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Abstract
In the process of designing a computer system S and checking whether an abstract model M of
S verifies a given specification property η, one might have only a partial knowledge of the model,
either because M has not yet been completely defined (constructed) by the designer, or because it
is not completely observable by the verifier. This leads to new verification problems, subsuming
satisfiability and model checking as special cases. We state and discuss these problems in the case of
LTL specifications, and develop a uniform tableau-based approach for their solutions.
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1 Introduction

In the process of designing a computer system S and checking whether an abstract transition
system M modelling S satisfies a given specification property η, one might have only a partial
knowledge of the model, either because M has not yet been completely defined (constructed)
by the designer, or because it is not completely observable by the verifier. Typically, M

is a finite transition system with states labeled by sets of atomic propositions (Boolean
variables) with their truth values, and the partial construction or partial observability may
be manifested in one or more of the following components: a) the truth values of some
propositions at some states; b) whether two given states are connected by a transition; c)
whether the observed states are all the existing or intended states, or there are more, not
observed or not yet constructed. In a multi-agent context there are additional components,
e.g., some agents and/or their actions might also be partly observable or unspecified yet.

Now two natural questions arise:
i) whether there is at least some way to extend (eventually, complete) the partially con-

structed transition system in such a way that the property η holds.
ii) whether what is already known suffices to verify η, no matter how the partial information

might be extended (eventually, completed).
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23:2 Partial Model Checking and Partial Model Synthesis in LTL

(Alternatively, one may think that in both cases the model is partially constructed, but in
the former case it is up to the verifier to complete the construction, whereas in the latter
case it will be completed by another, possibly adversarial, agent.)

These questions have been stated respectively as partial model synthesis and partial model
checking and discussed in general in [14], on which the present work follows up.

In this paper we take the property η to be expressed by an LTL formula and the model
M to be a transition system (Kripke structure), which is incomplete in either of the senses
a, b and c described above. Then the two questions above unfold into four decision problems
and two associated synthesis problems, precisely described in Section 3. The aim of this
work is not only to provide a unified approach for solving the decision problems, but also to
provide constructive methods for their solutions, thus also solving the associated synthesis
problems, by constructive methods that are neither non-deterministic nor brute-force. Thus,
when considering, for instance, whether there exists an extension of the partially given model
M assuring the existence of a path verifying η, we are not only interested in providing a
correct YES/NO answer, but, in the case where the answer is positive, we want to build an
extension M ′ of the input M , and a path in it that is a linear model of η.

Furthermore, when extending the model with truth values of Boolean variables at states,
we aim to do it in a “minimal” (or, “most general”) way, so as to leave to the designer as
much freedom as possible for further extensions. That is, if a given Boolean variable p has
an unspecified (or, unknown) truth value at a given state s on a path that is to satisfy η, we
only force that value to be defined (True or False) when this is really necessary to produce
such a path. For these reasons, inter alia, our methods and algorithms are inspired by the
tableau methods for constructively solving the satisfiability problem in LTL, first developed
in [22] and further optimised and presented in detail in [11, Chapter 13], that are usually
proposed as the most constructive methods for solving the satisfiability problem. Here we
will follow the style and technical details of the tableaux construction procedure in the latter.

The decision problems described in Section 3 informally ask respectively whether some
(resp., every) admissible extension of the partial model is such that some (resp., every) path
in it starting from the given initial state satisfies η. These problems are denoted respectively
EE,AA,EA,AE. In this work we first present in full details the solution to EE (and to its
dual problem AA) in the case where only the state labels (given by the truth values of the
Boolean variables) may be not yet determined or unknown, but the states themselves and
the transitions between them are completely specified and observed. Then we show how the
proposed algorithm can be extended to deal also with the cases where transitions and/or
states may be not yet determined or unknown, partially or completely (the limit case being
when nothing is known at all). After that, we show how the proposed methods for solving
EE and AA also enable handling of the problems EA and AE. Thus, the algorithm that we
initially propose for solving EE is the core method of our approach, to which all the other
variants of model extension or completion problems are reduced.

Some of the problems that we address here are related to previously published work, esp.
on partial model checking of LTL and other logics. For instance, there is a clear connection
between our work and [9, 13]. We postpone the discussion of related works to Section 7.2.

The paper is organized as follows. In section 2 we briefly recall some standard notions on
LTL and we set some preliminary definitions and notation. In Section 3 we state the main
problems. In Section 4 we describe our core algorithm and in Section 5 we present basic
results about it. In Section 6 we show how it can be used to solve the other problems we
consider. Section 7 discusses related works, points at some perspectives, and concludes.
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2 Preliminaries

2.1 Partial transition systems, extensions, and completions
In what follows, Prop is a nonempty finite set of atomic propositions (Boolean variables)
and B = {⊤, ?,⊥} is the set of truth-values, where ? is a third Boolean value intuitively
meaning “undetermined” or “unknown”. The definition below extends the well-known notion
of transition system (aka Kripke structure) to the case of partial construction or incomplete
knowledge. It combines some ideas that come, inter alia, from [16] (for transitions) and [13]
(for three-valued state labels).

▶ Definition 1 (Partial and complete transition systems). A Partial transition system
(also called further a partial model) is a tuple M = (S,Rmust, Rmay, L), where: S is a
finite set of states, Rmust ⊆ S × S and Rmay ⊆ S × S are two transition relations such that
Rmust ⊆ Rmay, and L : S × Prop −→ B is an interpretation function associating with
each state in S and each atomic proposition in Prop a truth value in B. The relation Rmust

corresponds to the already determined, or known, transitions, whereas Rmay also includes the
possible but not yet determined, or not yet known, transitions.

We assume that Rmay is serial (aka, total); hence, every path in (S,Rmay, L) is infinite.
If Rmay = Rmust = R, we denote the partial transition system simply as (S,R,L) and say

that it is transition-complete. A transition-complete structure (S,R,L) is complete, or
just a transition system, if all values that L assigns are in {⊤,⊥}. Thus, every (complete)
transition system is also a partial transition system.

▶ Definition 2 (Extension and completion of an interpretation function). Given a partial
transition system M = (S,Rmust, Rmay, L), an interpretation function L′ : S × Prop −→ B

is said to be an extension of L, denoted by L ⪯ L′, if for each s ∈ S and p ∈ Prop, if
L(s, p) ̸=? then L′(s, p) = L(s, p). When L′ : S × Prop −→ {⊤,⊥} (i.e., all values that L′

assigns are in {⊤,⊥}), then L′ is said to be a completion, denoted L ⪯c L′.

▶ Definition 3 (Extension and completion of a partial transition system). A partial transition
system M ′ = (S′, R′ must, R′ may, L′) is an extension of a partial transition system
M = (S,Rmust, Rmay, L), denoted by M ⪯ M ′ if: S ⊆ S′, Rmust ⊆ R′ must, R′ may ⊆ Rmay,
and L ⪯ L′. If R′ must is serial, then M ′ is a total extension of M . A complete transition
system M ′ = (S′, R′, L′) which is a total extension of M ′ is a completion of M , denoted
by M ⪯c M ′. Thus, M ⪯c M ′ iff: S ⊆ S′, Rmust ⊆ R′ ⊆ Rmay, R′ is serial, and L ⪯c L′.

2.2 The logic LTL
Here we only fix basic notation and terminology on the Linear Temporal Logic LTL used
further in the paper. For further details the reader is referred e.g., to [11].

The formulae of LTL are given by the grammar

φ,ψ := ⊤ | ⊥ | p | ¬φ | (φ ∧ ψ) | Xφ | Gφ | (ψUφ)

where p ∈ Prop. The operators ∨, −→, ↔, and F are defined in the standard way.
A linear model for LTL is an infinite sequence σ : N −→ P(Prop). Truth (satisfaction)

of an LTL formula φ at a position i ∈ N of a linear model σ, denoted σ, i |= φ, is
defined as usual. An LTL formula φ is said to be true in a linear model σ, denoted σ |= φ,
if σ, 0 |= φ; in this case σ is said to be a linear model of φ.

FSCD 2023
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LTL formulae are also interpreted at states in transition systems, as follows. Given a
transition system M = (S,R,L) the sequence π = s0, s1, s2, ... is a path in M if s0Rs1Rs2, ....
Every finite sequence s0, s1, ..., sn is called an initial sub-path of π. The computation
in M corresponding to π is the sequence of labels (sets of true propositions) along π:
T (s0), T (s1), T (s2) . . . , ..., where T (i) = {p ∈ Prop | L(si, p) = ⊤}. Given a state s ∈ S, we
denote by computM (s) the set of computations in M with initial state s.

Every computation in M can be regarded as a linear LTL model, hence the notions
σ, i |= φ and σ |= φ are readily defined for any computation σ. We say that an LTL formula
φ is universally true in a transition system M at a state s if σ |= φ for all elements σ of
computM (s). In that case, we also simply say that φ is true in M at s, denoted M , s |=∀ φ

or just M , s |= φ. Likewise, we say that φ is existentially true in M at s if for some
computation σ ∈ computM (s) we have σ |= φ. In that case we write M , s |=∃ φ.

Given a finite set of formulas Γ = {φ1, . . . , φn}, where n ≥ 0, we denote∨
Γ := φ1 ∨ · · · ∨ φn, and

∧
Γ := φ1 ∧ · · · ∧ φn. When Γ = ∅,

∨
Γ := ⊥ and

∧
Γ := ⊤.

We will write M , s |= Γ as a shorthand for M , s |=
∧

Γ.

2.3 Tableau-related preliminaries
The definitions here are borrowed from the presentation of tableaux for LTL in [11, Ch.13.2].

We distinguish four types of formulas in LTL: literals (atoms or negated atoms), conjunct-
ive, disjunctive and successor formulas, and eventualities, i.e. formulas of the type Fφ or
ψUφ. In both cases, their truth at a time point implies that φ must be realised at some
point in the future, but its realisation can be procrastinated. By the well known fixed-point
LTL equivalences Fφ ≡ φ ∨ X Fφ and ψUφ ≡ φ ∨ (ψ ∧ X (ψUφ)), an eventuality can be
seen as a disjunction, as it is shown Figure 1.

▶ Definition 4 (Components of a formula). The components of a formula φ are defined
depending on its type. The components of a conjunctive (resp. disjunctive) formula φ are
formulas, defined further, such that φ is equivalent to their conjunction (resp. disjunction).
A successor formula ψ has only one component, written scomp(ψ). Literals do not have
components. All types and components of LTL-formulas are summarised in table 1.

Table 1 Types and components of formulas in LTL.

conjunctive disjunctive successor
formula components formula components formula components
¬¬φ φ, φ φ ∨ ψ φ, ψ Xφ φ

φ ∧ ψ φ, ψ φ → ψ ¬φ, ψ ¬Xφ ¬φ
¬(φ ∨ ψ) ¬φ, ¬ψ ¬(φ ∧ ψ) ¬φ, ¬ψ
¬(φ → ψ) φ, ¬ψ Fφ φ, X Fφ
Gφ φ, X Gφ ψUφ φ, ψ∧X (ψUφ)
¬Fφ ¬φ, X ¬Fφ ¬Gφ ¬φ, X ¬Gφ
¬(ψUφ) ¬ψ ∨ X ¬(ψUφ), ¬φ

When Γ is a set of formulae, the notation Scomp(Γ) will denote {scomp(ψ)|ψ ∈ Γ}.

▶ Definition 5 (Extended closure of a formula). The extended closure ecl(φ) of the formula φ
is the least set of formulas such that :
1. φ ∈ ecl(φ),
2. ecl(φ) is closed under taking all conjunctive, disjunctive, successor components of the

respective formulas in ecl(φ).
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▶ Definition 6 (Extended closure of a set of formulas). For any set of formulas Γ we define

ecl(Γ) :=
⋃

{ecl(φ)|φ ∈ Γ}.

A set of formulas Γ is closed if Γ = ecl(Γ).

▶ Definition 7 (Patently inconsistent). A set of formulas is patently inconsistent if it
contains ⊥, or ¬⊤, or a contradictory pair of formula φ and ¬φ.

▶ Definition 8 (Fully expanded). A set of formulas Γ is fully expanded if and only if
1. it is not patently inconsistent,
2. for every conjunctive formula in Γ, all of its conjunctive components are in Γ,
3. for every disjunctive formula in Γ, at least one of its disjunctive components is in Γ.

Note that the empty set of formulas is vacuously fully expanded.

▶ Definition 9 (Full expansion of a set of formulas). A fully expanded set of formulas ∆ is a
full expansion of a set of formulas Γ if ∆ can be obtained from Γ by repeated applications
of the following rules, where initially no formula is marked as “used”:

(C-comp) for every conjunctive formula φ in the current set Γ that has not been marked
as “used”, add all of its conjunctive components to Γ and mark φ as “used”.
(D-comp) for every disjunctive formula φ in the current set Γ that has not been marked
as “used”, add one of its disjunctive components to Γ and mark φ as “used”.

Note that the rule (D-comp) is non-deterministic, so a set Γ may have several (or no) full
expansions. The notation FE(∆) means the set of the full expansions of a set of formulas ∆.

Below we also recall some definitions and a theorem about Hintikka traces, that can be
found in [11], as we will make use of them in our approach.

▶ Definition 10. Given a closed set of formulas Γ, a Hintikka trace (HT) for Γ is a
mapping H : N −→ P(Γ) satisfying the following conditions for every n ∈ N:
1. H(n) is fully expanded.
2. If φ ∈ H(n) is a successor formula, then scomp(φ) ∈ H(n+ 1).
3. If φUψ ∈ H(n), then there exists i ≥ n such that ψ ∈ H(n + i) and φ ∈ H(n + j) for

every j such that 0 ≤ j < i.

An LTL formula φ is satisfiable in a Hintikka trace H if φ ∈ H(n) for some n ∈ N.

▶ Theorem 11. An LTL formula η is satisfiable iff it is satisfiable in some Hintikka trace.

3 The problems we study

Let M be a partial transition system, let s0 be a state in M and let η be an LTL formula.
The following four decision problems naturally arise (cf. Definitions 2 and 3):

Existential extension for path existence
Are there a total extension M ′ of M and a path s0, s1, s2, ... in M ′ such that its corresponding
computation σ is a linear model of η? We denote this decision problem by EE.
Existential extension for all paths
Is there a total extension M ′ of M , so that for all paths s0, s1, s2, ... in M ′ the corresponding
computations are linear models of η? We denote this decision problem by EA.

FSCD 2023
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Universal extension for path existence
Does every total extension M ′ of M has a path s0, s1, s2, ... such that its corresponding
computation is a linear model of η? We denote this decision problem by AE.
Universal extension for all paths
Is every total extension M ′ of M such that for every path s0, s1, s2, ... in it the corresponding
computation is a linear model of η? We denote this decision problem by AA.

Clearly, the problems EE and AA are dual: a positive answer to EE with input (M , s0, η)
is a negative answer for AA on input (M , s0,¬η), while a negative answer for EE on input
(M , s0, η) is a positive answer for AA on input (M , s0,¬η). Likewise, EA and AE are dual.

It is worthwhile observing that when M is completely unknown then EE coincides with
EA and amounts to the LTL satisfiability problem, while each of the problems AA and AE is
nothing but the LTL validity problem. On the other hand, when M is completely known,
both EE and AE turn out to be the existential model checking problem, while EA and AA
coincide with the universal model checking problem.

As mentioned in the introduction, we consider three types of possible extensions and
completions of partial transition systems. Each case is a special case of an extension in terms
of Definition 3, as follows: (i) label extension, where the states and transitions are fixed,
but the labels of the states are extended by an extension of the interpretation function (cf.
Definition 2); (ii) transition extension, where the states (and their labels) are fixed, but
new transitions are added; (iii) state extension, where new states, with partial or complete
labels, as well as transitions to and from them can be added. Clearly, (i) and (ii) can be
combined, whereas (iii) subsumes (ii) and can naturally subsume (i), too.

Each of these decision problems is easily seen to be PSPACE-complete. In the cases of
label extensions and transition extensions, let us non-deterministically choose a completion
M ′ and existentially - respectively universally - model-check η on M ′. Since the decision
problems for existential and universal model checking of LTL formulae are PSPACE complete
([17, 11]), EE and EA are NPSPACE-easy. On the other hand, they are also NPSPACE-
hard, because existential - respectively universal - model checking problems are trivially
polynomially reducible to them (as they are the special cases where M is already complete).
Hence they are NPSPACE-complete, so, by Savitch theorem, they are PSPACE-complete.
Consequently, their dual problems AE and AA, are also PSPACE-complete. In the case
of state extensions, as shown in Section 6.3, the EE problem is easily reducible to the
satisfiability of a formula produced from η and the label of the initial state, AA is again
its dual, and the problems AE and EA are reducible to repeatedly solving EE, hence they
are PSPACE-complete, too. Still, let us note that the decision methods developed here are
practically much more efficient than brute-force, generic PSPACE-complete algorithms.

There are variants of two of the previous problems that are not decision problems but
rather model synthesis problems. The variant of EE where, on the same input, one does not
ask for a YES/NO answer, but rather for an output consisting of a total extension M ′ and
a path π = s0, s1, s2, ... in M ′ such that its corresponding trace σ is a linear model of η,
when these exists (and for a failure message otherwise) is the synthesis problem that we will
denote by EES. Similarly, the variant of EA where one asks for an extension M c where η is
universally true is the synthesis problem denoted by EAS.

4 Tableau-based algorithms for EE and EES for label extensions

Usually, tableau methods are used to determine the satisfiability of an input formula η by
trying systematically to build from scratch possible models of it. Here, we adapt the method
to take into account also a partial Kripke structure M as an additional input, the goal being
to possibly construct a model of η extending M .
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Here we consider the case of partial transition systems M = (S,Rmust, Rmay, L), where
Rmust = Rmay = R and S is fixed, and focus on the case of label extensions.

The core algorithm that we propose solves both problems EE and EES (modulo some tech-
nical variations) as follows. Given as an input a partial transition system M , a distinguished
state s0 ∈ M and an LTL formula η, the algorithm enables the computation of all the total
extensions1 M ′ where η is true on some path starting from s0, in a sense explained further.

4.1 The Core Tableau-based Algorithm
We describe the algorithm step-by-step, with the help of a very simple running example.

▶ Example 12 (Running Example). We have a partial model of an automatic subway and
we want to know if it can be extended/completed according to the specification “the doors
cannot be open while the train is running, and the train will eventually run”. For the sake
of simplicity, we assume that the partial model consists of only two states and we suppose
that the doors are open at the initial state s0. This partial model is represented in Figure 1.
Formally the question is “Is there an extension M ′ of the partial model M and a computation
σ in computM (s0) such that σ, s0 |= η0?”, where η0 := F r ∧ G (r −→ ¬d), with d interpreted
as “the doors are open” and r as “the train is running”.

s0

d : ⊤
r :?

s1

d :?
r :?

Figure 1 A partial model for Example 12.

The approach that we use to solve this problem is based on the tableau methods for LTL
satisfiability, also modified for LTL model-checking, outlined in [11, Section 13.2]. Here is an
outline of our procedure. First, we construct a tableau, adapted so as to take into account
the partially constructed or partially observable input model. Then we use it to:

conclude that the answer to the decision problem EE is YES, when the tableau is “open”
(in a sense that will be specified further), else it is NO;
in the case of YES, to extract an extension M ′ of M and a path π in it, starting from
s0, such that the corresponding computation in M c satisfies η.

4.1.1 Pretableau Construction Phase
Here, as in Section 2, Prop is a set of atomic propositions. Given a partial model M = (S,R,L)
(i.e., R = Rmust = Rmay) a state s0 ∈ S and an LTL formula η, we construct a graph called
pretableau of (M , s0, η) and denoted PM ,s0,η. The pretableau, and then the tableaus,
are directed graphs consisting of nodes and arrows between them. The nodes are triples

1 To be precise, the algorithm itself does not produce the set of all such extensions – including completions
of the input model – as it may leave undetermined the truth values of some atoms at states of paths
that are not relevant for the existence of a path satisfying η. But, all the extensions of the input model
can be trivially computed from the set of the extensions directly built via the tableau based algorithm.
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(s,Γ, AΓ) consisting of: (the name of) a state s in M , a set of formulas Γ that must be true at
that state, which we call its description, and an annotation function AΓ : S× Prop → B,
explained further2.

There are two types of nodes in the pretableau:
tableau states3, where the set of formulas is fully expanded;
prestates, that only play an auxiliary and temporary role.

As explained in [11, Chapter 13], the sets of formulae labelling a tableau prestate are not
yet fully processed. For example, a prestate component Γ may declare that a formula p∨ q is
true in some state s in M without indicating which of p and q must be true. Thus, in order
to get a precise description of s, Γ needs to be expanded (via the rule later called Exp) into
two alternative sets, by explicitly adding respectively p and q to them, and possibly leading
to two “offspring states”.

The initialisation of the algorithm produces an initial tableau prestate. Then, tableau
states and prestates are built alternatively, in an iterative way described further.

▶ Notation 13. Let Γ be a set of LTL formulas, M = (S,R,L) be a partial model, and let
s ∈ S. We denote Litt(s,Γ, L) the set of literals l over atomic propositions appearing in
Γ such that the truth value of l at s according to the input interpretation function L is ⊤.
Formally, for p ∈ Prop: Litt(s,Γ, L) := {p|p ∈ Γ, L(s, p) = ⊤} ∪ {¬p|p ∈ Γ, L(s, p) = ⊥}.

4.1.2 Initialisation of the algorithm
The pretableau construction begins with the creation of the prestate (s0,Γ0, AΓ0) where
Γ0 := {η} ∪ Litt(s0, ecl(η)) and the initial annotation function AΓ0 coincides with L. Note
that, in general, any propositional letter q ∈ PROP ∩ ecl(η) such that r does not occur
in η is such that neither of q and ¬q is in ecl(η), so r’s truth value does not impact the
satisfaction of η0.

▶ Example 14 (Running Example continued). In Example 12 with η0 = F r ∧ G (r → ¬d),
we obtain ecl(η0) = {η0,F r, r,X F r,G (r −→ ¬d), r −→ ¬d,X G (r −→ ¬d),¬r,¬d}. Further, the
input partial model is such that L(s0, d) = ⊤ and L(s0, r) =?, so Litt(s0, ecl(η0), L) = ∅ and
Γ0 := {η0}. Note that although ¬r ∈ ecl(η0) neither r nor ¬r appears in Γ0, as its truth
value is undetermined/unknown. The construction of the tableau begins with the creation of
the prestate node (s0,Γ0, AΓ0) where AΓ0 = L

4.1.3 The body of the algorithm
Two rules will be alternatively applied:

Exp: producing so called offspring states of a given prestate,
Next: producing successor prestates of a given state.

Each rule may be applied at most once to each node, to ensure termination.
The rule Exp, defined below, statically analyzes the formulas in a tableau prestate,

following their semantics, and generates tableau states.

2 An annotation function should not be confused with the interpretation function L given in the input
model; it is used in a tableau node to describe and extend, incrementally, the interpretation function L
given in the input model.

3 Not to be confused with states in a partial transition system.
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▶ Definition 15 (Rule Exp). Given a prestate (s,Γ, AΓ), do the following:
1. Compute the family FE(Γ) of all full expansions of Γ in the sense of Definition 9.
2. For each ∆ ∈ FE(Γ) and p ∈ prop define the new annotation function A∆ as

A∆(s, p) =


LΓ(s, p) if LΓ(s, p) ̸=?
⊤ if LΓ(s, p) =? and p ∈ ∆
⊥ if LΓ(s, p) =? and ¬p ∈ ∆
? if LΓ(s, p) =? and p,¬p ̸∈ ∆

and add in the current pretableau a new offspring state (s,∆, A∆).
3. For each newly introduced state (s,∆, A∆), create an edge (s,Γ, AΓ) 99K (s,∆, A∆).
4. If the pretableau already contains a state (s,∆, A∆), then do not create a new state but

create only an edge (s,Γ, AΓ) 99K (s,∆, A∆) to that state.

▶ Notation 16. The set {(s,∆, A∆)|(s,Γ, AΓ) 99K (s,∆, A∆)} of offspring states of (s,Γ, AΓ)
is denoted by states(s,Γ, AΓ);

▶ Example 17 (Running example continued). We apply the rule Exp to the prestate
(s0,Γ0, AΓ0) obtained in Example 14. The set of the full expansions of Γ0 contains only one
state, ∆0, because a choice of r when expanding Γ0 would lead to a patently inconsistent set
of formulae. We have:

∆0 := {d,¬r, η0,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)}.

Note that ¬r ∈ ∆0 while L(s0, r) =?.
The new annotation function A∆0 is defined by: A∆0(s0, d) = ⊤ and A∆0(s0, r) = ⊥.
This is the beginning of the update of the input interpretation function in M .

The currently constructed pretableau is given in Figure 2.

s0, {d, η0}, AΓ0

s0, {d,¬r, η0,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)}, A∆0

Figure 2 The pretableau construction stage after applying the rule Exp to the initial prestate,
for Example 17.

The rule Next creates in the tableau graph successors of any tableau state (s,∆, A∆)
corresponding to a state s in input model M . (NB the distinction between states in a model,
which are semantic objects, and tableau states, which are syntactic objects.)

▶ Definition 18 (Rule Next). Given a state (s,∆, A∆), do the following:
If there are no R-successors of s in the partial model, remove the state (s,∆, A∆) from
the pretableau. Else:

For every R-successor state t of s in the current partial model, add in the current
pretableau a successor prestate (t, Scomp(∆) ∪ Litt(t, ecl(η), A∆)) of (s,∆, A∆)
If the pretableau-graph already contains a node V = (t,Γ, AΓ) that is then do not create
a new state but create only an edge (s,∆, A∆) −→ (t,Γ, AΓ) to V.
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▶ Example 19 (Running example continued). We apply the rule Next to the offspring state
(s0,∆0, A∆0) obtained in the example 17. There is only one R-successor of s0 that is s1 in
our partial model. So, the rule Next generate the only prestate (s1,Γ1, AΓ1), where
Γ1 := {F r,G (r −→ ¬d)}. We have that AΓ1 = A∆0(only the rule Exp can modify an
annotation function). The current pretableau is given in Figure 3.

s0, {d, η}, AΓ0

s0, {d,¬r, η,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)}, A∆0

s1, {F r,G (r −→ ¬d)}, AΓ1

Figure 3 The pretableau construction stage for Example 19.

▶ Lemma 20. The pretableau construction phase terminates.

Proof. For any pretableau node ⟨s,Σ, A⟩ there are only finitely many annotation functions
A (since both S and P are finite) and Σ ⊆ ecl(η), where ecl(η) is finite. Now, it suffices to
note that both the rules Exp and Next disallow duplication of already existing nodes. ◀

▶ Example 21 (Running example continued). At the end of the construction phase we obtain
the pretableau shown in the in the Figure 4, where prestates are indicated with rectangular
boxes and states with oval boxes. Nodes of the pretableau are enumerated to help reading
the picture, but we leave it to the interested reader to flesh out the content of each node.

4.1.4 Prestate and State Elimination Phase
First, we remove all prestates from the pretableau with their incoming and outgoing edges,
by applying the following prestate elimination rule:

▶ Definition 22 (Rule PrestateElim). For every prestate (s,Γ, AΓ) in the pretableau, do:
1. Remove (s,Γ, AΓ) from the pretableau;
2. If there is a state (t,∆, A∆) in the pretableau with (t,∆, A∆) −→ (s,Γ, AΓ), then for every

state (s,∆′, A′
∆) ∈ states(s,Γ, AΓ) create an edge (t,∆, A∆) −→ (s,∆′, A′

∆).
The resulting graph is called the initial tableau for (M , s0, η), denoted by T M ,s0,η

0 .

Once all prestates have been eliminated, we must remove all “wrong” states from the
tableau (dead ends and roots of paths that never realize an eventuality, which is explained
further) by applying the rules StateElim1 and StateElim2, formulated shortly.

In what follow, we denote T M ,s0,η
n the tableau obtained from the initial tableau after n

applications of an elimination rule StateElim1 or StateElim2.
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so,Γ0, AΓ0

s0,∆0, A∆0

s1,Γ1, AΓ1

s1,∆10, A∆10

s0,Γ20, AΓ20

s0,∆20, A∆20

s1,Γ21, AΓ21

s1,∆21, A∆21

s0,Γ30, AΓ30

s0,∆30, A∆30

s1,Γ31, AΓ31

s1,∆12, A∆12

s0,Γ24, AΓ24

s0,∆23, A∆23

s1,Γ25, AΓ25

s1,∆24, A∆24

s1,∆11, A∆11

s0,Γ22, AΓ22

s0,∆22, A∆22

s1,Γ23, AΓ23

Figure 4 The complete pretableau for the running example 21.

▶ Definition 23 (Rule StateElim1). If a state (r,∆, A∆) has no successor states in the current
tableau, then remove (r,∆, A∆) from the tableau.

In order to formulate StateElim2 we need the following definition.

▶ Definition 24 (Realization of an eventuality at a tableau state). An eventuality φUψ (resp.
Fψ) is realized at the state (s,∆, A∆) in T M ,s0,η

n if there exists a finite path in T M ,s0,η
n

Π = (s,∆, A∆), (si1 ,∆j1 , A∆j1
), . . . , (sim

,∆jm
, A∆jm

)

where m ≥ 0, such that
φUψ,ψ ∈ ∆jm (resp. Fψ,ψ ∈ ∆jm);
φUψ,φ ∈ ∆ji

(resp. Fψ ∈ ∆ji
) for every i = 0, . . . ,m− 1.

We say that φUψ (resp. Fψ) is realized on the path Π, and we call any such path a witness
of the realization of the eventuality φUψ (resp. Fψ) in ∆. If ψ ∈ ∆, then we say that φUψ
(resp. Fψ) is immediately realized at the state (s,∆, A∆) (on the path constituted by the
singleton (s,∆, A∆)).

▶ Definition 25 (Rule StateElim2). If an eventuality α ∈ ∆ is not realised on any path
starting from (s,∆, A∆) in the current tableau, then remove (s,∆, A∆) from the tableau.

The state elimination phase is carried out in a sequence of stages, starting at stage 0
with the initial tableau T M ,s0,η

0 , and eliminating at every stage n at most one state for the
current tableau T M ,s0,η

n – by applying one of the state elimination rules – , to produce the
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new current tableau T M ,s0,η
n+1 . When the state elimination phase reaches a stabilisation point,

i.e. no more nodes are removed, the current tableau at that stage is called final tableau for
(M , s0, η) and denoted by T M ,s0,η.

▶ Example 26 (Running example continued). Figure 5 shows the initial tableau, where only
prestates have been eliminated. All the states here have at least one successor state so the
rule StateElim1 can not be applied. However there is a state with description component
{d,¬r,F r,X F r,G (r −→ ¬d), r −→ ¬d,X G (r −→ ¬d}) shown in Figure 6.

s0,∆0, A∆0

s1,∆10, A∆10

s0,∆20, A∆20 s1,∆21, A∆21

s0,∆30, A∆30

s1,∆12, A∆12

s0,∆23, A∆23 s1,∆24, A∆24

s1,∆11, A∆11

s0,∆22, A∆22

Figure 5 The initial tableau for the running example.

s0,∆0, A∆0

s1,∆12, A∆12

s0,∆23, A∆23 s1,∆24, A∆24

s1,∆11, A∆11

s0,∆22, A∆22

Figure 6 The final tableau for the running example 26.

▶ Definition 27. The final tableau T M ,s0,η is open if it contains at least one state
(s0,∆0, A∆0) such that η ∈ ∆0. Otherwise it is closed.

4.2 Specialized algorithms for EE and EES

The tableau-based core algorithm that we have described in Section 4.1 can be refined and
modified so as to obtain two algorithms, solving respectively the problem EE and the problem
EES. In both cases the input is given by a partial model M = (S,R,L), a distinguished state
s0 and an LTL formula η. However the outputs are different. The initial procedure is always
the same: apply the core algorithm to construct a tableau (T )M ,s0,η.

4.2.1 Algorithm for EE
The output for the decision problem EE is either YES or NO. Once applied the core algorithm
to construct a tableau (T )M ,s0,η, the output is YES if and only if (T )M ,s0,η is open.
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4.2.2 Algorithm for EES

We give two versions of the algorithm. The first version is non-deterministic, and outputs
just an extension of the input model M and a path in it (whenever some exist) that satisfies
the specification formula η. The second version (useful in Section 6) is deterministic and
produces all possible ways to extend the input model so as to existentially satisfy η, and thus
enables the generation of all such extensions, which we will use in Section 6.

Non-deterministic version ND-EES. Here the output is either ∅ (when T M ,s0,η is closed)
or else a singleton containing a pair (M ′ = (S,R,L′), π) where M ′ is an extension of the
input model and π a path in it starting at s0 and satisfying η.

1. Construct the tableau T M ,s0,η.
2. If the final tableau is closed, then return the empty set. Else:

a. Non-deterministically choose a path (s0,∆0, A∆0), (s1,∆1, A∆1), . . . in T M ,s0,η that
starts from a root of the tableau (note that it may have several roots) and such that
the trace ∆0,∆1, . . . is a Hintikka trace (as in Definition 10).
(When the final tableau is open such a Hintikka trace exists, as we prove in Section 5.)

b. Define L′ as follows:
if A∆n

(s, p)=⊤ for some node (sn,∆n, A∆n
) on the chosen path, then L′(s, p) := ⊤;

else:
if A∆n

(s, p)=⊥ for some node (sn,∆n, A∆n
) on the chosen path then L′(s, p) :=

⊥;
else set L′(s, p) := ?.

c. Return M ′ = (S,R,L′) and the path s0, s1, s2, . . . .

Deterministic version D-EES. Here the output is either the empty set (when T M ,s0,η is
closed) or else a set of pairs (M ′, σ), such that M ′ is a total extension of M and σ is a path
in it starting at s0 and satisfying η. Intuitively, the algorithm can eventually produce all
possible ways to extend the input model so as to existentially satisfy η.

1. Construct the tableau T M ,s0,η.
2. If the tableau is closed, then return the empty set.
3. Else, let paths(T M ,s0,η) be the set of all paths in T M ,s0,η starting from a root node

such that the sequence of their description components is a Hintikka trace (Def. 10):

paths(T M ,s0,η) := {(s0,∆0, A∆0), (s1,∆1, A∆1), · · · | ∆0,∆1, . . . is a Hintikka trace}

For every tableau path π in paths(T M ,s0,η), define σπ = s0, s1, s2, . . . and the set LC(σπ)
as the set of all the interpretation functions Lc

σπ such that:
if A∆n

(s, p) = ⊤ for some node (sn,∆n, A∆n
) of π, then Lc

σπ
(s, p) = ⊤;

if A∆n
(s, p) = ⊥ for some node (sn,∆n, A∆n

) of π, then Lc
σπ (s, p) = ⊥.

If A∆n
(s, p) =? for every node (sn,∆n, A∆n

) of π, then we have two possibilities:
Lc

σπ = ⊤ and Lc
σπ = ⊥, hence here the construction of Lc

σπ branches and two
different interpretation functions are produced.

It is now easy to define a sub-procedure that generates, path by path, the elements of
the set of all couples formed by a total extension M c of the input partial model that is
induced by an element of paths(T M ,s0,η) and a path in it, namely the set:

{((S,R,L′), σπ) | π ∈ paths(T M ,s0,η), L′ ∈ LC(σπ)}.

Applying such a sub-procedure will eventually generate the full set described above.
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▶ Example 28 (End of the running example). The final tableau for the running example of
this section is the one in Figure 6. This tableau is open, so the partial model M given in
Example 12 can be completed so as to show that a path starting from s0 and satisfying η
exists. For instance, one can take the path s0, s1, s1, s1, . . . in the complete transition system
(S,R,L′) where L′ = A∆1.1 is such that:

L′(s0, d) = ⊤ L′(s0, r) = ⊥ L′(s1, d) = ⊥ L′(s1, r) = ⊤

Indeed the tableau path (s0,∆0, A∆0), (s1,∆12, A∆12), (s1,∆24, A∆24), (s1,∆24, A∆24), . . .
corresponds to the Hintikka trace ∆0,∆12,∆24,∆24, . . . where
∆0 := {d,¬r, η,G (r −→ ¬d),F r, r −→ ¬d,X F r,X G (r −→ ¬d)},
∆12 := {¬d, r,F r,G (r −→ ¬d), r −→ ¬d,X G (r −→ ¬d)},
∆24 := {¬d, r,G (r −→ ¬d), r −→ ¬d,¬d,X G (r −→ ¬d))}.

The following result is an immediate consequence of Lemma 20:

▶ Theorem 29. The algorithms for EE and for EES (in both versions) terminate.

5 Soundness and Completeness Results

▶ Theorem 30. Let M = (S,R,L) be a partial model, let s0 ∈ S be an initial state and let
η be an LTL formula, such that T M ,s0,η is an open tableau. Then the following hold:
1. Soundness with respect the existence of a solution for EE.

The problem EE has an answer YES.
2. Appropriate tableau paths describe solutions for EE.

Let π = (s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2), . . . be any path in T M ,s0,η such that
∆0,∆1,∆2, . . . is a Hintikka trace. Then for any extension M ′ = (S,R,L′) of M

such that An ⪯ L′ for each n, the computation σ in M ′ = (S,R,L′) corresponding to
s0, s1, s2, ... satisfies η.

Proof.
1. Here, intuitively we show that any open tableau T M ,s0,η necessarily contains at least

some path π that “describes” some solution to EE.
First, we inductively construct an infinite chain S of initial sub-paths in the tableau:
π0 = (s0,∆0, A0),
π1 = (s0,∆0, A0), (s1∆1, A1),
π2 = (s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2)...
where each πk is a finite initial sub-path of the next one, as follows:
π0 consists of the initial state node (s0,∆0, A0), where η ∈ ∆0 and A0 = L.
Let πk be the last constructed sub-path and let V = (sk,∆k, Ak) be its last node. Let
E be the set of eventualities in ∆k.

If E is non-empty, let e = φUψ be one of them. Since rule StateElim2 has not
removed V , there is a finite sub-path πsub in the tableau which starts at V and
ends at a node (sk+m,∆k+m, Ak+m), for some m ≥ 0, such that φUψ,ψ ∈ ∆k+m.
Let us observe that if e′ = φ′ Uψ′ is another eventuality in E, and ψ′ does not
appear in (the description component of) any node of πsub, then each node in such
a sub-path will be such that its ∆l component has φ′ Uψ′ as an element (by tableau
construction). We then build the new sub-path πk+1 by appending πsub to πk.
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If E is empty, then let V ′ be any successor of V in the tableau T M ,s0,η (by rule
StateElim1 each tableau path is infinite). We extend πk by appending V ′ to it,
thereby obtaining πk+1. Let us observe that this case necessarily eventually occurs,
because eventuality formulae in T M ,s0,η are elements of ecl(η), that is finite.

Let π be the limit tableau path of the sequence S . The sequence of the description
components of the vertices in π is a Hintikka trace (see Definition 10). By construction,
each node (si,∆i, Ai) ∈ π is such that L ⪯ Ai, and for some n ≥ 0 the annotation
function becomes stable, that is, for any m ≥ n, Am = An.

Now let M ′ be the extension of M obtained by replacing L by An. It is easy to show
that every state si in M ′ satisfies all the formulae in ∆i. In particular s0 satisfies all
formulae in ∆0, in particular η. Therefore the computation corresponding to the path
s0, s1, s2, ... generated by π is a linear model of η, and the answer to EE is YES.

2. Now we must show that any tableau path π = (s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2), . . .
where the corresponding description components constitute a Hintikka trace describes
a linear model σ of η for some extension M ′ = (S,R,L′) of M (actually for a class
of extensions). A computation σ in M ′ = (S,R,L′) corresponding to s0, s1, s2, ... is
defined so that, for any i ≥ 0, L′(si) = Prop ∩ ∆i. For any i, we have σ, i |= ∆i, thus, in
particular, we have σ, 0 |= ∆0, and η ∈ ∆0, which implies that σ is a linear model of η.

◀

The completeness result below shows not only that when the answer to EE is YES due
to some extension M ′ then the corresponding tableau is open, but a stronger result, which
intuitively says that each computation in M ′ satisfying η is described by a path of such a
tableau. We make use of this stronger result in Section 6.

▶ Theorem 31 (Completeness, stronger version).
1. All solutions to EE are described by tableau paths.

Let M = (S,R,L) be a partial transition system that is transition-complete, let η be an
LTL formula and let s0 ∈ S. Let M ′ = {S,R,L} be any total extension of M and let
s0, s1, s2, . . . be a path in M ′ such that its corresponding computation σ satisfies η.
Then any final tableau T M ,s0,η contains a path π =
(s0,∆0, A0), (s1,∆1, A1), (s2,∆2, A2), . . . such that for each n we have An ⪯ L′.

2. Completeness with respect to the existence of a solution for EE.
If a solution to EE exists than T M ,s0,η is open.

Proof.
1. To prove this item we build π inductively, so that each step of the construction satisfies

the following invariants:
a. For any i, Ai ⪯ L′.
b. For any tableau state (si,∆i, Ai) in π, we have σ, i |= ∆i.
Here is the construction. The initial node is the state (s0,∆0, A∆0) defined as follows.
The state description ∆0 is obtained by applying Exp to the original prestate (s0,Γ0, AΓ0)
where Γ0 := {η} ∪ Litt(s0, ecl(η)) and the initial annotation function AΓ0 coincides with
L. By the assumption that σ satisfies η and by definition of Litt(s0, ecl(η), we have that
σ, 0 |= Γ0. Then we choose ∆0 to be a full expansion of Γ0 such that σ, 0 |= ∆0. The
annotation function A∆0 is determined by ∆0, and by construction obviously A∆0 ⪯ L′.

Now, suppose the sub-path πj of π = (s0,∆0, A0), · · · , (sj ,∆j , Aj) has been already
defined. If ∆j contains a still pending eventuality e = φUψ by the hypothesis on σ we have
σ, j |= e. Therefore there is finite initial segment of σ, say s0, · · · sj , sj+1, · · · sk , for some
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k > j, such that σ, k |= ψ and for any r in [j, ..., k−1] we have σ, r |= φ. Then the tableau
sub-path πk = (s0,∆0, A0), · · · , (sj ,∆j , Aj), (sj+1,∆j+1, Aj+1) · · · , (sk,∆k, Ak) can be
obtained by choosing in the suitable way (via applications of Next) the corresponding
prestates (sj+1,Γj+1, Aj+1), ..., (sk,Γk, Ak) in the pretableau, and choosing the suitable
full expansions of their Γ-components. It is worthwhile observing that each given Γj+i

component determines its corresponding annotation function Ai (while Next does not
produce updates of the annotation function). If ∆j contains no pending eventuality then
any tableau sub-path having πj has initial sub-path will do.

This completes the inductive definition of π. Let us observe that the invariants 1a and 1b
hold for π and a third property holds: any eventuality e in a description component ∆i

is realized on a finite sub-path of π. These three properties of π imply that no state in π
is removed by any application of the rules StateElim1 or StateElim2. In fact, a routine
induction on the number of rounds in the elimination phase suffices to prove this claim.
Hence the defined π survives to the elimination procedure and, as required, for each n we
have An ⪯ L′.

2. This claim of the theorem follows from the previous one. ◀

▶ Corollary 32 (Soundness and completeness of the tableau). Let M = (S,R,L) be a partial
model, s0 ∈ S a state in it and η an LTL formula. Then the tableau T M ,s0,η is open if and
only if the answer to the problem EE is YES.

6 Harvest: solving all problems

So far we have only considered the problems EE and EES in the case of label extensions
and have developed methods for their solution. Here we will adapt our methods to solve all
problems defined in Section 3 for all cases of extensions that we study. For lack of space,
here we leave out the routine details and only outline the adapted procedures.

6.1 The case of label extensions

Since our approach solves EE for label extensions, it clearly also solves the corresponding dual
problem AA with input (M , s0, η), by calling the algorithm for EE on the input (M , s0,¬η).

Now, for EA and its dual problem AE, we proceed as follows.
1. First, we apply the algorithm for AA with the input (M , s0, η). If the answer to AA is

YES, then so are also the answers to EA and AE and we are done.
2. In the case the answer to AA is NO, we call the algorithm for EE on (M , s0,¬η).

a. If the returned answer is NO, return YES for both EE and AE.
b. If the answer is YES, an application of algorithm D-EES (Section 4.2.2) on (M , s0,¬η)

generates all total extensions where ¬η is existentially true at s0 (Thm. 31, claim 1).
If there is at least one (amongst the finitely many) total extension M ′ of M that is
not returned by D-EES, this means that ¬η is not existentially true in M ′ at s0.
Hence, η is universally true in M c at s0, therefore the answer to EA is YES.
Else, if every possible total extension of M is returned, then the answer of AE on
(M , s0,¬η) is YES and EA returns NO.
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6.2 The case of transition extensions
Now, we will adapt our methods to the case of transition extensions. (We can just as well
consider the more general case of combined transition and label extensions, but the case of
transition extensions is representative enough for that more general case.) First, the tableau
based method presented in Section 4.1 is modified to solve EE and EES in this case, as follows.

The pretableau construction phase starts with a partial model M = (S,Rmust, Rmay, L),
a state s0 ∈ S and an LTL formula η and aims to construct a pretableau PM ,s0,η.
The main difference is that, whenever the rule Next is applied to a given pretableau state
(s,∆, A∆), the first (state) components of the successor prestates are selected amongst all
Rmay-successors of s in M . In the case of the EE problem, one such prestate is guessed,
or selected non-deterministically, and added to the pretableau. In the case of the EES

problem, all such prestates are identified and added to the pretableau.
(In order to keep the method more economical in terms of the number of added trans-
itions of the produced extension, in case of several possible successor prestates those
corresponding to Rmust-successors of s may be selected with priority.)
Thereafter, the prestate elimination and state elimination phases, as well as the analysis
of the outcome, being the final tableau, proceed essentially the same way as before.

Now, the problem EES is solved just like in the case of label extensions, with an algorithm
generating all (finitely many) total transition extensions satisfying η. Then, the problems
AA, EA, and AE are solved essentially in the same way as for label extensions.

6.3 The case of state extensions
Finally, we consider the most general case, of state extensions. Note that it subsumes the case
of transition extensions, and it can also naturally incorporate the case of label extensions,
where states with partial labels may be added. The EE problem now takes as an input
M = (S,Rmust, Rmay, L), a state s0 ∈ S and an LTL formula η and asks for a total extension
of M with new states and transitions to them that has a path starting at s0 and satisfying η.

Note that this problem is easily reducible to the LTL satisfiability problem as follows.
Let V ar(η) be the set of all propositional variables occurring in η, and let lM (s0, η) :=∧

Litt(s0, V ar(η), L) =
∧

{p|p ∈ V ar(η), L(s0, p) = ⊤} ∧
∧

{¬p|p ∈ V ar(η), L(s0, p) = ⊥}.
Then lM (s0, η) is true at s0 in M and in any extension of M of the most general type.

Therefore, a path starting at s0 in any such extension satisfies η iff it satisfies η ∧ lM (s0, η).
On the other hand, any linear LTL model σ that satisfies η ∧ lM (s0, η) can be “grafted” to
M as a path starting at s0, i.e. all states of σ after s0 can be added as new states to M ,
and the resulting state extension of M will be a solution of the problem EE. Thus, EE
has a solution iff η ∧ lM (s0, η) is satisfiable. Furthermore, it suffices to consider only state
extensions of M obtained by grafting at s0 “small satisfiability witnesses” of the satisfiability
of η ∧ lM (s0, η), i.e., ultimately periodic linear models of size exponentially bounded by the
length of η ∧ lM (s0, η) (cf. [11, Section 6.3]). So, the problem is clearly decidable, and can
be solved in PSPACE, just like the satisfiability problem for LTL.

In a sense, this observation all but relatively trivialises the problem EE in the case of state
extensions. If, however, a “minimal” state extension solving the problem EE is sought, in the
sense of adding the least possible number of additional states, then the problem becomes
non-trivial again, in terms of its practical complexity. We leave the search for practically
optimal algorithms to future work.

Now, the problem AA is again solved as dual to EE. To solve the AE and EA problems,
we would need a procedure generating and checking all (infinitely many!) state + transition
extensions of M for existential, respectively universal truth of η. That task, however, can
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be reduced to a finitary one, as follows. Consider the EA problem. To solve it, it suffices to
look for a total state extension of η solving the problem EA which is minimal in the sense
of only grafting at each existing dead-end state an ultimately periodic path of sufficiently
“small size” (lengths of the prefix and of the period, to be guessed, according to the theory
of LTL satisfiability, cf. e.g., [11, Chapter 6]) initially with labels assigning ? to all atomic
propositions, and then solving the EA problem for a label extension on the resulting state
extension. If a solution exists for some suitable guesses of the sizes of the appended ultimately
periodic paths, then the initial EA problem for (total) state extensions has a solution, too.
Otherwise, that problem has no solution. Indeed, if there is any such solution, then there
would be one of the type described above for suitable choices of the sizes of the appended
ultimately periodic paths, because of the “small satisfiability witness” property of LTL (cf.
[11, Section 6.3]). The solution of the EA problem also solves the AE problem by duality.

7 Concluding remarks: summary, related work, and future work

7.1 Summary
In this paper we have formulated four decision problems concerning the possibility of extending
and completing in three natural possible ways a partially defined or partially known transition
system M which is supposed to satisfy a specification expressed by an LTL formula. We have
also considered two variations of the first two problems, that are model synthesis problems.
We have proposed tableau based algorithms that provably solve the core problems EE and EES

and we have shown how these algorithms can also be used to solve the remaining problems.

7.2 Related Work
Here we mention and briefly discuss some previous publications that are related, at least in
terms of the framework and problems they consider, to our work.

One essentially related work is [20], although the formal tools used there (partially labeled
transition systems (PTS) and the logic FLTL) are different. Indeed, in that work PTS are
labelled transition systems where states are not labelled by propositions (expressing static
atomic properties), but, rather, transitions (edges) are labelled by actions; some actions
(resp. transitions), however, are forbidden. As in our work, the authors are concerned
with explicitly modelling those aspects of system behaviour that are still unknown, because
knowing such gaps can help to improve incremental system modelling. Compared to the
notion of PTS in [20], our notion of partial transition system allows for the expression of
two distinct kind of incomplete knowledge: of static properties of individual states as well
of transitions between states. Another specificity of our approach is that it allows for the
precise formulation of six different completion problems and establishes a unified framework
where the classical decisions problems of satisfiability, validity, existential model-checking
and universal model-checking for LTL formulae are just specific cases.

In [13] two distinct, though related, problems are studied, both named Generalized Model
checking (LTL GMC). The first problem had already been introduced in [9] and amounts to
deciding, given a transition system M where the state labels are 3-valued, and an LTL formula
η, whether there exists a 2-valued partial transition system M ′ that is “more complete” than
M and that universally satisfies η, i.e. all the paths issued from its initial state satisfy η.
The notion “more complete” is based on a completeness pre-order ⪯ on states of partial
transition systems, that, in its turn, induces a pre-order on partial transition systems. This
is closely related to the notion of bisimilarity between transition systems. The complexity of
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this problem is shown to be 2EXPTIME in the length of the formula and polynomial in the
size of the model, by reduction to LTL synthesis. The LTL GMC problem in this version
is obviously related to our EA problem, limited to the case where only state labels can be
unknown. Yet, the two problems do not coincide. Our problem EA asks whether M itself
can be extended (that is: its labels can), and possibly completed so as to get a bi-valued
M c that universally satisfy η, whereas the above described LTL GMC problem asks for the
existence of some model M ′ satisfying η, where M and M ′ are related via the mentioned
pre-order on structures; observe that M ′ might have less states than M . The second version
of LTL GMC studied in [13]) is based on a simpler pre-order on partial transition systems
(previously suggested in [9]). It is less directly related to our work, so we will not discuss it.

Other, conceptually or technically related earlier works include:
[18], taking an algebraic approach to the completion of partial first-order models, again
representing partial information about the actual world;
[2] (see also, [3], [10]) where a technique also called “partial model checking” was introduced
for verifying concurrent systems by gradually removing concurrent components and then
reducing the specification, until completely checked, in order to avoid the state explosion
problem. This idea is only implicitly related to the problems discussed here.
[15], where synthesis of reactive programs and systems under incomplete information
is studied, in the case of an open system must be guaranteed to satisfy a given safety
specification but can only partly read the input signals generated by its environment. An
important practical case of synthesis from partial models is the problem of controller
synthesis.

Lastly, another, more technically related to the present work, is the line of research in
modal logic involving modal operators that change the models dynamically in the course of
formula evaluation. It originates, inter alia, with van Benthem’s sabotage logics [21], [8] and
Gabbay’s reactive Kripke semantics [12]. These were followed by various further proposals
for model update logics, including enrichments of modal logics with global and local graph
modifiers [7], and relation-changing modal operators and logics [4]. Typically, these approaches
involve operations on models that not only extend, but also shrink or modify them in various
ways and, moreover, add syntactic instructions for such operations in the language. These
features can often lead to undecidability of both model checking and satisfiability of such
logics, see [5], [6].

7.3 Future Work
We intend to organise implementation of our algorithms and to experimentally test their
practical feasibility on some case studies. For example, our approach might be adapted to the
formal modelling of ecology systems via transition graphs, proposed in [19]. Clearly, some
expert knowledge can be missing in representations based on empirical observations of the
environment, and to fill such gaps might turn out useful. In that case, as in other application
cases, certainly not every conceivable completion of a partial transition system might be
suitable for the intended applications, because of possibly implicit assumptions on which are
the “realistic possible completions”. It would then be interesting to study also criteria for
classifying completions, so as to direct the search in a more realistic way, according to the
domain experts.

We also intend to extend the study to the branching time logics CTL and CTL*, and to
a multi-agent context, where some agents and/or their actions might also be unspecified or
unknown, thus possibly taking branching time and multi-agent logics, such as the alternating
time temporal logic ATL [1], to express specification properties.
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