

A = 0 and id•
A ◦ ηA = 0.

Those laws are reminiscent of the laws of derelictions and coderelictions in bialgebra
modalities [5], except that both roles are played by id•

A. In a resource category C, all objects
have a pointed identity. The “singleton bags” are those f ∈ C(A,B) that are pointed, i.e.
id•
B ◦ f = f – we write C•(A,B). Dually, we may also capture those morphisms which require

exactly one resource: f ∈ C(A,B) is co-pointed if f ◦ id•
A = f , and we write f ∈ C•(A,B).

Resource categories. Altogether, we are now ready to define resource categories:

▶ Definition 23. A resource category is an asmc C where each A ∈ C has a bialgebra
structure (A, δA, ϵA, µA, ηA) and pointed identity id•

A, such that the bialgebra structure is
compatible with the monoidal structure of C (see Figure 20).
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A⊗B

δA⊗δB
~~

δA⊗B // (A⊗B) ⊗ (A⊗B)
αA⊗B,A,B

''
(A⊗A) ⊗ (B ⊗B)
αA⊗A,B,B

��

((A⊗B) ⊗A) ⊗B

α−1
A,B,A

⊗B
��

((A⊗A) ⊗B) ⊗B

α−1
A,A,B

⊗B
((

(A⊗ (B ⊗A)) ⊗B

(A⊗ (A⊗B)) ⊗B

(A⊗γA,B)⊗B
33

A⊗B
ϵA⊗B //

ϵA⊗ϵB

��

I

I ⊗ I

λI =ρI

<<

I

ϵI
((

idI

66 I

Figure 20 Compatibility of comonoids with the monoidal structure – there are symmetric
conditions for the compatibility of monoids with the monoidal structure.

A
δA //

Πf̄
��

A⊗A∑
f̄◁f̄1∗f̄2

Πf̄1⊗Πf̄2

��
B

δB

// B ⊗B

Figure 21 Compatibility of bags with δ.

A⊗A
µA //∑

f̄◁f̄1∗f̄2
Πf̄1⊗Πf̄2

��

A

Πf̄
��

B ⊗B
µB

// B

Figure 22 Compatibility of bags with µ.

Additionally, C is closed if A⊗ − has a right adjoint A → − for each A ∈ C.

This simple definition has powerful consequences. In particular, the following key property,
derived from the definition of resource categories, expresses how the product of a bag of
pointed morphisms interacts with the comonoid structure – and dually for the product of a
bag of co-pointed morphisms and monoids. Much of the proof of invariance relies on it:

▶ Lemma 24. Consider C a resource category, then we have the following properties:
1. For any bag of pointed morphisms f̄ ∈ B(C•(A,B)),

(a) the diagram of Figure 21 commutes; and
(b) we have ϵB ◦ Πf̄ = 1 if f̄ is empty, 0 otherwise;

2. For any bag of co-pointed morphisms f̄ ∈ B(C•(A,B)),
(a) the diagram of Figure 22 commutes; and
(b) we have Πf̄ ◦ ηA = 1 if f̄ is empty, 0 otherwise.

Proof. This follows from a lengthy but mostly direct diagram chase. ◀

4.2 Interpretation of the Resource Calculus
In order to describe the interpretation of the resource calculus, it will be convenient to
introduce some of the combinators from the theory of cartesian closed categories:

Cartesian combinators. The pairing of f ∈ C(Γ, A) and g ∈ C(Γ, B) is

⟨f, g⟩ def= (f ⊗ g) ◦ δΓ ∈ C(Γ, A⊗B) ;

likewise π1
def= ρA ◦ (A⊗ ϵB) ∈ C(A⊗B,A) and π2

def= λB ◦ (ϵA⊗B) ∈ C(A⊗B,B) are the two
projections – we shall also use their obvious n-ary generalizations. The laws of cartesian
categories fail: we have ⟨π1, π2⟩ = idA⊗B , but e.g. π1 ◦ ⟨f, h⟩ = f only holds if h is erasable
(i.e. ϵB ◦ h = ϵΓ) and ⟨f, g⟩ ◦ h = ⟨f ◦ h, g ◦ h⟩ if h is duplicable (i.e. δΓ ◦ h = (h⊗ h) ◦ δ∆) –
so we do get the usual laws if h is a comonoid morphism [20].



L. Blondeau-Patissier, P. Clairambault, and L. Vaux Auclair 13:17

For any two objects A,B ∈ C, we have evA,B ∈ C((A → B) ⊗ A,B) the evaluation
morphism. If f ∈ C(A⊗B,C), its currying is written ΛA,B,C(f) ∈ C(A,B → C).

Lemmas on propagation of substitutions. Morphisms coming from the interpretation are
not comonoid morphisms, but many structural morphisms are: for instance it follows from a
direct diagram chase that projections are comonoid morphisms.

As explained above, comonoid morphisms propagate in tuples as in a cartesian cat-
egory. But importantly, resource categories also specify how some non comonoid morphisms
propagate through a pairing, even paired with a comonoid morphism:

▶ Lemma 25. Let b̄ ∈ B(C•(∆, A)), h ∈ C(∆,Γ), f ∈ C(Γ ⊗A,B), g ∈ C(Γ ⊗A,C).
If h ∈ C(∆,Γ) is a comonoid morphism, then we have:

⟨f, g⟩ ◦ ⟨h,Πb̄⟩ =
∑

b̄◁b̄1∗b̄2

⟨f ◦ ⟨h,Πb̄1⟩, g ◦ ⟨h,Πb̄2⟩⟩

Proof. A diagram chase leveraging case (1) of Lemma 24. ◀

This is fairly close to how substitutions propagate through terms in the resource λ-calculus
(see Section 2): we sum over all the partitions of the bag b̄ into two components, to be
distributed to the two components of the pair – when using this lemma in the proof of
the substitution lemma, the comonoid morphism h shall simply be an identity leaving all
the unsubstitued variables unchanged. Syntactic substitution has another important case,
namely when a substitution encounters a variable occurrence. Likewise here, we have:

▶ Lemma 26. Consider f̄ ∈ B(C•(A,B)). Then id•
B ◦ Πf̄ = v if f̄ = [v], 0 otherwise.

This lemma follows from the conditions of a resource category, though in a not so
straightforward way. It illustrates how the pointed identity is able to pick a single element of
a bag. If the bag has too many elements or not enough, then the composition yields 0.

Interpretation. From now on, we fix a closed resource category C with a chosen object o.
We first set JoK def= o, J⟨F1, . . . , Fn⟩K def= JF1K ⊗ · · · ⊗ JFnK and JF⃗ → oK def= JF⃗ K → o. For

contexts, JΓK def=
⊗

(x:F )∈ΓJF K. If (x : F ) ∈ Γ, we write varΓ
x ∈ C(JΓK, JF K) the projection.

For Γ and ∆ disjoint we use the iso !Γ,∆ ∈ C(JΓK ⊗ J∆K, JΓ,∆K).
The interpretation of terms (or, rather, of typing derivations) follows the four kinds of

judgements from Section 2: for Γ, A ∈ C and A⃗ = ⟨A1, . . . , An⟩, we define

ValC(Γ;A) def= C•(Γ, A) SeqC(Γ; A⃗) def= Π1≤i≤nBagC(Γ;Ai)
BaseC(Γ) def= C•(Γ, o) BagC(Γ;A) def= B(ValC(Γ;A)) .

Notably, sequences and bags are interpreted as actual sequences and bags at the “meta-
level”, rather than via the “internal” bags (i.e. products of pointed maps) or products (i.e.
via the monoidal structure) in C. This apparent duplication of structure is resolved when
interpreting applications: we set ⟨|f⃗ |⟩ def= ⟨Πf̄1, . . . ,Πf̄n⟩ ∈ C(Γ, A⃗⊗) for f⃗ = ⟨f̄1, . . . , f̄n⟩ ∈
SeqC(Γ, A⃗), called the packing of the sequence f⃗ .

Like bags, packed sequences distribute over pairs and products:

▶ Lemma 27. Let c⃗ ∈ SeqC(∆; A⃗), h ∈ C(∆,Γ), f ∈ C(Γ ⊗ A⃗, B), g ∈ C(Γ ⊗ A⃗, C).
If h ∈ C(∆,Γ) is a comonoid morphism, then we have:

⟨f, g⟩ ◦ ⟨h, ⟨|⃗c|⟩⟩ =
∑

c⃗◁c⃗1∗c⃗2

⟨f ◦ ⟨h, ⟨|⃗c1|⟩⟩, g ◦ ⟨h, ⟨|⃗c2|⟩⟩⟩ .
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JΓ ⊢Val λx⃗.s : F⃗ → oK = ΛJΓK,Jx⃗:F⃗ K,o(JΓ, x⃗ : F⃗ ⊢Base s : oK ◦ !JΓK,Jx⃗:F⃗ K)
JΓ ⊢Base x t⃗ : oK = evJF⃗ K,o ◦ ⟨id•

JF K ◦ varΓ
x , ⟨|JΓ ⊢Seq t⃗ : F⃗ K|⟩⟩

JΓ ⊢Base s t⃗ : oK = evJF⃗ K,o ◦ ⟨JΓ ⊢Val s : F⃗ → oK, ⟨|JΓ ⊢Seq t⃗ : F⃗ K|⟩⟩
JΓ ⊢Bag [s1, . . . , sn] : F K = [JΓ ⊢Val si : F K | 1 ≤ i ≤ n]
JΓ ⊢Seq ⟨s̄1, . . . , s̄n⟩ : F⃗ K = ⟨JΓ ⊢Bag s̄i : FiK | 1 ≤ i ≤ n⟩

Figure 23 Interpretation of the resource calculus.

Proof. Proved by iterating Lemma 25, for each component of the sequence. ◀

We also have a similar lemma for a substitution propagating through a product:

▶ Lemma 28. Consider f, g ∈ C(Γ ⊗ A,B), h ∈ C(∆,Γ) a comonoid morphism, and
c⃗ ∈ SeqC(∆, A⃗). Then,

(f ∗ g) ◦ ⟨h, ⟨|⃗c|⟩⟩ =
∑

c⃗◁c⃗1∗c⃗2

(f ◦ ⟨h, ⟨|⃗c1|⟩⟩) ∗ (g ◦ ⟨h, ⟨|⃗c2|⟩⟩)) ,

and 1 ◦ ⟨h, ⟨|⃗c|⟩⟩ = 1 if c⃗ is empty, 0 otherwise.

Proof. Similar to Lemma 27. ◀

We now define the four interpretation functions

Val(Γ;F ) → ValC(JΓK; JF K)
Base(Γ) → BaseC(JΓK)

Bag(Γ;F ) → BagC(JΓK; JF K)
Seq(Γ; F⃗ ) → SeqC(JΓK; JF⃗ K)

all written J−K, by mutual induction, as in Figure 23. The interpretation is extended to sums
of terms ΣVal(Γ;F ) → ValC(JΓK; JF K) and ΣBase(Γ) → BaseC(JΓK) relying on the additive
structure of C – we give no interpretation to sums of bags or sequences.

4.3 The Soundness Theorem
We show that this interpretation is invariant under reduction. The bulk of the proof consists
in proving a suitable substitution lemma, for which we must first give a semantic account of
substitution. We define three semantic substitution functions:

−⟨⟨−/x⃗⟩⟩ : ValC(JΓ, x⃗ : F⃗ K; JGK) × SeqC(JΓK; JF⃗ K) → ValC(JΓK; JGK)
−⟨⟨−/x⃗⟩⟩ : BaseC(JΓ, x⃗ : F⃗ K) × SeqC(JΓK; JF⃗ K) → BaseC(JΓK)
−⟨⟨−/x⃗⟩⟩ : SeqC(JΓ, x⃗ : F⃗ K; JG⃗K) × SeqC(JΓK; JF⃗ K) → C(JΓK, JG⃗K)

using our cartesian-like notations:

f⟨⟨g⃗/x⃗⟩⟩ def= f ◦ !JΓK,Jx⃗:F⃗ K ◦ ⟨idJΓK, ⟨|⃗g|⟩⟩ f⃗⟨⟨g⃗/x⃗⟩⟩ def= ⟨|f⃗ |⟩ ◦ !JΓK,Jx⃗:F⃗ K ◦ ⟨idJΓK, ⟨|⃗g|⟩⟩

where the first applies for f ∈ ValC(JΓ, x⃗ : F⃗ K; JGK) or f ∈ BaseC(JΓ, x⃗ : F⃗ K) and the second
for f⃗ ∈ SeqC(JΓ, x⃗ : F⃗ K; JG⃗K). We may now state the substitution lemma:

▶ Lemma 29. Consider t⃗ ∈ Seq(Γ, F⃗ ), ∆ = Γ, x⃗ : F⃗ and s ∈ Val(∆, G) or s ∈ Base(∆).
Then, Js⟨⃗t/x⃗⟩K = JsK⟨⟨J⃗tK/x⃗⟩⟩.
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Proof. We show the stronger statement that for all g⃗ ∈ Seq(Γ, F⃗ ), and ∆ = Γ, x⃗ : F⃗ ,
(1) If f ∈ Val(∆;G), then Jf⟨g⃗/x⃗⟩K = JfK⟨⟨Jg⃗K/x⃗⟩⟩.
(2) If f ∈ Base(∆), then Jf⟨g⃗/x⃗⟩K = JfK⟨⟨Jg⃗K/x⃗⟩⟩.
(3) Assume f⃗ ∈ Seq(∆; G⃗) with f⃗⟨g⃗/x⃗⟩ =

∑
1≤i≤n f⃗i, for f⃗i ∈ Seq(Γ; G⃗).

Then,
∑

1≤i≤n⟨|Jf⃗iK|⟩ = Jf⃗K⟨⟨Jg⃗K/x⃗⟩⟩;
which follows by induction on typing derivations, using all our lemmas above. ◀

From the substitution lemma above, we may easily deduce:

▶ Theorem 30. If S ∈ ΣVal(Γ;F ) and S ⇒ S′ then JSK = JS′K.

Proof. Preservation of β-reduction follows from Lemma 29. To show that this extends by
context closure, we prove the three statements:
(1) If s ∈ Val(Γ;F ) and s ⇒ S′ then JsK = JS′K,
(2) If s ∈ Base(Γ) and s ⇒ S′ then JsK = JS′K,
(3) If s⃗ ∈ Seq(Γ; F⃗ ) and s⃗ ⇒

∑
i∈I s⃗i then ⟨|Js⃗K|⟩ =

∑
i∈I⟨|Js⃗iK|⟩.

by mutual induction, following the inductive definition of context closure. Finally, it is
immediate that this extends to sums as required. ◀

5 Game Semantics as a Resource Category

It remains to check that Strat is indeed a resource category, and that the induced interpretation
of normal forms coincides with the bijections from Theorem 12.

5.1 Additive Symmetric Monoidal Structure
Tensor. As for composition we first define the tensor of augmentations, then isogment-
ations, then strategies. For Ai, Bi arenas with qi ∈ Aug(Ai ⊢ Bi) for i = 1, 2, we
set q1 ⊗ q2 ∈ Aug(A1 ⊗ A2 ⊢ B1 ⊗ B2) with |q1 ⊗ q2| = |q1| + |q2| and ∂q1⊗q2(i,m) =
(j, (i, n)) if ∂qi

(m) = (j, n), and the orders ≤q1⊗q2 and ≤Lq1⊗q2M inherited. This construction
preserves isomorphisms, hence the tensor q1 ⊗ q2 ∈ Isog(A1 ⊗A2 ⊢ B1 ⊗B2) may be defined
via any representative – for definiteness, we use the chosen representatives of q1 and q2. We
lift the definition to strategies with, for σ1 : Γ1 ⊢ A1 and σ2 : Γ2 ⊢ A2:

σ1 ⊗ σ2
def=

∑
q1∈Isog(A1⊢B1)

∑
q2∈Isog(A2⊢B2)

σ1(q1)σ2(q2) · (q1 ⊗ q2) .

Structural morphisms. Structural morphisms are all variations of copycat. As we did for
copycat itself, we start with concrete representatives. Consider A, B, C arenas, and x ∈ C(A),
y ∈ C(B), z ∈ C(C). Noting ∅ the empty configuration on 1, we set:

LλxAM = ∅ ⊗ x ⊢ x , Lαx,y,zA,B,CM = x⊗ (y ⊗ z) ⊢ (x⊗ y) ⊗ z ,

LρxAM = x⊗ ∅ ⊢ x , Lγx,yA,BM = x⊗ y ⊢ y ⊗ x .

and λxA, ρxA, αx,y,zA,B,C and γx,yA,B are defined from these, augmented with the obvious copycat
behaviour.

We lift this to isogmentations: for x ∈ P(A), λx
A is the isomorphism class of λx

A; and
likewise for the others. Then the strategy λA is defined as for idA in (2) (page 12) and likewise
for ρA, αA,B,C and γA,B. These structural morphisms satisfy the necessary conditions to
make (Strat,⊗, 1) a symmetric monoidal category.
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Additive Structure. The sum of strategies is defined pointwise, and 0 is the sum with
coefficients all null. All compatibility conditions are direct, making Strat an asmc.

5.2 Resource Category Structure
Bialgebra. For the strategies for (co)multiplication, we first set configurations Lδx,yA M =
x ∗ y ⊢ x⊗ y and Lµx,yA M = x⊗ y ⊢ x ∗ y for any A and x, y ∈ C(A); δx,yA , µx,yA are obtained
by adjoining copycat behaviour on x and y. This lifts to isogmentations δx,y

A and µx,y
A

for x, y ∈ P(A), and to strategies by summing over those with coefficients cancelling out
symmetries on x and y. The unit ϵA and co-unit and ηA are both strategies with only the
empty isogmentation in their support, with coefficient 1. We have:

▶ Proposition 31. For any −-arena A, the tuple (A, δA, ϵA, µA, ηA) is a bialgebra.

Additionally, it is direct that this is compatible with the monoidal structure.

Pointed Identity. The pointed identity id•
A is defined by (2), restricted to pointed positions

– the laws of Figure 19 follow. The categorical notion of pointedness from Section 4.1 agrees
with the concrete one in Section 3.1: σ is pointed iff all the isogmentations in its support are.

Closed structure. We use the currying bijection ΛΓ,A,B from Section 3. For σ : Γ ⊗A ⊢ B,
we set ΛΓ,A,B(σ) =

∑
q∈Isog(Γ⊗A⊢B) σ(q) · ΛΓ,A,B(q), which directly yields

ΛΓ,A,B : Strat(Γ ⊗A,B) ∼= Strat(Γ, A ⇒ B)

from which evaluation is evA,B = Λ−1
A⇒B,A,B(idA⇒B). Altogether:

▶ Theorem 32. Strat is a closed resource category.

Compatibility with normal forms. Finally, we show compatibility with normal forms – the
crux is that the i-lifting in Figure 13 matches the first Base clause in Figure 23, when x is
the i-th variable of Γ:

▶ Proposition 33. Consider s ∈ Val(Γ;F ) or s ∈ Base(Γ) a normal form.
Then, JsK is the sum having ∥s∥ with coefficient 1, and 0 everywhere else.

▶ Corollary 34. If s ∈ Val(Γ;F ) with normal form s ⇒∗ ∑
i∈I si, then JsK =

∑
i∈I ∥si∥.

6 Concluding remarks

The correspondence with game semantics relies on the terms of the resource calculus to be
η-expanded. This was expected – as in [23] – but some consequences deserve discussion.

Firstly, x : F → G is not a valid term as it is not η-long: it hides some infinitary copycat
behaviour that must be written explicitly in our typed resource calculus, requiring an infinite
sum as in (2). This makes our calculus finitary in a stronger sense than usual: each normal
resource term describes a simple, finite behaviour, and one can prove that it corresponds to
a single point of the relational model of [9]. This also means that in the absence of infinite
sums, our typed syntax is not a resource category as it lacks identities.

Secondly, one might think that having an η-long syntax puts the pure λ-calculus out of
reach. It is in fact possible to enforce η-expandedness on terms without typing, but this
requires altering the syntax of the calculus allowing for infinite sequences of abstractions, as
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well as applications to infinite sequences of (almost always empty) bags. This corresponds
to finding the analogue of a reflexive object in the category of games. In [23], Tsukada and
Ong suggest the resource calculus with tests [8] as a candidate, but this does not seem fit for
the task: it does not allow to represent arbitrary infinite sequences of abstractions; and it
gives a syntactic counterpart to points of the relational model that do not correspond to
any normal resource term nor any pointed augmentation. It is however possible to design
a suitable language, enjoying the same relationship with Nakajima trees [21] (see also [3,
Exercise 19.4.4]) as that of the ordinary resource calculus with Böhm trees. We leave the
exposition of this for future work.
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