
Representing Guardedness in Call-By-Value
Sergey Goncharov #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
Like the notion of computation via (strong) monads serves to classify various flavours of impurity,
including exceptions, non-determinism, probability, local and global store, the notion of guardedness
classifies well-behavedness of cycles in various settings. In its most general form, the guardedness
discipline applies to general symmetric monoidal categories and further specializes to Cartesian and
co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here,
even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown
by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd
categories, but in order to represent effectful function spaces, such a category must canonically arise
from a strong monad. We generalize this fact by showing that representing guarded effectful function
spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of
guardedness as an intrinsic categorical property of programs, complementing the existing description
of guardedness as a predicate on a category.
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1 Introduction

A traditional way to model call-by-value languages is based on a clear cut separation between
computations and values. A computation can be suspended and thus turned into a value,
and a value can be executed, and thus again be turned into a computation. The paradigmatic
example of these conversions are the application and abstraction mechanisms of λ-calculus.
From the categorical modelling perspective, this view naturally requires two categories,
suitably connected with each other. As essentially suggested by Moggi [28], a minimal
modelling framework requires a Cartesian category (i.e. a category with finite products) as a
category of values and a Kleisli category of a strong monad over it, as a category of (side-
effecting) computations (also called producers [23]). A generic computational metalanguage
thus arises as an internal language of strong monads. Levy, Power and Thielecke [25],
designed a refinement of Moggi’s computational metalanguage, called fine-grain call-by-value
(FGCBV), whose models are not necessarily strong monads, but are more general Freyd
categories. They have shown that a strong monad in fact always emerges from a Freyd category
if certain function spaces (needed to interpret higher-order functions), are representable as
objects of the value category – thus strong monads arise from first principles.

Here we analyse an extension of the FGCBV paradigm with a notion of guardedness,
which is a certain predicate on computations, certifying their well-behavedness, in particular
that they can be iterated [19, 24]. A typical example is guardedness in process algebra,
where guardedness is often used to ensure that recursive systems of process definitions have
unique solutions [27]. FGCBV does not directly deal with fixpoints, since these are usually
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Figure 1 Three dimensions within call-by-value.

considered to be features orthogonal to computational effects and evaluation strategies.
Analogously, even though the notion of guardedness is motivated by fixpoints, here we do not
consider (guarded) fixpoints as a core language feature. In fact, in practically relevant cases
guardedness is meaningful on its own as a suitable notion of productivity of computation,
and need not be justified via fixpoints, which may or may not exist. In FGCBV one typically
regards general recursion to be supported by the category of values, and once the latter
indeed supports it, it is obvious to add a corresponding fixpoint construct to the language.
Nevertheless, general recursion entails partiality for programs, which means that even if
we abstract away from recursion, the corresponding effect of partiality must be part of the
computational effect abstraction (see e.g. [12]). Recursion and computational effects are thus
intimately connected. This connection persists under the restriction from general recursion
to iteration, which is subject to a much broader range of models, and triggers the partiality
effect just as well. Arguably, the largest class of monads, supporting iteration are Elgot
monads [3, 16]. These are monads T , equipped with Elgot iteration:

f : X Ñ T pY ` Xq

f : : X Ñ TY
(1)

and subject to established equational laws of iteration [7, 35]. Intuitively, f : is obtained
from f by iterating away the right summand in the output type Y ` X. For example, the
maybe-monad p--q ` 1 is an Elgot monad over the category of classical sets, which yields a
model for a while-language with non-termination as the only computational effect. Now,
guarded Elgot monads [24] refine Elgot monads in that, the operator (1) needs only be defined
w.r.t. a custom class of guarded morphisms, governed by simple laws. Proper partiality of
the guardedness predicate is relevant for various reasons, including the following:

Guarded fixpoints often uniquely satisfy the corresponding fixpoint equation, which
greatly facilitates reasoning, which is extensively used in process algebra.
In type-theoretic and constructive setting guarded iteration can often be defined natively
and more generally, e.g. the “simplest” guarded Elgot monad is Capretta’s delay monad
(initially called “partiality monad”) [8], rendered by final coalgebras D “ νγ. p-- `γq,
which yield an intensional counterpart of the maybe-monad; guardedness then means

1 More precisely, representability yields parametrized guarded monads, subject to an additional monicity
condition. This is treated in detail in Section 7.
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productivity, i.e. that the computation signals as it evolves. Contrastingly, the “simplest”
Elgot monad is much harder to construct and arguably requires additional principles to
be available in the underlying metatheory [9, 4, 11, 14].
Guardedness is a compositional type discipline, and hence it potentially helps to en-
capsulate additional information about productivity of programs in types, like monads
encapsulate the information about potential side-effects.

As indicated above, strong monads can be regarded as structures, in a canonical way arising
from FGCBV by adding the requirement of representability of certain function spaces in
the category of values. This is behind the mechanism of representing computational effects
via monads in type systems (e.g. in Fω, by quantification over higher kinds) and hence in
programming languages (e.g. in Haskell). Our goal is to provide an analogous mechanism
for guardedness and for its combinations with computational effects and strength. That
is, (strong) monads are an answer to the question: what is the categorical/type-theoretic
structure that faithfully represents computational effects within a higher-order universe?
Here, we answer the question: what is the categorical/type-theoretic structure that faithfully
represents guarded computational effects within a higher-order universe? In other words, we
seek a formulation of guardedness as an intrinsic structural property of morphisms, instead
of additional data that (anonymously) identifies guarded morphisms among others. In
doing so, we take inspiration from the view of monads as structures for representing effects,
as summarized above. In fact, we show that strength, representability and guardedness
can be naturally arranged within FGCBV as three orthogonal dimensions, as shown in
Figure 1 (the arrows point from more general concepts to more specific ones). The bottom
face of the cube features the above mentioned connection between Freyd categories and
strong monads, and a corresponding connection between identity-on-object functors and (not
necessarily strong) monads. We contribute with the top face, which combines guardedness
with the other dimensions. The pivotal point is the combination of guardedness with
representability, which produces a certain class of parametrized monads [37], which we dub
guarded parametrized monads.

Related work. We benefit from the analysis of Power and Robinson [32] who introduced pre-
monoidal categories as an abstraction of Kleisli categories. Freyd categories were subsequently
defined by Power and Thielecke [33] as premonoidal categories with additional structure and
also connected to strong monads. Levy [23] came up with an equivalent definition, which we
use throughout. In the previous characterization [33, 25], strong monads were shown to arise
jointly with Kleisli exponentials from closed Freyd categories. We refine this characterization
(Corollary 9) by showing that strong monads in fact arise independently of exponentials
(Proposition 8). Distributive Freyd categories were defined by Staton [36] – here we use them
to extend the FGCBV language by coproducts and subsequently with guardedness predicates.
Previous approaches to identifying structures for ensuring guardedness on monads involved
monad modules [30, 2] – we make do with guarded parametrized monads instead, which
combine monads with modules over them and arise universally.

Plan of the paper. After short technical preliminaries, we start off by introducing a
restricted version of FGCBV in Section 3 and extensively discuss motivating examples, which
(with a little effort) can already be encoded despite restrictions. We establish a very simple
form of the representability scenario, producing monads, and meant to serve as a model for
subsequent sections. In Section 4 we deal with full FGCBV, Freyd categories, modelling
them and strong monads, representing Freyd categories. The guardedness dimension is added
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34:4 Representing Guardedness in Call-By-Value

in Section 5 where we introduce guarded Freyd categories and in Section 6 we analyse the
representability issue for them. Finally, in Section 7 we introduce an equational axiomatization
of a categorical structure for representing guardedness, called guarded parametrized monads.
As a crucial technical step, we establish a coherence property in the style of Mac Lane’s
coherence theorem for monoidal categories [26]. Conclusions are drawn in Section 8.

2 Preliminaries

We assume familiarity with the basics of category theory [26, 5]. For a category V, |V| will
denote the class of objects and VpX, Y q will denote morphisms from X to Y . We tend to
omit indexes at natural transformations for readability. A category with finite (co-)products
is called (co-)Cartesian. In a co-Cartesian category with selected coproducts, we write
! : 0 Ñ A for the initial morphism, and inl : A Ñ A ` B and inr : B Ñ A ` B for the left and
right coproduct injections correspondingly. A distributive category [10] is a Cartesian and
co-Cartesian category, in which the natural transformation

X ˆ Y ` X ˆ Z
ridˆinl, idˆinrs

ÝÝÝÝÝÝÝÝÝÝÝÑ X ˆ pY ` Zq

is an isomorphism, whose inverse we denote distX,Y,Z (a co-Cartesian and Cartesian closed
category is always distributive). Let ∆ “ ⟨id, id⟩ : X Ñ X ˆ X and ∇ “ rid, ids : X ` X Ñ X.

A monad T on V is determined by a Kleisli triple pT, η, p´q‹q, consisting of a
map T : |V| Ñ |V|, a family of morphisms pηX : X Ñ TXqXP|V| and Kleisli lifting sending
each f : X Ñ TY to f‹ : TX Ñ TY and obeying monad laws:

η‹ “ id, f‹ ˝ η “ f, pf‹ ˝ gq‹ “ f‹ ˝ g‹.

It follows that T extends to a functor, η extends to a natural transformation – unit, µ “

id‹ : TTX Ñ TX extends to a natural transformation – multiplication, and that pT, η, µq is
a monad in the standard sense [26]. We will generally use blackboard capitals (such as T) to
refer to monads and the corresponding Roman letters (such as T ) to refer to their functor
parts. Morphisms of the form f : X Ñ TY are called Kleisli morphisms and form the Kleisli
category VT of T under Kleisli composition f, g ÞÑ f‹ ˝ g with identity η.

A functor F is strong if it is equipped with a natural transformation strength τ : XˆFY Ñ

F pX ˆ Y q, such that the diagrams

1 ˆ FX FX

F p1 ˆ Xq

τ

snd

F snd

pX ˆ Y q ˆ FZ F ppX ˆ Y q ˆ Zq

X ˆ pY ˆ FY q X ˆ F pY ˆ Zq F pX ˆ pY ˆ Zqq

–

τ

–

Xˆτ τ

commute. A natural transformation, between two strong functors is strong if it preserves
strength in the obvious sense, and a monad T is strong if T is strong with some strength
τ : X ˆ TY Ñ T pX ˆ Y q and η and µ are strong with id being the strength of Id and
Tτ ˝ τ : X ˆ TTY Ñ TT pX ˆ Y q being the strength of TT .

3 Simple FGCBV with Coproducts

We start off with a restricted – single-variable – fragment of FGCBV, but extended with
coproduct types. Since we will not deal with operational semantics, we simplify the language
slightly (e.g. we do not include let-expressions for values). We also stick to a Haskell-style
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x : A $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B P Σc Γ $v v : A

Γ $c fpvq : B

Γ $v v : A

Γ $c return v : A

Γ $c p : A x : A $c q : B

Γ $c do x Ð p; q : B

Γ $v v : 0
Γ $v init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B x : A $c p : C y : B $c q : C

Γ $c case v of inl x ÞÑ p; inr y ÞÑ q : C

Figure 2 Simple FGCBV with coproducts.

syntax with do-notation and case-expressions. We fix a collection of sorts S1, S2, . . . , a
signature Σv of pure programs f : A Ñ B, and a signature Σc of effectful programs f : A Ñ B

(also called generic effects [31]) where A and B are types, generated with the grammar

A, B ::“ S1, S2, . . . | 0 | A ` B. (2)

We then define terms in context of the form x : A $v v : B and x : A $c p : B for value terms
and computation terms inductively by the rules given in Figure 2. (where we chose to stick
to the syntax of the familiar Haskell’s do-notation): This language is essentially a refinement
of Moggi’s simple (!) computational metalanguage, which only has one-variable contexts,
instead of the fully fledged multi-variable contexts. In terms of monads, the present language
corresponds to not necessarily strong ones. Such monads are not very useful in traditional
programming languages semantics, however we dwell on this case for several reasons. We aim
to explore the interaction between guardedness and monads from a foundational perspective
and stay as general as possible to cover the cases where strength does not exist or is not
relevant. We also would like to identify the basic representation scenario, to be extended
later in more sophisticated cases.

An obvious extension of the presented language would be the iteration operator:

Γ $c p : A x : A $c q : B ` A

Γ $c iter x Ð p; q : B
(3)

meant to satisfy the fixpoint equality iter x Ð p; q “ iter x Ð pdo x Ð p; qq; q. This syntax
serves its technical purpose of adding expressivity to the language, but can be criticized
from a pragmatic perspective – an arguably more convenient, equivalent syntax of “labelled
iteration” can be used instead [13], and carried over to guarded setting [17]. Presently, we
focus on representing guardedness as such and do not include iteration in the language.

We present three examples, which can be interpreted w.r.t. the single-variable case, to
demonstrate the unifying power of FGCBV and to illustrate various flavours of guardedness.

▶ Example 1 (Basic Process Algebra [6]). Basic process algebra (BPA) over a set of actions A
is defined by the grammar: P, Q ::“ pa P Aq | P ` Q | P ¨ Q. One typically considers
BPA-terms over free variables (seen as process names) to solve systems of recursive process
equations w.r.t. these variables. E.g. we can specify a 2-bit FIFO buffer as a solution to

B0 “ in0 ¨B0
1 ` in1 ¨B1

1 , Bi
1 “ in0 ¨B0,i

2 ` in1 ¨B1,i
2 ` outi ¨B0, Bi,j

2 “ outj ¨Bi
1,

where i, j P {0, 1}. We view B0 as an empty FIFO, Bi
1 as a FIFO carrying only i and Bi,j

2 as
a FIFO, carrying i and j. For example, the trace B0

in0
ÝÝÑ B0

1
in1

ÝÝÑ B1,0
2

out0
ÝÝÑ B1

1
out1

ÝÝÑ B0
is valid and represents pushing 0 and 1 to an empty FIFO and then popping them out in
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34:6 Representing Guardedness in Call-By-Value

the same order. We can model such systems of equations in FGCBV as follows. Let us fix
a single sort 1 and identify an n-fold sum p. . . p1 ` . . .q . . .q ` 1 with the natural number n.
The injections inji : 1 Ñ n are defined inductively in the obvious way. Let Σv “ ∅ and
Σc “ {a : 1 Ñ 1 | a P A} Y {toss : 1 Ñ 2}. A BPA-term over process names {N1, . . . , Nn} can
be translated to FGCBV recursively, with the following rules where ⇝ reads as “translates”:

Ni ⇝ x : 1 $c returnpinlpinji xqq : n ` 1 a⇝ x : 1 $c do x Ð apxq; returnpinr xq : n ` 1

P ⇝ x : 1 $c p : n ` 1 Q⇝ x : 1 $c q : n ` 1
P ` Q⇝ x : 1 $c do x Ð tosspxq; case x of inl x ÞÑ p; inr x ÞÑ q : n ` 1

P ⇝ x : 1 $c p : n ` 1 Q⇝ x : 1 $c q : n ` 1
P ¨ Q⇝ x : 1 $c do x Ð p; case x of inl x ÞÑ returnpinl xq; inr x ÞÑ qpxq : n ` 1

Intuitively, the terms x : 1 $c p : n ` 1 represent processes with n ` 1 exit points: every
process name Ni identifies an exit i, in addition to the global anonymous exit, as e.g. in
an action, regarded as a process. The generic effect toss induces binary nondeterminism
as a coin-tossing act. Every tuple px : 1 $c pi : mqiăn can be represented by a single term
x : n $c p̂n : m, inductively defined as follows:

p̂0 “ returnpinit xq, p̂n`1 “ case x of inl x ÞÑ p̂n ; inr x ÞÑ pn`1.

Every system of n equations with m ` n variables is thus represented by a term x : n $c
p : m ` n. The iteration x : n $c iter x Ð return x; p : m computes a solution of this system,
sending every i-th variable to a term over the remaining m free variables. Guarded systems
are those, where recursive calls are preceded by actions. Such systems have a unique solution
(under bisimilarity). The simplest unguarded example P “ P has arbitrary solutions, and
translates to x : 1 $c iter x Ð return x; returnpinr xq : 0.

▶ Example 2 (Imperative Traces). We adapt the semantic framework of Nakata and
Uustalu [29] for imperative coinductive traces to our setting. Let us fix a set P of predicates,
a set T of state transformers, and let the corresponding pure and effectful signatures be
Σv “ {p : S Ñ S ` S | p P P} Y {t : S Ñ S | t P T} and Σc “ {put : S Ñ 1, get : 1 Ñ S} over
the set of sorts {S, 1}. The intended interpretation of this data is as follows:

S is a set of memory states, e.g. the set of finitely supported partial functions N ↪Ñ 2;
T are state transformers, e.g. functions, updating precisely one specified memory bit;
p P P encode predicates: ppsq “ inl s if the predicate is satisfied and ppsq “ inr s otherwise,
e.g. p can capture functions that give a Boolean answer to the questions “is the specified
bit 0?” and “is the specified bit 1?”.

For example, the following program negates the i-th memory bit (if it is present)

x : 1 $c do s Ð getpxq; case psris “ 0q of inl s ÞÑ putpsri :“ 1sq; inr s ÞÑ putpsri :“ 0sq : 1

where p--ris “ 0q, p--ri :“ 0sq and p--ri :“ 1sq are the obvious predicate and state transformers.
Nakata and Uustalu [29] argued in favour of (infinite) traces as a particularly suitable
semantics for reasoning about imperative programs. This means that store updates must
contribute to the semantics, which can be ensured by a judicious choice of syntax, e.g.
by using skip “ do s Ð getpxq; putpsq, but not return. In FGCBV, however, iterating
x : 1 $c returnpinr xq : 1 would not yield any trace. By restricting to guarded iteration with
guardedness meaning writing to the store, we can indeed prevent iterating such programs,
by defining guardedness in such a way that recursive calls are preceded by put.
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▶ Example 3 (Hybrid Programs). Hybrid programs combine discrete and continuous capabil-
ities and thus can be used to describe behaviours of cyber-physical systems. For simplicity
we consider time delays as the only hybrid facility – more sophisticated scenarios are treated
elsewhere [15] (more sophisticates scenarios can be modelled in a similar way [15]). Let Rě0 be
the sort of non-negative real numbers and let Σv contain all unary operations on non-negative
reals and additionally is0 : Rě0 Ñ Rě0 ` Rě0, which sends n “ 0 to inl n and n ą 0 to inr n.
Let Σc “ {wait : Rě0 Ñ Rě0}. With waitprq we can introduce a time delay of length r and
return r. With iteration we can write programs like

x : Rě0 $c iter x Ð return x; case is0pxq of
inl x ÞÑ returnpinl xq;
inr x ÞÑ pdo x Ð waitpxq; returnpinr fpxqqq : Rě0,

which terminate successfully in finite time (fpxq “ x .́ 12), run infinitely (fpxq “ 1), or
exhibit Zeno behaviour (fpxq “ x{2), i.e. consume finite time, but never terminate. In all
these examples, every iteration consumes non-zero time. This is also often considered to be
a well-behavedness condition, which can be interpreted as guardedness.

In order to interpret the language from Figure 2, let us fix two co-Cartesian categories V
and C, and an identity-on-objects functor J : V Ñ C (hence |V| “ |C|), strictly preserving
coproducts. A semantics of pΣv, Σcq over J assigns

an object JAK P |V| to each sort A;
a morphism JfK P VpJAK, JBKq to each f : A Ñ B P Σv;
a morphism JfK P CpJAK, JBKq to each f : A Ñ B P Σc,

which extends to types and terms as follows: J0K “ 0, JA ` BK “ JAK ` JBK,
Jx : A $v x : AK “ id;
JΓ $v fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c fpvq : BK “ JfK ˝ JJΓ $v v : AK;
JΓ $c return v : AK “ JJΓ $v v : AK;
JΓ $c do x Ð p; q : BK “ Jx : A $c q : BK ˝ JΓ $c p : AK;
JΓ $v init v : AK “ !;
JΓ $v inl v : A ` BK “ inl ˝JΓ $v v : AK;
JΓ $v inr v : A ` BK “ inr ˝JΓ $v v : BK;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : CK

“
[
Jx : A $c p : CK, Jy : B $c q : CK

]
˝ JJΓ $v v : A ` BK.

As observed by Power and Robinson [32] (cf. [34, 0.1]), monads arise from the requirement
that J is a left adjoint, thus simple FGCBV can be interpreted w.r.t. a monad on V:

▶ Proposition 4. Let J : V Ñ C be an identity-on-objects functor. Then J is a left adjoint
iff C is isomorphic to a Kleisli category of some monad T on V and Jf “ Hpη ˝ fq for
all f P VpX, Y q where H : VT – C is the relevant isomorphism.

Moreover, in this situation, finite coproducts in C are inherited from those in V, i.e. J !
is the initial morphism in C and pA ` B, J inl, J inrq is a binary coproduct in C.

2 .́ refers to truncated subtraction: x .́ y “ x ´ y if x ě y, and x .́ y “ 0 otherwise.
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x : A in Γ
Γ $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B P Σc Γ $v v : A

Γ $c fpvq : B

Γ $v v : A

Γ $c return v : A

Γ $c p : A Γ, x : A $c q : B

Γ $c do x Ð p; q : B

Γ $v v : 0
Γ $v init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B x : A $c p : C y : B $c q : C

Γ $c case v of inl x ÞÑ p; inr y ÞÑ q : C

Γ $v v : A Γ $v w : B

Γ $v ⟨v, w⟩ : A ˆ B

Γ $v p : A ˆ B Γ, x : A, y : B $c q : C

Γ $c case p of ⟨x, y⟩ ÞÑ q : C

Figure 3 FGCBV with coproducts.

▶ Example 5 (Monads). Let us recall relevant monads on V “ Set for further reference.
1. TX “ νγ. PωppX `1q`Aˆγq where Pω is the finite powerset functor and νγ. Fγ denotes

a final F -coalgebra. This monad provides a standard strong bisimulation semantics for
BPA (Example 1). The denotations in TX are finitely branching trees with edges labelled
by actions and with terminal nodes labelled in X (free variables) or in 1 (successful
termination). This monad is an instance of the coinductive resumption monad [30].

2. TX “ PpA‹ ˆ pX ` 1q ` A‹q is the monad of finite traces (terminating successfully
A‹ ˆ pX ` 1q and divergent A‹), which can again be used as a semantics of Example 1.

3. TX “ PpA‹ ˆ pX ` 1q ` pA‹ ` Aωqq is a refinement of 2. collecting not only finite,
but also infinite traces. If we extend BPA with countable non-determinism, we obtain
a semantics properly between strong bisimilarity finite trace equivalence. For example,
the equation P “ a ¨ P produces the infinite trace aω and P 1 “

∑
iPN Pi with P0 “ a and

Pi`1 “ a ¨ Pi does not, and P is finite trace equivalent to P ` P 1, but not infinite trace
equivalent.

4. TX “ pνγ. X ˆ S ` γ ˆ SqS can be for Example 2. In Set, TX – pX ˆ S` ` SωqS , i.e.
an element TX is isomorphic to a function that takes an initial state in S and returns
either a finite trace in X ˆ S` or an infinite trace in Sω. We can use Proposition 4
to argue that T indeed extends to a monad. Let C be the category with CpX, Y q “

SetpX ˆ S, νγ. Y ˆ S ` γ ˆ Sq, which is a full subcategory of the Kleisli category of
the coinductive resumption monad νγ. p-- `γ ˆ Sq. Now, the obvious identity-on-objects
functor J : Set Ñ C is a left adjoint, which yields the original T .

5. TX “ Rě0 ˆ X ` R̄ě0 is a monad, which can be used for Example 3. Here Rě0 ˆ X refers
to terminating behaviours and R̄ě0 “ Rě0 Y {8} to Zeno and infinite behaviours.

4 Freyd Categories and Strong Monads

The full FGCBV (with coproducts) is obtained by extending the type syntax (2) with
products A ˆ B, and by replacing the rules in Figure 2 with the rules in Figure 3. We
now assume that variable contexts Γ are (possibly empty) lists px1 : A1, . . . , xn : Anq with
non-repetitive x1, . . . , xn. To interpret the resulting language, again, we need an identity-on-
objects functor J : V Ñ C, an action of V on C, and J to preserve this action.

▶ Definition 6 (Actegory [20]). Let pV, b , Iq be a monoidal category. Then an action of V
on a category C is a functor m : V ˆ C Ñ C together with the unitor and the actor natural
isomorphisms υ : 1 m X – X, α : X m pY m Zq – pX b Y q m Z, satisfying expected coherence
conditions. Then C is called an (V-)actegory.
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Note that every monoidal category trivially acts on itself via m “ b . In the sequel, we will
only consider Cartesian categories, i.e. actegories w.r.t. pV, ˆ, 1q.

▶ Definition 7 ((Distributive) Freyd Category [23, 36]). A Freyd category pV, C, Jp--q, mq

consists of the following data:
a Cartesian category V;
a category C with |V| “ |C|;
an identity-on-objects functor J : V Ñ C;
a monoidal action of V on C, such that J preserves the V-action, i.e. Jpf ˆ gq “ f m Jg

for all f P VpX, X 1q, g P VpY, Y 1q, υ “ J snd and α “ J⟨id ˆ fst, snd ˝ snd⟩.
A Freyd category pV, C, Jp--q, mq is distributive if V is distributive, C is co-Cartesian and J

strictly preserves coproducts (this is equivalent to the requirement that the action preserves
binary coproducts in the second argument coherently with dist).

Given a distributive Freyd category pV, C, Jp--q, mq, we update the semantics from Section 3
as follows, where JA ˆ BK “ JAK ˆ JBK, Jx1 : A1, . . . , xn : AnK “ JA1K ˆ . . . ˆ JAnK:

Jx1 : A1, . . . , xn : An $v xi : AiK “ proji;
JΓ $c do x Ð p; q : BK “ JΓ, x : A $c q : BK ˝ pid m JΓ $c p : AKq ˝ ∆;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : CK

“
[
JΓ, x : A $c p : CK, JΓ, y : B $c q : CK

]
˝ J dist ˝pid m JJΓ $v v : A ` BKq ˝ J∆;

JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨JΓ $v v : AK, JΓ $v w : BK⟩.
Freyd categories are to strong monads as identity-on-objects functors to monads.

▶ Proposition 8. Let pV, C, Jp--q, mq be a Freyd category. Then J is a left adjoint iff C
is isomorphic to a Kleisli category of some strong monad T on V and Jf “ Hpη ˝ fq for
all f P VpX, Y q where H : VT – C is the relevant isomorphism.

Proposition 8 allows us to refactor the existing characterization of closed Freyd categories [25,
Theorem 7.3] along the following lines. In order to include higher-order types to the language,
we would need to add A Ñ B as a new type former and the following term formation rules:

Γ, x : A $c p : B

Γ $v λx. p : A Ñ B

Γ $v w : A Γ $v v : A Ñ B

Γ $c vw : B

We then need to provide the following additional semantic clauses:
JΓ $v λx. p : A Ñ BK “ curryJΓ, x : A $c p : BK;
JΓ $c vw : BK “ curry-1JΓ $v v : A Ñ BK ˝ pid m JJΓ $v w : AKq ˝ J∆,

where JA Ñ BK “ JAK⊸ JBK, ⊸ : |V| ˆ |C| Ñ |C|, and curry is an isomorphism

curry : CpJpX ˆ Aq, Bq – VpX, A⊸ Bq (4)

natural in X. In particular, this says that J is left adjoint to 1⊸ p--q, which, as we have seen
in Proposition 4, means that C is isomorphic to the Kleisli category of a strong monad T,
and hence (4) amounts to VpX ˆ A, TBq – VpX, A ⊸ Bq, i.e. to the existence of Kleisli
exponentials, which are exponentials of the form pTBqA. We thus obtain the following

▶ Corollary 9. Let pV, C, Jp--q, mq be a Freyd category. The following are equivalent:
an isomorphism (4) natural in X exists;
for all A P |V|, Jp-- ˆAq : V Ñ C is a left adjoint;
C is isomorphic to a Kleisli category of a strong monad, and Kleisli exponentials exist.

A yet another way to express (4) is to state that the presheaves CpJp-- ˆAq, Bq : Vop Ñ Set
are representable. We will use this formulation in our subsequent analysis of guardedness.
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5 Guarded Freyd Categories

We proceed to recall the formal notion of guardedness [19, 24].

▶ Definition 10 (Guardedness). A guardedness predicate on a co-Cartesian category C
provides for all X, Y, Z P |C| a subset C‚pX, Y, Zq Ď CpX, Y ` Zq, whose elements we write
as f : X Ñ Y ⟩⟩⟩ Z and call guarded (in Z), such that

(trv‚) f : X Ñ Y

inl ˝f : X Ñ Y ⟩⟩⟩ Z
(par‚) f : X Ñ V ⟩⟩⟩ W g : Y Ñ V ⟩⟩⟩ W

rf, gs : X ` Y Ñ V ⟩⟩⟩ W

(cmp‚) f : X Ñ Y ⟩⟩⟩ Z g : Y Ñ V ⟩⟩⟩ W h : Z Ñ V ` W

rg, hs˝f : X Ñ V ⟩⟩⟩ W

A guarded category is a category, equipped with a guardedness predicate. A guarded functor
between two guarded categories is a functor F : C Ñ D that strictly preserves coproducts, and
preserves guardedness in the following sense: f P C‚pX, Y, Zq entails f P D‚pFX, FY, FZq.

Intuitively, C‚pX, Y, Zq axiomatically and compositionally distinguishes those morphisms
X Ñ Y ` Z for which the program flow from X to Z is guarded, in particular, if X “ Z

then the corresponding guarded loop can be safely closed. Note that the standard (total)
iteration is an instance with C‚pX, Y, Zq “ CpX, Y ` Zq. Consider other instances.

▶ Example 11 (Vacuous Guardedness [18]). The least guardedness predicate is as follows:
C‚pX, Y, Zq “ {inl ˝f : X Ñ Y ` Z | f P CpX, Y q}. Such C is called vacuously guarded.

▶ Example 12 (Coalgebraic Resumptions). Let T be a monad on a co-Cartesian category V
and let H : V Ñ V be an endofunctor such that all fixpoints THX “ νγ. T pX ` Hγq

exist. These extend to a monad TH , called the (generalized) coalgebraic resumption monad
(transform) of T [30, 19]. The Kleisli category of TH is guarded with f : X Ñ Y ⟩⟩⟩ Z if

X T pY ` HTHpY ` Zqq

THpY ` Zq T ppY ` Zq ` HTHpY ` Zqq

g

f T pinl `idq

out

for some g : X Ñ T pY ` HTHpY ` Zqq. Guarded iteration operators canonically extend from
T to TH [24].

▶ Example 13 (Algebraic Resumptions). A simple variation of the previous example involves
least fixpoints T HX “ µγ. T pX ` Hγq instead of the greatest ones and in-1 instead of out
where in : T pX ` HT HXq Ñ T HX is the initial algebra structure of T HX, which is an
isomorphism by Lambek’s lemma. However, we can no longer generally induce non-trivial
(guarded) iteration operators for TH .

▶ Example 14. Let us describe natural guardedness predicates on the Kleisli categories of
monads from Example 5.
1. TX “ νγ. PωppX ` 1q ` A ˆ γq is a special case of Example 12.
2. For TX “ PpA‹ˆpX`1q`A‹q, let f : X Ñ Y ⟩⟩⟩ Z if for every x P X, inlpw, inl inr yq P fpxq

entails w ‰ ϵ.
3. For TX “ PpA‹ ˆ pX ` 1q ` pA‹ ` Aωqq guardedness is defined as in clause 2.
4. For TX “ pνγ. X ˆ S ` γ ˆ SqS , recall that SetT is isomorphic to a full subcategory of

the Kleisli category of νγ. p-- `γ ˆ Sq, which is again an instance of Example 12 with
TX “ X and HX “ X ˆ S. The guardedness predicate for T thus restricts accordingly.

5. For TX “ pRě0 ˆ Xq ` R̄ě0 let f : X Ñ Y ⟩⟩⟩ Z if fpxq “ inl pr, inr zq implies r ą 0.
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x : A in Γ
Γ $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B ⟩⟩⟩ C P Σc Γ $v v : A

Γ $c fpvq : B ⟩⟩⟩ C

Γ $v v : A

Γ $c return v : A ⟩⟩⟩ B

Γ $c p : A ⟩⟩⟩ B Γ, x : A $c q : C ⟩⟩⟩ D Γ, y : B $c r : C ` D ⟩⟩⟩ 0
Γ $c docase p of inl x ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩ D

Γ $v v : 0
Γ $v init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B Γ, x : A $c p : C ⟩⟩⟩ D Γ, y : B $c q : C ⟩⟩⟩ D

Γ $c case v of inl x ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩ D

Γ $v v : A Γ $v w : B

Γ $v ⟨v, w⟩ : A ˆ B

Γ $v p : A ˆ B Γ, x : A, y : B $c q : C ⟩⟩⟩ D

Γ $c case p of ⟨x, y⟩ ÞÑ q : C ⟩⟩⟩ D

Figure 4 Term formation rules of guarded FGCBV.

We proceed to extend the language of Figure 3 with guardedness data. As before, Σv consists
of constructs of the form f : A Ñ B, while Σc consists of constructs of the form f : A Ñ B ⟩⟩⟩ C.
In Figure 4 we display the new formation rules that replace their counterparts from Figure 3.
The rule for return corresponds to the (trv‚) rule. The rule for do now handles the guarded
and unguarded branches, as prescribed by the (cmp‚) rule, that is,

docase p of inl x ÞÑ q ; inr y ÞÑ r

is meant to have the same semantics as do z Ð p; case z of inl x ÞÑ q ; inr y ÞÑ r, modulo
guardedness information. The rule (par‚) corresponds to the rule for case, which is essentially
unchanged w.r.t. Figure 3. Note that a guarded iteration operator could be added with the
following rule:

Γ $c p : A ⟩⟩⟩ 0 Γ, x : A $c q : B ⟩⟩⟩ C ` A

Γ $c iter x Ð p; q : B ⟩⟩⟩ C

The rule (par‚) corresponds to the rule for case. For every Γ $c p : A ⟩⟩⟩ B ` C we can
construct

Γ $c docase p of inl x ÞÑ returnpinl xq;
inr z ÞÑ case z of inl x ÞÑ returnpinl inr xq;

inr y ÞÑ returnpinr yq : A ` B ⟩⟩⟩ C,

which means that weakening the guardedness guarantee is expressible.

▶ Example 15. The updated effectful signature of Example 1 now involves a : 1 Ñ 0 ⟩⟩⟩ 1
and toss : 1 Ñ 2 ⟩⟩⟩ 0, indicating that actions guard everything, while nondeterminism guards
nothing. The signature Σc from Example 2 can be refined to {put : S Ñ 0 ⟩⟩⟩ 1, get : 1 Ñ S ⟩⟩⟩ 0},
meaning again that put guards everything and get guards nothing. Example 3 is more subtle
since wait : Rě0 Ñ Rě0 is meant to be guarded only for non-zero inputs. We thus can embed
the involved case distinction into wait by redefining it as wait : Rě0 Ñ Rě0 ⟩⟩⟩ Rě0.

▶ Definition 16 (Guarded Freyd Category). A distributive Freyd category pV, C, Jp--q, mq is
guarded if C is guarded and the action of V on C preserves guardedness in the following
sense: Given f P VpA, Bq, g P C‚pX, Y, Zq, J dist ˝pf m gq P C‚pA ˆ X, B ˆ Y, B ˆ Zq.
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The semantics of pΣv, Σcq over a guarded Freyd category pV, C, Jp--q, mq interprets types and
operations from Σv as before and sends each f : A Ñ B ⟩⟩⟩ C P Σc to JfK P C‚pJAK, JBK, JCKq.
Terms in context are interpreted as JΓ $v v : BK P VpJAK, JBKq and JΓ $c p : B ⟩⟩⟩ CK P

CpJAK, JBK ` JCKq as follows:
Jx1 : A1, . . . , xn : An $v xi : AiK “ inji;
JΓ $v fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c fpvq : BK “ JfK ˝ JJΓ $v v : AK;
JΓ $c return v : A ⟩⟩⟩ BK “ J inl ˝JJΓ $v v : AK;
JΓ $c docase p of inl x ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩ DK

“
[
JΓ, x : A $c q : C ⟩⟩⟩ DK, Jrid, !s ˝ JΓ, y : B $c r : C ` D ⟩⟩⟩ 0K

]
˝ J dist ˝pid m JΓ $c p : A ⟩⟩⟩ BKq ˝ ∆;

JΓ $v init v : AK “ !;
JΓ $v inl v : A ` BK “ inl ˝JΓ $v v : AK;
JΓ $v inr v : A ` BK “ inr ˝JΓ $v v : BK;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩ DK

“
[
JΓ, x : A $c p : C ⟩⟩⟩ DK, JΓ, y : B $c q : C ⟩⟩⟩ DK

]
˝ J dist ˝pid m JJΓ $v v : A ` BKq ˝ J∆.

JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨JΓ $v v : AK, JΓ $v w : BK⟩.
This is well-defined, which can be easily shown by structural induction:

▶ Proposition 17. For any derivable Γ $c p : A ⟩⟩⟩ B, JΓ $c p : A ⟩⟩⟩ BK P C‚pJAK, JBK, JCKq.

6 Representing Guardedness

In Section 4 we explored the combination of strength (i.e. multivariable contexts) and
representability of presheaves CpJp--q, Xq : Vop Ñ Set, sticking to the bottom face of
the cube in Figure 1. Our plan is to obtain further concepts via representability
of C‚pJp--q, X, Y q : Vop Ñ Set. Note that representability of guardedness jointly with func-
tion spaces amounts to representability of C‚pJp-- ˆXq, Y, Zq : Vop Ñ Set, i.e. existence of
an endofunctor⊸ : Vop ˆ C ˆ C Ñ C, such that C‚pJp-- ˆXq, Y, Zq – Vp--, X ⊸Z Y q. This
is exactly the structure, one would need to extend Figure 4 with function spaces as follows:

Γ, x : A $c p : B ⟩⟩⟩ C

Γ $v λx. p : A ÑC B

Γ $v w : A Γ $v v : A ÑC B

Γ $c vw : B ⟩⟩⟩ C

The decorated function spaces A ÑC B then can be interpreted as JAK⊸JCK JBK, which is a
subobject of the Kleisli exponential JAK Ñ T pJBK ` JCKq, consisting of guarded morphisms.

▶ Definition 18. Given J : V Ñ C, where C is guarded co-Cartesian, we call the guardedness
predicate C‚ J-representable if for all X, Y P |C| the presheaf C‚pJp--q, X, Y q : Vop Ñ Set is
representable; C‚ J-guarded if it is equipped with a J-representable guardedness predicate.

J-representability means that for all X, Y P |C| there is UpX, Y q P |V| such that
C‚pJZ, X, Y q – VpZ, UpX, Y qq naturally in Z. Hence, J-representability of guardedness
entails that J is a left adjoint. This can be formulated in terms of free objects [1].

▶ Lemma 19. Given an identity-on-objects guarded functor J : V Ñ C (with V regarded as
vacuously guarded), C‚ is J-representable iff

there is a family of objects pUpX, Y q P |V|qX,Y P|C|;
there is a family of guarded morphisms pϵX,Y : UpX, Y q Ñ X ⟩⟩⟩ Y qX,Y P|C|;
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there is an operator p--q6 : C‚pZ, X, Y q Ñ VpZ, UpX, Y qq sending each f : Z Ñ X ⟩⟩⟩ Y to
the unique morphism f 6 for which the diagram

UpX, Y q

X X ` Y

ϵX,Y
Jf6

f

commutes.
These conditions entail that U is a bifunctor and that ϵX,Y is natural in X and Y .

▶ Lemma 20. If C is J-guarded co-Cartesian then J % Up--, 0q with U as in Lemma 19.

By Lemma 20, representability fails already if J fails to be adjoint. Instructive examples of
non-representability are thus only those, where J does have a right adjoint.

▶ Proposition 21. Let T be a monad over the category of sets Set with the axiom of choice.
If SetT is guarded, the guardedness predicate is representable iff every f : X Ñ T pY ` Zq is
guarded whenever all the compositions 1 ↪Ñ X

f
ÝÑ T pY ` Zq are guarded.

▶ Example 22 (Failure of Representability). In Set, let f : X Ñ Y ` Z be guarded in Z if
{z P Z | f -1pinr zq ‰ ∅} is finite. The axioms of guardedness are easy to verify. By Proposi-
tion 21, this predicate is not Id-representable, as any 1 ↪Ñ X

inr
ÝÑ 0 ` X is guarded, but inr

is not if X is infinite.

In what follows, we will be using # as a binary operation that binds stronger than monoidal
products ( b , `, . . .), so e.g. X b Y #Z will read as X b pY #Zq.

▶ Theorem 23. Given an identity-on-objects guarded J : V Ñ C, C‚ is J-representable iff
there is a bifunctor # : V ˆ V Ñ V, such that --#0 is a monad and C – V--#0;
there is a family of guarded morphisms (w.r.t. the guardedness predicate, induced by
C – V--#0) pϵX,Y : X # Y Ñ X ⟩⟩⟩ Y qX,Y P|V|, natural in X and Y ;
for every guarded f : X Ñ Y ⟩⟩⟩ Z there is unique f 7 : X Ñ Y # Z, such that the diagram

Y # Z

X pY ` Zq # 0
ϵY,Z

f7

f

commutes.

Theorem 23 provides a bijective correspondence between morphisms f : X Ñ Y ⟩⟩⟩ Z in C
and the morphisms f 7 : X Ñ Y #Z in V, representing them. Uniqueness of the f 7 is easily
seen to be equivalent to the monicity of the ϵX,Z .

7 Guarded Parametrized Monads

Theorem 23 describes guardedness as a certain bifunctor # : V ˆ V Ñ V and a family
of morphisms pϵX,Y qX,Y P|V|, so that the guardedness predicate is derivable. However, the
guardedness laws are still formulated in terms of this predicate, and not in terms of # and ϵ.
To resolve this issue, we must identify a collection of canonical morphisms, and a complete
set of equations relating them, in the sense that the guardedness laws for all derived guarded
morphisms follow from them. For example, by applying p--q7 to the composition

A#pB ` Cq
ϵA,B`C

ÝÝÝÝÝÑ pA ` pB ` Cqq#0 – ppA ` Bq ` Cqq#0
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we obtain a morphism υA,B,C : A#pB ` Cq Ñ pA ` Bq#C, which represents weakening of the
guardedness guarantee: in A#pB ` Cq the guarded part is B ` C, while in pA ` Bq#C the
guarded part is only C. It should not make a difference though if starting from A#pB`pC`Dqq

we apply υ twice or rearrange B ` pC ` Dq by associativity and subsequently apply υ only
once – the results must be canonically isomorphic, which is indeed provable. Similarly, we
will introduce further morphisms like υ and derive laws, relating them. We then prove that
the resulting axiomatization enjoys a coherence property (Theorem 25) in the style of Mac
Lane’s coherence theorem for (symmetric) monoidal categories [26],
▶ Definition 24 (Guarded Parametrized Monad). A guarded parametrized monad on a
symmetric monoidal category pV, b , Iq consists of a bifunctor # : V ˆ V Ñ V and natural
transformations

η : A Ñ A#I,

υ : A#pB b Cq Ñ pA b Bq#C, ξ : pA#Bq#C Ñ A#pB b Cq,

χ : A#B b C#D Ñ pA b Cq#pB b Dq, ζ : A#pB#Cq Ñ A#pB b Cq.

such that the following diagrams commute, where – refers to obvious canonical isomorphisms

A#pI b Cq pA b Iq#C

A#C

υ

–
–

A#pB b pC b Dqq A#ppB b Cq b Dq

pA b Bq#pC b Dq

ppA b Bq b Cq#D pA b pB b Cqq#D

–

υ

υ

υ

–

A b B A#I b B#I

pA b Bq#I pA b Bq#pI b Iq

η

η b η

χ

–

A#B b C#D C#D b A#B

pA b Cq#pB b Dq pC b Aq#pD b Bq

χ

–

χ

–

A#B b pC#D b E#F q pA#B b C#Dq b E#F

A#B b pC b Eq#pD b F q pA b Cq#pB b Dq b E#F

pA b pC b Eqq#pB b pD b F qq ppA b Cq b Eq#ppB b Dq b F q

id#χ

–

χ#id

χ χ

–

pA#Iq#B A#pI b Bq

A#B

ξ

η#id –

A#pB#Iq A#pB b Iq

A#B

ζ

id#η –

A#ppB#Cq#pD#Eqq

A#ppB#Cq b pD#Eqq A#ppB#Cq#pD b Eqq

A#ppB b Dq#pC b Eqq A#pB#pC b pD b Eqqq

A#ppB b Dq b pC b Eqq – A#pB b pC b pD b Eqqq

ζ id#ζ

id#χ id#ξ

ζ ζ
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pA#pB#Cqq#pD#Eq

A#ppB#Cq b pD#Eqq pA#pB b Cqq#pD#Eq

A#ppB#Cq b pD#Eqq pA#pB b Cqq#pD b Eq

A#ppB b Dq b pC b Eqq – A#ppB b Cq b pD b Eqq

ξ ζ#id

id#χ id#ξ

ζ ξ

ppA#Bq#Cq b ppD#Eq#F q pA#B b D#Eq#pC b F q

A#pB b Cq b D#pE b F q ppA b Dq#pB b Eqq#pC b F q

pA b Dq#ppB b Cq b pE b F qq pA b Dq#ppB b Eq b pC b F qq

χ

ξ#ξ χ#id

χ ξ

–

pA#pB#Cqq b pD#pE#F qq pA b Dq#pB#C b E b F q

A#pB b Cq b D#pE b F q pA b Dq#ppB b Eq#pC b F qq

pA b Dq#ppB b Cq b pE b F qq pA b Dq#ppB b Eq b pC b F qq

ζ#ζ

χ

id#χ

χ ζ

–

pA#Bq#pC#D b E#F q pA#B b C#Dq#pE#F q

pA#Bq#ppC b Eq#pD b F qq ppA b Cq#pB b Dqq#pE#F q

pA#Bq#ppC b Eq b pD b F qq ppA b Cq#pB b Dqq b pE#F q

A#pB b ppC b Dq b pE b F qqq pA b Cq#ppB b Dq b pE b F qq

A#pC b ppB b Dq b pE b F qqq pA b Cq#ppB b Dq b pE b F qq

υ

id#χ χ#id

ζ ζ

ξ ξ

–

υ

A#B b C#pD b Eq A#B b pC b Dq#E

pA b Cq#pB b pD b Eqq pA b pC b Dqq#pB b Eq

pA b Cq#pD b pB b Eqq ppA b Cq b Dqq#pB b Eq

id b υ

χ χ

– –

υ

A#pB#pC b Dqq A#ppB b Cq#Dq

A#pB b pC b Dqq A#ppB b Cq b Dq

id#υ

ζ ζ

–

pA#pB b Cqq#D ppA b Bq#Cq#D

A#ppB b Cq b Dq pA b Bq#pC b Dq

A#pB b pC b Dqq pA b Bq#pC b Dq

υ#id

ξ ξ

–

υ
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The value of the presented axiomatization is attested by the following

▶ Theorem 25 (Coherence). Let E1, E2 and E2 be expressions, built from b ,#and I over a set
of letters, in such a way that E1 and E2#E 1

2 contain each letter at most once and neither E2 nor
E 1

2 contain #. Given two expressions f and g built from b and # over identities, associators,
unitors, braidings, η, υ, ξ, ζ, χ, in such a way that formally f, g : E1 Ñ E2#E 1

2, then f “ g

follows from the axioms of guarded parametrized monads.

Proof Sketch. Let us refer to the described expressions E1 as object expressions and to f

formed as described as morphism expressions. For two morphism expressions f, g : E Ñ E1,
let f ” g denote ‘f “ g follows from the axioms of guarded parametrized monads‘. An object
expression is normal if it is of the form E #E 1 and E and E 1 do not contain #. For an object
expression E , we define object expressions nf1pEq and nf2pEq recursively with the clauses:

nf1pEq “ E , nf2pEq “ I if E “ I or E is a letter;
nf1pE b E 1q “ nf1pEq b nf1pE 1q, nf2pE b E 1q “ nf2pEq b nf2pE 1q;
nf2pE #E 1q “ nf1pEq, nf2pE b E 1q “ nf1pE 1q b pnf2pEq b nf2pE 1qq.

Let nfpEq “ nf1pEq#nf2pEq, so nfpEq is normal. For any object expression E we also define a
normalization morphism expression nmpEq : E Ñ nfpEq, by induction as follows:

nmpEq “ η if E “ I or E is a letter;
nmpE b E 1q “ χ ˝ pnmpEq b nmpE 1qq;
nmpE #E 1q “ ξ ˝ ζ ˝ pnmpEq#nmpE 1qq.

The goal will follow from the following subgoals.
1. If a morphism expression f : E Ñ E 1 does not contain υ then nmpE 1q ˝ f ” nmpEq ˝ g for

a suitable isomorphism g, constructed from b , # and the coherent isomorphisms of the
monoidal structure.

2. If a morphism expression f : E Ñ E 1 does not contain η, ξ, ζ, χ then there exists
g : nfpEq Ñ nfpE 1q that also does not contain η, ξ, ζ, χ and such that nmpE 1q˝f ” g˝nmpEq.

3. If f, g : E Ñ E 1, E is a normal object expression and g and f do not contains η, ξ, ζ and
χ then f ” g.

Indeed, given f, g : E Ñ E 1 with normal E 1, to prove f ” g, it suffices to prove that f is
equal to E nmpEq

ÝÝÝÝÑ nfpEq
f 1

ÝÑ E 1 for a suitable f 1 – the analogous statement would be true
for g, and we would be done by 3. Let us represent f as a composition fn ˝ . . . ˝ f1 where
every fi with even i contains precisely one occurrence of υ and every fi with odd i contains
no occurrences of υ. We obtain

E E1 E2 En

nfpEq nfpE1q nfpE2q nfpEnq

nmpEq

f1

nmpE1q

f2

nmpE2q

. . .

nfpEnq

– . . .

where every odd diagram commutes by 1 and every even diagram commutes by 2. Note
that nfpEnq is an isomorphism, since En “ E 1 is normal, and therefore we obtain the desired
presentation for f . Let us show the subgoals.
1. W.l.o.g. assume that f contains precisely one letter from the list η, ξ, ζ, χ, ρ, λ, α, γ

where ρ, λ are the right and left unitors of b , α is the associator and γ is braiding.
The general case will follow by induction. Furthermore, by structural induction over
E , we restrict to the situation that f P {η, ξ, ζ, χ, ρ, λ, α, γ}. The rest follows by case
distinction.

2. Again, w.l.o.g. f contains precisely one occurrence of υ. The reduction to f “ υ, runs by
structural induction over E and in contrast to the previous clause relies on the diagrams,
combining υ with ξ, ζ and χ correspondingly.
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3. Observe that f is a composition of morphisms of the form β ˝ h ˝ α where α and β

are coherent isomorphisms and h contains one occurrence of υ. By induction, using
the properties of υ we can reduce to the case f “ α ˝ h ˝ β and analogously, we can
reduce to g “ α1 ˝ h1 ˝ β1. It is then easy to see that h and h1 are equal up to a coherent
isomorphism, and the desired equality f ” g follows by coherence for symmetric monoidal
categories. ◀

The present version is sufficient for our purposes. It is an open question if a stronger
version with general f, g : E1 Ñ E2 can be proven. In the sequel, we will only deal with
guarded parametrized monads over pV, `, 0q. Recall that a parametrized monad [37] is a
bifunctor T : V ˆ V Ñ V, such that each T p--, Xq is a monad and each T p--, fq is a monad
morphism.

▶ Proposition 26. Every guarded parametrized monad is a parametrized monad with A
η

ÝÑ

A#0 id#!
ÝÝÑ A#B as unit and pA#Bq#B

ξ
ÝÑ A#pB ` Bq

id#∇
ÝÝÝÑ A#B as multiplication.

Proof Sketch. The proof essentially follows from coherence. For example, consider the
associativity monad law µA,B ˝ µA#B,B “ µA,B ˝ pµA,B#Bq. On the one hand (by naturality),

µA,B ˝ µA#B,B “ pA#∇q ˝ ξA,B,B ˝ ppA#Bq#∇q ˝ ξA#B,B,B

“ pA#∇q ˝ pA#pB ` ∇qq ˝ ξA,B,B`B ˝ ξA#B,B,B

“ pA#p∇ ˝ pB ` ∇qqq ˝ ξA,B,B`B ˝ ξA#B,B,B .

On the other hand,

µA,B ˝ pµA,B #Bq “ pA#∇q ˝ ξA,B,B ˝ ppA#∇q ˝ ξA,B,B #Bq

“ pA#∇q ˝ pA#p∇ ` Bqq ˝ ξA,B`B,B ˝ pξA,B,B #Bq

“ pA#p∇ ˝ p∇ ` Bqqq ˝ ξA,B`B,B ˝ pξA,B,B #Bq.

By coherence, ξA,B,B`B ˝ ξA#B,B,B and ξA,B`B,B ˝ pξA,B,B#Bq are equal up to the canonical
isomorphism pB ` Bq ` B – B ` pB ` Bq and hence the expressions we computed above are
equal as well. ◀

▶ Theorem 27. Given co-Cartesian V and an identity-on-object functor J : V Ñ C strictly
preserving coproducts, C is guarded and C‚ is representable iff C – V--#0 for a guarded
parametrized monad p#, η, υ, χ, ξ, ζq, the compositions υX,Y,0 ˝ pid# inlq are all monic and
f : X Ñ Y ⟩⟩⟩ Z iff f factors through Y #pZ ` 0q

υ
ÝÑ pY ` Zq#0.

Vacuous guardedness is clearly representable and by Theorem 27 corresponds to those guarded
parametrized monads #, which do not depend on the parameter, i.e. to monads.

▶ Example 28. Let us revisit Example 12. Let X # Y “ T pX ` HTHpX ` Y qq, and note
that -- #0 is isomorphic to TH . Assuming existence of some morphism p : 1 Ñ H1, for every X,
we obtain the final map p̂ : 1 Ñ THX, induced by the coalgebra map 1 η˝inr ˝p

ÝÝÝÝÝÑ T pX ` H1q.
Now, T pinl `idq is a section, since T rid ` Hp̂ ˝ p ˝ !, inrs ˝ T pinl `idq is the identity. By
Theorem 23, # is a guarded parametrized monad.

▶ Example 29. Let us revisit Example 14. Let X # Y “ Rě0 ˆ X ` Rą0 ˆ Y ` R̄ě0. Then
X # 0 – Rě0 ˆ X ` R̄ě0 and there is an obvious injection ϵX,Y from X # Y to pX ` Y q # 0.
By definition, every guarded f : X Ñ Y # Z uniquely factors through ϵY,Z , and hence # is a
guarded parametrized monad.

FSCD 2023
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▶ Definition 30 (Strong Guarded Parametrized Monad). A guarded parametrized monad p#, η,

υ, χ, ξ, ζq is strong, if # is strong as a monad in the first argument and as a functor in the
second argument, and the diagram

X ˆ pY #Zq X ˆ pY ` Zq#0 pX ˆ pY ` Zqq#0 pX ˆ Y ` X ˆ Zq#0

pX ˆ Y q#Z pX ˆ Y ` Zq#0

idˆϵ

τ

τ dist#0

pid`sndq#0

ϵ

commutes, where ϵX,Y “ υX,Y,0 ˝ pid#inlq and τ is the monadic strength of #.

▶ Remark 31. Strength is commonly referred to as a “technical condition”. This is justified
by the fact that in self-enriched categories strength is equivalent to enrichment of the
corresponding functor or a monad [21], and in foundational categories, like Set, every functor
and every natural transformation are canonically enriched w.r.t. Cartesian closeness as
the self-enrichment structure. Then canonical strength ρX,Y : X ˆ FY Ñ F pX ˆ Y q for a
functor F is defined by the expression ρX,Y “ λpx, zq. F pλy. px, yqqpzq. We conjecture that
strengths involved in Definition 30 are technical in the same sense, in particular the requested
commutative diagram is entailed by enrichment of ϵ.
Finally, let us establish the analogue of Theorem 27 for Freyd categories.

▶ Theorem 32. A Freyd category pV, C, Jp--q, mq is guarded and C‚ is representable iff
C – V--#0 for a strong guarded parametrized monad p#, η, υ, χ, ξ, ζq, the compositions υX,Y,0 ˝

pid#inlq are all monic and f : X Ñ Y ⟩⟩⟩ Z iff f factors through Y #pZ ` 0q
υ

ÝÑ pY ` Zq#0.

For a strong guarded parametrized monad #, let ~
τ be the composition

X ˆ pY #Zq
∆ˆid

ÝÝÝÑ pX ˆ Xq ˆ pY #Zq – X ˆ pX ˆ pY #Zqq

idˆρ
ÝÝÝÑ X ˆ pY #pX ˆ Zqq

τ
ÝÑ pX ˆ Y q#pX ˆ Zq

where τ is the monadic strength of # and ρ is the functorial strength of #. It is easy to check
that τ and ρ are derivable from ~

τ , and in the sequel, we will include it as the last element
in a tuple p#, η, υ, χ, ξ, ζ,

~
τq, defining a strong guarded parametrized monad.

Finally, we can interpret the guarded version of FGCBV over a strong guarded para-
metrized monad p#, η, υ, χ, ξ, ζ,

~
τq on V. Let sorts and function symbols from Σv be

interpreted as usual and let JfK P VpJAK, JBK # JCKq for f : A Ñ B ⟩⟩⟩ C P Σc. Then
JΓ $v v : BK P VpJAK, JBKq and JΓ $c p : B ⟩⟩⟩ CK P VpJAK, JBK # JCKq are defined with
the following clauses:

Jx1 : A1, . . . , xn : An $v xi : AiK “ inji;
JΓ $v fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c fpvq : BK “ JfK ˝ JΓ $v v : AK;
JΓ $c return v : A ⟩⟩⟩ BK “ ηJAK,JBK ˝ JΓ $v v : AK;
JΓ $c docase p of inl x ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩ DK “ p∇#∇q ˝ ξJCK,JDK,JCK`JDK

˝ ζJCK#JDK,JCK,JDK ˝ pJΓ, x : A $c q : C ⟩⟩⟩ DK#JΓ, y : B $c r : C ⟩⟩⟩ DKq

˝
~
τ JΓK,JAK,JBK ˝ ⟨id, JΓ $c p : A ⟩⟩⟩ BK⟩;

JΓ $v init v : AK “ !;
JΓ $v inl v : A ` BK “ inl ˝JΓ $v v : AK;
JΓ $v inr v : A ` BK “ inr ˝JΓ $v v : BK;
JΓ $c case v of inl x ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩ DK “ p∇#∇q ˝ χJCK,JDK,JCK,JDK

˝ pJΓ, x : A $c p : C ⟩⟩⟩ DK ` JΓ, y : B $c q : C ⟩⟩⟩ DKq ˝ dist ˝⟨id, JΓ $v v : A ` BK⟩.
JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨JΓ $v v : AK, JΓ $v w : BK⟩.
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Note that what allows us to sidestep the monicity condition of the representability criterion
(Theorem 27) is that we gave up on the assumption that the space of guarded morphisms
X Ñ Y #Z injectively embeds to the space of all morphisms X Ñ pY ` Zq#0, in particular,
the entire notion of guardedness predicate is eliminated.

8 Conclusions and Further Work

We investigated a combination of FGCBV and guardedness by taking inspiration from the
previous work on relating Freyd categories with strong monads via a natural requirement
of representability of certain presheaves. An abstract notion of guardedness naturally fits
the FGCBV paradigm and gives rise to more general formats of presheaves, which must
be representable e.g. in order to be able to interpret higher-order (guarded) functions. In
our case, the representability requirement gave rise to a novel categorical structure, we
dub (strong) guarded parametrized monad, which encapsulate computational effects under
consideration, simultaneously with guardedness guarantees.

We regard our present results as a prerequisite step for implementing guarded programs
in existing higher-order languages, such as Haskell, and in proof assistants with strict support
of the propositions-as-types discipline, such as Coq and Agda, where unproductive recursive
definitions cannot be implemented directly, and thus the importance of guarded iteration is
particularly high. It would be interesting to further refine guarded parametrized monads so
as to include further quantitative information on how productive a computation is, or how
unproductive it is, so that this relative unproductivity could possibly be cancelled out by
composition with something very productive. Another strand for future work comes from
the observation that guarded iteration is a formal dual of guarded recursion [18]. A good
deal of the present theory can be easily dualized, which will presumably lead to guarded
parametrized comonads and comonadic recursion – we are planning to investigate these
structures from the perspective of comonadic notion of computation [38]. In terms of syntax,
a natural extension of fine-gain call-by-value is call-by-push-value [22]. We expect it to be a
natural environment for analysing the above mentioned aspects in the style of the presented
approach.
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