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Abstract
In this paper, we define the logic of Linear Temporal Bunched Implications (LTBI), a temporal
extension of the Bunched Implications logic BI that deals with resource evolution over time, by
combining the BI separation connectives and the LTL temporal connectives. We first present the
syntax and semantics of LTBI and illustrate its expressiveness with a significant example. Then
we introduce a tableau calculus with labels and constraints, called TLTBI, and prove its soundness
w.r.t. the Kripke-style semantics of LTBI. Finally we discuss and analyze the issues that make the
completeness of the calculus not trivial in the general case of unbounded timelines and explain how
to solve the issues in the more restricted case of bounded timelines.
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1 Introduction

The notion of resource is a fundamental concept in various fields, especially in computer
science. For instance, resources play a central role in designing systems such as computer
networks or programs that access memory and manipulate data structures using pointers [9].
It is well known that Linear Logic [8] emphasizes an aspect of resource management that
is closely related with resource consumption, whereas the Logic of Bunched Implications
(BI) [13, 15] focuses more on aspects related with resource sharing and separation [7]. Recent
works consider modal and/or epistemic extensions of BI and Boolean BI (BBI) in order to
deal with more dynamic aspects of resource management [3, 4].

In this paper, we introduce the logic of Linear Temporal Bunched Implications (LTBI),
a temporal extension of BI that deals with resource evolution over time. LTBI extends BI
with operators borrowed from Linear Temporal Logic (LTL) to handle temporal aspects
of computer systems [16]. Both temporal and separation logics have proven themselves
successful in the design and formal verification of computer systems. Temporal logics are also
well-known for their ability to state and verify safety and liveness properties (e.g., using Buchi
automata [11]) and have a wide range of applications including model checking, concurrent
programming, and reactive systems [2]. It is therefore interesting to study a logic for which
the spatial connectives of BI cohabit with the temporal modalities of LTL.

Let us remark that a temporal extension of BI, called tBI, has been introduced in [10].
This extension derives an enriched sequent calculus from LBI (the standard sequent calculus
of BI) and gives various embedding of tBI into BI. In this paper, we follow another approach
based on labelled tableaux, in the spirit of [3, 4]. Although tBI might at first glance seem
very similar to our logic LTBI, they bear significant differences that we discuss in details in
Section 5 (after the required technical notions have been introduced).
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31:2 Labelled Tableaux for Linear Time Bunched Implication Logic

The paper is organized as follows: in Section 2 we describe the syntax and semantics of
our LTBI logic that mixes the separation connectives of BI [7] with the temporal connectives
♢, □, ◦ of LTL. We also illustrate the expressiveness of LTBI with a significant example. In
Section 3, we introduce TLTBI, our labelled tableau calculus for LTBI in the spirit of [7, 3].
We then illustrate how it works with some examples. In Section 4 we prove the soundness
of the TLTBI calculus. Finally, Section 5 ends the paper with a discussion of the several
completeness issues that arise when trying to keep the labels constraints isomorphic to the
standard linear order of the natural numbers.

2 Linear Temporal Bunched Implication Logic

Separation logics like BI and its variants are well suited to state (static) spatial properties
about resources [6, 7]. DBI [3], a recent extension of BI with S4 modalities ♢ and □, opens
the way for more dynamic aspects of resource management, but only to some extent. In
this section we introduce Linear Temporal BI (LTBI) as a combination of BI and LTL [2, 16]
interpreted on a discrete timeline.

2.1 Syntax and Semantics of LTBI
LTBI is an extension of BI [7, 14] with the three main LTL unary connectives □, ♢ and ◦. We
do not consider the binary connectives U and R (“until” and “release”) in this paper and
leave them for future work.

▶ Definition 1. Let P be a countable set of propositional letters. The set F of LTBI formulas
is given by the following grammar:

A ::= P | ⊤ | ⊥ | A ∧ A | A ∨ A | A → A | I | A ∗ A | A −∗ A | □A | ♢A | ◦A

Additive negation is defined as usual as A → ⊥.
In order to define a Kripke-style semantics for LTBI, we first introduce the notions of

linear resource frames (LRF), interpretation and models.

▶ Definition 2. An LTBI-frame is a structure R = (R, ⋆, ϵ,⩽r, π, S,⩽s, s0), where:
(R, ⋆, ϵ,⩽r, π) is a resource monoid, i.e., a partially ordered commutative monoid of
elements, called resources, such that:

ϵ is the unit of ⋆, i.e. ϵ ⋆ r = r ⋆ ϵ = r,
π is the greatest element of R w.r.t. ⩽r and ∀ r ∈ R. r ⋆ π = π,
∀ r, r′, r′′ ∈ R. r ⩽r r′ implies r ⋆ r′′ ⩽r r′ ⋆ r′′.

(S,⩽s, s0) is a discrete timeline, i.e., a subset of N totally ordered by ⩽s taken as the
restriction to S of the standard order on N, and such that s0 is the least element of S
w.r.t. ⩽s. The elements of S are called states.

For all s ∈ S, we define N(s) as the set { s′ | s′ ∈ S and s <s s′ }. We then write n for
the function “next” induced on S by ⩽s and such that for all s ∈ S, n(s) is the least element
of N(s) if N(s) is not empty and undefined otherwise.

▶ Definition 3. An LTBI-valuation is a partial function [·] : P → ℘(R × S) that satisfies the
following conditions:
(MK) ∀ p ∈ P. ∀ s ∈ S. ∀ r, r′ ∈ R. if r ⩽r r′ and (r, s) ∈ [p] then (r′, s) ∈ [p],
(Mπ) ∀ p ∈ P. ∀ s ∈ S. (π, s) ∈ [p].



D. Galmiche and D. Méry 31:3

▶ Definition 4. An LTBI-model is a triple M = (R, [·],⊩), where R is an LTBI-frame, [·] is
an LTBI-valuation and ⊩ ⊆ R × S × F is the smallest forcing relation such that:

(r, s) ⊩ p iff (r, s) ∈ [p]
(r, s) ⊩ I iff ϵ ⩽r r

(r, s) ⊩ ⊥ iff π ⩽r r

(r, s) ⊩ ⊤ always
(r, s) ⊩ A ∨ B iff (r, s) ⊩ A or (r, s) ⊩ B
(r, s) ⊩ A ∧ B iff (r, s) ⊩ A and (r, s) ⊩ B
(r, s) ⊩ A → B iff ∀ r′ ∈ R. if r ⩽r r′ and (r′, s) ⊩ A then (r′, s) ⊩ B
(r, s) ⊩ A ∗ B iff ∃ r′, r′′ ∈ R. r′ ⋆ r′′ ⩽r r, (r′, s) ⊩ A and (r′′, s) ⊩ B
(r, s) ⊩ A −∗ B iff ∀ r′, r′′ ∈ R. if (r′, s) ⊩ A and r′ ⋆ r ⩽r r′′ then (r′′, s) ⊩ B
(r, s) ⊩□A iff ∀ s′ ∈ S. if s ⩽s s′ then (r, s′) ⊩ A
(r, s) ⊩ ♢A iff ∃ s′ ∈ S. s ⩽s s′ and (r, s′) ⊩ A
(r, s) ⊩ ◦A iff ∃ s′ ∈ S. s′ = n(s) and (r, s′) ⊩ A

▶ Definition 5. A formula A is satisfied in an LTBI-model M, written M ⊨ A, iff (ϵ, s) ⊩ A
for all s ∈ S. A formula A is valid, written ⊨A, iff it is satisfied in all LTBI-models.

It is routine to show that conditions MK and Mπ of Definition 3 extend from propositional
letters to arbitrary formulas, as stated in the following Lemma.

▶ Lemma 6. For all LTBI-models M:
(MK) ∀ A ∈ F. ∀ s ∈ S. ∀ r, r′ ∈ R. if r ⩽r r′ and (r, s) ⊩ A then (r′, s) ⊩ A,
(Mπ) ∀ A ∈ F. ∀ s ∈ S. (π, s) ⊩ A.

Let us remark that the resource semantics we use for LTBI is based on total (and not
partial) resource monoids to avoid tricky additional definedness conditions. The introduction
of a greatest element π at which all formulas are satisfied is therefore required in the presence
of ⊥ (as explained in [7], for example, to enforce the validity of BI formulas such as A∗(A−∗⊥)
where A is a theorem of intuitionistic logic).

2.2 Expressiveness of LTBI
To illustrate what kind of properties LTBI is able to express, let us consider the timeline
(S = [2023 − 2025],⩽s, 2023) and the resource monoid (R = N ∪ { ∞ }, +, 0,⩽r, ∞), where
⩽r and + are the extensions of the standard order and of the standard addition on natural
numbers such that r ⩽r ∞ and r + ∞ = ∞ for all r ∈ R.

Now, let G = { g1, g2, g3 } be a set of goods the price of which (in euros) evolves over the
years according to the pricing function pr : G × S → N given in Table 1.

We can then define the affordability predicate on multisets of goods as follows:

∀ (r, s) ∈ R × S. (r, s) ⊩ Af (gs) iff pr(gs, s) def=
∑
g∈gs

pr(g, s) ⩽ r

We write x1, . . . , xn as a shorthand for the multiset { x1, . . . , xn }. Therefore, Af ({ g, g′ }) is
more shortly written as Af (g, g′). It is easy to see that

∀ (r, s) ∈ R × S. ∀ g, g′ ∈ G. (r, s) ⊩ Af (g, g′) iff (r, s) ⊩ Af (g) ∗ Af (g′)

As an example, let us suppose that each year, we get an amount of money that we are
required to spend buying goods on some dedicated website. LTBI allows us to state properties
about our ability to buy goods depending on the year and on the amount of money available.
For instance,

(3000, 2023) ⊩ Af (g1) ∧ (Af (g2) ∗ Af (g3))

FSCD 2023
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Table 1 Prices of three goods over the years.

Prices (¤)

good 2023 2024 2025

g1 2000 2100 2200
g2 300 250 350
g3 1700 1800 1500

intuitively means that in 2023 (the current year), with 3000 euros, we can choose to buy g1
and we can also choose to split our money into two disjoint amounts, the first one to buy g2
and the second one to buy g3. Let us remark that although the two options are available to
us simultaneously, it does not necessarily imply that we could afford to buy all three goods
simultaneously. Indeed, with an amount of 3000 euros, we would have to make a choice since
pr({ g1, g2, g3 }, 2023) = 4000. Therefore, (3000, 2023) ⊮ Af (g1, g2, g3).

Using the temporal modalities, we can state more complex propositions that take into
account the evolution of prices over the years. For instance,

(3000, 2023) ⊩□Af (g2) ∗ (♢Af (g3) ∧ (Af (g1) ∗ ◦Af (g2)))

states that in 2023, we can split 3000 euros into two disjoint amounts of money, the first
one keeping g2 affordable every year from 2023 until 2025, the second one bringing us two
choices. The first choice ensures that g3 should become affordable at least one year during
between 2023 and 2025. The second choice tells us that we could split our second amount
of money once again into two new disjoint amounts, one making g3 affordable currently (in
2023), the other making g2 affordable only one year later (in 2024).

3 An LTBI Labelled Tableau Calculus

The labelled tableau calculus for LTBI, called TLTBI, is in the spirit of the ones for BI [7] and
DBI [3] and relies on the introduction of labels and constraints. TLTBI deals with two kinds
of labels, namely resource labels and state labels.

We shall see that the latter require a careful and specific treatment in order to keep them
isomorphic to natural numbers.

3.1 Labels and Constraints
We define a set of state labels and constraints that deals with temporality in order to capture
the notion of resource evolution.

▶ Definition 7 (Resource labels and constraints). The set Lr of resource labels is built from
the countable set γr = { ϵL , c1, c2, . . . } of resource constants and label composition ◦ according
to the grammar X ::= γr | X ◦ X. A resource constraint is an expression of the form x ⩽r

L
y,

where x and y are resource labels.

Label composition is interpreted as an associative and commutative operation on Lr that
admits ϵL as its neutral element. We shall frequently write x y instead of x ◦y for convenience.
We say that x is a sublabel of y iff there exists z ∈ Lr such that x ◦ z = y and E(x) denotes
the set of sublabels of a label x.
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▶ Definition 8 (State labels and constraints). The set Ls of state labels is built from the
countable set γs = { γ0, γ1, γ2, . . . } of state constants and the successor symbol η according
to the grammar X ::= γs | ηX. Given two state labels τ and τ ′, a state constraint is an
expression of the form τ ⩽s

L
τ ′, τ <s

L
τ ′, τ =s

L
τ ′ or τ ̸=s

L
τ ′.

▶ Definition 9 (Domain and alphabet). Let Cr be a set of resource constraints. The domain of
Cr, denoted Dr(Cr), is the set of all the sublabels occurring in Cr. More formally, Dr(Cr) =⋃

x⩽r
L

y∈Cr
(E(x) ∪ E(y)). The alphabet (or basis) of Cr is the set Ar(Cr) = γr ∩ Dr(Cr).

Ds(Cs) and As(Cs), where Cs is a set of state constraints, are defined similarly.

▶ Definition 10 (Closure of resource constraints). Let Cr be a set of resource constraints, the
closure C•

r is the smallest set such that Cr ⊆ C•
r that is closed under the following rules:

x ⩽r
L

y y ⩽r
L

z
x ⩽r

L
z

x ⩽r
L

y
x ⩽r

L
x

x ⩽r
L

y
y ⩽r

L
y

x y ⩽r
L

x y
x ⩽r

L
x

z y ⩽r
L

z y x ⩽r
L

y
z x ⩽r

L
z y

These rules reflect the properties of transitivity and reflexivity of ⩽r
L

and the compatibility
of ◦ w.r.t. ⩽r

L
. Since none of these rules introduce any new resource constant, we have

Ar(Cr) = Ar(C•
r ).

▶ Definition 11 (Closure of state constraints). Let Cs be a set of state constraints, the closure
C•

s is the smallest set such that Cs ⊆ C•
s that reflects in ⩽s

L
, <s

L
, =s

L
, ̸=s

L
the properties of

⩽, <, =, ≠ in N and such that η syntactically reflects the properties of the “next” function n.

▶ Proposition 12. Let Cr be a set of resource constraints:
1. If z x ⩽r

L
y ∈ C•

r , then x ⩽r
L

x ∈ C•
r

2. If x ⩽r
L

z y ∈ C•
r , then y ⩽r

L
y ∈ C•

r

Proof. From z x ⩽r
L

y we get z x ⩽r
L

z x (reflexivity), then x z ⩽r
L

x z (commutativity) and
then x ⩽r

L
x (compatibility). The other case is similar. ◀

3.2 Rules of the TLTBI Tableau Calculus
▶ Definition 13 (Labelled Formula). A labelled formula is a quadruple (S, A, x, τ), denoted
S A : (x, τ), where S ∈ {T,F } is a sign, A ∈ F is a formula, and (x, τ) ∈ Lr × Ls is a label.

▶ Definition 14 (CTSS). A constrained temporal set of statements (CTSS) is a triple noted
⟨F , Cr, Cs⟩, where F is a set of labelled formulas, Cr is a set of resource constraints and Cs

is a set of state constraints. A CTSS is required to satisfy the following condition:

(CTSSR) for all S A : (x, τ) ∈ F , x ⩽r
L

x ∈ Cr and τ ⩽s
L

τ ∈ Cs.

A CTSS is finite if all of its three components are finite.

▶ Definition 15 (Inconsistent Label). Let ⟨F , Cr, Cs⟩ be a CTSS. The label (x, τ) is inconsistent
if there exist two resource labels y and z such that y ◦ z ⩽r

L
x ∈ C•

r and T ⊥ : (y, τ) ∈ F . A
label is consistent if it is not inconsistent.

▶ Proposition 16. Let ⟨F , Cr, Cs⟩ be a CTSS. The following properties hold:
1. If y ⩽r

L
x ∈ C•

r and (x, τ) is consistent, then (y, τ) is a consistent label.
2. If x ◦ y ∈ Dr(C•

r ) and (x ◦ y, τ) is consistent, then (x, τ) and (y, τ) are consistent.

Proof. Assume that (y, τ) is inconsistent, then there are two resource labels z, z′ and a state
label τ such that z ◦ z′ ⩽r

L
y ∈ C•

r and T ⊥ : (z, τ) ∈ F . By transitivity with y ⩽r
L

x ∈ C•
r we

get z ◦ z′ ⩽r
L

x ∈ C•
r , meaning that (x, τ) is inconsistent, which contradicts our assumption.

The other proof is similar. ◀
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T A ∧ B : (x, τ)

T A : (x, τ)
T B : (x, τ)

F A ∧ B : (x, τ)

F A : (x, τ)
∣∣∣ F B : (x, τ)

F A ∨ B : (x, τ)

F A : (x, τ)
F B : (x, τ)

T A ∨ B : (x, τ)

T A : (x, τ)
∣∣∣ T B : (x, τ)

T A → B : (x, τ)

R x ⩽r
L

y
F A : (y, τ)

∣∣∣∣∣ R x ⩽r
L

y
T B : (y, τ)

F A → B : (x, τ)

A x ⩽r
L

a
T A : (a, τ)
F B : (a, τ)

T I : (x, τ)

A ϵL ⩽r
L

x

T A ∗ B : (x, τ)

A ab ⩽r
L

x
T A : (a, τ)
T B : (b, τ)

F A ∗ B : (x, τ)

R y z ⩽r
L

x
F A : (y, τ)

∣∣∣∣∣ R y z ⩽r
L

x
F B : (z, τ)

F A −∗ B : (x, τ)

A x a ⩽r
L

b
T A : (a, τ)
F B : (b, τ)

T A −∗ B : (x, τ)

R x y ⩽r
L

z
F A : (y, τ)

∣∣∣∣∣ R x y ⩽r
L

z
T B : (z, τ)

T ◦A : (x, τ)

A τ <s
L

ητ

T A : (x, ητ)

F ◦A : (x, τ)

R τ <s
L

ητ

F A : (x, ητ)

T □A : (x, τ)

R τ ⩽s
L

α

T A : (x, α)

F □A : (x, τ)

A τ ⩽s
L

υ

F A : (x, υ)

T ♢A : (x, τ)

A τ ⩽s
L

α

T A : (x, α)

F ♢A : (x, τ)

R τ ⩽s
L

υ

F A : (x, υ)

CD

R τ ⩽s
L

υ

A τ <s
L

υ

∣∣∣∣∣ R τ ⩽s
L

υ

A τ =s
L

υ

LR
R τ ⩽s

L
υ

R τ ⩽s
L

ζ

A υ ⩽s
L

ζ

∣∣∣∣∣∣∣
R τ ⩽s

L
υ

R τ ⩽s
L

ζ

A ζ ⩽s
L

υ

S A : (c, τ)

R τ =s
L

υ

S A : (c, υ)

Figure 1 Rules of the TLTBI calculus.

The rules of TLTBI are presented in Figure 1, where a, b denote fresh resource constants
and α denotes a fresh state constant. We observe that some of the rules introduce fresh
constants and label constraints called assertions. For instance, expanding a labelled formula
F A→B: (x, τ) generates a (resource) assertion A x ⩽r

L
a where a is a fresh resource constant.

Similarly, expanding a labelled formula T ♢A : (x, τ) generates a (state) assertion A τ ⩽s
L

α

where α is a fresh state constant. We also observe that some of the rules introduce label
constraints on arbitrary labels called requirements. For instance, expanding a labelled formula
T A → B : (x, τ) generates a (resource) requirement R x ⩽r

L
y. Similarly, expanding a labelled

formula F ♢A : (x, τ) generates a (state) requirement R τ ⩽s
L

υ.
Before we explain how requirements work, let us note that a tableau branch B corresponds

to a CTSS ⟨F , Cr, Cs⟩, where F is the set of all labelled formulas occurring in B and Cr, Cs

are the sets of all resource and state assertions occurring in B respectively, i.e. Cr = {A x ⩽r
L

y | A x ⩽r
L

y ∈ B } and Cs = {A x Rs
L

y | A x Rs
L

y ∈ B } for Rs
L
∈ {⩽s

L
, <s

L
, =s

L
, ̸=s

L
}. Now if

we want to expand a labelled formula T A → B : (x, τ) occurring in B, the label constraint
R x ⩽r

L
y requires us to find a label y such that x ⩽r

L
y ∈ C•

r , i.e., a label y for which the
requirement is derivable from (the closure of) the assertions that already occur in the branch.

The last line of Figure 1 presents the structural rules of TLTBI. The first one is the case
distinction rule CD that disambiguates any label state constraint τ ⩽s

L
υ derivable from the

closure of the state assertions (hence the requirement R τ ⩽s
L

υ) w.r.t. <s
L

and =s
L
. The
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second one is the linearizing rule LR that arranges any pair of state labels υ and ζ branching
from τ into a linear order τ ⩽s

L
υ ⩽s

L
ζ or τ ⩽s

L
ζ ⩽s

L
υ. The last one is the equality rewriting

rule which is there mostly for convenience to make the closing of a branch easier to check.

▶ Definition 17. A tableau for a formula A is a tableau built inductively according to the
rules depicted in Figure 1 the root node of which is the labelled formula F A : (ϵL , γ0).

Definition 17 implies that a TLTBI tableau for a LTBI formula A begins with the initial
CTSS ⟨F A : (ϵL , γ0), { ϵL ⩽r

L
ϵL }, { γ0 ⩽s

L
γ0 }⟩. Moreover, we define a rule application

strategy according to the following order of precedence from highest to lowest:
1. The rules T I, F→, T ∗, F−∗, T♢, F□,T ◦ and F ◦, called πα-rules, take precedence over

the other rules.
2. The structural rules CD and LR have middle precedence.
3. The rules T→, F ∗, T−∗, F♢, T□, called πβ-rules, have low precedence.

▶ Definition 18 (Closing conditions). A CTSS ⟨F , Cr, Cs⟩ is closed if it satisfies one of the
following conditions:
1. T A : (x, τ) ∈ F , F A : (y, υ) ∈ F , x ⩽r

L
y ∈ C•

r and τ =s
L

υ ∈ C•
s .

2. F I : (x, τ) ∈ F and ϵL ⩽r
L

x ∈ C•
r

3. F ⊤ : (x, τ) ∈ F
4. F A : (x, τ) ∈ F and (x, τ) is inconsistent
5. τ =s

L
υ ∈ C•

s and τ ̸=s
L

υ ∈ C•
s .

A tableau branch is closed if its corresponding CTSS is closed. A CTSS, or a tableau branch,
is open if it is not closed. A tableau is closed if all of its branches are closed.

▶ Definition 19 (TLTBI-proof). A TLTBI-proof for a formula A is a closed TLTBI tableau for A.

▶ Example 20. Let us now illustrate in Figure 2 the construction of a TLTBI tableau with an
example leading to a closed tableau.

We start with F ♢A ∧ ♢B → ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (ϵL , γ0). In Step [2], expanding
T ♢A ∧ ♢B : (c1, γ0) introduces T ♢A : (c1, γ0) and T ♢B : (c1, γ0). After Steps [3, 4], we
obtain two assertions A γ0 ⩽s

L
γ1 and A γ0 ⩽s

L
γ1. In Step [5] we expand the signed

formula F ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (c1, γ0) and then generate F ♢(A ∧ ♢B) : (c1, γ0) and
F ♢(B ∧ ♢A) : (c1, γ0).

Before expanding them, we apply the linearizing rule LR in Step [6] and the tableau
splits into two branches: the left one with the assertion A γ1 ⩽s

L
γ2 and the right one

with the assertion A γ2 ⩽s
L

γ1. Now we consider Step [7] in the left branch (with assertion
A γ1 ⩽s

L
γ2) that corresponds to the expansion of F ♢(A ∧ ♢B) : (c1, γ0) introducing a

requirement R γ0 ⩽s
L

v1 and the labelled formula F A ∧ ♢B : (c1, v1) with v1 a variable to
be instantiated from the closure of the assertions in the branch. Here we choose v1 = γ1 in
order to satisfy the requirement.

Then, in Step [8] F A ∧♢B : (c1, γ1) splits the leftmost branch into two sub-branches. The
first one is closed because it contains both T A : (c1, γ1), and F ♢B : (c1, γ1). The second one
continues with Step [9] that introduces a requirement R γ1 ⩽s

L
v2 and the labelled formula

F B : (c1, v2) with v2 a variable to be instantiated from the closure of the assertions in the
branch. Here we choose v2 = γ2 that satisfies the requirement because γ1 ⩽s

L
γ2. Then we

obtain the labelled formula F B : (c1, γ2) and the branch is closed because it also contains
T B:(c1, γ2). The tableau on the right(hand side of Step [6] similarly leads to closed branches.
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F ♢A ∧ ♢B → ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T ♢A ∧ ♢B : (c1, γ0)[2]
F ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A) : (c1, γ0)[5]

2
T ♢A : (c1, γ0)[3]
T ♢B : (c1, γ0)[4]

3
A γ0 ⩽s

L
γ1

T A : (c1, γ1)∗1

4
A γ0 ⩽s

L
γ2

T B : (c1, γ2)∗2

5
F ♢(A ∧ ♢B) : (c1, γ0)[7]
F ♢(B ∧ ♢A) : (c1, γ0)[10]

R γ0 ⩽s
L

γ1
R γ0 ⩽s

L
γ2

A γ1 ⩽s
L

γ2
7

R γ0 ⩽s
L

γ1
F A ∧ ♢B : (c1, γ1)[8]

F A : (c1, γ1)∗1

8

∣∣∣∣∣∣∣∣
F ♢B : (c1, γ1)[9]

9
R γ1 ⩽s

L
γ2

F B : (c1, γ2)∗2

6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R γ0 ⩽s
L

γ1
R γ0 ⩽s

L
γ2

A γ2 ⩽s
L

γ1
10

R γ0 ⩽s
L

γ2
F B ∧ ♢A : (c1, γ2)[11]

F B : (c1, γ2)∗2

11

∣∣∣∣∣∣∣∣
F ♢A : (c1, γ2)[12]

12
R γ2 ⩽s

L
γ1

F A : (c1, γ1)∗1

Figure 2 Closed Tableau for ♢A ∧ ♢B → ♢(A ∧ ♢B) ∨ ♢(B ∧ ♢A).

▶ Example 21. Let us now illustrate in Figure 3 the construction of a TLTBI tableau with an
example leading to a non closed tableau.

We start with F (♢A ∗ ◦B) → (♢B ∗ ◦A) : (ϵL , γ0). Then, Step [2], T ♢A ∗ ◦B : (c1, γ0)
introduces the assertion A c2 c3 ⩽r

L
c1 and to the labelled formulae T ♢A : (c2, γ0) and

T ◦B : (c3, γ0). In Step [3] we expand the first one and generate an assertion A γ0 ⩽s
L

γ1 and
the labelled formula T A : (c2, γ1). In Step [4] we expand the second one and generate the
labelled formula T B : (c3, ηγ0). Step [5] deals with the labelled formula F ♢B ∗ ◦A : (c1, γ0)
and its expansion rules creates two branches: the left one with the requirement R y z ⩽r

L
c1

and the labelled formula F ♢B : (c1, γ0) and the right one with the requirement R y z ⩽r
L

c1
and the labelled formula F ◦A : (z, γ0).

Let us consider the left branch. The requirement R y z ⩽r
L

c1 can only be satisfied in
two cases: (1) y = c3, z = c2 and (2) y = c2, z = c3. Step [6] in the left branch corresponds
to the expansion of F ♢B : (y, γ0). It generates the requirement R γ0 ⩽s

L
v and the labelled

formula F B : (y, v). In order to be able to close the branch with T B : (c3, ηγ0) we have to
set y = c3 (with z = c2) and to instantiate the variable v such that γ0 ⩽s

L
v. If we instantiate

v with ηγ0 we satisfy the requirement R γ0 ⩽s
L

v and then the branch is closed.
Let us consider the right branch branch in which the requirement R yz ⩽r

L
c1 is satisfied

with y = c3, z = c2. Step [7] in the left branch corresponds to the expansion of F ◦A : (c2, γ0)
that generates the labelled formula F A : (c2, ηγ0). We observe that we cannot close this
branch with the latter labelled formula and T A : (c2, γ1) because there is no possible equality
between γ1 and ηγ0. Then in case (1) there is an open branch and the tableau is not closed.
Developing case (2) also leads to an open branch.
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F (♢A ∗ ◦B) → (♢B ∗ ◦A) : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T ♢A ∗ ◦B : (c1, γ0)[2]
F ♢B ∗ ◦A : (c1, γ0)[5]

2
A c2 c3 ⩽r

L
c1

T ♢A : (c2, γ0)[3]
T ◦B : (c3, γ0)[4]

3
A γ0 ⩽s

L
γ1

T A : (c2, γ1)
4

A γ0 <s
L

ηγ0
T B : (c3, ηγ0)

R y z ⩽r
L

c1
F ♢B : (y, γ0)[6]

6
R γ0 ⩽s

L
v

F B : (y, v)

5

∣∣∣∣∣∣∣∣∣∣
R y z ⩽r

L
c1

F ◦A : (z, γ0)[7]
7

R γ0 ⩽s
L

ηγ0
F A : (z, ηγ0)

Figure 3 Non-closed Tableau for (♢A ∗ ◦B) → (♢B ∗ ◦A).

4 Soundness of TLTBI

In this section, we prove the soundness of TLTBI following a method based on the notion of
realizability of a CTSS that is similar to the one used for various flavours of BI [5].

▶ Definition 22 (Realization). A realization of a CTSS ⟨F , Cr, Cs⟩ is a triple (M, [.]r, [.]s),
where M is an LTBI-model, and [.]r, [.]s are order preserving homomorphisms from resource
and state labels to resources and states respectively. More precisely, we have [.]r : Dr(C•

r ) → R
and [.]s : Ds(C•

s ) → S, such that:
[ϵL ]r = ϵ, [x ◦ y]r = [x]r ⋆ [y]r, [ητ]s = n[τ]s
If T A : (x, τ) ∈ F , then ([x]r, [τ]s) ⊩ A
If F A : (x, τ) ∈ F , then ([x]r, [τ]s) ⊮ A
If x ⩽r

L
y ∈ Cr, then [x]r ⩽r [y]r

If τ Rs
L

υ ∈ Cs, then [τ]s Rs [υ]s, with Rs∈ {⩽s, <s, =s, ̸=s }

A CTSS (or branch) is realizable if it has a realization. A tableau is realizable if it has at
least one realizable branch.

▶ Lemma 23. Let (M, [.]r, [.]s) be a realization of a CTSS ⟨F , Cr, Cs⟩. For all x ⩽r
L

y ∈ C•
r

and for all τ Rs
L

υ ∈ C•
s , [x]r ⩽r [y]r and [τ]s Rs [υ]s.

Proof. Straightforward since the closure rules for Cr and Cs preserve compatibility. ◀

▶ Lemma 24. If a TLTBI tableau is closed then it is not realizable.

Proof. If a closed tableau is realizable then it contains at least one branch B that is realizable
in a LTBI-model.

If the branch is closed with complementary formulas T A : (x, τ) and F A : (y, τ) then by
Definition 22 we have x ⩽r

L
y. By Lemma 23, we have [x]r ⩽r [y]r and since the branch is

realized, by Definition 22, we have ([x]r, [τ]s) ⊩ A and ([y]r, [τ]s) ⊮ A. We thus reach a
contradiction since by Lemma 6 (monotonicity) ([y]r, [τ]s) ⊩ A.
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if the branch is closed because of F ⊤ : (x, τ), then ([x]r, [τ]s)⊮⊤, which is a contradiction.
The other cases are similar. ◀

▶ Lemma 25. All TLTBI rules preserve realizability.

Proof. Let B be a tableau branch and (M, [.]r, [.]s) be a realization of its CTSS ⟨F , Cr, Cs⟩.
We proceed by case analysis on the rule that expands B.

The cases for BI connectives are similar to the ones given in [7] for BI tableaux. We thus
only consider the modal operators.

Case T ◦:
Suppose that the labelled formula T ◦A : (x, τ) has just been expanded in the branch B.
Then, B is extended with a new labelled formula T A:(x, ητ) and a new assertion A τ <s

L
ητ.

Since B was realizable before the expansion, we have ([x]r, [τ]s) ⊩ ◦A. Therefore, there
exists s′ such that s′ = n[τ]s and ([x]r, s′) ⊩ A. Since n[τ]s = [ητ]s and [τ]s <s [ητ]s, both
T A : (x, ητ) and A τ <s

L
ητ are realized.

Case F ◦:
Suppose that the labelled formula F ◦A : (x, τ) has just been expanded in the branch B.
Then, B is extended with a new labelled formula F A : (x, ητ) and a new requirement
R τ <s

L
ητ. A valid application of the expansion rule requires that τ <s

L
ητ ∈ C•

s . Since B
was realizable before the expansion, we have ([x]r, [τ]s) ⊮ ◦A and Lemma 23 entails
[τ]s <s [ητ]s. Since n[τ]s = [ητ]s, ([x]r, [τ]s) ⊮ ◦A implies ([x]r, [ητ]s) ⊮ A by definition.
Therefore, both F A : (x, ητ) and R τ <s

L
ητ are realized.

The other cases are similar. ◀

▶ Theorem 26 (Soundness). If there exists a TLTBI proof for A, then A is valid.

Proof. Let T be a TLTBI-proof of A. Assume that A is not valid, then there exists a
linear resource model M such that (ϵ, s) ⊮ A for some state s. Since the initial CTSS
⟨{F A : (ϵL , γ0) }, { ϵL ⩽r

L
ϵL }, { γ0 ⩽s

L
γ0 }⟩ is trivially realizable by setting [γ0]s = s,

Lemma 25 implies that the tableau T contains at least one realizable branch, which contradicts
the fact that T is a tableau proof. Indeed, if T is a tableau proof for A, then all of its
branches should be closed by definition, and thus not realizable by Lemma 24. Therefore, A
is valid. ◀

5 Completeness

In this section we discuss the reasons why the completeness result for TLTBI is not trivial and
still an open problem.

A usual way of proving the completeness of a labelled tableau calculus is by counter-model
construction from an open and completed branch, as we did for BI [7], BBI [12] and various
modal extensions of BI [3, 4]. This approach requires the definition of a suitable notion of
what it means for a labelled formula to be completely analyzed or fulfilled. Although such a
definition can be given for TLTBI, the completion of an open branch raises several issues.

▶ Definition 27. Let ⟨F , Cs, Cr⟩ be the CTSS associated to a tableau branch B. A labelled
formula S C : (x, τ) is fulfilled (or completely analyzed) in B, denoted B ⊨ S C : (x, τ), iff:

Base cases:
B ⊨ S ⊤ : (x, τ) always
B ⊨ S ⊥ : (x, τ) always
B ⊨ T I : (x, τ) iff ϵL ⩽r

L
x ∈ C•

r

B ⊨ F I : (x, τ) always
B ⊨ T p : (x, τ) iff T p : (y, τ) ∈ F for some y ̸= x such that y ⩽r

L
x ∈ C•

r

B ⊨ F p : (x, τ) iff F p : (y, τ) ∈ F for some y ̸= x such that x ⩽r
L

y ∈ C•
r
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Induction:
B ⊨ T A ∧ B : (x, τ) iff B ⊨ T A : (x, τ) and B ⊨ T B : (x, τ)
B ⊨ F A ∧ B : (x, τ) iff B ⊨ F A : (x, τ) or B ⊨ F B : (x, τ)
B ⊨ T A ∨ B : (x, τ) iff B ⊨ T A : (x, τ) or B ⊨ T B : (x, τ)
B ⊨ F A ∨ B : (x, τ) iff B ⊨ F A : (x, τ) and B ⊨ F B : (x, τ)
B ⊨ T A ∗ B : (x, τ) iff B ⊨ T A : (y, τ) and B ⊨ T B : (z, τ) for some y z ⩽r

L
x ∈ C•

r

B ⊨ F A ∗ B : (x, τ) iff B ⊨ F A : (y, τ) and B ⊨ F B : (z, τ) for all y z ⩽r
L

x ∈ C•
r

B ⊨ T A → B : (x, τ) iff B ⊨ F A : (y, τ) or B ⊨ T B : (y, τ) for all x ⩽r
L

y ∈ C•
r

B ⊨ F A → B : (x, τ) iff B ⊨ T A : (y, τ) and B ⊨ F B : (y, τ) for some x ⩽r
L

y ∈ C•
r

B ⊨ T A −∗ B : (x, τ) iff B ⊨ F A : (y, τ) or B ⊨ T B : (z, τ) for all x y ⩽r
L

z ∈ C•
r

B ⊨ F A −∗ B : (x, τ) iff B ⊨ T A : (y, τ) and B ⊨ F B : (z, τ) for some x y ⩽r
L

z ∈ C•
r

B ⊨ S ◦A : (x, τ) iff B ⊨ S A : (y, ητ)
B ⊨ T ♢A : (x, τ) iff B ⊨ T A : (y, υ) for some τ ⩽s

L
υ ∈ C•

s

B ⊨ F ♢A : (x, τ) iff B ⊨ F A : (y, υ) for all τ ⩽s
L

υ ∈ C•
s

B ⊨ T □A : (x, τ) iff B ⊨ T A : (y, υ) for all τ ⩽s
L

υ ∈ C•
s

B ⊨ F □A : (x, τ) iff B ⊨ F A : (y, υ) for some τ ⩽s
L

υ ∈ C•
s

▶ Definition 28. A branch B is completed (also saturated) if all of its labelled formulas are
fulfilled and all possible expansions of the structural rules CD and LR have been applied.

It is folklore to define a completion procedure for an open branch by defining a fair
strategy for formula expansion (see [5, 4] for details). The actual problem is to turn an open
and completed branch into a suitable LTBI counter-model.

5.1 Counter-Model Construction
Let us first illustrate how to construct a counter-model from an open and completed branch
using the leftmost open branch of the tableau depicted in Figure 3.

Firstly, we define the set of resources as the set Dr(C•
r ) ∪ { π } and the composition of

resources as:
x ⋆ y = xy if xy ∈ Dr(C•

r )
x ⋆ ϵL = x
x ⋆ π = π

The resource ordering ⩽r is induced by the closure of the resource assertions occurring in
the branch, i.e.:

⩽r = C•
r ∪ { x ⩽ π | x ∈ Dr(C•

r ), }

which, in our example, corresponds to the following transitive and reflevixe closure of the set
of relations:

{ ϵL ⩽r
L

c1, c2c3 ⩽r
L

c1 }

augmented with π as the greatest element.
Secondly, the timeline is defined as the set { 0, 1, 2 } with the state labels realized

(interpreted) as follows: [γ0]s = 0, [ηγ0]s = 1, [γ1]s = 2.
Thirdly, the forcing relation is induced by the following LTBI-valuation that matches the

positive labelled formulas (those with a sign T) occurring in the branch:{
[A] = { (π, 0), (π, 1), (π, 2), (c2, 2) }
[B] = { (π, 0), (π, 1), (π, 2), (c3, 2) }
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F ((♢A → B) → C) → C : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T (♢A → B) → C : (c1, γ0)[2,2′]
F C : (c1, γ0)∗1

R c1 ⩽r
L

c1
F ♢A → B : (c1, γ0)[3]

3
A c1 ⩽r

L
c2

T ♢A : (c2, γ0)[4]
F B : (c2, γ0)

4
A γ0 ⩽s

L
γ1

T A : (c2, γ1)

R c1 ⩽r
L

c2
F ♢A → B : (c2, γ0)[3′]

3′

A c2 ⩽r
L

c′
2

T ♢A : (c′
2, γ0)[4′]

F B : (c′
2, γ0)

4′

A γ0 ⩽s
L

γ′
1

T A : (c′
2, γ′

1)
R γ0 ⩽s

L
γ′

1
R γ0 ⩽s

L
γ1

A γ′
1 ⩽s

L
γ1

5

∣∣∣∣∣∣∣
R γ0 ⩽s

L
γ′

1
R γ0 ⩽s

L
γ1

A γ1 ⩽s
L

γ′
1

2′

∣∣∣∣∣ R c1 ⩽r
L

c2
T C : (c2, γ0)∗1

2

∣∣∣∣∣ R c1 ⩽r
L

c1
T C : (c1, γ0)∗1

Figure 4 Liberizable Infinite Tableau.

Finally, the reason why we have an actual counter-model can be read directly from the
labelled formulas of the completed open branch:
1. We have (c2, 2) ⊩ A (by definition), which implies (c2, 0) ⊩ ♢A.
2. Moreover, we have (c3, 1) ⊩ B (by definition) and thus we get (c3, 0) ⊩ ◦B.
3. From 1 and 2, we get (c2c3, 0) ⊩ ♢A ∗ ◦B which implies (c1, 0) ⊩ ♢A ∗ ◦B by Kripke

monotonicity (as c2c3 ⩽ c1 by definition).
4. Besides, we have (c0, 0) ⊮ ♢B ∗ ◦A because (x, τ) ⊮ ◦A for all resources x and all states τ

(since the timeline has no state 3 and A is only true at (c2, 2)).

The first and third points (construction of a total resource monoid and of a forcing
relation) described above work in the general case for any open and completed branch, not
just for the tableau depicted in Figure 3. The second point (construction of discrete linear
timeline) is however more problematic.

5.2 The Dense Timeline Issue
A first issue in TLTBI is that the completion procedure might result in a set of state constraints
that, although representing a discrete linear order, might not be isomorphic to any subset
of (N,⩽) because it might be dense.

Let us for example consider the tableau depicted in Fig. 4. Its leftmost branch grows
infinitely because the πβ-formula T (♢A → B) → C contains a πα-subformula F ♢A → B
the expansion of which repeatedly generates new resource constants c2, c′

2, c′′
2 , ci

2 (i > 2) to
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be fed to the πβ-formula for its fulfillment. For instance in Step [3], the resource assertion
A c1 ⩽r

L
c2 is generated, where c2 is fresh. Then, in Step [4], the state assertion A γ0 ⩽s

L
γ1

is generated, where γ1 is fresh. Since the requirement R c1 ⩽r
L

c2 is met, Step [2] must be
reproduced with c2 instead of c1, which gives Step [2′]. After Step [2′], Steps [3′] and [4′]
reproduce Steps [3] and [4] leading to new assertions A c2 ⩽r

L
c′

2 and A γ0 ⩽s
L

γ′
1.

After Step [4′], we get two state labels γ1 and γ′
1 that are not linearly ordered. We

therefore use the linearizing rule LR in Step [5] to get (in the leftmost branch) the assertion
A γ′

1 ⩽s
L

γ1. Several applications of the case distinction rule CD (not represented in Fig. 4
for conciseness) allow us to get the following ordering of the state labels: γ0 <s

L
γ′

1 <s
L

γ1.
Repeating the previous steps infinitely many times we can generate a strictly decreasing
infinite chain of state labels (γi

1)i∈N between γ0 and γ1.
The situation described in Fig. 4 well illustrates the fact that our logic LTBI is not a simple

and orthogonal combination of BI and LTL connectives, but induces an actual interaction
between resource and state labels. Indeed, the infinite chain of state labels γi

1 derives from
the creation of an infinite chain of resource labels ci

2.

5.3 Unsoundness of the Liberalized Rules
Tableau branches that might grow infinitely because of the creation of infinitely many fresh
labels is a problem that already occurs in tableaux for BI [7]. In the case of BI, such a
situation can be remedied using liberalized versions of the tableaux rules that allow the reuse
of previously generated labels under specific conditions.

For example, the rule F→ would be allowed to expand F A → B : (x, τ) to T A : (x, τ),F B :
(x, τ) without generating a fresh (resource) constant whenever the branch already contains a
labelled formula T A : (y, τ) for which the requirement R y ⩽r

L
x is met. Under the liberalized

version of F→, the leftmost branch of the tableau depicted in Fig. 4 would be completed
after Step [3′] since the introduction of T ♢A : (c2, γ0) in Step [3] would allow Step [3′] to
reuse c2 instead of generating a fresh c′

2, making Step [3′] a redundant copy of Step [3] adding
no new information to the branch.

It would be tempting to think that adopting the liberalized rules given for BI in [7] would
solve the problem of getting an infinite amount of state labels from the generation of an
infinite number of fresh resource labels. Unfortunately, our second issue is that this approach
does not work, as illustrated in Fig. 5.

The liberalized rule for T ∗ (resp. F−∗) in BI tableaux only generates fresh constants for
the first instance of a labelled formula T A ∗ B : x (or F A −∗ B : x) in a tableau branch. Every
subsequent instance of the same labelled formula in the same branch is allowed to reuse the
constants that have been generated by the expansion of the first instance.

After Step [4], the tableau described in Fig. 5 splits into two branches, the second one
being similar to the first one (replacing occurences of A with B) and thus not fully depicted
in the figure for conciseness. As easily checked, repeating Steps [2] through [6] makes the
leftmost branch of the tableau grow infinitely. The repetitions Step [3i] of Step [3] generate
infinitely many decompositions ci

2 ci
3(i ∈ N) of the resource constant c1. In turn, this leads to

the repetitions Step [5i] of Step [5] which generate infinitely many state labels γi
1 and state

assertions A γ0 ⩽s
L

γi
1.

Using the liberalized version of T ∗ in Step [3′] as in BI tableaux would result in reusing
the constants c2 and c3 generated during Step [3] instead of introducing the new constants
c′

2 and c′
3. The branch would then be closed, having both T A : (c2, γ1) from Step [3′] and

F A : (c2, γ1) from Step [5]. Proceeding similarly in the branch that is eluded in Fig. 5, we
would finally get a closed TLTBI tableau for a formula which is not valid in LTBI. This shows
that the liberalized rules for BI are not sound for LTBI.
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F □(A ∗ B) → (□A ∗ □B) : (ϵL , γ0)[1]
1

A ϵL ⩽r
L

c1
T □(A ∗ B) : (c1, γ0)[2,2′]
F □A ∗ □B : (c1, γ0)[4]

2
R γ0 ⩽s

L
γ0

T A ∗ B : (c1, γ0)[3]
3

A c2 c3 ⩽r
L

c1
T A : (c2, γ0)∗1

T B : (c3, γ0)
R c2 c3 ⩽r

L
c1

F □A : (c2, γ0)[5]
5

A γ0 ⩽s
L

γ1
F A : (c2, γ1)[7]

R γ0 ⩽s
L

γ1
A γ0 <s

L
γ1

2′

R γ0 ⩽s
L

γ1
T A ∗ B : (c1, γ1)

3′

A c′
2 c′

3 ⩽r
L

c1
T A : (c′

2, γ1)
T B : (c′

3, γ1)

6

∣∣∣∣∣∣∣∣∣∣
R γ0 ⩽s

L
γ1

A γ0 =s
L

γ1
7

R γ0 =s
L

γ1
F A : (c2, γ0)∗1

4

∣∣∣∣∣∣∣
R c2 c3 ⩽r

L
c1

F □B : (c3, γ0)[6]
...

Figure 5 Unliberizable Infinite Tableau.

5.4 Non-equivalence of LTBI and tBI

In BI tableaux, the soundness of the liberalized rules (as well as the decidability arguments
for BI) does not rely on the widespread Kripke resource semantics of BI, but rather on its
Beth resource semantics (see [7] for details). The fact that the liberalized rules are unsound
for TLTBI suggests that replacing the Kripke resource monoid in Definition 2 with a Beth
resource monoid would yield a non-equivalent resource semantics for LTBI.

In [10], both a logic called tBI (mixing LTL and BI) for linear bounded timelines and a
corresponding purely syntactic sound and complete sequent style proof-system called GtBI
are introduced. The semantics of tBI is an extension of the Grothendieck topological resource
semantics of BI. The GtBI sequent system is an extension of LBI, the standard bunched
sequent calculus of BI. The Grothendieck topological semantics of BI is shown in [7] to be
equivalent to its Beth resource semantics w.r.t. provability in LBI, more precisely, for any
BI formula A, we have ⊨Beth A ⇔ ⊢LBI A ⇔ ⊨Grot A. Therefore, the unsoundness of the
liberalized rules for TLTBI proves that even if we would extend GtBI to deal with unbounded
timelines, it would be hopeless to try to show the completeness of TLTBI by translating proofs
of GtBI (with liberalized rules) into closed TLTBI tableaux.

More importantly, as stated in Definition 5, the validity of a formula in TLTBI only
depends on its satisfiability in all time states for the empty resource ϵ, while its validity in tBI
depends on its satisfiability in all time states for all resources in the underlying Grothendieck
resource monoid. Consequently, although seemingly (syntactically) similar, LTBI and tBI are
semantically distinct logics and the results obtained for tBI in [10] do not apply to LTBI.
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F □◦A −∗ ◦□A : (ϵL , γ0)[1]
1

T □◦A : (c1, γ0)[4,6]
F ◦□A : (c1, γ0)[2]

2
F □A : (c1, ηγ0)[3]

F A : (c1, ηγ0)∗1

4
T ◦A : (c1, γ0)[5]

5
T A : (c1, ηγ0)∗1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T A : (c1, ηγ0)
F □A : (c1, ηηγ0)[8]

6
T ◦A : (c1, ηγ0)[7]

7
T A : (c1, ηηγ0)∗2

8
F A : (c1, ηηγ0)∗2

Figure 6 Tableau with Bounded Timeline of Length 3.

5.5 The Bounded Timeline Case
We can solve the completeness issues discussed previously by restricting the semantics of
LTBI to bounded timelines. It is well known that LTL with bounded time domains can prove
almost all of the typical axioms of unbounded LTL. Moreover, practical uses of LTL almost
always consider bounded time domains.

Let us assume a bounded timelime S = Sn = { i < n | i ∈ N } of length n ∈ N∗. Using
the fixpoint definitions of the modal operators, we can derive a new tableau system Tn

LTBI in
which the rules T♢ and F□ of TLTBI are replaced by the following fixpoint rules:

when i < n − 1:

T ♢A : (x, ηiγ0)

T A : (x, ηiγ0)
∣∣∣∣∣ F A : (x, ηiγ0)

T ♢A : (x, ηi+1γ0)

F □A : (x, ηiγ0)

F A : (x, ηiγ0)
∣∣∣∣∣ T A : (x, ηiγ0)

F □A : (x, ηi+1γ0)

when i = n − 1:

T ♢A : (x, ηiγ0)

T A : (x, ηiγ0)

F □A : (x, ηiγ0)

F A : (x, ηiγ0)

Let us remark that we distinguish two cases (when i < n − 1 and when i = n − 1) because
in our semantics (as described in Definition 4), the truth of the next modality requires the
existence of a successor. A semantics in which the next modality is true whenever interpreted
in a time state which is out of the bounds (as in tBI) can be obtained by using only the first
pair of rules (the forking rules) in any case. Figure 6 gives an example of a closed bounded
tableau of length 3 for the formula □◦A −∗ ◦□A.

With the fixpoint rules, we claim the following completeness result for bounded tableaux:

▷ Claim 29. Tn
LTBI is complete for bounded timelines of length n.

Proof (Sketch). We first observe that in TLTBI the only rules that can introduce new state
labels are the rules T♢ and F□. In Tn

LTBI those rules are replaced with the fixpoint rules
that no longer introduce new state labels, but create terms of the form ηiγ0 from the root
state label γ0. Therefore, once γ0 is interpreted as 0 and η is interpreted as the successor
function, the generated timeline cannot be dense. Finally, since there are only finitely many

FSCD 2023
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terms of the form ηiγ0 with 0 ⩽ i < n, the tableau branch completion procedure necessarily
terminates. Now, if the completion procedure results in an open branch, the counter-model
construction procedure described in Section 5.1 yields an actual counter-model for the initial
formula at the root of the tableau branch. ◁

6 Conclusion and Perspectives

In this paper we introduced a new resource logic called LTBI that mixes BI and LTL unary
connectives. We proposed a labelled tableau proof system TLTBI for LTBI and proved its
soundness. We discussed the various and non-trivial completeness issues that arise when
trying to show the completeness of TLTBI in the general case of an unbounded timelime.

A first perspective is to give a detailed proof of the completeness result claimed previously
for bounded timelines.

A second perspective is to extend the completeness result to unbounded timelines. Such
an extension would necessarily require the definition of a cyclic proof system with some form
of induction to decide when the fixpoint rules should stop forking. Closing conditions for
sequent style cyclic proof systems have been given in the literature for unbounded LTL and
the task is not at all trivial (as explained in [1]). It is presently unclear to us how to adapt
such cyclic closing conditions in the context of a labelled tableau calculus and in the presence
of BI multiplicative connectives.

A third perspective is to study variants of LTBI, for example variants that incorporate the
binary temporal connectives U and R (until and release), or variants where the underlying
resource composition is bounded (e.g. rn = π when n > p for some p ∈ N∗) or satisfies more
specific axioms (e.g., r ⋆ r ⩽r r).
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