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Abstract
We study subtyping and parametric polymorphism, with the aim of providing direct and tractable
semantic representations of type systems with these expressive features. The liveness order uses
the Player-Opponent duality of game semantics to give a simple representation of subtyping: we
generalize it to include graphs extracted directly from second-order intuitionistic types, and use the
resulting complete lattice to interpret bounded polymorphic types in the style of System F<: , but
with a more tractable subtyping relation.

To extend this to a semantics of terms, we use the type-derived graphs as arenas, on which
strategies correspond to dinatural transformations with respect to the canonical coercions (“on the
nose” copycats) induced by the liveness ordering. This relationship between the interpretation of
generic and subtype polymorphism thus provides the basis of the semantics of our type system.
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1 Introduction and Related Work

Subtype and parametric polymorphism both provide powerful principles for data abstraction.
Combining them via bounded quantification increases this expressive power: they may be
used to write programs which are generic, but range over a constrained set of types (a program
of type ∀(X <: S).T may be instantiated only with a subtype of S). They have been used to
develop formal theories of key aspects of object oriented languages such as inheritance [3, 17].
This combination is not without its challenges: for example, discovering type systems in
which the fundamental problems, such as typechecking of terms, are efficiently decidable [19].

Our aim is to describe and relate simple, concrete notions of subtype and generic,
parametric polymorphism and show that they can work together to give an interpretation of
bounded polymorphism which is both tractable and intensional, yielding a formal semantic
account of the constraints on behaviour which can be expressed in such a setting. This
allows for models which combine bounded polymorphism with computational effects (in
particular, state) and, potentially, for semantics-based subtyping theories which capture
aspects of program behaviour.

Earlier models of subtyping, and bounded polymorphism in particular, are based on
realizability-style interpretations (partial equivalence relations) [2]. These have made an
important contribution to the semantic understanding and development of typing systems
such as System F<: [4, 7], but do not give a direct and effective characterization of the
subtyping relation. Indeed, the subtyping relation of System F<: (which they validate) is
itself problematic from an algorithmic point of view – in particular, it is undecidable [19].
There is a body of work dedicated to giving typing systems for bounded quantification which
are more tractable, but still expressive [12, 23, 10]. As advocated in [5], semantics should be
a guide to this search, and this is one of our motivations. We show that our interpretation
of subtyping may be used to interpret a typing system which subsumes several proposed

© James Laird;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jiml@cs.bath.ac.uk
https://doi.org/10.4230/LIPIcs.FSCD.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 Dinaturality Meets Genericity

restrictions of System F<: by distinguishing the introduction and elimination forms of bounded
quantification: in [16] this type system, and its subtyping and type-checking algorithms is
studied in more detail.

The nature of the subtype order makes it difficult to capture in a simple and finitary way
using semantic structures such as domains: a subtype may be a restriction of its supertype
(e.g. signed and unsigned integers) or an extension of it (e.g. record types). This dependence
on interaction with consuming contexts can be captured via the Player/Opponent duality of
game semantics in the liveness ordering [6]. We generalize this ordering to graph structures
which may be derived from AJM-style games, directly from types themselves via the subtype
ordering, and Hyland-Ong style arenas (which are are a widely-used basis for sequential and
concurrent semantics of functional and object-oriented programming languages), and and
use its lattice structure to construct an interpretation of bounded quantification.

The game semantics of parametric polymorphism underlying our interpretation is a novel
presentation of the well-bracketed second order games model [13, 14], which is based on
instantiating pairs of question-answer moves with copycat behaviour, structure which is
made more immediate by using second-order types as moves. The glue which binds this
to subtyping (and allows for a sound model of bounded quantification) is the dinaturality
of strategy instantiation with respect to copycat strategies – canonical subtyping coercions
which (as we show) are characteristic of the liveness order. Dinaturality has been proposed as
a core semantic principle for modelling polymorphism [1] but as a general property is neither
preserved by composition, nor possessed by all terms of System F [8]. However, copycat
dinaturality is the key to soundly modelling bounded abstraction and instantiation.

1.1 Contribution of this work
This work establishes the relevance and tractability of the calculus for bounded polymorphism
described in [16] by giving a concrete denotational semantics for it, in a setting (HO game
semantics) which is readily extendable with relevant computational effects such as stateful
objects. Giving such a semantics requires the integration of two kinds of polymorphism –
subtyping and parametric polymorphism. The more general contribution is to show that
this can be achieved in such a setting, using dinaturality and copycat strategies to relate
rather diverse elements of game semantics – the liveness order and the well-bracketing
condition. Finally, by generalising the liveness order, and showing that it may be described
directly at the syntactic level, on types, it is hoped to draw it to wider attention as a way of
understanding and studying subtyping.

2 Subtyping Graphs

The game semantic interpretation of subtyping as a liveness ordering was introduced by
Chroboczek [6] for games presented positionally, as sequences of moves. Here, we generalize it
to graph structures of disjoint sets of nodes, which include Hyland-Ong (HO) style arenas [11],
which provide a general setting for interpreting types in sequential and concurrent game
semantics. In the next section we will describe the derivation of these graphs directly from
the subtyping order on second-order types.

▶ Definition 1. A graph-arena is a rooted, directed graph with a partition of its non-root
nodes: given as a tuple (O, P, ▷) consisting of :

Disjoint sets of nodes O and P , not containing the distinguished root node ⊤.
An edge relation ▷ ⊆ (O ∪ P ∪ {⊤}) × (O ∪ P )

with the following properties:
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Well-Foundedness. There is no infinite chain . . . ▷ mi+1 ▷ mi ▷ . . . ▷ m0
Quasi-Arborescence. If l ▷ m, m ▷ n and m′ ▷ n then l ▷ m′.
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Quasi-Partition. If m ▷ n and m′ ▷ n then m, m′ ∈ O or m, m′ ∈ P

Fixing a graph U = (O, P, ▷), for any set of nodes A ⊆ O ∪ P , let E(A) = {u ∈ O ∪ P | ∃u ∈
A ∪ {⊤}.u ▷ v} be the set of vertices accessible from A. Writing ▷A for the restriction of ▷ to
A ∪ {⊤}:

▶ Definition 2. A sub-arena of U is a non-empty subset A ⊆ O ∪ P such that ⊤ ▷∗
A a for all

a ∈ A (i.e. a root-connected subgraph of U).

▶ Proposition 3. A ⊆ O ∪ P is a sub-arena if and only if A ⊆ E(A).

Proof. Evidently, if A is root-connected, every node in A is connected to one in A ∪ {⊤}.
The converse follows by Noetherian induction: if a is initial then it is evidently hereditarily
enabled in A. Otherwise there exists a′ ∈ A such that a′ ▷ a. By hypothesis, this is connected
to ⊤ through A and hence so is a. ◀

Partitioning E(A) into the sets P (A) = E(A) ∩ P and O(A) = E(A) ∩ O, we now define the
liveness order on sub-arenas.

▶ Definition 4. Let (S(U),≼) be the partially ordered set of sub-arenas of U , where ≼ is the
liveness order:

A ≼ B if and only if O(A) ∩ B ⊆ A and P (B) ∩ A ⊆ B.

In other words, A ≼ B if all of the P -nodes in A which are accesible from B are already in
B, and all O-nodes in B which are accessible from A are in A.

For example AJM-style games are given by sets of plays (alternating sequences over a set
of moves partitioned between Opponent and Proponent). Their arena graphs are given by
taking O and P to be the sets of plays ending in Proponent and Opponent moves, respectively,
with an edge from s to t if the latter has the form sa. In this case A ≼ B if for any Opponent
move a, s ∈ A and sa ∈ B implies sa ∈ A, and for any Proponent move b, s ∈ B and sb ∈ A

implies sb ∈ B. This is the liveness ordering defined in [6].
The following lemma is used to show that this is a well-defined partial order,

▶ Lemma 5. If A ≼ B and B ≼ C then E(A) ∩ E(C) ⊆ E(B).

Proof. By Noetherian induction. Suppose b ∈ E(A) ∩ E(C). If ⊤ � b then b ∈ E(B) as
required. Otherwise, there exist a ∈ A and c ∈ C such that a ▷ b and c ▷ b, and a, c ∈ P

or a, c ∈ O by quasi-partition. Supposing the former, by connectedness of A there exists
a′ ∈ A ∪ {⊤} such that a′ ▷ a. By quasi-arboresecence, a′ ▷ c, and so c ∈ E(A) ∩ E(C). By
induction hypothesis, c ∈ E(B) and so c ∈ P (B) ∩ C. Thus c ∈ B (since B ≼ C) and so
b ∈ E(B) as required. The case where a, c ∈ O is symmetric. ◀

FSCD 2023



33:4 Dinaturality Meets Genericity

▶ Proposition 6. (S(U),≼) is a partial order.

Proof. Reflexivity is evident.
For transitivity, suppose A ≼ B and B ≼ C. Then O(A) ∩ C ⊆ O(A) ∩ E(C) ∩ C by

connectedness of C

⊆ O(A) ∩ O(B). ∩ C (by Lemma 5)
⊆ O(A) ∩ B (since B ≼ C)
⊆ A (since A ≼ B). By symmetry, P (C) ∩ A ⊆ C.

For antisymmetry, suppose A ≼ B and B ≼ A. Then A = A ∩ E(A) by connectedness
⊆ A ∩ E(B) by Lemma 5
= A ∩ O(B) ∪ P (B) = (A ∩ O(B)) ∪ (A ∩ P (B))
⊆ B ∪ B = B as A ≼ B and B ≼ A.

By symmetry, B ⊆ A and hence A = B as required. ◀

In fact (S(U),≼) is a complete lattice.

▶ Definition 7. The maximal sub-arena of a set X ⊆ O ∪ P is X◦ =
⋃

{A ∈ S(U) | A ⊆ X}.

X◦ is root-connected – X◦ =
⋃

{A ∈ S(U) | A ⊆ X} ⊆
⋃

{E(A) ∈ S(U) | A ⊆ X} = E(X◦)
– and thus a well-defined sub-arena.

▶ Lemma 8. For any X ⊆ O ∪ P , E(X◦) ∩ X = X◦

Proof. X◦ ⊆ E(X◦) and X◦ ⊆ X by definition. Conversely, suppose x ∈ X ∩ E(X◦).
Then X◦ ∪ {x} ⊆ X and X◦ ∪ {x} ⊆ E(X◦) and so X◦ ∪ {x} ⊆ X◦ – i.e. x ∈ X◦ and so
X ∩ E(X◦) ⊆ X◦ as required. ◀

The ≼-infimum of a set of sub-arenas ∆ ⊆ S(U) is the maximal sub-arena of the maximal
subset of

⋃
∆ in which any P-node which has an enabling node in two sub-arenas A, B ∈ ∆

is in their intersection.

▶ Definition 9. Given ∆ ⊆ S(U), let∧
∆ = {m ∈

⋃
∆ | m ∈ P (A) ∩ P (B) =⇒ m ∈ A ∩ B}

and define∧
∆ = (

∧
∆)◦.

▶ Proposition 10.
∧

∆ is the greatest lower bound of ∆ in S(U).

Proof. We suppose A ∈ ∆ and show that
∧

∆ ≼ A. First if m ∈ O(
∧

∆) ∩ A then m ∈
∧

∆,
as the condition m ̸∈ P (B) ∩ P (C) for all B, C ∈ ∆. So m ∈ E(

∧
∆) ∩

∧
∆

=
∧

∆ by Lemma 8.
Now suppose m ∈ P (A) ∩

∧
∆, so that m ∈ B ⊆ E(B) for some B ∈ ∆.

Then m ∈ P (A) ∩ P (B), implying that m ∈ A ∩ B ⊆ A as required, since m ∈
∧

∆.
Now we suppose C ≼ A for all A ∈ ∆ and show that C ≼

∧
∆. First, if m ∈ O(C) ∩

∧
∆

then m ∈ O(C) ∩ A for some A ∈ ∆ with C ≼ A and so m ∈ C as required. Now suppose
m ∈ P (

∧
∆)∩C. Then m ∈ P (A)∩C ⊆ A for some A ∈ ∆, so A ∈

⋃
∆. If m ∈ P (A)∩P (B)

for A, B ∈ ∆ (so C ≼ A, B) then m ∈ P (A) ∩ P (B) ∩ (C) ⊆ A ∩ B – i.e. m ∈ P (A) ∩ P (B))
implies m ∈ A ∩ B and thus m ∈

∧
∆. So m ∈ E(

∧
∆) ∩

∧
∆ =

∧
∆ by Lemma 8. ◀
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3 Arena Graphs from Types

As an example showing the relationship between the liveness ordering and subtyping, (and a
step towards a semantics of bounded quantification) we derive arena-graphs directly from
the subtyping relation of System F⊤, which is System F (the second-order λ-calculus [9, 21])
extended with with products and a supertype ⊤ [4] – i.e. its set of types is given by the
grammar:

S ::= ⊤ | X | S → S | S × S | ∀X.S

The ⊤ type allows for a for non-trivial subtyping relation, given by the following derivation
rules:

Top
T <: ⊤ Refl

T <: T
T <: T ′ T ′ <: T ′′

Trans
T <: T ′′

S′ <: S T <: T ′
→

S → T <: S′ → T ′
S <: S′ T <: T ′

×
S × T <: S′ × T ′

T <: T ′
∀

∀X.T <: ∀X.T ′

For example, the standard System F representation of the Booleans – the type ∀X.X →
X → X has the subtypes ∀X.⊤ → X → X, ∀X.X → ⊤ → X and ∀X.⊤ → ⊤ → X.

3.1 Type Arenas for System F⊤

We now derive an arena-graph in which to interpret System F⊤ subtyping. The sets O and
P of O-nodes and P-nodes (respectively) consist of the types given by the grammars:

o ::= X | ⊤ → o | p → ⊤ | ⊤ × o | o × ⊤ | ∀X.o

p ::= ⊤ → p | o → ⊤ | ⊤ × p | p × ⊤ | ∀X.p

where X ranges over an unbounded set of type variables. Note that each such node-type m

contains exactly one occurrence of a type-variable X, which may be bound or free, so we
may write it as m[X]. It is an O-node if X occurs “positively” and a P-node if it occurs
“negatively”.

The edge relation for our second-order type arena-graph is derived from the subtyping
order. Let <· be the covering relation for its restriction to O ∪ P ∪ {⊤} – i.e. m <· m′ if
m <: m′, m ̸= m′ and if m <: m′′ <: m′ then m′′ = m or m′′ = m′.

▶ Definition 11. Let ▷ be the least relation on (O ∪ P ∪ {⊤}) × (O ∪ P ) such that:
If o is <:-minimal (i.e. o′ <: o implies o = o′) then ⊤ ▷ o.
If p <· p′, p′ ▷ o and o <: p′ then o ▷ p.
If o <· o′, o ▷ p and o′ <: p then p ▷ o.

In other words, a node m is initial (enabled by ⊤) if its type variable occurs on the
right of every arrow (→) in m. Otherwise it has the form C[m′ → ⊤], for some unique
initial node m′, and is enabled by any node of the form C[⊤ → n], where n is an initial
node. Quasi-arboresecence follows from this characterization: while ▷ is not a tree, (e.g.
⊤ → (X × ⊤) ▷ X → ⊤ and ⊤ → (⊤ × X) ▷ X → ⊤, both ⊤ → (X × ⊤) and ⊤ → (⊤ × X)
are initial. Hence (O, P, ▷) is an arena – it is a bipartite graph by construction, and it is
well-founded, as any chain . . . on+1 ▷ pn ▷ on ▷ . . . ▷ p1 ▷ o1 contains an infinite descending
chain . . . <: on+1 <: on <: . . . <: o1: a straightforward induction establishes that no such
chain exists.

We may now define a sub-arena (its type-arena) for each type.

FSCD 2023



33:6 Dinaturality Meets Genericity

▶ Definition 12. Let ⊑⊤ be the least congruence on types such that S ⊑⊤ ⊤ for all types S.
Then for any type T , let [[T ]] = {m ∈ O ∪ P∥ m ⊑⊤ T}◦

In other words, [[T ]] is the (root-connected) set of nodes which may be obtained from T by
replacing subterms of T with ⊤. For example, the Boolean type ∀X.X → X → X denotes
the set containing the O-node ∀X.⊤ → X and the P-nodes ∀X.⊤ → X → ⊤ and ∀X.X → ⊤.
The edge-relation restricts to these nodes as follows:

⊤ ▷ ∀X.⊤ → ⊤ → X, since ∀X.⊤ → ⊤ → X is a <:-minimal type.
∀X.⊤ → ⊤ → X ▷ ∀X.⊤ → X → ⊤, ∀X.X → ⊤ since ⊤ ▷ ∀X.⊤ → ⊤ → X, and
∀X.⊤ → ⊤ → X <: ∀X.⊤ → X → ⊤, ∀X.X → ⊤, ∀X.⊤ → X → ⊤, ∀X.X → ⊤ <· ⊤.

yielding the expected graph structure:

⊤

��
∀X.⊤ → ⊤ → X

vvlll
lll

lll
lll

l

))SSS
SSSS

SSSS
SSSS

∀X.X → ⊤ ∀X.⊤ → X → ⊤

Type-arenas may also be defined compositionally:
[[⊤]] = ∅, [[X]] = {X},
[[S × T ]] = [[S]] × [[T ]] ≜ {m × ⊤ | m ∈ S} ∪ {⊤ × m | m ∈ T} ,
[[S → T ]] = [[S]] → [[T ]] ≜ ({m → ⊤ | m ∈ S} ∪ {⊤ → m | m ∈ T})◦,
[[∀X.S]] = ∀X.M ≜ {∀X.m | m ∈ S}.

Using this decomposition, and the soundness of each of the subtyping derivation rules: e.g. if
A′ ≼ A and B ≼ B′ then A → B ≼ A′ → B′, it follows that subtyping is sound with respect
to the liveness order:

▶ Proposition 13. If S <: T then [[S]] ≼ [[T ]].

4 Bounded Quantification

We now describe an interpretation of bounded (universal) quantification types. The standard
typing system for the second-order λ-calculus with such types is System F<: [7, 4, 18], in which
terms of type ∀(X <: S).T may only be instantiated with a subtype of S. (Thanks to the
presence of a <:-greatest type ⊤, System F may be viewed as a proper subsystem of System
F<: by reading unbounded quantification ∀X.S as the bounded quantification ∀(X <: ⊤).S.)
However, System F<: lacks reasonable algorithmic characteristics – in particular, its subtyping
relation (and thus also typechecking) is undecidable [19]. The culprit is the rule for subtyping
bounded quantification:

E ⊢ T0 <: S0 E , X <: T0 ⊢ S1 <: T1 ∀ − Orig
E ⊢ ∀(X <: S0).S1 <: ∀(X <: T0).T1

where E is a subtyping context – a sequence of subtyping assumptions X1 <: S1, . . . , Xn <: Sn

such that X1, . . . , Xi−1 ⊢ Si for each 1 <: i <: n.
This problem is also reflected in the difficulty of giving a direct game semantics of the

System F<: subtyping relation. The game semantics for bounded quantification given in [15]
constructs a subtyping relation from the derivation system: in particular, the above rule
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does not respect the liveness in that model. Various modifications to F<: have been proposed
with the aim of giving a more tractable system [12, 23, 10, 5], including three restrictions of
this rule.

The first restricts the subtype order to quantified types which have identical bounds:

E , X <: S ⊢ T <: T ′
∀ − FunE ⊢ ∀(X <: S).T <: ∀(X <: S).T ′

This yields a calculus, Kernel F<: , which is well-behaved (subtyping and type-checking are
efficiently decidable) at the cost of expressiveness.

The second rule (proposed by Castagna and Pierce as the basis of System F⊤
<: [5]) does not

use assumptions about the bounds on variables when inferring the subtype relation between
the bodies.

E ⊢ T0 <: S0 E , X <: ⊤ ⊢ S1 <: T1 ∀ − Top
∀(X <: S0).S1 <: ∀(X <: T0).T1

It has an expressive subtyping relation with nice properties, including decidability. However,
it lacks the minimal typing property, and thus an evident typechecking algorithm.

The third rule [5] uses the greater of the two bounds when inferring the subtype relation
between the bodies.

E ⊢ T0 <: S0 E , X <: S0 ⊢ S1 <: T1 ∀ − LocE ⊢ ∀(X <: S0).S1 <: ∀(X <: T0).T1

This is expressive (subsuming both rules ∀−Fun and ∀−Top) but lacks a sound and complete
(let alone, decidable) subtyping algorithm.

In [16], it is shown that these three rules may coexist in a single system (FF⊤
<: ) for

subtyping bounded quantification by distinguishing the introduction and elimination forms
of bounded quantification, and making the former a subtype of the latter. This avoids the
pitfalls of ∀ − Top and ∀ − Loc but allows for a more expressive typing relation than Kernel
F<: .

4.1 System FF⊤
<:

The type system (System FF⊤
<: ) decorates bounded quantifiers with the superscripts {F, ⊤}

(F for the introduction form, which obeys the rule of Kernel F<: and ⊤ for the elimination
form, which obeys that of System F⊤

<: ). Raw types are given by the grammar:

T ::= ⊤ | X | T → T | ∀F(X <: T ).T | ∀⊤(X <: T ).T

Table 1 gives rules defining subtyping judgments, E ⊢ S <: T , where E is a context of type
variable bounds. These replace the single original typing rule for bounded quantification of
System F<: with the rules ∀ − Top, ∀ − Fun and ∀ − Loc.

4.2 Semantics of Bounded Quantification
To interpret bounded quantification, we first observe that type-variable substitution can
be extended to arenas. Node-types (which properly come with a context of free variables
Θ ⊢ m) are closed under substitution.

▶ Lemma 14. Given nodes Θ, X, Θ′′ ⊢ m and Θ, Θ′ ⊢ n, the substitution of n for any free
occurrence of X in m yields a node Θ, Θ′, Θ′′ ⊢ m[n/X].

FSCD 2023



33:8 Dinaturality Meets Genericity

Table 1 Subtyping Rules for System FF⊤
<: .

Θ, X <: T, Θ′ ⊢ ⊤
Var

Θ, X <: T, Θ′ ⊢ X <: T

Θ ⊢ T TopΘ ⊢ T <: ⊤
Θ ⊢ T ReflΘ ⊢ T <: T

Θ ⊢ T <: T ′ Θ ⊢ T ′ <: T ′′
Trans

Θ ⊢ T <: T ′′

Θ ⊢ S′ <: S Θ ⊢ T <: T ′
→

Θ ⊢ S → T <: S′ → T ′
Θ, X <: S ⊢ T <: T ′

∀ − Fun
Θ ⊢ ∀F(X <: S).T <: ∀F(X <: S).T ′

Θ ⊢ T0 <: S0 Θ, X <: S0 ⊢ S1 <: T1 ∀ − Loc
Θ ⊢ ∀F(X <: S0).S1 <: ∀⊤(X <: T0).T1

Θ ⊢ T0 <: S0 Θ, X <: ⊤ ⊢ S1 <: T1 ∀ − ⊤
Θ ⊢ ∀⊤(X <: S0).S1 <: ∀⊤(X <: T0).T1

Noting that m[n/X] ∈ O if m, n ∈ O or m, n ∈ P , and m[n/X] ∈ P otherwise, we define
substitution into sub-arenas separately for negative and positive occurrences. Writing Θ ⊢ A

if Θ ⊢ m for every m ∈ A:

▶ Definition 15. The substitution of sub-arenas Θ, Θ′ ⊢ B, C into Θ, X, Θ′′ ⊢ A is defined:

Θ, Θ′, Θ′′ ⊢ A(B, C)X = {m[n/X] | m ∈ A ∩ P, n ∈ B} ∪ {m[n/X] | m ∈ A ∩ O, n ∈ C}◦.

This substitution operation is antitone (with respect to the liveness ordering) in the first
argument and monotone in the second:

▶ Lemma 16. If B′ ≼ B and C ≼ C ′ then A(B, C)X ≼ A(B′, C ′)X .

Proof. Suppose m ∈ E(A(B, C)X) ∩ O(A(B′, C ′)X). Then m = m′[n/X] for some m′ ∈ A

and n ∈ B′ ∪ C ′. There are three possibilities.
m′ ∈ O(A) and n ∈ O(C ′). Then n ∈ E(C) ∩ O(C ′) and so n ∈ C and m = m′[n/X] ∈
A(B, C)X as required.
m′ ∈ P (A) and n ∈ P (B′). Then n ∈ E(B) ∩ P (B′) and so n ∈ B and m = m′[n/X] ∈
A(B, C)X as required.
X is not free in m′ – then m = m′ ∈ A(B, C)X as required.

Similarly, E(A(B′, C ′)X) ∩ P (E(A, B)) ⊆ A(B′, C ′)X . ◀

A subtyping constraint of the form X <: S corresponds to the ability to subsume any
term of type X into the type S – i.e. there should be a canonical coercion of [[X]] into S.
Thus a S-bounded type-variable may be represented as the arena Θ, X ⊢ {X} ∧ [[S]] (cf [18])
– i.e. X <: S ⊢ T denotes [[T ]]({X} ∧ [[S]], X ∧ [[S]]), so that [[X <: S ⊢ X]] = {X} ∧ [[S]] ≼
[[X <: S ⊢ S]].

However, these coercions are are only actually used for type-variables which occur
negatively. This allows for two possible interpretations of bounded quantification – as
∀X.[[T ]](X ∧ S, X ∧ S)X or as ∀X.[[T ]](X ∧ S, X)X . Noting that:

∀X.[[T ]](X ∧ S, X ∧ S)X ≼ ∀X.[[T ]](X ∧ S, X)X by Lemma 16.
Subtypings inferred using the bound hold for the first interpretation but not the second.
The second interpretation is antitone in the variable bound but not the first.

we extend the interpretation of System F⊤ types to System FF⊤
<: .
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[[E ⊢ ∀K(X <: S).T ]] = ∀X.[[E , X <: S ⊢ T ]]
[[E ⊢ ∀⊤(X <: S).T ]] = ∀X.[[E , X <: ⊤ ⊢ T ]]({X} ∧ [[E ⊢ S]], {X})

Using Lemma 16, we show that this is sound with respect to the three subtyping rules for
bounded quantification:
∀ − Fun: If A({X} ∧ S, {X} ∧ S)X ≼ B({X} ∧ S, {X} ∧ S)X then

∀X.A({X} ∧ S, {X} ∧ S)X ≼ ∀X.B({X} ∧ S, {X} ∧ S)X .
∀ − Loc: If D ≼ C and A({X} ∧ C, {X} ∧ C)X ≼ B({X} ∧ C, {X} ∧ C)X then

∀X.A({X} ∧ C, {X} ∧ C)X ≼ ∀X.B({X} ∧ C, {X} ∧ C)X ≼ ∀X.B({X} ∧ C, {X})X ≼
∀X.B({X} ∧ D, {X})X .

∀ − Top: If D ≼ C and A({X}, {X}) ≼ B({X}, {X}) then
∀X.A({X} ∧ C, {X}) ≼ ∀X.B({X} ∧ C, {X})X ≼ ∀X.B({X} ∧ D, {X})X .

Thus (by induction on the length of derivation of Θ ⊢ S <: T ):

▶ Proposition 17 (Soundness). If E ⊢ S <: T then [[E ⊢ S]] ≼ [[E ⊢ T ]].

5 Copycat Strategies

Having described an interpretation of bounded polymorphism at the level of subtyping, it
is now necessary to show that this carries through to the term level. Interpreting terms as
strategies on our type-arenas yields a semantics for subtype and parametric polymorphism
which is based on copycat strategies. As canonical coercions, these give an alternative
characterization of the liveness ordering – a “hereditarily total” copycat strategy exists
between two arenas if and only if they are in the ordering. We now identify nodes explicitly
with moves.

▶ Definition 18. A legal sequence on an arena graph is a finite sequence of its moves
which starts with an Opponent move, alternates between Opponent and Proponent moves and
is equipped with a justification pointer [11] from each non-initial move to some preceding,
enabling move.

Given arenas A, B, let L(A, B) denote the set of legal sequences from A to B – that is,
legal sequences on the arena A ⊕ B, where (O, P, ▷) ≜ (P, O, ▷) swaps Proponent and
Opponent moves, and (O, P, ▷) ⊕ (O′, P ′, ▷′) ≜ (O ⊎ O′, P ⊎ P ′, ▷ ⊕ ▷′) is the smash sum
of rooted graphs.
Let C(A, B) denote the set of copycat sequences from A to B – that is, legal sequences
t ∈ L(A, B) such that for every even-prefix s ⊑E t, s↾A = s↾B.

It is easy to see that C(A, B) is a deterministic strategy from A to B – that is, a non-empty
set of even-length sequences in L(A, B) which is even-prefix-closed and even-branching (if
s, t ∈ C(A, B) then s ∩ t has even length). Moreover:

▶ Lemma 19. If A ≼ B then C(A, B) is a hereditarily total strategy: for any sequence
sm ∈ L(A, B) with s ∈ C(A, B) there exists n such that smn ∈ σ.

Proof. Suppose s ∈ C(A, B) and s(b.r) ∈ L(A, B), where b is an Opponent move in B.
Either b is initial, or else it has a justifier in s↾B, which therefore also occurs in s↾A. So
b ∈ E(A) ∩ O(B) ⊆ A (since A ≼ B) and s(b.r)(b.l) ∈ C(A, B) as required. The case where
s(a.l) ∈ L(A, B) for some Proponent move in A is similar. ◀

The proof of the converse uses the following lemma.
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▶ Lemma 20. Suppose C(A, B) is heredarily total.
(i) If m ∈ E(A)∩O(B) then there is a justified sequence of the form s(m.r)(m.l) in C(A, B).
(ii) If m ∈ E(B)∩P (A) then there is a justified sequence of the form s(m.l)(m.r) in C(A, B).

Proof. By Noetherian induction. If m is initial then by totality, if m ∈ O(B) then
(m.r)(m.l) ∈ C(A, B) and if m ∈ P (B) then (m.l)(m.r) ∈ C(A, B). For the induction
case suppose, for example, that m ∈ E(A) ∩ O(B) is enabled by a ∈ A and b ∈ B, which
must both be Proponent or both Opponent moves by quasi-bipartiteness. In the former
case, there exists b′ ∈ B ∪ {⊤} such that b′ ▷ B, and by quasi-arborescence b′ ▷ a – i.e.
a ∈ E(B) ∩ P (A), and so by inductive hypothesis there exists a justified sequence of the
form s(a.l)(a.r) ∈ C(A, B). Then s(a.l)(a.r).(m.r) (with a pointer from m.r to a.r) is a
well-formed justfied sequence, and so by totality s(a.l)(a.r)(m.r)(m.l) ∈ C(A, B) as required.
The other cases are similar. ◀

Evidently, (i) and (ii) imply that A ≼ B and so:

▶ Proposition 21. C(A, B) is hereditarily total if and only if A ≼ B.

6 QA-arenas

To describe the interpretation of parametric polymorphism requires further structure on arenas
– a question-answer labelling and question-answer relation supporting the interpretation of
type abstraction and instantiation – introduced in [13, 14], (to which we refer for further
details and proofs).

▶ Definition 22. A QA-arena over a set L of labels (not containing “Q” and “A”) is an
arena (O, P, ▷) with the following additional structure:

a labelling function λ : O ∪ P → L ∪ {Q, A} partitioning moves into sets of
questions,answers and L-labelled holes.
a scoped question answer/relation – a ternary relation on moves – ◁ ⊆ (O ∪ P ) ×
λ)−1(Q) × (λ)−1(A). The relation m ◁ (q, a) holds if a can answer q within the scope
of m: Proponent questions are scoped by Proponent moves and answered by Opponent
moves, and Opponent moves are scoped by Opponent moves and answered by Proponent
moves.

The type-arena defined in Section 3 is refined to a QA-arena for each type-variable context
Θ by defining a QA-labelling and QA-relation over Θ for moves Θ ⊢ m. This is defined
inductively via judgments of the form Θ ⊢QA m : L (where Θ ⊢ m and L ∈ {Q, A} ∪ Θ) and
Θ ⊢QA m ◁ (q, a) (where Θ ⊢ m, q, a), for which derivation rules are given in Table 2.

Informally, a move m[X] is labelled with X if X occurs free in M . Otherwise (if X is
bound):

m is a question if X occurs in m with the same polarity as its binder.
Its answers are moves m′[X] in which X occurs with the opposite polarity to its binder.
They are scoped by moves of the form C[∀X.m′′] where m′ is an initial move.

For example, in the sub-arena ∀X.X → X → X, the initial (Opponent) move ∀X.⊤ →
⊤ → X is a question, with answers ∀X.⊤ → X → ⊤ and ∀X.X → ⊤. The scoping move
for both question-answer pairs is the initial move ∀X.⊤ → ⊤ → X. In other words, this
corresponds to the usual QA-labelling for the arena of Booleans.
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Table 2 Typing Judgments for QA-Labelling and QA-relation.

Θ⊢QAX:X
Θ⊢QAm:X

Θ⊢QA∀X.m:Q m ∈= O
Θ⊢QAm:X

Θ⊢QA∀X.M :A m ∈ P
Θ⊢QAm:L

Θ⊢QA∀X.m:L L ̸= X

Θ⊢QAm:L
Θ⊢QAM→⊤:L

Θ⊢QAm:L
Θ⊢QA⊤→m:L

Θ⊢QAm:L
Θ⊢QAm×⊤:L

Θ⊢QAm:L
Θ⊢QA⊤×m:L

Θ⊢⊤▷m Θ⊢QAm′:X Θ⊢QAm′′:X
Θ⊢QA∀X.m◁(∀X.m′,∀X.m′′) (m′, m′′) ∈ (O, P )

Θ⊢QAm◁(m′,m′′)
Θ⊢QAm→⊤◁(m′→⊤,m′′→⊤)

Θ⊢QAm◁(m′,m′′)
Θ⊢QA⊤→m◁(⊤→m′,⊤→m′′)

Θ⊢QAm◁(m′,m′′)
Θ⊢QAm×⊤◁(m′×⊤,m′′×⊤)

Θ⊢QAm◁(m′,m′′)
Θ⊢QA⊤×m◁(⊤×m′,⊤×m′′)

6.1 Well-bracketed Strategies
A QA-arena over the empty set of labels is closed: matching questions and answers as opening
and closing parentheses induces a relation between the moves of any legal sequence over a
closed QA-arena : it is well-bracketed if this relation is contained within the QA-relation.
More precisely, let the pending question of a sequence of moves t over such a closed arena be
the prefix of t given (where defined) by:

pending(sm) =
{

sm if m is a question
pending(s′) if m is an answer and pending(s) = s′m′

.

▶ Definition 23. A well-bracketed sequence on a closed arena A is a legal sequence t on
A which satisfies the bracketing condition: Whenever sa ⊑ t, where a is an answer, then
pending(s) = s′q, where m ◁ (q, a) for some move m in s′ which hereditarily justifies both q

and a.

The closure of a QA-arena A over L is obtained by converting L-labelled Opponent and
Proponent moves to questions and answers, respectively, and extending the QA-relation by
making initial moves into scoping moves for pairs of (Opponent,Proponent) moves with the
same label.

▶ Definition 24. Given L ⊢ A, the closed arena ∀A has the same underlying arena. The
QA-labelling is:

λ∀A(m) =


Q if λA(m) ∈ L and m ∈ O

A if λA(m) ∈ L and m ∈ P

λA(m) otherwise

and the QA-relation is:

m ◁∀A (q, a) if m ◁A (q, a) or λA(q) = λA(a) = l ∈ L and ⊤ ▷ m

A strategy σ from A to B is well-bracketed if every s ∈ σ is a well-bracketed sequence on
∀(A ⊎ B). It is thread-independent if:
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For any well-bracketed r, s, t, where r is an interleaving of s and t:
r ∈ σ if and only if s, t ∈ σ.

Let CW (A, B) be the set of well-bracketed copycat sequences from A to B: this is
well-bracketed by definition, and since any legal interleaving of legal sequences s and t is a
copycat sequence if and only if r and s are copycats, it is a thread-independent strategy.

▶ Definition 25. For a QA-arena U , the category G(U) consists of (objects) the sub-arenas
of U with (morphisms) thread-independent strategies between them. Strategies are composed
by parallel composition plus hiding

{s ∈ w(A, C) | ∃t ∈ (A + B + C)∗.t↾A, B ∈ σ ∧ t↾B, C ∈ τ}

The identity on A is the well-bracketed copycat CW (A, A).

Well-bracketed copycats have a more general identity property.

▶ Proposition 26. If A′ ≼ A and B ≼ B′ then for any σ : A → B,
CW (A, A′); σ; CW (B, B′) = σ ∩ L(A′, B′).

In particular, if A ≼ B and B ≼ C then CW (A, B); CW (B, C) = CW (A, C), justifying:

▶ Definition 27. Let CW : S(U) → G(U) be the identity-on-objects functor from the lattice
S(U) (considered as a thin category) into G(U), sending A ≼ B to the copycat CW (A, B).

7 Copycat Dinaturality

Returning to our family of second-order type arenas, the instantiation of a sub-arena into a
strategy is given (as in [14]) by playing copycat between the arenas plugged into the holes.
To define this on type arenas we make use of a restriction operation – a partial inverse to
subsitution on moves:

▶ Definition 28. Given moves Θ, Θ′, Θ′′ ⊢ m and Θ, X, Θ′′ ⊢ n[X] the restriction of m to
n[X] is defined:

m↾n[X] =
{

l if m = n[l/X]
undefined otherwise

.

By definition, m[n/X]↾m = n and if m↾n[X] is defined, then m[(m↾n[X])/X] = m.
This operation lifts to justified sequences by applying it pointwise to the moves on which

it is defined, and omitting moves on which it is not defined.

▶ Definition 29. Given a justified sequence t, and move n, let t↾n be the justified sequence
such that ε↾n = ε and

(tm)↾n =
{

(t↾n)(m↾n) if m↾n ↓
t↾n otherwise

where m↾n points to m′↾n′ in t↾n, if both are defined and m points to m′ in t. (Otherwise
m↾n is initial and requires no pointer.)

We may now describe the instantiation of an arena into a strategy on type-arenas. Suppose
t is a well-bracketed sequence from A(C, C)X to B(C, C)X , such that t ↾∀(A ⊎ B) is a
well-bracketed sequence. For any even prefix sp[X] ⊑ t↾∀A ⊎ B, p[X] is a Proponent answer
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in ∀A ⊎ B, so by well-bracketing pending(s) = s′o[X], where o[X] is an Opponent question in
∀A ⊎ B. Say that t is a copycat-instantiated sequence for X if it is a copycat between every
such pair of moves – i.e. for any even-length sequence t′ with s ⊑ t′ ⊑ t, t↾p[X] = t↾o[X].

▶ Definition 30. Given a strategy Θ, X, Θ′ ⊢ σ : A → B,let Θ, Θ′, Θ′′ ⊢ σ[C]X : A(C, C)X →
B(C, C)X be the set of sequences t on ∀A(C, C)X → B(C, C)X which are copycat-instantiated
for X, such that there exists s ∈ σ with s = t↾∀(A ⊎ B).

This yields a family of strategies σ[_]X =

{Θ, Θ′, Θ′′ ⊢ σ[C]X : A(C, C)X → B(C, C)X | Θ, Θ′ ⊢ C}.

By Proposition 16, A(_, _)X and B(_, _)X act as mixed variance functors from S(Θ, Θ′)
to S(Θ, Θ′, Θ′′), which may be composed with the copycat functor CW : S(Θ, Θ′, Θ′′) →
G(Θ, Θ′, Θ′′).

▶ Proposition 31. σ[_]X is a dinatural transformation from CW · A(_, _)X to CW ·
B(_, _)X .

Proof. In other words, for any arenas Θ, Θ′ ⊢ C ≼ D, the dinaturality hexagon:

A(C, C)X

σ[C]X // B(C, C)X

CW (B(C,C),B(C,D))
MM

&&MM

A(D, C)X

CW (A(D,C),A(C,C))qq

88qq

CW (A(D,C),A(D,D))
MM

&&MM

B(C, D)X

A(D, D)X

σ[D]X // B(D, D)X

CW (B(D,D),B(C,D)qq

88qq

commutes. By Proposition 26, this is equivalent to requiring that σ[C]X ∩ W (C, D) =
σ[D]X ∩ W (C, D), which follows from the definition of copycat instantiation. ◀

Note the importance of the restriction to copycat (or, at least, strict) strategies – the
dinaturality hexagon above need not commute for all morphisms from C to D (even if σ is
the denotation of a term of System F : see [8] for examples).

Instantiation extends to tuples of arenas – B(A1, A′
1)X1 . . . (An, A′

n)Xn substitutes the
moves of A1 for negative occurrences of X1 in B, the moves of A′

1 for positive occurrences of
X1 and so on, giving a family of n-ary mixed variance functors on S(Θ) to S(Θ) which is
closed under composition. Using these we may define a hyperdoctrine model of System F [20].

Let I be the category in which objects are type-variable contexts and morphisms from Θ
to Θ′ = X1, . . . , Xn are substitutions – n-tuples of arenas ⟨Θ ⊢ A1, . . . , Θ ⊢ An⟩ composed
by instantiation: ⟨B1, . . . , Bm⟩ · ⟨A1, . . . , An⟩ =
⟨B1(A1, A1)X1 . . . (An, An)Xn

, . . . , Bm(A1, A1)X1 . . . (An, An)Xn
⟩.

For ⟨A1, . . . , An⟩ : Θ → Θ′, the instantiation functor G⟨A1, . . . , An⟩ : G(Θ′) → G(Θ)
sends Θ′ ⊢ B to Θ ⊢ B(A1, A1)X1 . . . (An, An)Xn , and Θ′ ⊢ σ : B → C to Θ′ ⊢
σ[A1]X1 . . . [An]Xn

.
Each category G(Θ) is cartesian closed (A × B is the cartesian product of A and B, and
A → B is their internal hom) and instantiation preserves this structure. Thus we have a
functor G from Iop to the category of cartesian closed categories sending Θ to G(Θ) and
⟨A1, . . . , An⟩ to G⟨A1, . . . , An⟩.
For context Θ, Θ, X is the product of Θ with X in I, and the image of the corresponding
projections, G(π) : G(Θ) → G(Θ, X) has an indexed left adjoint ∀X. Since instantiation
commutes with type-variable abstraction, this satisfies the Beck-Chevalley condition.
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Table 3 Typing Judgments for System FF⊤
<: .

E ⊢ Γ E ⊢ ⊤ ⊤Θ ⊢ top : ⊤
E ⊢ Γ, x : T, Γ′

var
E ; Γ, x : T, Γ′ ⊢ x : T

E ; Γ ⊢ t : T E ⊢ T <: T ′

subE ; Γ ⊢ t : T ′

E ; Γ, x : S ⊢ t : T
→ −iE ; Γ ⊢ λx : S.t : S → T

E ; Γ ⊢ t : S → T E ; Γ ⊢ s : S
→ −e

E ; Γ ⊢ ts : T

E , X <: S; Γ ⊢ t : T E ⊢ Γ
∀ − i

E ; Γ ⊢ Λ(X <: S).t : ∀F(X <: S).T

E ; Γ ⊢ t : ∀⊤(X <: S).T E ⊢ S′ <: S
∀ − e

E ; Γ ⊢ t{S′} : T [S′/X]

8 System FF⊤
<: and its Semantics

The raw terms of System FF⊤
<: are those of System F<: – given by the grammar:

t ::= top | x | λ(x : T ).t | Λ(X <: T ).t | t t | t{T}

Typing judgments (derived according to the rules in Table 3) take the form E ; Γ ⊢
t : T , where Γ is a context of term-variables x1 : T1, . . . xn : Tn such that E ⊢ Γ – i.e.
E ⊢ T1, . . . , E ⊢ Tn. Type-variable abstraction (∀-introduction) is typed using ∀F and
instantiation (∀-elimination) is typed using ∀⊤ – subsumption allows conversion from the
former to the latter.

Each term-in-context E ; x1 : S1, . . . , xn : Sn ⊢ t : T denotes a morphism from [[E ⊢
S1]] × . . . × [[E ⊢ Sn]] to [[E ⊢ T ]] in the category G([|E|]), where |X1 <: R1, . . . , Xm <: Rm| =
X1, . . . , Xm. To interpret instantiation for bounded variables we require an operation taking
a strategy σ : A → ∀X.B({X} ∧ C, {X})X and a bounded argument D ≼ C to a strategy on
A → B(D, D)X . The obvious way to do this is by instantiation of D for X in σ, followed by
subsumption. However, the substitution operation on arenas does not respect the lattice
structure of the liveness ordering.

▶ Lemma 32. (C ∧ A)(B, B)X ̸= C(B, B)X ∧ C(B, B)X in general.

Proof. The meet {X} ∧ A is the union {X} ∪ A (since X contains only a single initial move):
the instantiation ({X} ∧ A)(B, B)X is thus equal to the union A ∪ B, which is not the same
as A ∧ B in general. ◀

However, when substituting in bounded types we can use the following lemma

▶ Lemma 33. If C ≼ B then C ≼ (B ∪ C).

Proof. O(C)∩(C∪B) = (O(C)∩C)∪O(C)∩B ⊆ C∪C = C. P (B∪C)∩C ⊆ C ⊆ B∪C. ◀

So if C ≼ D, then A(X ∧ B, X)X(C, C)X = A(C ∪ B, C)X ≼ A(C, C)X , and we may
interpret bounded instantiation by substitution followed by subsumption – if E ⊢ S <: S′

then [[E ; Γ ⊢ t{S′} : T [S′/X]]] =

[[E ; Γ ⊢ t : ∀⊤(X <: S)]]; CW ([[E, X <: S ⊢ T ]]([[E ⊢ S′]], [[E ⊢ S′]])X , [[E ⊢ T [S′/X]]]).



J. Laird 33:15

Since use of the subsumption rule may yield multiple derivations of the same typing
judgment it is not immediately obvious that this defines a unique denotation for each term-
in-context – we need to show that any derivation for a given term in context yields the same
denotation (coherence).

▶ Proposition 34. Every derivable typing judgment Θ; Γ ⊢ t : T denotes a unique morphism
[[Θ; Γ ⊢ M : T ]].

Proof. In [16] we define a derivation system for minimal types, such that if t is typable
in context E ; Γ there is a unique derivation of a minimal type E ; Γ ⊢ t : T such that if
E ; Γ ⊢ t : T ′ then E ⊢ T <: T ′. To establish coherence, we show that any denotation for
E ; Γ ⊢ t : T ′ satisfies [[E ; Γ ⊢ t : T ′]] = [[E ; Γ ⊢ t : T ]]; cw([[E ⊢ T ]], [[E ⊢ T ]]). ◀

Copycat dinaturality is the key to showing that the semantics is sound with respect to
second-order β and η-equivalence:

▶ Lemma 35. The model soundly interprets the rules:

E , X <: S; Γ ⊢ t : T E ; Γ ⊢ R <: S
β2E ; Γ ⊢ (Λ(X <: S).t){R} = t[R/X] : T [R/X]

E ; Γ ⊢ t : ∀⊤X <: S.T
Y ̸∈ dom(E) η2

E ; Γ ⊢ Λ(Y <: S).(t{Y }) = t : ∀⊤(X <: S).T

Proof. We give the case of second-order η-equivalence as an example. Suppose σ is the
uncurrying of [[E ; Γ ⊢ t : ∀⊤(X <: S).T ]]. The diagram

[[E, X <: S ⊢ T ]]({X} ∧ [[E ⊢ S]], {X} ∧ [[E ⊢ S]])
≼YYYY

YYYYY

,,YYYYYY

[[E ⊢ Γ]]

σ[{X}∧[[E⊢S]]X ]ggggggg

33gggg

σ[{X}]X
WWWWW

WW

++WWWW

[[E, X <: ⊤ ⊢ T ]]({X} ∧ S, X)X

[[E, X <: S ⊢ T ]]({X}, {X})X

≼eeeeeeeee

22eeeeeeeee

commutes by copycat dinaturality, and so [[E ; Γ ⊢ t : ∀⊤X <: S.T ]] = [[E ; Γ ⊢ ΛX.t{X} :
∀⊤(X <: S).T ]] as required. ◀

▶ Proposition 36. If E ; Γ ⊢ t =βη t′ : T then [[E ; Γ ⊢ t]] = [[E ; Γ ⊢ t′ : T ]].

9 Conclusions and Further Directions

Our interpretation of the subtyping relation on Hyland-Ong arenas may be applied to a wide
range of games models which employ this basic structure. We have also shown that it can
be integrated, via dinaturality, with an interpretation of generic polymorphism based on
bracketing structure, providing a way to use this principle which might be further explored
in reasoning about program equivalence. This gives us the ingredients to develop existing
games semantics for stateful objects with more expressive type theories such as Dependent
Object Types [17, 22] (with an appropriate treatment for subtyping bounded quantification –
see also [10]) as well as bounded abstract data types.
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