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Abstract
We present a generalization of Spector’s bar recursion to the Diller-Nahm variant of Gödel’s Dialectica
interpretation. This generalized bar recursion collects witnesses of universal formulas in sets of
approximation sequences to provide an interpretation to the double-negation shift principle. The
interpretation is presented in a fully computational way, implementing sets via lists. We also present
a demand-driven version of this extended bar recursion manipulating partial sequences rather than
initial segments. We explain why in a Diller-Nahm context there seems to be several versions of this
demand-driven bar recursion, but no canonical one.
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1 Introduction

Gödel’s functional interpretation [5], also known as the Dialectica interpretation (from the
name of the journal it was published in) is a translation from intuitionistic arithmetic into the
Σ0

2 fragment of intuitionistic arithmetic in finite types. If π is a proof of arithmetical formula
A, then the functional interpretation of π is a proof of a formula AD ≡ ∃x⃗∀y⃗AD (x⃗, y⃗) where
AD is quantifier-free. This formula can be understood as asserting that some two-player
game has a winning strategy: there exists a strategy x⃗ such that for all strategy y⃗, x⃗ wins
against y⃗, that is, AD (x⃗, y⃗) holds. By the witness property, the proof of AD yields a proof of
∀y⃗AD

(
t⃗, y⃗
)

for some sequence of terms t⃗ in system T: simply-typed λ-calculus with recursion
over natural numbers at all finite types. This sequence t⃗ of programs is the computational
content of π under the Dialectica interpretation.

Since the negative translation of every axiom of arithmetic is provable in intuitionistic
arithmetic, the Dialectica interpretation combined with a negative translation provides an
interpretation of classical arithmetic. When it comes to classical analysis (classical arithmetic
plus the axiom of countable choice) this is not true anymore, as the negative translation of
the axiom of choice fails to be an intuitionistic consequence of the axiom of choice. Spector’s
bar recursion operator [11] provides a Dialectica interpretation of the double-negation shift
(DNS) principle, from which one can derive intuitionistically any formula from its negative
translation. Applying this to the axiom of countable choice, Spector obtains an interpretation
of classical analysis.

Interpreting the contraction rule A ⇒ A ∧ A in Gödel’s original interpretation requires
(besides the λx. ⟨x, x⟩ component) a program that, given a witness M and two potential
counterwitnesses x and y of A such that either x or y wins against M , answers with a single
counterwitness that wins against M . Doing that relies on the decidability of winningness,
which ultimately relies on the decidability of atomic formulas of the source logic (which is true
in arithmetic). In order to get rid of this decidability requirement, Diller and Nahm [2] defined
a variant of Gödel’s interpretation where the programs provide a finite set of counterwitnesses,
with the requirement that at least one is correct. In the previous example, the program
interpreting the contraction rule answers with the set {x; y} and does not have to decide
which one is correct. The first contribution of this paper is the extension of Spector’s bar
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Figure 1 Contributions of the paper, in bold font.

recursion to the Diller-Nahm setting. Our operator has a lot in common with the extension
of bar recursion to the Herbrand functional interpretation of non-standard arithmetic [3],
though there are notable differences which are discussed.

Berardi, Bezem and Coquand [1] adapted Spector’s bar recursion from Gödel’s Dialectica
to Kreisel’s modified realizability [7]. Their operator also behaves differently from Spector’s
original bar recursion as it is demand-driven: it computes the choice sequence in an order
that is driven by the environment, rather than in the natural order on natural numbers.
This provides a more natural computational interpretation to the axiom of countable choice.
More recently, Oliva and Powell [8] adapted Berardi-Bezem-Coquand’s operator to Gödel’s
Dialecica interpretation and obtained a demand-driven bar-recursive interpretation of the
axiom of countable choice in this setting. The second contribution of this paper is the
definition of a demand-driven bar recursion operator in the Diller-Nahm setting.

Figure 1 summarizes the two contributions of this paper as well as their relationship to
the state of the art. An arrow from X to Y means that Y is an extension/refinement/variant
of X, and we distinguish elements that take place in the framework of realizability from those
that take place in the framework of Dialectica-style functional interpretations.

First, we introduce the logical system and programming language we are working with.
Then, we define precisely the Dialectica interpretation of the former into the latter. Finally,
we present the two contributions of the paper : first, a variant of Spector’s bar recusion in
the Diller-Nahm setting, and then a demand-driven version of this operator.

2 Logical System and Programming Language

This section contains the definitions of the logical system and programming language that
we will use throughout the paper.

2.1 Logical System
The Dialectica interpretation was originally formulated in a “Hilbert-style” presentation
of arithmetic. Moreover, nowadays it is still often presented as a translation on formulas
that satisfies a soundness theorem. In this setting, the construction of the witness x⃗ of the
interpretation ∃x⃗∀y⃗AD (x⃗, y⃗) of a formula A is hidden in the proof of the soundness theorem.
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Γ ⊢ pi : Ai

Γ ⊢ π : ⊥
Γ ⊢ ⊥A (π) : A

Γ ⊢ π : A ⇒ ⊥
Γ ⊢ ¬i (π) : ¬A

Γ, pn+1 : An+1 ⊢ π : B

Γ ⊢ λpn+1.π : An+1 ⇒ B

Γ ⊢ π : A
x/∈F V (Γ)

Γ ⊢ λx.π : ∀x A

Γ ⊢ π : ¬A
Γ ⊢ ¬e (π) : A ⇒ ⊥

Γ ⊢ π1 : A ⇒ B Γ ⊢ π2 : A

Γ ⊢ π1 π2 : B
Γ ⊢ π : ∀x A

Γ ⊢ π t : A [t/x]

Figure 2 Rules of first-order logic.

In contrast we present here the Dialectica interpretation as a proof translation, in the line
of Pédrot [9, 10]. For that, we define precisely the logical system under consideration as
a version of natural deduction in a sequent-calculus presentation (with explicit listing of
hypotheses). This system is equipped with proof terms in order to ease the definition of
the Dialectica interpretation, but these should be seen as purely syntactic artefacts without
any notion of β-reduction or cut-elimination. We then give an inductive definition of the
program witnessing the interpretation of a formula.

We work in first-order logic parameterized by a signature that is a set of function symbols
(ranged over by metaviariable f) and predicate symbols (ranged over by metaviariable P )
with arities:

t, u ::= x | f (t1, . . . , tn) A, B ::= P (t1, . . . , tn) | ⊥ | ¬A | A ⇒ B | ∀x A

We use a primitive negation operator rather than a definition in terms of implication and
absurdity. This is completely equivalent but will simplify a lot the functional interpretation
in the next sections, especially that of the double-negation shift principle. We consider only
a reduced set of connectives with no conjunction or existential quantification in order to
simplify the presentation, but these could easily be handled. The rules of the system are
given in figure 2, where Γ denotes a context of the form p⃗ : A⃗ ≡ p1 : A1, . . . , pn : An, where
we use ≡ throughout the paper for definitions at the meta-level.

Arithmetic

In the Dialectica interpretation, the theory under consideration is that of arithmetic. There
are 4 function symbols: 0 or arity 0, S of arity 1, + and × of arity 2, for which we use infix
notation. The only predicate symbol is = of arity 2, for which we use infix notation as well.

The axioms of arithmetic are, as usual, those of equality (reflexivity and Leibniz’s scheme),
the 4 axioms defining addition and multiplication, non-confusion, injectivity of S and the
induction scheme. They are given in figure 3.

2.2 Programming Language
Gödel’s initial interpretation targeted quantifier-free arithmetic at finite types: system T.
Nowadays, system T is usually described as primitive recursive functionals, or simply-typed
lambda-calculus with natural numbers.

We use a programming language that is a variant of system T where the type of natural
numbers is replaced with types σ∗ of lists of elements of type σ, for each σ. This type
is extensively used for encoding sets that are manipulated in the Diller-Nahm variant of
Dialectica. Also, we use it to encode the types of booleans and natural numbers, and the
initial segments and partial functions manipulated in our versions of bar recursion.

FSCD 2023
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∀x (x = x) ∀xy (x = y ⇒ A [x/z] ⇒ A [y/z])

∀x (x + 0 = x) ∀xy (x + S y = S (x + y))

∀x (x × 0 = 0) ∀xy (x × S y = x × y + x)

∀x ¬ (S x = 0) ∀xy (S x = S y ⇒ x = y)

A [0/x] ⇒ ∀x (A ⇒ A [S x/x]) ⇒ ∀x A

Figure 3 Axioms of arithmetic.

x:σ∈Γ
Γ ⊢ x : σ

Γ, x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ M N : τ

Γ ⊢ M : σ Γ ⊢ N : τ
Γ ⊢ ⟨M, N⟩ : σ × τ

Γ ⊢ M : σ × τ
Γ ⊢ M.1 : σ

Γ ⊢ M : σ × τ
Γ ⊢ M.2 : τ Γ ⊢ ⟨⟩ : 1

Γ ⊢ nil : σ∗ Γ ⊢ M : σ Γ ⊢ N : σ∗

Γ ⊢ M :: N : σ∗ Γ ⊢ rec : τ → (σ → σ∗ → τ → τ) → σ∗ → τ

Figure 4 Typing rules of the programming language.

For simplicity we also include unit and product types in our programming language. The
types and terms are as follows, the typing rules are given in figure 4:

σ, τ ::= σ → τ | σ × τ | 1 | σ∗ M, N ::= x | λx.M | M N | ⟨M, N⟩ | M.1 | M.2 | ⟨⟩
| nil | M :: N | rec

Term constructions are, in order: variable, abstraction, application, pairing, first and second
projections, unit, empty list, list consing and recursion on lists.

The operational semantics of this language is given by the following β-reduction system:

(λx.M) N →β M [N/x] ⟨M, N⟩ .1 →β M ⟨M, N⟩ .2 →β N

rec P Q nil →β P rec P Q (M :: N) →β Q M N (rec P Q N)

As with Gödel’s system T, every program of this simple programming language terminates.
As usual we combine variables bound by λ-abstraction, so λxy.y x is a notation for

λx.λy.y x. Also, if some variable is bound in an expression, we allow the use of _ in place
of the variable if the variable does not appear free in the term. For example, λx_.x is a
notation for λxy.x.

We encode Booleans in our programming language as follows:

bool ≡ 1∗ false ≡ nil true ≡ ⟨⟩ :: nil

With these definitions we can derive the following typing rules (a dashed line means that a
rule is admissible):

Γ ⊢ false : bool Γ ⊢ true : bool

We define case analysis on Booleans via case analysis on lists, for which we can derive the
expected typing rule:
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if M then N else P ≡ rec P (λ_ _ _.N) M

Γ ⊢ M : bool Γ ⊢ N : σ Γ ⊢ P : σ
Γ ⊢ if M then N else P : σ

We also define a few basic operations on Booleans:

M & N ≡ if M then N else false Γ ⊢ M : bool Γ ⊢ N : bool
Γ ⊢ M & N : bool

¬M ≡ if M then false else true Γ ⊢ M : bool
Γ ⊢ ¬M : bool

We also encode natural numbers as follows:

nat ≡ 1∗ 0 ≡ nil S M ≡ ⟨⟩ :: M Γ ⊢ 0 : nat
Γ ⊢ M : nat

Γ ⊢ S M : nat

Recursion on natural numbers and its expected derivable typing rule are as follows:

recN M N ≡ rec M (λ_.N) Γ ⊢ M : σ Γ ⊢ N : nat → σ → σ

Γ ⊢ recN M N : nat → σ

We also define a few basic operations on natural numbers:

M = N ≡ recN (recN true (λ_ _.false)
) (

λ_f.recN false (λx_.f x)
)

M N

Γ ⊢ M : nat Γ ⊢ N : nat
Γ ⊢ M = N : bool

M − N ≡ recN (λx.x)
(
λ_f.recN 0 (λx_.f x)

)
N M

Γ ⊢ M : nat Γ ⊢ N : nat
Γ ⊢ M − N : nat

M < N ≡ S M − N = 0 Γ ⊢ M : nat Γ ⊢ N : nat
Γ ⊢ M < N : bool

3 Diller-Nahm interpretation

We define in this section the Diller-Nahm variant [2] of the Dialectica interpretation [5]. We
present the interpretation as an explicit translation from proofs to programs and since we
work with natural deduction we handle contexts similarly to Pédrot [9, 10].

We define some notations that will make the interpretation easier to read. First, since
we need an interpretation for the ex falso quodlibet principle, we introduce dummy terms at
each type:

□σ→τ ≡ λ_.□τ □σ×τ ≡ ⟨□σ,□τ ⟩ □1 ≡ ⟨⟩ □σ∗ ≡ nil

Second, since we work in the Diller-Nahm variant of the Dialectica interpretation in which
several witnesses can be collected for a single formula, we extensively use an encoding of sets
as lists. Note that we impose no restriction on this encoding, so that a single element can
appear several times and the order of elements is of no importance. We use set notations as
follows:

{σ} ≡ σ∗ {M1; M2; . . . ; Mn} ≡ M1 :: M2 :: · · · :: Mn :: nil

Γ ⊢ M1 : σ Γ ⊢ M2 : σ · · · Γ ⊢ Mn : σ

Γ ⊢ {M1; M2; . . . ; Mn} : {σ}

M ∪ N ≡ rec M (λx_z.x :: z) N
Γ ⊢ M : {σ} Γ ⊢ N : {σ}

Γ ⊢ M ∪ N : {σ}

FSCD 2023
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{N | x ∈ M ∧ P} ≡ rec nil (λx_z.if P then N :: z else z) M

Γ ⊢ M : {σ} Γ, x : σ ⊢ N : τ Γ, x : σ ⊢ P : bool
Γ ⊢ {N | x ∈ M ∧ P} : {τ}

{N | x ∈ M} ≡ {N | x ∈ M ∧ true} Γ ⊢ M : {σ} Γ, x : σ ⊢ N : τ

Γ ⊢ {N | x ∈ M} : {τ}⋃
M ≡ rec nil (λx_z.x ∪ z) M

Γ ⊢ M : {{σ}}
Γ ⊢

⋃
M : {σ}

∀x ∈ M, N ≡ rec true (λx_z.N & z) M
Γ ⊢ M : {σ} Γ, x : σ ⊢ N : bool

Γ ⊢ ∀x ∈ M, N : bool

[0; M [ ≡ recN nil (λxy.x :: y) M
Γ ⊢ M : nat

Γ ⊢ [0; M [ : {nat}
In order to ensure the preservation of computations via the Dialectica interpretation,

Pédrot axiomatized abstract multisets via a series of laws that these should satisfy. Here
we work with a concrete implementation of these abstract multisets as lists. To simplify
the presentation we do not define any reduction on proofs, and therefore we do not aim at
preservation of computations. Consequently we do not define our implementation of sets in
such a way that they satisfy the monadic and distributive laws of Pédrot. Choosing carefully
the implementation should allow to satisfy some of these laws. Some other (in particular
commutativity of union) would be more technical to implement in a terminating language.

The Dialectica interpretation provides a computational interpretation of proofs. Therefore,
the meaning of such an interpretation is defined up to equivalence of programs: witnesses of
formulas are equivalence classes of programs. In our case this equivalence is β-equivalence =β ,
defined as the reflexive symmetric transitive contextual closure of β-reduction →β . When this
is clear from the context we will describe an equivalence class by one of its representatives.

Since we work in the context of first-order logic, the whole interpretation is parameterized
by an interpretation of the function and predicate symbols. In the general case, the type of
programs interpreting first-order terms should be a parameter of the interpretation as well.
However, since in the present work we only consider arithmetic and its extensions, we fix this
type to be nat, the type of natural numbers. The interpretation is therefore parameterized
by the interpretations of function and predicate symbols. The interpretation of a function
symbol f of arity n is a program:

f• : nat → . . . → nat → nat (n arguments)

and the interpretation of a predicate symbol P of arity n is a set:

P • ⊆ natn
/=β

of n-tuples of (equivalence classes of) programs of type nat, where nat/=β
denotes the set of

equivalence classes of terms of type nat. This interpretation is extended to all first-order
terms as follows, so that FV (t) = FV (t•):

x• ≡ x (f (t1, . . . , tn))• ≡ f• t•
1 . . . t•

n

Following Pédrot we define for each formula A the type of its witnesses A (Pédrot’s W (A))
and the type of its counterwitnesses A (Pédrot’s C (A)). Since we use a non-dependently-
typed language, the types of witnesses and counterwitnesses of atomic predicates P (t1, . . . , tn)
cannot depend on t•

1, . . . , t•
n, even though the truth of these predicates does depend on them.
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witnesses counterwitnesses
P (t1, . . . , tn) ≡ 1 P (t1, . . . , tn) ≡ 1

⊥ ≡ 1 ⊥ ≡ 1
¬A ≡ A →

{
A
}

¬A ≡ A

A ⇒ B ≡ (A → B) ×
(
A → B →

{
A
})

A ⇒ B ≡ A × B

∀x A ≡ nat → A ∀x A ≡ nat × A

Figure 5 Types of witnesses and counterwitnesses of formulas.

The interpretation itself therefore does not depend on the interpretations P • of predicates
P , but the correctness of the interpretation will be expressed via an orthogonality relation
afterwards. The types of witnesses and counterwitnesses of formulas are defined inductively
in figure 5.

We now lift this interpretation of formulas to an interpretation of proofs, so that a proof
of the sequent p⃗ : A⃗ ⊢ π : A (where p⃗ : A⃗ ≡ p1 : A1, . . . , pn : An) is interpreted as a collection
of programs with the following types, where FV

(
A⃗, A

)
⊆ x⃗:

x⃗ : nat, p⃗ : A⃗ ⊢ π• : A

x⃗ : nat, p⃗ : A⃗ ⊢ πp1 : A →
{

A1
}

...

x⃗ : nat, p⃗ : A⃗ ⊢ πpn : A →
{

An

}
The interpretation of proofs is given in figure 6, where some type superscripts have been added
to ease the reading. Note that (π1 π2)pj

involves the union of counterwitnesses comming
from both π1 and π2.

p•
i ≡ pi pipj

≡

λqAi . {q} if j = i

λ_Ai . {} if j ̸= i

(⊥A (π))• ≡ □A (⊥A (π))pj
≡ λ_A.πpj

⟨⟩

(¬i (π))• ≡ λx.π•.2 x ⟨⟩ (¬i (π))pj
≡ λq¬A.πpj

⟨q, ⟨⟩⟩

(¬e (π))• ≡ ⟨λ_. ⟨⟩ , λx.λ_.π• x⟩ (¬e (π))pj
≡ λqA⇒⊥.πpj

q.1

(λpn+1.π)• ≡
〈
λpn+1.π•, λpn+1.πpn+1

〉
(λpn+1.π)pj

≡ λqAn+1⇒B .
(
λpn+1.πpj

)
q.1 q.2

(π1 π2)• ≡ π•
1 .1 π•

2 (π1 π2)pj
≡ λqB .

(
π1pj

⟨π•
2 , q⟩

)
∪
(⋃{

π2pj
r
∣∣ r ∈ π•

1 .2 π•
2 q
})

(λx.π)• ≡ λx.π• (λx.π)pj
≡ λq∀x A.

(
λx.πpj

)
q.1 q.2

(π t)• ≡ π• t• (π t)pj
≡ λqA[t/x].πpj

⟨t•, q⟩

Figure 6 Diller-Nahm interpretation of proofs.

FSCD 2023
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M⊥P (t1,...,tn)N iff (t•
1, . . . , t•

n) ∈ P •

M⊥⊥N is false
M⊥¬AN iff N⊥AP is false for some P ∈ M N

M⊥A⇒BN iff N.1⊥AP for all P ∈ M.2 N.1 N.2 implies M.1 N.1⊥BN.2
M⊥∀x AN iff M N.1⊥A[N.1/x]N.2

Figure 7 Definition of the orthogonality relation.

As explained before, the first-order structure is not reflected in this interpretation, as ⟨⟩
has the type interpreting any atomic formula, including ⊥. Similarly, λ_. {} has the type
interpreting ¬A for any formula A. Therefore, typing is not sufficient to ensure correctness
of the interpretation, both because of the first-order aspect of our logic and because the
Diller-Nahm variant manipulates “false” witnesses and counterwitnesses (M⊥¬AN only
requires ¬ (N⊥AP ) for some P ∈ M N). In order to express correctness, we define an
orthogonality relation between (equivalence classes of) witnesses and (equivalence classes of)
counterwitnesses of formulas that corresponds Gödel’s AD. When viewing the interpretation
as games, this orthogonality relation represents the outcome of the game: a witness is
orthogonal to a counterwitness whenever the witness wins against the counterwitness. In the
following, if N : {σ} then we write “M ∈ N” as a shorthand for “N =β {N1; . . . ; Nn} and
M =β Ni for some i”. If M : A and N : A, then M⊥AN is defined in figure 7.

With this orthogonality relation at hand we can now formulate the correctness theorem
of the interpretation:

▶ Theorem 1. If p⃗ : A⃗ ⊢ π : B is derivable in first-order logic and FV
(

A⃗, B
)

⊆ x⃗, then for
all X⃗ : ⃗nat, P⃗ : A⃗ and Q : B:

if for all i and for all R ∈ πpi

[
P⃗ , X⃗/p⃗, x⃗

]
Q we have Pi⊥AiR, then π•

[
P⃗ , X⃗/p⃗, x⃗

]
⊥BQ

Proof. By induction on π, see Pédrot [10]. ◀

This theorem states that whenever P⃗ are witnesses of A⃗ and Q is a counterwitness of B,
if for each i Pi wins against every counterwitness of Ai computed by πpi (using P⃗ and Q),
then the witness of B computed by π• (using P⃗ ) wins against Q.

Arithmetic

The interpretations of function symbols of arithmetic are the expected implementations of
operations on natural numbers in our programming language, and the only predicate of
arithmetic, equality, is interpreted as:

=•≡ {(M, M) | M : nat}

The interpretation of the axioms of arithmetic, except for induction, is relatively
straightforward and is given in figure 8. The case of induction is more complex. Its
interpretation is of the form ⟨λp. ⟨λq.a, λqr.c [r.1, r.2/z, r]⟩ , λps.d [s.1, s.2.1, s.2.2/q, z, r]⟩,
where we define a, b, c and d as follows:
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∀x (x = x) λ_. ⟨⟩
∀xy (x = y ⇒ A [x/z] ⇒ A [y/z]) λ_ _.

〈
λ_. (λp.p)•

, λ_ _. {⟨⟩}
〉

∀x (x + 0 = x) λ_. ⟨⟩
∀xy (x + S y = S (x + y)) λ_. ⟨⟩
∀x (x × 0 = 0) λ_. ⟨⟩
∀xy (x × S y = x × y + x) λ_. ⟨⟩
∀x ¬ (S x = 0) λ_ _. {⟨⟩}
∀xy (S x = S y ⇒ x = y) λ_ _. ⟨λ_. ⟨⟩ , λ_ _. {⟨⟩}⟩

Figure 8 Interpretation of the axioms of arithmetic, except induction.

p : A [0/x], q : ∀x (A ⇒ A [S x/x]) ⊢ a : ∀x A

p : A [0/x], q : ∀x (A ⇒ A [S x/x]), z : nat, r : A ⊢ b : nat →
{

A
}

p : A [0/x], q : ∀x (A ⇒ A [S x/x]), z : nat, r : A ⊢ c :
{

A [0/x]
}

p : A [0/x], q : ∀x (A ⇒ A [S x/x]), z : nat, r : A ⊢ d :
{

∀x (A ⇒ A [S x/x])
}

a ≡ recN p (λxy. (q x) .1 y)

b ≡ recN {r}
(

λxy.
⋃

{(q (z − (S x))) .2 (a (z − (S x))) g | g ∈ y}
)

c ≡ b z

d ≡
⋃

{{⟨n, ⟨a n, g⟩⟩ | g ∈ b (z − (S n))} | n ∈ [0; z[}

a performs standard recursion on natural numbers, while b 0, . . . , b z compute sets of
counterwitnesses to A [n/x] for n from z down to 0, starting with counterwitness r for
A [z/x]. The following lemma is the core of correctness of this interpretation:

▶ Lemma 2. Let P : A [0/z], Q : ∀x (A [x/z] ⇒ A [S x/z]), Z : nat and R : A, and
let A ≡ a [P, Q/p, q], B ≡ b [P, Q, Z, R/p, q, z, r], C ≡ c [P, Q, Z, R/p, q, z, r] and D ≡
d [P, Q, Z, R/p, q, z, r].

if for any S ∈ C we have P⊥A[0/z]S

and if for any S ∈ D we have Q⊥∀x(A[x/z]⇒A[S x/z])S

then for any N ∈ [0; S Z[ and S ∈ B (Z − N) we have A N⊥A[N/z]S

Proof. By induction on N from 0 to Z. ◀

With this lemma at hand it becomes easy to prove correctness of the interpretation of
arithmetic:

▶ Theorem 3. For any axiom A of arithmetic interpreted as a : A, for all M : A, a⊥AM .
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4 Double-Negation Shift

This section is devoted to the main contributions of this paper: bar recursive interpretations
of the double-negation shift (DNS) principle in the Diller-Nahm variant of the Dialectica
interpretation.

The negative translation provides an interpretation of classical logic into intuitionistic
logic, at the expense of changing the formula proven: if A is provable in classical logic then A¬

is provable in intuitionistic logic, where A¬ is the negative translation of A defined inductively
on the structure of A. This negative translation can be extended to arithmetic because the
negative translation of every axiom of arithmetic is derivable in intuitionistic arithmetic.
Combined with Friedman’s translation [4] one can even eliminate classical logic without
changing the formula in the case of Π0

2 formulas, which means that classical arithmetic is
conservative over intuitionistic arithmetic for this class of formulas.

When it comes to richer theories, however, negative translation can fail. In particular,
the negative translation of the axiom of choice fails to be an intuitionistic consequence of the
axiom of choice. In order to recover the negative translation on such theories, one can use
the DNS principle:

∀x¬¬A ⇒ ¬¬∀x A

Using this principle, A¬ becomes an intuitionistic consequence of A for any formula A. This
allows the extension of the negative translation from plain logic to any theory. In particular,
negative translation can then be applied to classical analysis using DNS on natural numbers.
Combining the negative translation with an extension of the Dialectica interpretation to the
DNS principle on natural numbers, one obtains a computational interpretation of classical
analysis.

In the past, several versions of bar recursion have been used to provide a Dialectica
interpretation of the DNS principle, including Spector’s original bar recursion [11], as well as
Oliva-Powell’s demand-driven variant [8], inspired by Berardi-Bezem-Coquand’s demand-
driven operator [1]. In the following sections we give new versions of bar recursion that are
compatible with the Diller-Nahm variant of the Dialectica interpretation. This extends the
Dialectica interpretation to classical theories with non-decidable atomic predicates.

4.1 Diller-Nahm Bar Recursion

In this section we define an adaptation of Spector’s original bar recursion to the Diller-Nahm
setting. Bar recursion builds incrementally finite aproximations to a witness of ∀x A (x).
These finite aproximations are sequences of witnesses for A (0) , . . . , A (n − 1) for some n ∈ N.
We encode these approximations as lists of programs of type A, so that if for i < n, ai : A is
a witness for A (i), then an−1 :: . . . :: a1 :: a0 :: nil is such an approximation. We define the
following notation for the length of an approximation:

|M | ≡ rec 0 (λ_ _z.S z) M
Γ ⊢ M : σ∗

Γ ⊢ |M | : nat

We also define the “dummy” completion of an approximation an−1 :: . . . :: a1 :: a0 :: nil into
a full sequence mapping i < n to ai and i ≥ n to □σ:

M+ ≡ λn.rec□σ (λxyz.if n = |y| then x else z) M
Γ ⊢ M : σ∗

Γ ⊢ M+ : nat → σ
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Finally, each relation between nat and σ can be turned into a function from nat to {σ}:

M̂ ≡ λx. {y.2 | y ∈ M ∧ y.1 = x}
Γ ⊢ M : {nat × σ}
Γ ⊢ M̂ : nat → {σ}

Computing the required type for a program interpreting the DNS principle gives:

∀x ¬¬A ⇒ ¬¬∀x A ≡ (∀x ¬¬A → ¬∀x A → {nat → A})
×
(
∀x ¬¬A → ¬∀x A →

{
nat ×

(
A →

{
A
})})

∀x ¬¬A ≡ nat →
(
A →

{
A
})

→ {A} ¬∀x A ≡ (nat → A) →
{

nat × A
}

The interpretation is therefore a pair of two programs a and b with respective types:

a :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→ {nat → A}

b :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→
{

nat ×
(
A →

{
A
})}

Unfolding the definitions we see that in order to satisfy correctness, a and b should satisfy
for any arguments P : nat →

(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

:

if for any M ∈ b P Q, P⊥∀x¬¬AM

then there is some M ∈ a P Q such that for all N ∈ Q M, M⊥∀x AN

In other words, we should put in b P Q counterwitnesses of ∀x¬¬A such that whenever
P wins against all of them, we can use that hypothesis to ensure that a P Q contains at
least an element M that wins against every element of Q M . The elements of a P Q will
be “dummy” completions of finite approximations, that is, they will be of the form S+ for
S : A∗. Given such a finite approximation S, if Q S+ contains some ⟨N, R⟩ then S+ N should
win against R. But if N ≥ |S| then S+ N is the dummy value □A, meaning that S is not
a sufficiently precise approximation in order to be correct. The idea is then to extend S

with a value at point |S|, using P |S| (which is a witness for ¬¬A [|S| /x]) and continue the
process. Computation stops when a sufficiently precise approximation is found, that is, an
approximation S such that for all ⟨N, R⟩ ∈ Q S+, we have N < |S|.

Our variant dnbr of bar recursion is an operator that, given an approximation in A∗,
computes extensions of this approximation in such a way that at least one of these extensions
is correct. Then a is obtained by running this operator on the empty approximation. In
order to distinguish sufficiently precise approximations we use the notation:

S ⋐ Q ≡ ∀z ∈ Q S+, z.1 < |S| Γ ⊢ Q : (nat → σ) → {nat × τ} Γ ⊢ S : σ∗

Γ ⊢ S ⋐ Q : bool

In order to facilitate the reading we also use the notation:

let f = M in N ≡ (λf.N) M
Γ ⊢ M : σ Γ, f : σ ⊢ N : τ

Γ ⊢ let f = M in N ≡ (λf.N) M : τ

We now extend our programming language with this operator and its reduction rule:

dnbr :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→ A∗ → {A∗}

dnbr P Q S →β {S} ∪ if S ⋐ Q then {}
else let f = λx.dnbr P Q (x :: S) in⋃{

f x
∣∣∣x ∈ P |S|

(
λy.
⋃{

Q̂ t+ |S|
∣∣∣ t ∈ f y ∧ t ⋐ Q

})}
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Observe that given P , Q and an approximation S as input, if for every ⟨N, R⟩ ∈ Q S+ we
have N < |S| then S ⋐ Q so S is a potentially correct approximation and the recursive calls
stop. Otherwise, new recursive calls are made on extensions of S with values obtained from
P |S|.

A fundamental result about this operator is that for any P , Q and S, dnbr P Q S has a
normal form. Otherwise, there would be an infinite sequence of programs M0, M1, . . . such
that for any k there exists ⟨N, R⟩ ∈ Q (Mk−1 :: . . . :: M1 :: M0 :: nil)+ with N > k. But
continuity of λf. {x.1 | x ∈ Q f} : (nat → A) → {nat} implies that the sequence:

{
x.1
∣∣x ∈ Q nil+} ,

{
x.1
∣∣∣x ∈ Q (M0 :: nil)+

}
, . . . ,{

x.1
∣∣∣x ∈ Q (Mk−1 :: . . . :: M1 :: M0 :: nil)+

}
, . . .

is ultimately constant, hence the contradiction.
With this operator at hand we can finally define a and b, and therefore the interpretation

of the DNS principle in the Diller-Nahm variant of the Dialectica interpretation:

a ≡ λpq.
{

s+ ∣∣ s ∈ dnbr p q nil ∧ s ⋐ q
}

b ≡ λpq.

{〈
|s| , λx.

⋃{
q̂ t+ |s|

∣∣∣ t ∈ dnbr p q (x :: s) ∧ t ⋐ q
}〉 ∣∣∣∣∣ s ∈ dnbr p q nil

∧ ¬ s ⋐ q

}

Correctness of this interpretation relies on the following lemma:

▶ Lemma 4. Let P : nat →
(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

and let
D ≡ dnbr P Q. If for any M ∈ b P Q we have P⊥∀x¬¬AM , then there exists a sequence of
programs M0, . . . , Mn−1 such that if we write Si ≡ Mi−1 :: . . . :: M0 :: nil:
(a) D nil = D S0 ⊇ D S1 ⊇ . . . ⊇ D Sn

(b) for all i ≤ n, S ∈ D Si and N ∈ Q S+, if S ⋐ Q and N.1 < i then S+
i N.1⊥A[N.1/x]N.2

(c) for all N ∈ Q S+
n , N.1 < n

Proof. S0 = nil trivially satisfies (b). Suppose now M0, . . . , Mk−1 already defined, and
satisfying (a) and (b). If for all N ∈ Q S+

k , N.1 < k, then we choose n = k and we are done
since (c) is verified. Otherwise we have:

D Sk =β {Sk} ∪
⋃{

D (x :: Sk)
∣∣∣x ∈ P k

(
λy.
⋃{

Q̂ t+k
∣∣∣ t ∈ D (y :: Sk) ∧ t ⋐ Q

})}
and we have Sk ∈ D Sk ⊆ C nil, so:〈

k, λx.
⋃{

Q̂ t+k
∣∣∣ t ∈ D (x :: Sk) ∧ t ⋐ Q

}〉
∈ b P Q

and therefore by hypothesis:

P⊥∀x¬¬A

〈
k, λx.

⋃{
Q̂ t+k

∣∣∣ t ∈ D (x :: Sk) ∧ t ⋐ Q
}〉

which means that there must be some:

M ∈ P k
(

λx.
⋃{

Q̂ t+k
∣∣∣ t ∈ D (x :: Sk) ∧ t ⋐ Q

})
such that for all:

N ∈
⋃{

Q̂ t+k
∣∣∣ t ∈ D (M :: Sk) ∧ t ⋐ Q

}
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we have M⊥A[k/x]N . Define Mk ≡ M . We have (a) since D Sk+1 ≡ D (Mk :: Sk) ⊆ D Sk.
For (b), let S ∈ D Sk+1 and N ∈ Q S+ such that S ⋐ Q and N.1 < S k. If N.1 < k

then S+
k+1 N.1 =β S+

k N.1 and we are done by hypothesis on Sk. Otherwise N.1 =β k and
S+

k+1 N.1 =β Mk. But then we can prove that:

N.2 ∈
⋃{

Q̂ t+k
∣∣∣ t ∈ D (Mk :: Sk) ∧ t ⋐ Q

}
so we obtain Mk⊥A[k/x]N.2 by property of Mk. ◀

Finally we can conclude that our interpretation of the DNS principle is correct:

▶ Theorem 5. For any P : nat →
(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

:

if for any M ∈ b P Q we have P⊥∀x¬¬AM

then there is some M ′ ∈ a P Q such that for all N ∈ Q M ′ we have M ′⊥∀x AN

Proof. Apply the previous lemma and take M ′ = S+
n . The conclusion follows from properties

2 and 3. ◀

We now discuss the relationship between our operator and Herbrand bar recursion [3]
(hBR). In the Diller-Nahm interpretation, finite sets appear only in the return type of the
“reverse component” of the witnesses of implication. In the Herbrand functional interpretation,
handling of standard and non-standard elements requires the use of finite sets in several places.
In particular both components of the witnesses of implication are finite sets. Nevertheless,
hBR is very similar in principle to dnbr. But besides technical differences there is also
a conceptual difference: dnbr handles the argument Q of type (nat → A) →

{
nat × A

}
more carefully than hBR. Indeed, for each t, Q t+ is a set of pairs ⟨N, R⟩ where R is a
potential counterwitness of A [N/x]. However, since dnbr on S extends S at point |S|,
the only useful counterwitnesses are those of the form ⟨|S| , R⟩, which are those we get
via Q̂ t+ |S|. Conversely, in hBR, Q is split in two components: q ≡ λf. {x.2 | x ∈ q f} and
ω ≡ λf.max {x.1 | x ∈ q f}. Therefore in q f the information about the N in A [N/x] for which
the element of q f is a counterwitness is lost. When extending S at point |S|, hBR considers all
the elements of q S+, that is, {x.2 | x ∈ Q S+}, instead of only {x.2 | x ∈ Q S+ ∧ x.1 = |S|}
(as dnbr does). In that sense hBR is less optimal that dnbr.

4.2 Diller-Nahm Demand-Driven Bar Recursion
In this last section we present the second contribution of the paper: a demand-driven version
of bar recursion in the context of the Diller-Nahm variant of the Dialectica interpretation.
The first demand-driven bar recursion was defined by Berardi, Bezem and Coquand in
the context of Kreisel’s realizability, but this was only recently adapted to the Dialectica
interpretation by Oliva and Powell. Here we take inspiration both from Oliva and Powell’s
operator, and from the version of bar recursion presented in the previous section.

Instead of working on initial segments, demand-driven bar recursion works on partial
sequences that may be defined at arbitrary points. We encode these partial functions as
lists of points, that is, lists of pairs of a natural number and its image. We define the empty
function and the extension of a function with a new value as follows:

ϵ ≡ nil Γ ⊢ ϵ : (nat × σ)∗

M [N 7→ P ] ≡ ⟨N, P ⟩ :: M
Γ ⊢ M : (nat × σ)∗ Γ ⊢ N : nat Γ ⊢ P : σ

Γ ⊢ M [N 7→ P ] : (nat × σ)∗
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Similarly to the _+ operator on initial segments, we define the “dummy” completion of a
partial function:

M† ≡ λn.rec□σ (λx_z.if x.1 = n then x.2 else z) M
Γ ⊢ M : (nat × σ)∗

Γ ⊢ M† : nat → σ

We also define the domain of definition of a partial function as follows:

dom (M) ≡ rec {} (λx_z. {x.1} ∪ z) M
Γ ⊢ M : (nat × σ)∗

Γ ⊢ dom (M) : {nat}

We will also need some more operations on sets:

M \ N ≡ {x | x ∈ M ∧ ∀y ∈ N, ¬ (x = y)} Γ ⊢ M : {nat} Γ ⊢ N : {nat}
Γ ⊢ M \ N : {nat}

M ⊆ N ≡ ∀x ∈ M, ¬∀y ∈ N, ¬ (x = y) Γ ⊢ M : {nat} Γ ⊢ N : {nat}
Γ ⊢ M ⊆ N : bool

Similarly to the ⋐ relation on initial segments, sufficiently precise partial functions are the
ones satisfying:

S ∝ Q ≡ dom
(
Q S†) ⊆ dom (S) Γ ⊢ Q : (nat → σ) → {nat × τ} Γ ⊢ S : (nat × σ)∗

Γ ⊢ S ∝ Q : bool

Finally, we define an operator that picks an element in a non-empty set:

choose (M) ≡ M ? {nil 7→ □σ | x :: _ 7→ x} Γ ⊢ M : {σ}
Γ ⊢ choose (M) : σ

The new demand-driven bar recursion operator is very similar to the previous one, except
that if some N ∈ Q S† is such that N.1 falls outside the domain of definition of S we do not
discard N and extend the function in a linear order as before, but we use this N.1 as a hint
and extend the current partial function at this point.

We extend our programming language with the following demand-driven bar recursion
operator and its reduction rule:

dnddbr :
(
nat →

(
A →

{
A
})

→ {A}
)

→
(
(nat → A) →

{
nat × A

})
→ (nat × A)∗ →

{
(nat × A)∗}

dnddbr P Q S →β {S} ∪ if S ∝ Q then {}
else let f = λzx.dnddbr P Q (S [z 7→ x]) in

let z = choose
(
dom

(
Q S†) \ dom (S)

)
in⋃{

f z x
∣∣∣x ∈ P z

(
λy.
⋃{

Q̂ t† z
∣∣∣ t ∈ f z y ∧ t ∝ Q

})}
Note that while in the previous section the expansions were always performed at |S|, here we
expand the function at a point chosen in the domain of Q S† but outside the domain of S.
Since the final goal is to obtain a partial function S such that S ∝ Q, choosing such a point
is more natural and may avoid some useless recursive calls.

As before, the continuity of λf.dom (Q f) ensures that dnddbr P Q S has a normal form
for every arguments P , Q and S.

Using this new operator we define the demand-driven interpretation of the DNS principle
as follows:

a ≡ λpq.
{

s† ∣∣ s ∈ dnddbr p q ϵ ∧ s ∝ q
}
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b ≡ λpq.


let z = choose

(
dom

(
q s†) \ dom (s)

)
in(

λz.

〈
z, λx.

⋃{
q̂ t† z

∣∣∣∣∣ t ∈ dnddbr p q (s [z 7→ x])
∧ t ∝ q

}〉) ∣∣∣∣∣∣∣∣
s ∈ dnddbr p q ϵ

∧ ¬ s ∝ q


The following lemma is an adaptation of the one in the previous section:

▶ Lemma 6. Let P : nat →
(
A →

{
A
})

→ {A} and Q : (nat → A) →
{

nat × A
}

and let
D ≡ dnddbr P Q. If for any M ∈ b P Q we have P⊥∀x¬¬AM , then there exists a sequence of
programs N0, M0, . . . , Nn−1, Mn−1 such that if we write Si ≡ ϵ [N0 7→ M0] . . . [Ni−1 7→ Mi−1]:
(a) D ϵ = D S0 ⊇ D S1 ⊇ . . . ⊇ D Sn

(b) for all i ≤ n, S ∈ D Si and N ∈ Q S†

if S ∝ Q and N.1 ∈ dom (Si) then S†
i N.1⊥A[N.1/x]N.2

(c) for all N ∈ Q S†
n, N.1 ∈ dom (Sn)

Proof. S0 = ϵ trivially satisfies (b). Suppose now N0, M0, . . . , Nk−1, Mk−1 already defined,
and satisfying (a) and (b). If for all N ∈ Q S†

k, N.1 ∈ dom (Sk), then we choose n = k and
we are done since (c) is verified. Otherwise, let Nk ≡ choose

(
dom

(
Q S†

k

)
\ dom (Sk)

)
. We

have:

D Sk =β {Sk}∪
⋃{

D (Sk [Nk 7→ x])

∣∣∣∣∣x ∈ P k

(
λx.

⋃{
Q̂ t†k

∣∣∣∣∣ t ∈ D (Sk [Nk 7→ x])
∧ t ∝ Q

})}

and we have Sk ∈ D Sk ⊆ D ϵ, so:〈
Nk, λx.

⋃{
Q̂ t† Nk

∣∣∣ t ∈ D (Sk [Nk 7→ x]) ∧ t ∝ Q
}〉

∈ b P Q

and therefore by hypothesis:

P⊥∀x¬¬A

〈
Nk, λx.

⋃{
Q̂ t† Nk

∣∣∣ t ∈ D (Sk [Nk 7→ x]) ∧ t ∝ Q
}〉

which means that there must be some:

M ∈ P Nk

(
λx.

⋃{
Q̂ t†Nk

∣∣∣ t ∈ D (Sk [Nk 7→ x]) ∧ t ∝ Q
})

such that for all:

N ∈
⋃{

Q̂ t†Nk

∣∣∣ t ∈ D (Sk [Nk 7→ M ]) ∧ t ∝ Q
}

we have M⊥A[Nk/x]N . Define Mk ≡ M . We have (a) since D Sk+1 ≡ D (Sk [Nk 7→ Mk]) ⊆
D Sk. For (b), let S ∈ D Sk+1 and N ∈ Q S† such that N.1 ∈ dom (Sk+1) = {Nk} ∪ dom (Sk).
If N.1 ∈ dom (Sk) then S†

k+1 N.1 =β S†
k N.1 and we are done by hypothesis on Sk. Otherwise

N.1 =β Nk and S†
k+1 N.1 =β Mk. But then we can prove that:

N.2 ∈
⋃{

Q̂ t†Nk

∣∣∣ t ∈ D (Sk [Nk 7→ Mk]) ∧ t ∝ Q
}

so we obtain Mk⊥A[Nk/x]N.2 by property of Mk. ◀

Correctness of this new interpretation of the DNS principle then follows from this lemma
as in the previous section.

Having a demand-driven operator allows for a potentially simpler interpretation, as well
as a more natural one. Indeed, there is no reason why the bar recursion operator should rely
on a particular ordering of natural numbers (as the non-demand-driven one does) and the
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intuitive interpretation should be that the operator only computes the witnesses that are
necessary, rather than collecting blindly witnesses until there are enough of them. This also
opens the possibility of interpreting theories other than arithmetic, where basic objects are
not natural numbers and may not have any natural ordering.

It should be noted that while choose (M) picks the first element of (the list encoding)
M , this property is never used in the proof. The only required property is that if M has
at least one element, then choose (M) picks an element of M (hence its name). Picking
any other element would work as well, and the choice we made seems arbitrary. In the
context of the standard Dialectica interpretation, Oliva and Powell did not encounter this
because in that case Q S† returns a single pair, and there is only one possible point at which
S can be extended. In the Diller-Nahm variant, however, there may be several points in
dom

(
Q S†)\dom (S) and there seems to be no canonical choice. Depending on the case it may

be interesting to use some heuristic to choose the point at which S is extended. One may also
wonder whether S could be extended at every point in dom

(
Q S†) \ dom (S) simultaneously,

but this seems impossible since the correctness proof requires that the sequence of partial
functions S0, S1, . . . is totally ordered.
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