
A Quantitative Version of Simple Types
Daniele Pautasso #

Dipartimento di Informatica, University of Torino, Italy

Simona Ronchi Della Rocca #

Dipartimento di Informatica, University of Torino, Italy

Abstract
This work introduces a quantitative version of the simple type assignment system, starting from a
suitable restriction of non-idempotent intersection types. The resulting system is decidable and has
the same typability power as the simple type system; thus, assigning types to terms supplies the
very same qualitative information given by simple types, but at the same time can provide some
interesting quantitative information. It is well known that typability for simple types is equivalent
to unification; we prove a similar result for the newly introduced system. More precisely, we show
that typability is equivalent to a unification problem which is a non-trivial extension of the classical
one: in addition to unification rules, our typing algorithm makes use of an expansion operation that
increases the cardinality of multisets whenever needed.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases λ-calculus, intersection types, unification

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.29

Acknowledgements We would like to thank Delia Kesner and Antonio Bucciarelli for many useful
discussions about the topic of this paper. We are also grateful to the anonymous referees for their
careful reading and suggestions.

1 Introduction

Simple types. Simple type assignment for λ-calculus [8, 13] is a way of assigning types,
which are formulas of minimal intuitionistic logic, to λ-terms. It enjoys important properties:
to be typable implies strong normalization, and both typability and inhabitation are decidable
– typability being the problem of determining, given a term, whether it is possible to assign a
type to it, and inhabitation the problem of determining, given a type, if there is a term to
which it can be assigned. Considering the λ-calculus as a general paradigm for functional
programming languages, types are program specifications, so the decidability of typability
provides tools for proving program correctness, that of inhabitation for program synthesis.
Simple type assignment is the basis of typed functional languages, like ML and Haskell.

Quantitative intersection types. Recently the scientific community interest turned to a
quantitative approach for program semantics, and from this point of view non-idempotent
intersection types are a powerful tool. Intersection types have been introduced in [9], in
order to increase the typability power of simple type assignment systems, but quite early
they turned out to be useful in characterizing qualitative semantic properties of λ-calculus
like solvability and strong normalization, and in describing models of λ-calculus in various
settings [2, 20]. Intersection types are built by adding to the connective → of simple types
an intersection connective ∧ which enjoys associativity, commutativity and idempotency,
i.e., A ∧ A = A; in other words, an intersection of types can be seen as a notation for a
set of types. A variant of intersection types, where intersection is no more idempotent (so
that intersection of types becomes a notation for multisets), was first designed by [10], and
later used by De Carvalho [12], for the purpose of studying the complexity of reduction.

© Daniele Pautasso and Simona Ronchi Della Rocca;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 29; pp. 29:1–29:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniele.pautasso@unito.it
mailto:ronchi@di.unito.it
https://doi.org/10.4230/LIPIcs.FSCD.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A Quantitative Version of Simple Types

Indeed non-idempotency has a quantitative flavour: non-idempotent intersection types have
been used to design relational models of λ-calculus [17, 5], to characterize polynomial time
computational complexity [4], and to compute the exact number of reductions to reach the
normal form of a term [14]. The typability problem is undecidable both in idempotent and
non-idempotent intersection type assignment systems; on the other hand, the inhabitation
problem is decidable if we consider non-idempotent intersection [6], while it is undecidable
for the idempotent case [22].

A question naturally arises: is there a quantitative version of simple types? Rephrasing it
in a more technical way: is there a restriction of the non-idempotent intersection type system
with the same typability power as the simple type system?

Contribution of this paper. In this paper we give a positive answer: we introduce a non-
idempotent intersection type assignment system which is a restriction of the one defined in [7],
and prove that the typability problem is decidable. The key idea is to restrict the multiset
formation to uniform types, two types being uniform if they differ only in the cardinality of
the multisets occurring in it. Assigning types to terms in such a system, which we name
system U , supplies the very same qualitative information given by simple types, but at the
same time provides some interesting quantitative information.

In our analysis we take the well-known equivalence between typability in simple types
and unification as a starting point, and prove a similar result for system U . More precisely,
we show that typability is equivalent to an extension of the classical unification problem:
in addition to unification rules, our algorithm makes use of an operation, called expansion,
which increases the cardinality of multisets whenever needed. Indeed, in the simple type
system all the derivations for a given term share the same structure (as trees), and differ from
each other only in the types occurring in their nodes. But, in the intersection type system,
derivations for the same term can differ both in the previous sense and in the structure of
the derivation. So unification is used to match the types in the nodes of a derivation, while
the expansion modifies its structure.

Related works. Typability for intersection types has been intensively studied. A first
approach, introducing the notion of expansion, can be found in [10]; the result was then
extended to a more general case in [21, 19]. Both type systems considered in the aforemen-
tioned works enjoy an approximation theorem, where approximants are head normal forms
in the λ-calculus extended with a constant Ω. This property allows the principal pair to be
defined by induction on the structure of terms. We cannot use a similar technique here, since
there is no syntactical characterization of simply typable terms. A different methodology has
been explored in [16], by enriching types with pointers to the subtypes that can be modified
by the expansion. In our work this role is played by a system of constraints, which also keeps
track of the restrictions on the construction of multisets.

In the literature, some decidable restrictions of idempotent intersection types have been
proposed, namely in [11] and [15]. In both cases, however, they are obtained by limiting the
shape of types, and do not supply subsets of terms with interesting properties.

Paper organization. In Section 2 some well-known and essential facts about the simply
typed λ-calculus are presented, together with the notion of principal derivation. In Section 3
we introduce the type assignment system U of uniform intersection types, extend the notion
of principal derivation to it, and design a typing algorithm. Section 4 contains some clarifying
examples and Section 5 the main result of the paper. A short conclusion is in Section 6. The
most technical proof can be found in the Appendix.

D. Pautasso and S. Ronchi Della Rocca 29:3

Γ, x : A ⊢ x : A (var) Γ, x : A ⊢M : B
Γ ⊢ λx.M : A→ B

(→I)

Γ ⊢M : A→ B ∆ ⊢ N : A Γ ⌣ ∆
Γ ∪∆ ⊢MN : B (→E)

Figure 1 The system S.

2 Simple types

We briefly recall the λ-calculus grammar and the simple type assignment system. Terms and
term contexts of the λ-calculus are generated by the following grammars, respectively:

M,N,P ::= x | λx.M |MN C ::= □ | λx.C | CM |MC

where x ranges over a countable set of variables. FV(M) denotes the set of free variables of
M . We will use for λ-calculus the notations in [1].

▶ Definition 1. The set TS of simple types is defined by the following grammar:

A,B,C ::= a | A→ B

where a ranges over a countable set of type variables.

A context is a set of pairs x : A, where x is a term variable and A ∈ TS ; contexts
are ranged over by Γ,∆. If x : A ∈ Γ, then Γ(x) = A; the domain of a context Γ
is dom(Γ) = {x | x : A ∈ Γ}; the writing Γ ⌣ ∆ means that Γ and ∆ agree, i.e. if
x ∈ dom(Γ) ∩ dom(∆) then Γ(x) = ∆(x); if S is a set of variables, then Γ|S denotes the
restriction of dom(Γ) to S; moreover Γ,∆ is short for Γ ∪∆ in case dom(Γ) ∩ dom(∆) = ∅.

The simple type assignment system S is a set of rules proving statements (typings) of
shape Γ ⊢ M : A, where Γ is a context, M a term and A ∈ TS . The rules are shown in
Figure 1. A derivation is a tree of rules, such that its leaves are applications of rule (var)
and the root is its conclusion. Derivations are ranged over by Π,Σ,Θ. We write Γ ⊢M : A
as a shorthand for the existence of a derivation proving Γ ⊢ M : A, and when we want to
name a particular derivation with such conclusion we write Π ▷ Γ ⊢ M : A. The system
enjoys two important properties:

▶ Theorem 2 (subject reduction). Γ ⊢M : A and M →β N imply Γ ⊢ N : A.

▶ Theorem 3 (strong normalization). Γ ⊢M : A implies M is strongly normalizing.

The principal derivation
System S is decidable, and it enjoys the principal typing property, i.e., each typing for a
term M is obtained from the principal one by substitution and weakening [3, 13].

Let Var(A) be the set of type variables occurring in the type A; we say that A and B are
disjoint (notation A ∗B) if Var(A) ∩ Var(B) = ∅. Both the definition of Var and the notion
of disjointness can be extended to contexts and derivations in the standard way. A type A is
fresh w.r.t. a derivation Π if A ∗B for each B occurring in Π. Throughout the work we will
frequently use indexed types, where indexes are natural numbers, and the symbols I, J will
denote sets of indexes.

FSCD 2023

29:4 A Quantitative Version of Simple Types

Π ▷ x : a ⊢p x : a
(var) (EΠ, VΠ) = (∅, ∅)

. .

Σ ▷ Γ, x : a ⊢p M : A

Π ▷ Γ ⊢p λx.M : a → A
(→I) (EΠ, VΠ) = (EΣ, VΣ)

. .

Σ ▷ Γ ⊢p M : A x ̸∈ dom(Γ) a fresh
Π ▷ Γ ⊢p λx.M : a → A

(→I)∅ (EΠ, VΠ) = (EΣ, VΣ)

. .

Σ1 ▷ Γ ⊢p M : a → B Σ2 ▷ ∆ ⊢p N : A Σ1 ∗ Σ2

Π ▷ Γ ∪ ∆ ⊢p MN : B
(→E1)

EΠ = EΣ1 ∪ EΣ2 ∪ {a
.= A}

VΠ = VΣ1 ∪ VΣ2 ∪ {Γ(x) .= ∆(x) | x ∈ dom(Γ) ∩ dom(∆)}
. .

Σ1 ▷ Γ ⊢p M : a Σ2 ▷ ∆ ⊢p N : A b fresh Σ1 ∗ Σ2

Π ▷ Γ ∪ ∆ ⊢p MN : b
(→E2)

EΠ = EΣ1 ∪ EΣ2 ∪ {a
.= A → b}

VΠ = VΣ1 ∪ VΣ2 ∪ {Γ(x) .= ∆(x) | x ∈ dom(Γ) ∩ dom(∆)}

Figure 2 Principal derivation for S.

A pseudo-derivation is a tree of rules assigning simple types to terms; we extend to pseudo-
derivations all the notations for derivations. To each pseudo-derivation Π is associated a
system of constraints (EΠ, VΠ), where EΠ and VΠ are sets of equations between types, written
A
.= B; we will drop subscripts from EΠ and VΠ when they are clear from the context.

▶ Definition 4. The principal derivation for a term M , denoted by PD(M), is a pair
(Π, (EΠ, VΠ)), where Π is a pseudo-derivation with subject M and (EΠ, VΠ) is the associated
system of constraints, as defined in Fig. 2. PD(M) is unique, modulo renaming of type
variables.

▶ Definition 5. Let S = {Ai
.= Bi | i ∈ I} be a set of equations between types.

S is solvable if there is a substitution θ, replacing type variables by types, such that
θ(Ai) = θ(Bi) for all i ∈ I.
S is in solved form iff:

every Ai is a variable ai, and all ai are distinct;
no left-hand side ai appears in some right-hand side Bj for all i, j ∈ I.

If S = {ai
.= Ai | i ∈ I} is in solved form, S⃗ such that S⃗(ai) = Ai is the most general

substitution solving it, also called most general unifier (m.g.u.).
S is in unsolvable form iff it contains a circular equation, i.e. an equation a

.= A such
that a occurs in A.

The rules reducing an equational system either to solved or unsolvable form are given in
Fig. 3; they are directly obtained from the classical Robinson’s unification algorithm [18]. We
will write Unify(S) for the procedure applying to S the rules of Fig. 3 as much as possible.
A substitution θ can be extended to types and pseudo-derivations in the standard way.

D. Pautasso and S. Ronchi Della Rocca 29:5

S ∪ {A .= A}
S

erase
S ∪ {A→ B

.= C → D}
S ∪ {A .= C} ∪ {B .= D}

decompose

S ∪ {A→ B
.= a}

S ∪ {a .= A→ B}
swap

S ∪ {a .= A} a /∈ Var(A) a ∈ Var(S)
S[A/a] ∪ {a .= A} substitute

Figure 3 Unification rules for simple types.

▶ Remark 6. A principal derivation PD(M) = (Π, (E, V)) essentially becomes a derivation in
S under a substitution θ solving the system of constraints; due to the differences between
system S and the rules in Fig. 2, however, some minor adjustments are needed. To ease the
notation we will leave such transformations implicit and just write θ(Π) for the derivation in
which all (→I)∅ rules have been replaced by (→I) rules (by suitably exploiting weakening in
the axioms to introduce the abstracted dummy variables), and the distinction between rules
(→E1) and (→E2) has been dropped, yielding rule (→E).

The following result, first proved in [3], is well known:

▶ Theorem 7. Let PD(M) = (Π, (E, V)), where Π ▷ Γ ⊢p M : A.
1. For every substitution θ which is a solution of E ∪ V , θ(Π) ▷ θ(Γ) ⊢M : θ(A).
2. For every derivation Σ ▷ ∆ ⊢ M : B there is a substitution θ, solution of E ∪ V , such

that θ(Γ) = ∆|FV(M) and θ(A) = B.

▶ Remark 8. In the literature the property speaks about principal pair, not principal
derivation. The result is the same; here the presentation through the derivation is useful for
the comparison with intersection types.

3 Uniform intersection types

We now define the uniform intersection type assignment system, based on the notion of
uniform multiset. A multiset is an unordered list of elements; ⊎ denotes the union of multisets
taking into account the multiplicities, and |σ| denotes the cardinality of the multiset σ. The
system is obtained from the system He,w in [6] by requiring that multisets contain only
equivalent types.

▶ Definition 9.
Intersection types (I) are defined by the following grammar:

(Intersection Types) A,B,C ::= a | σ → A

(Multisets) σ, τ ::= [A1, . . . , An] (n ≥ 1)

where a ranges over a countable set of type variables.
Equivalence relation on intersection types:

a ∼ a for all variables a;
σ → A ∼ τ → B iff σ ∼ τ and A ∼ B;
[A1, ..., Am] ∼ [B1, ..., Bn] iff ∀i, j.Ai ∼ Bj (1 ≤ i ≤ m, 1 ≤ j ≤ n)

Uniform intersection types (TU) are defined by the following grammar:

(Unif. Int. Types) A,B,C ::= a | σ → A

(Uniform Multisets) σ, τ ::= [A1, ..., An] ∀i, j.Ai ∼ Aj (1 ≤ i, j ≤ n)

FSCD 2023

29:6 A Quantitative Version of Simple Types

A ∈ σ
Γ, x : σ ⊢i x : A (var) Γ, x : σ ⊢i M : A

Γ ⊢i λx.M : σ → A
(→I)

Γ ⊢i M : [A1, ..., An]→ B (∆i ⊢i N : Ai)1≤i≤n ∀i.Γ ∼ ∆i ∀ij.∆i ∼ ∆j

Γ ⊎1≤i≤n ∆i ⊢i MN : B (→E)

Figure 4 The system U .

For the sake of brevity, we well speak about types and multisets in both cases, when
being uniform or not is clear from the context. Remark that in both grammars the empty
multiset is not allowed. The types A = [[a, a, a]→ b, [a]→ b]→ c and B = [[a, a]→ b]→ c

are uniform, whereas [a, [a]→ b]→ c is not; moreover, observe that A ∼ B.
The system U , assigning types in TU ⊂ I to terms, is shown in Fig. 4. We use the same

notations as for simple types, but note that now a context assigns uniform multisets to term
variables. If σ and τ are multisets, σ ⊆ τ means ∃ρ.τ = σ ⊎ ρ. If Γ and ∆ are two contexts,
Γ ∼ ∆ means that ∀x ∈ dom(Γ) ∩ dom(∆).Γ(x) ∼ ∆(x). The system is quantitative in the
following sense:

▶ Property 10. Let Π ▷ Γ, x : σ ⊢i M : A.
The number of free occurrences of x in M is bounded by |σ|.
If n is the maximal cardinality of a multiset in Π, then every variable in M , either free
or bound, has a number of occurrences ≤ n.

Both the following properties are inherited from [7].

▶ Theorem 11 (Subject reduction). Γ ⊢i M : A and M →β N imply Γ ⊢i N : A.

▶ Theorem 12 (Strong normalization). Γ ⊢i M : A implies M is strongly normalizing.

3.1 Principal derivations
We adapt the notion of principal derivation to system U . In this setting, we will deal both
with sets of equations and sets of equivalences between intersection types (multisets), written
respectively as A .= B (σ .= τ), and A ≈ B (σ ≈ τ). A pseudo-derivation is a tree of rules
assigning intersection types to terms. From now on multisets in a pseudo-derivation will
be considered as lists, and consequently also the minor premises of the rules (→E1) and
(→E2) will be ordered; this is essential to limit the complexity of the algorithm Solve we
will discuss in the following section. To each pseudo-derivation Π we associate a system of
constraints (EΠ, VΠ), where EΠ is a set of equations between intersection types and VΠ is a
set of equivalence constraints between type variables.

▶ Definition 13.
A principal derivation for a term M is a pair PDi(M) = (Π, (EΠ, VΠ)), where Π is a
pseudo-derivation with subject M and (EΠ, VΠ) is the associated system of constraints,
as defined in Fig. 5.
The minimal principal derivation for a term M is a principal derivation for M obtained
by posing n = 0 whenever dealing with rule (→I) of Fig. 5, and n = 1 whenever dealing
with rules (→I)∅ and (→E2). Since the minimal principal derivation is unique, modulo
renaming of type variables, we will refer to it as PDmin

i (M).

D. Pautasso and S. Ronchi Della Rocca 29:7

Π ▷ x : [a] ⊢q x : a
(var) (EΠ, VΠ) = (∅, ∅)

. .

Σ ▷ Γ, x : σ ⊢q M : A a1, ..., an fresh
Π ▷ Γ ⊢q λx.M : σ ⊎ [a1, ..., an] → A

(→I) EΠ = EΣ

VΠ = VΣ ∪ {a ≈ b | a, b ∈ σ ⊎ [a1, ..., an]}
. .

Σ ▷ Γ ⊢q M : A x ̸∈ dom(Γ) a1, ..., an fresh
Π ▷ Γ ⊢q λx.M : [a1, ..., an] → A

(→I)∅
EΠ = EΣ

VΠ = VΣ ∪ {a ≈ b | a, b ∈ [a1, ..., an]}
. .

Σ ▷ Γ ⊢q M : [a1, ..., an] → B (Σi ▷ ∆i ⊢q N : Ai)1≤i≤n ∀i.Σ ∗ Σi ∀ij.Σi ∗ Σj (i ̸= j)
Π ▷ Γ ⊎1≤i≤n ∆i ⊢q MN : B

(→E1)

EΠ = EΣ ∪1≤i≤n EΣi ∪ {ai
.= Ai}1≤i≤n

VΠ = VΣ ∪1≤i≤n VΣi ∪ {a ≈ b | x ∈ dom(Γ) ∩1≤i≤n dom(∆i), a ∈ Γ(x), b ∈ ∆i(x)}
. .

Σ ▷ Γ ⊢q M : a (Σi ▷ ∆i ⊢q N : Ai)1≤i≤n b fresh ∀i.Σ ∗ Σi ∀ij.Σi ∗ Σj (i ̸= j)
Π ▷ Γ ⊎1≤i≤n ∆i ⊢q MN : b

(→E2)

EΠ = EΣ ∪1≤i≤n EΣi ∪ {a
.= [A1, ..., An] → b}

VΠ = VΣ ∪1≤i≤n VΣi ∪ {a ≈ b | x ∈ dom(Γ) ∩1≤i≤n dom(∆i), a ∈ Γ(x), b ∈ ∆i(x)}

Figure 5 Principal derivations for U .

▶ Definition 14. Let us denote by ψ a substitution Var → I, and by ϕ a substitution
Var→ TU . Substitutions are extended to multisets and pseudo-derivations in the standard
way.

ψ solves E = {Ai
.= Bi | i ∈ I} ∪ {σj

.= τj | j ∈ J} if ψ(Ai) = ψ(Bi) for all i ∈ I and
ψ(σj) = ψ(τj) for all j ∈ J ;
ϕ satisfies V = {Ai ≈ Bi | i ∈ I} ∪ {σj ≈ τj | j ∈ J} if ϕ(Ai) ∼ ϕ(Bi) for all i ∈ I and
ϕ(σj) ∼ ϕ(τj) for all j ∈ J ;
E is solvable w.r.t. V if there is a substitution ϕ solving E and satisfying V .

In order to solve a system of constraints, we extend to intersection types the unification
rules for simple types: Fig. 6 introduces two sets of rules for solving sets of equations or
equivalences (replacing ≃ either by .= or by ≈, respectively). All the rules but decomposeM
are the same for the two cases; observe that, in particular, the definition of decomposeM .=
for multisets relies on the fact that multisets are now ordered. Let QuasiUnify .=(S) (resp.
QuasiUnify≈(S)) denote the application of the rules in Fig. 6, replacing ≃ by .= (resp. by
≈), to the set S as much as possible. Moreover, if S is a set of equations, let S/≈ denote the
set of equivalence constraints obtained replacing .= by ≈. The writing S/ .= is used for the
dual transformation.

▶ Definition 15.
A set of constraints between intersection types S = {A1 ≃ B1, . . . , An ≃ Bn, σ1 ≃
τ1, . . . , σm ≃ τm}, where ≃∈ { .=,≈}, is in solved form iff:
m = 0, i.e. there is no constraint involving multisets;
every Ai is a variable ai, and all variables ai are distinct;
no left-hand side ai appears in some right-hand side Bj (1 ≤ i, j ≤ n).

FSCD 2023

29:8 A Quantitative Version of Simple Types

S ∪ {A ≃ A} ({σ ≃ σ})
S

erase
S ∪ {σ → A ≃ τ → B}
S ∪ {σ ≃ τ} ∪ {A ≃ B}

decomposeT

S ∪ {σ → A ≃ a}
S ∪ {a ≃ σ → A}

swap
S ∪ {a ≃ A} a /∈ Var(A) a ∈ Var(S)

S[A/a] ∪ {a ≃ A} substitute

S ∪ {[A1, . . . , An] .= [B1, . . . , Bn]}
S ∪ {Ai

.= Bi}1≤i≤n

decomposeM .=

S ∪ {σ ≈ τ}
S ∪ {A ≈ B | A ∈ σ,B ∈ τ}

decomposeM≈

Figure 6 Unification rules for intersection types.

A constraint of the form a ≃ A such that a occurs in A is a circular constraint.
An equation between multisets σ .= τ such that |σ| ≠ |τ | is a critical equation.
A set S is in unsolvable form if it contains at least one circular constraint.
A set of equations S is in blocked form if it contains at least one critical equation.

▶ Property 16.
1. Let S be a set of equations. Then QuasiUnify .=(S) outputs a set of equations either in

solved, unsolvable, or blocked form. Moreover, QuasiUnify .=(S) = S′ in solved form if
and only if S⃗′ is the m.g.u. of S.

2. Let S be a set of equivalences. Then QuasiUnify≈(S) outputs a set of equivalences either
in solved or unsolvable form. Moreover, QuasiUnify≈(S) = S′ in solved form implies S⃗′

satisfies S.

Proof.
1. From the fact that the rules of Fig. 6, when ≃ is replaced by .=, are precisely the

Robinson’s unification rules.
2. From the previous point and the fact that, when ≃ is replaced by ≈, multisets can be

decomposed even if they have different cardinalities. ◀

3.2 Expansion
In order to deal with a set of equations in blocked form, we introduce an operation called
expansion, working on principal derivations. Intuitively, an expansion modifies a principal
derivation by replicating the minor premises of a rule (→Ei), increasing the cardinality of
multisets, and updating the associated constraints accordingly.

▶ Definition 17.
Let (Π, (E, V)) be a principal derivation for M , and let x be a bound variable occurring
in M . This means that in Π there is a rule:

Γ, x : σ ⊢q N : B σ ⊆ τ
Γ ⊢q λx.N : τ → B

(→I)

If there is also a subsequent rule:

Γ′ ⊢q P : τ → B (∆i ⊢q Q : Ci)1≤i≤|τ |

Γ′ ⊎1≤i≤|τ | ∆i ⊢q PQ : B
(→E1)

D. Pautasso and S. Ronchi Della Rocca 29:9

then we say that x is an applied bound variable in Π, and this last rule is called the
application rule for x. Otherwise x is an unapplied bound variable in Π. We denote B
the set of applied bound variables in Π.
Let (Π, (E, V)) be a principal derivation for M , and let x, y be applied bound variables in
Π. If M = C[λx.C′[λy.N]], then define y < x.

▶ Definition 18. An expansion, denoted Expand(σ, n), has two parameters: a multiset σ and
a natural number n ≥ 1. Applying Expand(σ, n) to a principal derivation (Π, (E, V)) means
to perform the steps described below. There are four cases:
1. If there is a rule (→I) with conclusion Γ ⊢q λx.N : σ → A, and x is an unapplied bound

variable in Π, then:
a. replace, in the conclusion of the rule (→I) and in the subsequent rules, the multiset σ

by σ ⊎ [a1, ..., an] where all the ai are fresh;
b. recompute the system of constraints (E, V) according to Fig. 5, taking into account

the increased cardinality.
2. If σ = [A1, ..., Am] and in Π there is an elimination rule of shape

Γ ⊢q P : B (Σi ▷ ∆i ⊢q Q : Ai)1≤i≤m

Ξ = Γ ⊎1≤i≤m ∆i ⊢q PQ : C
(→Ej)

perform the following actions:
a. update the structure of Π by adding n disjoint copies of PDmin

i (Q) as the rightmost
premises of the (→Ej) rule;

b. compute the new conclusion context Ξ′ by taking into account the newly added premises,
and replace Ξ by Ξ′ in the conclusion of the rule (→Ej) and in all subsequent rules;

c. if B = [a1, ..., am]→ C, i.e. if the rule was the application rule for some variable x,
then replace, in the conclusion of the (→I) rule abstracting x and in the subsequent
rules, the multiset [a1, ..., am] by [a1, ..., am, am+1, ..., am+n], where am+1, ..., am+n are
fresh;

d. let B be the set of applied bound variables in Π, and let L = B ∩ dom(∆i).
While L ≠ ∅ do:

let min(L) be the minimum element of L according to the < relation of Definition
17, and let its application rule be:

Φ ⊢q S : τ → D (Θi ▷ Ψi ⊢q T : Di)1≤i≤s

Υ = Φ ⊎1≤i≤s Ψi ⊢q ST : D (→E1)

the modifications until this point certainly increased |τ |, so |τ | > s. Identify in
τ the |τ | − s type variables that were introduced by the expansion, i.e. the set
F = {a | a ∈ τ, a ̸∈ Var(V)};
update the structure of Π by adding |τ | − s disjoint copies of PDmin

i (T) as premises
of the (→E1) rule, matching them to the type variables in F ;
compute the new conclusion context Υ′ by taking into account the newly added
premises, and replace Υ by Υ′ in the conclusion of the rule (→E1) and in all
subsequent rules;
update L by posing L = (L − min(L)) ∪ (B ∩ dom(Θi));

e. recompute the system of constraints (E, V) according to Fig. 5, taking into account
the new structure of the pseudo-derivation Π.

FSCD 2023

29:10 A Quantitative Version of Simple Types

3. If σ = [a1, ..., am] and in Π there is a rule:

Γ ⊢q P : [a1, ..., am]→ B (Σi ▷ ∆i ⊢q Q : Ai)1≤i≤m

Γ ⊎1≤i≤m ∆i ⊢q PQ : B (→E1)

then perform Expand([A1, ..., Am], n).
4. If none of the above conditions is met, the expansion behaves as the identity, i.e.

Expand(σ, n)(Π, (E, V)) = (Π, (E, V))

▶ Lemma 19. Let (Π, (E, V)) be a principal derivation for M . For all σ, n, the expansion
Expand(σ, n)(Π, (E, V)) terminates, returning a principal derivation for M .

Proof. Both in cases (1) and (4) the expansion obviously stops without altering the structure
of Π, and the result is coherent with the definition of principal derivation. Case (3) reduces
to (2), hence we limit our analysis to such case. Clearly the structure of the output derivation
differs from the input one, as some minor premises of elimination rules are extended with
multiple copies of the original subderivations; however, since such copies introduce only
fresh variables, all the new subderivations are disjoint, in agreement with the definition
of principal derivation. We now prove that the number of while iterations is finite. The
key observation is the following one: choosing the minimal element of L ensures that any
applied bound variable is considered at most once, because a variable cannot re-enter the
set L after being selected as min(L) and then discarded. To see this, let x, y ∈ B; moreover
let Σ be the subderivation whose conclusion is the (→I) rule abstracting x, and let Σ′ be
the subderivation whose conclusion is the (→I) rule abstracting y. Indeed, y < x means
that Σ′ is a subderivation of Σ. Hence modifications performed by the expansion when the
while loop selects y as min(L) may increment the premise of x in the context (note that x
is possibly free in the subderivation being replicated), but not the other way around. We
conclude that the number of while iterations is bounded by |B|. ◀

Thanks to the expansion, the notion of solvability can be extended to principal derivations.
We stress that the considerations made in Remark 6 apply also to the present case, and
therefore we adopt the same conventions.

▶ Definition 20. Let PDi(M) = (Π ▷ Γ ⊢q M : A, (E, V)). A solution of PDi(M) is a pair
(ē, ϕ), where ē is sequence of expansions such that ē(Π, (E, V)) = (Π′ ▷ Γ′ ⊢q M : A′, (E′, V ′)),
and ϕ : Var→ TU is a solution of E′ w.r.t. V ′, i.e. ϕ(Π′) ▷ ϕ(Γ′) ⊢i M : ϕ(A′).

For the sake of simplicity, from now on if ē(Π, (E, V)) = (Π′, (E′, V ′)) we will also denote Π′

by ē(Π), E′ by ē(E) and V ′ by ē(V).

3.3 The algorithm
In this subsection we present an algorithm Solve which tries to solve the system of constraints
generated by PDmin

i (M). A solution, if it exists, is found by interleaving unification rules and
expansions. In Solve we make use of the following notations:

Let S be a set of equivalences. Fail(S) = true iff S is in unsolvable form.
Let S be a set of equations. Blocked(S) = true iff S is in blocked form.

Informally, the algorithm behaves as follows. QuasiUnify≈(E/≈ ∪ V) is used to check if
the constraints of V can be respected by E; in case of failure, there is no solution. Otherwise,
the algorithm tries to solve E. If a blocked form is reached, a critical equation is dealt with
using the operation of expansion. At every expansion, the system of constraints (E, V) is

D. Pautasso and S. Ronchi Della Rocca 29:11

Algorithm 1 The algorithm Solve. Input: a term M .

1: function Solve(M)
2: (Π, (E, V))← PDmin

i (M)
3: C ← QuasiUnify≈(E/≈ ∪ V)
4: if Fail(C) then FAIL
5: end if
6: E∗ ← QuasiUnify .=(E)
7: while Blocked(E∗) do
8: choose (σ .= τ) ∈ E∗ such that |σ| ≠ |τ |
9: if |σ| > |τ | then

10: n← |σ| − |τ |
11: (Π, (E, V))← Expand(τ, n)(Π, (E, V))
12: else
13: n← |τ | − |σ|
14: (Π, (E, V))← Expand(σ, n)(Π, (E, V))
15: end if
16: E∗ ← QuasiUnify .=(E)
17: end while
18: V ∗ ← QuasiUnify≈(E⃗∗(V))
19: S ← QuasiUnify .=(E∗ ∪ V ∗/ .=)
20: return (Π, S⃗)
21: end function

recomputed, then QuasiUnify .=(E) is applied again; the loop stops as soon as a solved form
is reached. Note that since the system of constraints is recomputed after each expansion, the
only purpose of the calls to QuasiUnify .=(E) in the while loop is to expose critical equations,
thus guiding the expansions. Lastly, the final calls to QuasiUnify≈ and QuasiUnify .=
generate the unifying substitution. The algorithm is non-deterministic, as critical equations
are randomly chosen. Remark that, in an actual implementation, the efficiency of Solve could
be improved by avoiding unnecessary and time consuming steps, such as recomputing the
system of constraints from scratch after each expansion and repeating the whole unification
procedure: this would require keeping track of the modified/added constraints only. Here
we favoured both clarity and brevity of exposition over efficiency; we leave more detailed
considerations about the time complexity, as well as possible optimizations, to future work.
In what follows we prove that the algorithm behaves correctly.

▶ Remark 21. Solve does not find all possible solutions of PDmin
i (M), since expansions are

used only when strictly necessary (i.e. when the set of equations E∗ is in blocked form).
Note also that not all cases considered in Definition 18 are actually needed for the purposes
of the algorithm: in particular case 4 never applies, but has been included for completeness.

Let A be an intersection type. The syntactic tree of A, written T (A), is a tree defined
inductively as follows: if A = a, then T (a) is a single node named a; otherwise, if A =
[A1, ..., An]→ B, T (A) is an ordered tree whose root, labelled A, has n+ 1 children, namely
T (A1), ..., T (An) and T (B). Two subtypes of A and B are corresponding if they occur at the
same path in T (A) and T (B).

▶ Lemma 22. Let PDmin
i (M) = (Π ▷ Γ ⊢q M : A, (E, V)) and C = QuasiUnify≈(E/≈ ∪ V).

If C is in unsolvable form then PDmin
i (M) is unsolvable.

FSCD 2023

29:12 A Quantitative Version of Simple Types

Proof. C in unsolvable form means that it contains a circular constraint, let it be b ≈ B, such
that b occurs in B. If E is unsolvable, i.e. b and B are corresponding subtypes of two equated
intersection types, then the result is obtained by observing that no amount of expansions
can get rid of the circular equation: indeed, an expansion can add new constraints, but not
erase the existing ones. On the other hand, assume E solvable, i.e. there is a sequence s of
expansions and applications of unification rules such that s(E) is in solved form. Then the
circularity has been introduced by the constraints in V , that is, b and B must be equivalent
to each other. But by definition of ∼, it does not exist ϕ such that ϕ(b) ∼ ϕ(B), because
if b occurs in B, ϕ(b) and ϕ(B) have syntactic trees of different depths, for all ϕ; again, no
amount of expansions can get rid of the circularity. ◀

▶ Theorem 23 (Partial Correctness). Let PDmin
i (M) = (Π ▷ Γ ⊢q M : A, (E, V)) and assume

Solve(M) terminates. If the result is FAIL then M is not typable in U ; otherwise the
algorithm outputs (Σ ▷ Γ′ ⊢q M : A′, ϕ) such that ϕ(Σ) ▷ ϕ(Γ′) ⊢i M : ϕ(A′).

Proof. Let C = QuasiUnify≈(E/≈∪V). Then C is either in solvable or unsolvable form. In
the latter case Solve immediately returns FAIL, and the result follows by Lemma 22. If C is
in solved form, the algorithm continues by performing an interleaved sequence s of unification
rules and expansions. First we show that, for all sequences s, both QuasiUnify≈(s(E)/≈ ∪
s(V)) and QuasiUnify .=(s(E)) do no not contain circular constraints. The unification rules
play no role in the introduction or elimination of circular constraints, hence we limit our
analysis to the sequence of expansions ē belonging to s. It is easy to check that no circularity
can be introduced as a result of an expansion: indeed, each expansion creates disjoint replicas
of sub-pseudo-derivations which were part of PDmin

i (M), thus it can only originate fresh
copies of constraints that already existed from the beginning. We conclude by observing
that the equations that can be generated during a call to QuasiUnify .=(ē(E)) form a subset
of the constraints that can be generated during a call to QuasiUnify≈(ē(E)/≈ ∪ ē(V)).
The last thing to do is proving that if the check on C does not fail, then Solve outputs
a pair (Σ, ϕ) with the desired properties. Since we assumed that Solve(M) terminates,
the number of iterations of the while loop is finite; this means that the algorithm builds
a principal derivation (Σ, (EΣ, VΣ)) such that E∗

Σ = QuasiUnify .=(EΣ) is in solved form.
Clearly dom(E⃗∗

Σ) ∩ Var(E⃗∗
Σ(VΣ)) = ∅, so V ∗ = QuasiUnify≈(E⃗∗

Σ(VΣ)) induces a substitution
V⃗ ∗ whose domain and codomain are disjoint from the domain of E⃗∗

Σ, that is, (dom(V⃗ ∗) ∪
cod(V⃗ ∗)) ∩ dom(E⃗∗

Σ) = ∅. Therefore S = QuasiUnify .=(E∗
Σ ∪ V ∗/ .=) is in solved form. As

E⃗∗
Σ solves E∗

Σ and V⃗ ∗ satisfies VΣ, it is easy to verify that ϕ = S⃗ is a solution of EΣ w.r.t VΣ.
Then ϕ(Σ) is a correct derivation, because (EΣ, VΣ) consists of all and only the constraints
needed to convert a pseudo-derivation into an actual derivation. ◀

The following two results guarantee that the algorithm does not perform an infinite
sequence of expansions and unification rules. Moreover they show that expansions and
β-reductions are closely related.

▶ Lemma 24. If M is in normal form then Solve(M) stops without performing any
expansion.

Proof. By induction on M . Recall that a normal form is defined by the following grammar:

M,N ::= λx.M | xM...M︸ ︷︷ ︸
n

n ≥ 0

D. Pautasso and S. Ronchi Della Rocca 29:13

If M = x the proof is trivial, as E = ∅. M = λx.N follows by induction, as no new equation
is added. Lastly, consider the case M = xM1...Mn for n > 0. Let PDmin

i (x) = (Π0 ▷ x :
[a0] ⊢q x : a0, (∅, ∅)) and PDmin

i (Mi) = (Πi, (Ei, Vi)) where Πi ▷ Γi ⊢q Mi : Ai (1 ≤ i ≤ n).
Then PDmin

i (M) = (Π, (E, V)), where E =
⋃

1≤i≤n Ei ∪ {a0
.= [A1] → a1, a1

.= [A2] →
a2, ..., an−1

.= [An]→ an} and a1, . . . , an are fresh. If the check on QuasiUnify≈(E/≈ ∪ V)
fails, the algorithm immediately stops; otherwise it computes QuasiUnify .=(E). Since by
induction Ei does not generate critical equations, neither does E, because a0 does not occur
in Ei and a1, . . . , an are fresh. As QuasiUnify .=(E) does not contain critical equations, the
algorithm exits the while loop without performing any expansion. ◀

▶ Theorem 25 (Partial Termination). Let M be strongly normalizing. Then Solve(M)
terminates.

Proof. The proof is in the Appendix. ◀

4 Some examples

▶ Example 26. In order to understand the necessity and the behaviour of expansions,
consider the term M = ((λy.λx.yxx)(λp.λr.wpp))(tz). The associated minimal principal
derivation is PDmin

i (M) = (ΠM , (E, V)), where:
Π is:

y : [a1] ⊢q y : a1 x : [b1] ⊢q x : b1

y : [a1], x : [b1] ⊢q yx : c1 x : [b2] ⊢q x : b2

y : [a1], x : [b1, b2] ⊢q yxx : d1

y : [a1] ⊢q λx.yxx : [b1, b2]→ d1

Π ▷ ⊢q λy.λx.yxx : [a1]→ [b1, b2]→ d1

Σ is:

w : [e1] ⊢q w : e1 p : [f1] ⊢q p : f1

w : [e1], p : [f1] ⊢q wp : g1 p : [f2] ⊢q p : f2

w : [e1], p : [f1, f2] ⊢q wpp : h1

w : [e1], p : [f1, f2] ⊢q λr.wpp : [k1]→ l1

Σ ▷ w : [e1] ⊢q λp.λr.wpp : [f1, f2]→ [k1]→ l1

Θ1 is:

t : [m1] ⊢q t : m1 z : [n1] ⊢q z : n1

Θ1 ▷ t : [m1], z : [n1] ⊢q tz : o1

Θ2 is a disjoint instance of Θ1, and lastly ΠM is:

Π Σ
⊢q (λy.λx.yxx)(λp.λr.wpp) : [b1, b2]→ d1 Θ1 Θ2

ΠM ▷ w : [e1], t : [m1,m2], z : [n1, n2] ⊢q ((λy.λx.yxx)(λp.λr.wpp))(tz) : d1

E = {a1
.= [b1] → c1, c1

.= [b2] → d1, e1
.= [f1] → g1, g1

.= [f2] → h1, a1
.= [f1, f2] →

[k1]→ l1,m1
.= [n1]→ o1, m2

.= [n2]→ o2, b1
.= o1, b2

.= o2}.
V = {b1 ≈ b2, f1 ≈ f2, m1 ≈ m2, n1 ≈ n2}.

FSCD 2023

29:14 A Quantitative Version of Simple Types

Applying the unification rules to E, we obtain equation [b1] → c1
.= [f1, f2] → [k1] → l1;

decomposing yields the critical equation [b1] .= [f1, f2]. Therefore we need to perform
Expand(σ, n) with σ = [b1] and n = 1. Under the action of the expansion, the derivation Π
becomes:

y : [a1] ⊢q y : a1 x : [b1] ⊢q x : b1 x : [b3] ⊢q x : b3

y : [a1], x : [b1, b3] ⊢q yx : c1 x : [b2] ⊢q x : b2

y : [a1], x : [b1, b3, b2] ⊢q yxx : d1

y : [a1] ⊢q λx.yxx : [b1, b3, b2]→ d1

Π ▷ ⊢q λy.λx.yxx : [a1]→ [b1, b3, b2]→ d1

Consequently ΠM becomes:

Π Σ
⊢q (λy.λx.yxx)(λp.λr.wpp) : [b1, b3, b2]→ d1 Θ1 Θ2

ΠM ▷ w : [e1], t : [m1,m2], z : [n1, n2] ⊢q ((λy.λx.yxx)(λp.λr.wpp))(tz) : d1

At this point ΠM is no longer a principal derivation for M , as its last rule is incorrect. But
the expansion is not terminated yet: there is one applied bound variable in the context of the
duplicated subderivation, namely x. Therefore we enter the while loop with L = {x}, and
since the application rule for x is the last rule of ΠM , we update the derivation as follows:

Π Σ
⊢q (λy.λx.yxx)(λp.λr.wpp) : [b1, b3, b2]→ d1 Θ1 Θ3 Θ2

ΠM ▷ w : [e1], t : [m1,m3,m2], z : [n1, n3, n2] ⊢q ((λy.λx.yxx)(λp.λr.wpp))(tz) : d1

where Θ3 is yet another disjoint instance of Θ1. No applied bound variable is in the context
of Θi, so L = ∅ and we exit the while loop. Lastly we recompute the constraints, which now
are:

E = {a1
.= [b1, b3] → c1, c1

.= [b2] → d1, e1
.= [f1] → g1, g1

.= [f2] → h1, a1
.= [f1, f2] →

[k1]→ l1,m1
.= [n1]→ o1, m2

.= [n2]→ o2, m3
.= [n3]→ o3, b1

.= o1, b2
.= o2, b3

.= o3}.
V = {b1 ≈ b2, b2 ≈ b3, f1 ≈ f2, m1 ≈ m2, m2 ≈ m3, n1 ≈ n2, n2 ≈ n3, . . . }.

The reader can infer the omitted equivalence constraints by considering the equivalence
relation induced by V . Note that all the constraints generated by Θi have been duplicated.
Now E can be reduced to solved form by decomposing equation [b1, b3] .= [f1, f2].

▶ Example 27. Let M = λx.xx, which is not simply typable. PDmin
i (M) = (ΠM , (E, V))

where:

x : [a] ⊢q x : a x : [b] ⊢q x : b
x : [a, b] ⊢q xx : c

ΠM ▷ ⊢q λx.xx : [a, b]→ c

E = {a .= [b]→ c} and V = {a ≈ b}. Clearly E is unsolvable w.r.t. V .

5 From simple types to intersection types and viceversa

In this section we will prove the main result of the paper, namely the correspondence between
the two systems S and U . First we define a translation from intersection types to simple
types, which erases the multisets in I.

D. Pautasso and S. Ronchi Della Rocca 29:15

▶ Definition 28. The collapse translation t from I to TS is defined by induction on the size
of types in the following way (recall that multisets are now ordered):

t(a) = a;
t(σ → A) = t(σ)→ t(A);
t([A1, ..., An]) = t(A1).

The following property is easy to prove, by induction on types.

▶ Property 29. A ∼ B implies t(A) = t(B).

Observe that in the translation of an (ordered) multiset we could have chosen any of its
elements, in a nondeterministic way. However, always choosing the first one allows us to
easily extend the translation to pseudo-derivations and derivations.

▶ Definition 30.
t(.) is extended to contexts by posing t(Γ) = {x : t(σ) | x : σ ∈ Γ}.
t(.) is extended to pseudo-derivations in the following way:

if Π ▷ x : [a] ⊢q x : a, then t(Π) ▷ x : t([a]) ⊢p x : t(a);
the case the subject is λx.M is straightforward.
let Π be:

Γ ⊢q M : A (∆i ⊢q N : Bi)1≤i≤n

Γ ⊎1≤i≤n ∆i ⊢q MN : C
(→Ej)

then t(Π) is:

t(Γ) ⊢p M : t(A) t(∆1) ⊢p N : t(B1)
t(Γ) ∪ t(∆1) ⊢p MN : t(C)

(→Ej)

t(.) can be extended to principal derivations by posing t(Π, (E, V)) = (t(Π), (Et(Π), Vt(Π))),
where the system of constraints (Et(Π), Vt(Π)) is computed from the pseudo-derivation t(Π)
according to Fig. 2, as usual.
t(.) is extended to derivations in the same way as for pseudo-derivations.

▶ Property 31. Let PDi(M) = (Π, (E, V)). For each sequence of expansion ē, PD(M) =
(t(ē(Π)), (Et(ē(Π)), Vt(ē(Π)))).

Proof. In case ē is the empty sequence the proof follows by induction on the definition of
PD(M) and PDi(M), recalling that PD(M) is defined modulo renaming of type variables. The
general case follows from the definition of expansion. ◀

We are now able to prove the decidability of U , and the fact that the systems S and U
have the same typability power.

▶ Theorem 32. The system U is decidable.

Proof. Let PDmin
i (M) = (Π, (E, V)) and PD(M) = (t(Π), (Et(Π), Vt(Π))). We already proved

that Solve(M) terminates with a correct result in case M is strongly normalizing (Theorems
23 and 25). If M is not strongly normalizing, then it is not simply typable, i.e. Unify(Et(Π)∪
Vt(Π)) fails. Observe that QuasiUnify≈ decomposes multiset equivalences by introducing
equivalence constraints between all possible pairs of elements, hence it generates a circular
constraint exactly when Unify does. We conclude that the failure of Unify(Et(Π) ∪ Vt(Π))
implies the failure of the check on QuasiUnify≈(E/≈ ∪ V) performed at the beginning of
the algorithm Solve. ◀

FSCD 2023

29:16 A Quantitative Version of Simple Types

▶ Corollary 33. PDmin
i (M) is solvable if and only if PD(M) is solvable.

Proof. Let PDmin
i (M) = (Π, (E, V)). PDmin

i (M) is solvable if and only if (by Theorem 23) the
check on QuasiUnify≈(E/≈ ∪ V) succeeds if and only if (looking at the proof of Theorem
32) PD(M) is solvable. ◀

The main result

The main result of this paper is the correspondence between the derivations in the two
systems S and U : from one side the translation of every derivation in U is a derivation in S,
and on the other side for each derivation Π in S there is an infinite set of derivations in U
from which Π can be obtained through the translation.

▶ Theorem 34.
1. Γ ⊢i M : A implies t(Γ) ⊢M : t(A);
2. Π ▷ Γ ⊢M : A implies there exists Πi ▷ Γi ⊢i M : Ai such that Γ = t(Γi) and A = t(Ai).

Proof.
1. Easy, by definition of collapse translation.
2. First we consider the case dom(Γ) = FV(M). Let PD(M) = (Σ, (EΣ, VΣ)); clearly Π ▷ Γ ⊢

M : A implies that there is θ m.g.u. of EΣ ∪ VΣ, and there is θ′ such that θ′ ◦ θ(Σ) = Π.
Moreover, by Corollary 33, Solve(M) = (Σi, ϕ); let (EΣi , VΣi) be the system of constraints
associated to Σi. It is easy to verify that r ◦ t ◦ ϕ(Σi) = θ(Σ) for some renaming of type
variables r : Var → Var (trivially extended to derivations): this follows from the fact
that both systems of constraints, namely (EΣ, VΣ) for simple types and (EΣi , VΣi) for
uniform intersection types, contain all and only the constraints strictly needed to type M
in the corresponding type system. Then, choosing any substitution ϕ′ : Var→ TU such
that t ◦ ϕ′ = θ′, one can build Πi = ϕ′ ◦ r ◦ ϕ(Σi). In case there is x : B ∈ Γ such that
x ̸∈ FV(M), starting from the above construction and suitably exploiting (var) rules it is
always possible to obtain a derivation Πi such that x : σ ∈ Γi and t(σ) = B. ◀

6 Conclusion

Starting from a non-idempotent intersection type assignment system which is undecidable,
as it characterises strong normalisation, we have built a decidable restriction of it. More
precisely, we designed an algorithm Solve that, given in input a λ-term, outputs either
FAIL, if the term cannot be typed, or the most general typing for it. System U has the
same typability power as the simple type assignment system, and the derivations in the two
systems are related through a translating function. Furthermore, the system is quantitative,
in the sense that some information about the number of occurrences of a variable in the
subject can be deduced from a derivation in system U . In the future we plan to use this new
system to reason about properties related to the complexity of reductions of simply typed
terms. Moreover we would like to investigate the existence of further decidable restrictions
with interesting properties. From a technical point of view, we also aim at studying the
time and space complexity of Solve in more detail, in order to come up with an efficient
implementation.

D. Pautasso and S. Ronchi Della Rocca 29:17

References

1 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
logic and the foundation of mathematics. North-Holland, Amsterdam, 1984.

2 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter model and the
completeness of type assignment. J. Symb. Log., 48(4):931–940, 1983. doi:10.2307/2273659.

3 Choukri-Bey Ben-Yelles. Type-assignment in the lambda-calculus; syntax and semantics. PhD
thesis, University of Wales Swansea, 1979.

4 Erika De Benedetti and Simona Ronchi Della Rocca. A type assignment for lambda-calculus
complete for fptime and strong normalization. Inf. Comput., 248(195-214):195–214, 2016.
doi:10.1016/j.ic.2015.12.012.

5 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough.
In Jacques Duparc and Thomas A. Henzinger, editors, CSL 2007, volume 4646, pages 298–312,
2007.

6 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Inhabitation for non-
idempotent intersection types. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/
LMCS-14(3:7)2018.

7 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

8 Alonzo Church. A formulation of simple theory of types. J. Symbolic Logic, 5:56–68, 1940.
9 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality

theory for the λ-calculus. Notre Dame J. Form. Log., 21(4):685–693, 1980.
10 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of

solvable terms. Math. Log. Q., 27(2-6):45–58, 1981.
11 Mario Coppo and Paola Giannini. Principal types and unification for a simple intersection

type system. Inf. Comput., 122(1):70–96, 1995.
12 Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersec-

tion types. CoRR, abs/0905.4251, 2009.
13 Roger J. Hyndley. Basic Simple Type theory. Hoepli, 1997.
14 Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus. In

TCS, LNCS, 2014.
15 Assaf J. Kfoury and Joe B. Wells. Principality and decidable type inference for finite-rank

intersection types. In Andrew W. Appel and Alex Aiken, editors, POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Antonio, TX, USA, January 20-22, 1999, pages 161–174. ACM, 1999.

16 Assaf J. Kfoury and Joe B. Wells. Principality and type inference for intersection types using
expansion variables. Theor. Comput. Sci., 311(1-3):1–70, 2004.

17 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational models.
Mathematical Strucures in Computer Science, 27, 2017.

18 John A. Robinson. A machine-oriented logic based on the resolution principle. J. Asoc. for
Computing Machinery 12 (1965), 12:23–41, 1965.

19 Simona Ronchi Della Rocca. Principal type scheme and unification for intersection type
discipline. Theor. Comput. Sci., 59:181–209, 1988. doi:10.1016/0304-3975(88)90101-6.

20 Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus - A Metamodel
for Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

21 Simona Ronchi Della Rocca and Betti Venneri. Principal type schemes for an extended type
theory. Theor. Comput. Sci., 28:151–169, 1984. doi:10.1016/0304-3975(83)90069-5.

22 Pawel Urzyczyn. The emptiness problem for intersection types. In Proceedings of the Ninth
Annual Symposium on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994,
pages 300–309. IEEE Computer Society, 1994. doi:10.1109/LICS.1994.316059.

FSCD 2023

https://doi.org/10.2307/2273659
https://doi.org/10.1016/j.ic.2015.12.012
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(83)90069-5
https://doi.org/10.1109/LICS.1994.316059

29:18 A Quantitative Version of Simple Types

A Proof of Theorem 25

Proof (Hint). In order to develop some useful intuitions, we start by considering M that
reduces to N in one step, by reducing one of its innermost redexes; we denote this fact
by writing M →in

β N . Let PDmin
i (M) = (ΠM , (EM , VM)), PDmin

i (N) = (ΠN , (EN , VN)),
M = C[(λx.P)Q] and N = C[P [Q/x]]. Assume QuasiUnify≈(EM/≈ ∪ VM) is in solved
form, termination being obvious in the other case. We will prove that there is a run of
Solve(M) performing an interleaved sequence s of unification rules and expansions such that
EN ⊂ s(EM) and VN ⊂ ē(VM), where ē is the sequence of expansions belonging to s. At
the same time we will show that s(EM)− EN is in solved form and cannot generate critical
equations. The proof depends on the occurrences of x in P .

x does not occur in P . Let ΠM contain subderivations Πj
(λx.P)Q (j ∈ J) of shape:

(Πj
(λx.P)Q)

Γj ⊢q P : Bj

Πj
λx.P ▷ Γj ⊢q λx.P : [aj]→ Bj Πj

Q ▷ ∆j ⊢q Q : Aj

Γj ⊎∆j ⊢q (λx.P)Q : Bj

where (Πj
λx.P , (E

j
λx.P , V

j
λx.P)) and (Πj

Q, (E
j
Q, V

j
Q)) are disjoint instances of PDmin

i (λx.P) and
PDmin

i (Q) respectively. Moreover let EM = E′ ∪j∈J (Ej
λx.P ∪E

j
Q ∪Ej

app) and VM = V ′ ∪j∈J

(V j
λx.P ∪ V

j
Q ∪ V j

app), where Ej
app = {aj .= Aj} and V j

app = {bj ≈ cj | y ∈ dom(Γj) ∩
dom(∆j), bj ∈ Γj(y), cj ∈ ∆j(y)}. First, observe that EN = E′ ∪j∈J E

j
P = E′ ∪j∈J E

j
λx.P

and VN = V ′ ∪j∈J V
j

P ⊂ VM . Since Q is in normal form, by Lemma 24, for all j we know
that Ej∗

Q = QuasiUnify .=(Ej
Q) is in solved form. Let ū be the sequence of unification rules

performed by all QuasiUnify .=(Ej
Q) (j ∈ J); clearly each aj occurs only in Ej

app, hence
ū(EM) − EN =

⋃
j∈J E

j∗
Q ∪ Ej

app is in solved form and cannot generate critical equations.
Note that in this case ē is the empty sequence.

x occurs in P . Let ΠM contain subderivations Πj
(λx.P)Q (j ∈ J) ending by:

(Πj
(λx.P)Q)

Γj , x : [aj
i]i∈Ij ⊢q P : Bj

Γj ⊢q λx.P : [aj
i]i∈Ij → Bj (∆j

i ⊢q Q : Aj
i)i∈Ij

Γj ⊎i∈Ij ∆j
i ⊢q (λx.P)Q : Bj

where Ij is a suitable set of indexes. Focusing on the occurrences of x in functional position
in P , each Πj

(λx.P)Q contains disjoint subderivations of shape:

(Σj
i)

x : [aj
i] ⊢q x : aj

i Ψj
i ⊢q Ri : Cj

i

{x : [aj
i]} ⊎Ψj

i ⊢q xRi : ej
i

where i ∈ Ij
fun ⊆ Ij (recall that, by construction, each application uses a different premise

on x). The set of equations generated by the last rule of all the aforementioned Σj
i is:

Efun = {aj
i
.= [Cj

i]→ ej
i | j ∈ J, i ∈ I

j
fun}

Focusing instead on the occurrences of x in argument position, each Πj
(λx.P)Q contains disjoint

subderivations of shape:

(Θj
k)

Φj
k ⊢q Sk : Dj

k (x : [aj
i] ⊢q x : aj

i)i∈Ij
k

Φj
k ⊎i∈Ij

k
{x : [aj

i]} ⊢q Skx : F j
k

D. Pautasso and S. Ronchi Della Rocca 29:19

where k ∈ Kj and the sets Ij
k form a partition of indexes, i.e. Ij

k ∩ I
j
k′ = ∅ if k ̸= k′ and⋃

k∈Kj I
j
k = Ij

arg = (Ij − Ij
fun); observe that |Kj | ≤ |Ij

arg|. Indeed, either the type of Sk is an
arrow type, let it be Dj

k = [dj
i]i∈Ij

k
→ F j

k , or both Dj
k = dj

k and F j
k = f j

k are type variables.
Let Kj

arr = {k ∈ Kj | the type of Sk is an arrow type} and Kj
var = Kj − Kj

arr; note that
k ∈ Kj

var implies Ij
k is a singleton, hence Kj

var and
⋃

k∈Kj
var
Ij

k can be identified. The last rule
of all subderivations Θj

k generate equations:

Earg = {dj
i
.= aj

i | j ∈ J, k ∈ K
j
arr, i ∈ I

j
k} ∪ {d

j
k

.= [aj
k]→ f j

k | j ∈ J, k ∈ K
j
var}

The sequence s varies depending on whether Aj
i is a type variable or not. In the former case

no expansion is needed, i.e. s consists of unification rules only. We now analyse both cases
in detail.

Aj
i is a variable. Aj

i is a variable means that Q is not an abstraction. Let Aj
i = bj

i and
EM = E′ ∪ Efun ∪ Earg ∪ {aj

i
.= bj

i | j ∈ J, i ∈ Ij}. Consider the sequence of substitutions
ū replacing each aj

i by bj
i . These substitutions modify only the components Efun and Earg,

which become:

E∗
fun = {bj

i
.= [Cj

i]→ ej
i | j ∈ J, i ∈ I

j
fun}

E∗
arg = {dj

i
.= bj

i | j ∈ J, k ∈ K
j
arr, i ∈ I

j
k} ∪ {d

j
k

.= [bj
k]→ f j

k | j ∈ J, k ∈ K
j
var}

Observe that EN = E′∪E∗
fun∪E∗

arg ⊂ ū(EM), because in ΠN the subderivations corresponding
to Σj

i and Θj
k are, respectively:

(Σ′j
i)

∆j
i ⊢q Q : bj

i Ψ′j
i ⊢q Ri[Q/x] : Cj

i

∆j
i ⊎Ψ′j

i ⊢q Q(Ri[Q/x]) : ej
i

(Θ′j
k)

Φ′j
k ⊢q Sk[Q/x] : Dj

k (∆j
i ⊢q Q : bj

i)i∈Ij
k

Φ′j
k ⊎i∈Ij

k
∆j

i ⊢q (Sk[Q/x])Q : F j
k

The various aj
i do not occur in ΠN , thus we also have VN = VM −{aj

i ≈ a
j
l | j ∈ J, i, l ∈ Ij}.

We conclude that in this case s = ū, i.e. the sequence consists of the unification rules
transforming Efun∪Earg∪{aj

i
.= bj

i | j ∈ J, i ∈ Ij} into E∗
fun∪E∗

arg∪{a
j
i
.= bj

i | j ∈ J, i ∈ Ij}.
It is straightforward to check that ū(EM)− EN = {aj

i
.= bj

i | j ∈ J, i ∈ Ij} is in solved form,
and that all variables aj

i do not occur outside of ū(EM)−EN . Hence ū(EM)− EN cannot
play any role in generating critical equations.

Aj
i is not a variable. Since Q is in normal form, Aj

i not a variable means that Q is an
abstraction; hence the reduction C[(λx.P)Q]→in

β C[P [Q/x]] may generate new redexes. Let
Aj

i = σj
i,0 → . . . → σj

i,q → cj
i for some q ≥ 0, and let |σj

i,p| = nj
i,p (0 ≤ p ≤ q). For

j ∈ J , i ∈ Ij
fun and pj

i ≤ q, let σj
i,0 . . . , σ

j

i,pj
i

be associated to applied bound variables in ΠN ;

then the application of unification rules generates one critical equation for each σj
i,p such

that p ≤ pj
i and nj

i,p > 1. During the while loop, Solve can choose exclusively these critical
equations and perform the appropriate expansions. For any given j ∈ J, i ∈ Ij

fun, a single
expansion Expand([Cj

i], nj
i,0 − 1) transforms Σj

i into:

(Σ̂j
i)

x : [aj
i] ⊢q x : aj

i (Ψj
i,m ⊢q Ri : Cj

i,m)1≤m≤nj
i,0

{x : [aj
i]} ⊎1≤m≤nj

i,0
Ψj

i,m ⊢q xRi : ej
i

FSCD 2023

29:20 A Quantitative Version of Simple Types

Similarly, with the convention that ej
i = ej

i,1, an expansion for 1 ≤ p ≤ pj
i transforms a

subderivation like:

(Ωj
i,p)

Ξj
i,p ⊢q Ui,p : ej

i,p Υj
i,p ⊢q Vi,p : Gj

i,p

Ξj
i,p ⊎Υj

i,p ⊢q Ui,pVi,p : ej
i,p+1

into:

(Ω̂j
i,p)

Ξj
i,p ⊢q Ui,p : ej

i,p (Υj
i,p,m ⊢q Vi,p : Gj

i,p,m)1≤m≤nj
i,p

Ξj
i,p ⊎1≤m≤nj

i,p
Υj

i,p,m ⊢q Ui,pVi,p : ej
i,p+1

Observe that each espansion may increase the cardinality of the set of indexes Ij : think,
for instance, of the term P = x(xP ′)(P ′′x) when Q : [a, a′]→ [b, b′]→ c. This originates a
sequence of expansions ē and an increasing sequence Ij

e1, I
j
e2, I

j
e3, . . . of sets of indexes. Let

Îj denote the last set of the sequence: such a set must exist because functional occurrences
of x may increment, to their right, the number of subderivations with subject x, but not
vice versa. Let Π̂M = ē(ΠM) be derivation obtained after all the aforementioned expansions,
and let (ÊM , V̂M) = (ē(EM), ē(VM)) be its associated constraints (w.l.o.g., we ignore the
unification rules performed between expansions: they are not relevant in our proof because
the system of constraints is recomputed after each expansion). In the same way as before,
for each j ∈ J it is possible to identify Îj

fun ⊆ Îj and the partition {Îj
k | k ∈ K̂j} such that⋃

k∈K̂
Îj

k = Îj
arg = (Îj − Îj

fun); with these subsets of indexes, the equations related to all
occurrences of x in functional and argument position can be expressed respectively as:

Êfun = {aj
i
.= [Cj

i,0, . . . , C
j

i,nj
i,0

]→ ej
i | j ∈ J, i ∈ Î

j
fun}

Êarg = {dj
i
.= Aj

i | j ∈ J, k ∈ K̂
j
arr, i ∈ Î

j
k} ∪ {d

j
k

.= [Aj
k]→ f j

k | j ∈ J, k ∈ K̂
j
var}

Moreover, the equalities generated by the last elimination rule of the various Ω̂j
i,p are (recall

that ej
i = ej

i,1):

ÊΩ̂ = {ej
i,p

.= [Gi,p,1, . . . , Gi,p,nj
i,p

]→ ej
i,p+1 | j ∈ J, i ∈ Î

j
fun, 1 ≤ p ≤ pj

i}

Now let σj
i,p = [bj

i,p,1, ..., b
j

i,p,nj
i,p

] (0 ≤ p ≤ pj
i) and observe that {aj

i
.= Aj

i | j ∈ J, i ∈ Îj} ⊂

ÊM . Thanks to the now agreeing multiset cardinalities, the call to QuasiUnify .=(ÊM) on
line 16 of the algorithm can finally apply a sequence ū of unification rules that perform all
substitutions involving the various ej

i,p and replace aj
i by Aj

i , then decompose the resulting
equations. Such a sequence transforms Êfun and Êarg into:

Ê∗
fun = {bj

i,0,1
.= Cj

i,1, . . . , b
j

i,0,nj
i,0

.= Cj

i,nj
i,0
| j ∈ J, i ∈ Îj

fun}

Ê∗
arg = {dj

i
.= Aj

i | j ∈ J, k ∈ K̂
j
arr, i ∈ Î

j
k} ∪ {d

j
k

.= [Aj
k]→ f j

k | j ∈ J, k ∈ K̂
j
var}

These equations are also part of EN because, by construction, in ΠN the subderivations
corresponding to Σ̂j

i and Θ̂j
k (j ∈ J, i ∈ Îj , k ∈ K̂j) are, respectively:

(Σ′j
i)

∆j
i ⊢q Q : σj

i,0 → . . .→ σj
i,q → cj

i (Ψ′j
i,m ⊢q Ri[Q/x] : Cj

i,m)1≤m≤nj
i,0

∆j
i ⊎1≤m≤nj

i,0
Ψ′j

i,m ⊢q Q(Ri[Q/x]) : σj
i,1 → . . .→ σj

i,q → cj
i

D. Pautasso and S. Ronchi Della Rocca 29:21

where σj
i,0 = [bj

i,0,1, ..., b
j

i,0,nj
i,0

], and

(Θ′j
k)

Φ′j
k ⊢q Sk[Q/x] : Dj

k (∆j
i ⊢q Q : Aj

i)
i∈Îj

k

Φ′j
k ⊎i∈Ij

k
∆j

i ⊢q (Sk[Q/x])Q : F j
k

Moreover, focusing on the equations that involve σj
i,p (1 ≤ p ≤ pj

i), one can see that applying
the multiset decompositions in ū produces:

Eσ = {bi,p,1
.= Gi,p,1, . . . , bi,p,nj

i,p

.= Gi,p,nj
i,p
| j ∈ J, i ∈ Îj

fun, 1 ≤ p ≤ pj
i}

Clearly the above equations are part of EN too, as ΠN contains subderivations of shape:

(Ω′j
i,p)

Ξ′j
i,p ⊢q Ui,p[Q/x] : σj

i,p → . . . → σj
i,q → cj

i (Υ′j
i,p,m ⊢q Vi,p[Q/x] : Gj

i,p,m)1≤m≤n
j
i,p

Ξ′j
i,p ⊎1≤m≤n

j
i,p

Υ′j
i,p,m ⊢q (Ui,pVi,p)[Q/x] : σj

i,p+1 → . . . → σj
i,q → cj

i

Recall that ÊM = ē(EM) and V̂M = ē(VM). Hence, ignoring the unification rules performed
between expansions, we have EN = E′∪Ê∗

fun∪Ê∗
arg∪Eσ ⊂ ū(ÊM) = ū◦ ē(EM); moreover the

various aj
i do not occur in ΠN , so VN = ē(VM)−{aj

i ≈ a
j
l | j ∈ J, i, l ∈ Îj}. Summarising, if

Aj
i is not a variable the sequence s = ū◦ ē consists of a sequence of expansions ē transforming

(EM , VM) into (ÊM , V̂M), followed by the unification rules ū eventually leading to a superset
of EN . We conclude by observing that s(EM)−EN = ū(ÊΩ̂) ∪ {aj

i
.= Aj

i | j ∈ J, i ∈ Ij} is
in solved form, and that all variables aj

i and ej
i,p do not occur outside of s(EM)−EN . Thus,

once again, equations belonging to s(EM)−EN cannot play any role in generating critical
equations.

The special case P = x. This is the only way x can occur in P , but neither in functional
nor argument position. A sequence s = ū◦ ē of expansions and unification rules similar to the
one described above may be necessary also in this case, because P [Q/x] = Q can generate
new redexes in N if Q is an abstraction.

Now consider an innermost strategy, say the rightmost-innermost one; thanks to the
fact that s(EM)− EN cannot generate critical equations, termination of Solve(M) (more
precisely, of a deterministic version that always performs the expansions associated to the
rightmost-innermost redex) follows by induction on the length of the rightmost-innermost
reduction from M to its normal form, using Lemma 24. The extension of this result to all
possile sequences of expansions can then be obtained by observing that a critical equation
always originates from a redex appearing in one of the reduction sequences from M to its
normal form. Therefore, taking into account that:

M is strongly normalizing, so the length of all reduction sequences from M to its normal
form is finite;
a β-reduction corresponds to a finite number ≥ 0 of expansions on PDi(M);
different critical equations are generated in different subtrees of PDi(M), hence the order
in which expansions are performed does not matter;

we can conclude that the number of expansions performed by the algorithm is always finite,
i.e. Solve(M) terminates. ◀

FSCD 2023

	1 Introduction
	2 Simple types
	3 Uniform intersection types
	3.1 Principal derivations
	3.2 Expansion
	3.3 The algorithm

	4 Some examples
	5 From simple types to intersection types and viceversa
	6 Conclusion
	A Proof of Theorem 25

