
Automata-Based Verification of Relational
Properties of Functions over Algebraic Data
Structures
Théo Losekoot #

Université de Rennes, IRISA, France

Thomas Genet #

Université de Rennes, IRISA, France

Thomas Jensen #

Inria, Université de Rennes, France

Abstract
This paper is concerned with automatically proving properties about the input-output relation of
functional programs operating over algebraic data types. Recent results show how to approximate
the image of a functional program using a regular tree language. Though expressive, those techniques
cannot prove properties relating the input and the output of a function, e.g., proving that the output
of a function reversing a list has the same length as the input list. In this paper, we built upon
those results and define a procedure to compute or over-approximate such a relation. Instead of
representing the image of a function by a regular set of terms, we represent (an approximation
of) the input-output relation by a regular set of tuples of terms. Regular languages of tuples of
terms are recognized using a tree automaton recognizing convolutions of terms, where a convolution
transforms a tuple of terms into a term built on tuples of symbols. Both the program and the
properties are transformed into predicates and Constrained Horn clauses (CHCs). Then, using
an Implication Counter Example procedure (ICE), we infer a model of the clauses, associating to
each predicate a regular relation. In this ICE procedure, checking if a given model satisfies the
clauses is undecidable in general. We overcome undecidability by proposing an incomplete but sound
inference procedure for such relational regular properties. Though the procedure is incomplete, its
implementation performs well on 120 examples. It efficiently proves non-trivial relational properties
or finds counter-examples.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Formal languages and automata theory

Keywords and phrases Formal verification, Tree automata, Constrained Horn Clauses, Model
inference, Relational properties, Algebraic datatypes

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.7

Supplementary Material Software: https://gitlab.inria.fr/tlosekoo/auto-forestation
archived at swh:1:dir:e25762023e1b0ed4326ca177d1084f71244c5b8d

Dataset: http://people.irisa.fr/Thomas.Genet/AutoForestation/

1 Introduction

This paper is concerned with automatically proving properties about the input-output re-
lation of functional programs operating over algebraic datatypes. We explore an approach
in which both programs and properties are represented as Constrained Horn Clauses [2],
i.e., Horn clauses with additional constraints expressed in an underlying theory. Using such
representation, proving a property of a program is reduced to finding a model of the combined
set of Horn clauses that represent the program and the property. We illustrate this using
an example where we define the type of natural numbers and natural numbers lists, and

© Théo Losekoot, Thomas Genet, and Thomas Jensen;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:theo.losekoot@irisa.fr
mailto:thomas.genet@irisa.fr
https://orcid.org/0000-0002-2145-3370
mailto:thomas.jensen@inria.fr
https://orcid.org/0000-0002-4064-7170
https://doi.org/10.4230/LIPIcs.FSCD.2023.7
https://gitlab.inria.fr/tlosekoo/auto-forestation
https://archive.softwareheritage.org/swh:1:dir:e25762023e1b0ed4326ca177d1084f71244c5b8d;origin
http://people.irisa.fr/Thomas.Genet/AutoForestation/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Automata-Based Verification of Relational Properties of Functions over Trees

two recursive functions, len computing the length of a list and less checking if a natural
number is strictly less than another. We aim at (automatically) proving the logical properties
∀x l. less Z (len Cons(x, l)) and ∀x l. less (len l) (len Cons(x, l)). Here are the program
in Ocaml-like syntax, the logical formulas for properties and their equivalent CHC repres-
entation. Note that n-ary functions (like unary len) are translated into n+ 1-ary relations
(like binary Len). Because of this extra argument, we add a functionality constraint (the
third clause of Len) for ensuring that the relation represents exactly the function. Without
this functionality constraint, we could e.g. have a model where Len(Nil, S(Z)) is true. Arity
of predicates, like the binary less, do not change: Less is binary. In this case, we cannot
use functionality constraint because the result is not reified. Instead, we use bi-implication
to exclude all elements which are not in the relation defined by the OCaml function, e.g.,
exclude Less(S(S(Z)), S(Z)).

type nat = Z | S of nat
type n a t l i s t = Ni l | Cons of nat ∗ n a t l i s t

let rec l en (l : n a t l i s t) =
match l with
| N i l −> Z
| Cons (h , t) −> S (l en t)

Len(Nil, Z).
Len(l, n) ⇒ Len(Cons(x, l), S(n)).
Len(l, n1) ∧ Len(l, n2) ⇒ n1 = n2.

let rec l e s s (n : nat) (m : nat) =
match (n , m) with
| Z , S (_) −> true
| _, Z −> f a l s e
| S (n1) , S (m1) −> l e s s n1 m1

Less(Z, S(m)).
Less(n, Z) ⇒ False.

Less(n, m) ⇐⇒ Less(S(n), S(m)).

∀x l. less Z (len (Cons(x, l)))
∀x l. less (len l) (len Cons(x, l))

Len(Cons(x, l), n) ⇒ Less(Z, n).
Len(l, n) ∧ Len(Cons(x, l), n′) ⇒ Less(n, n′).

Our goal is thus to automatically infer a model of this set of clauses, i.e., solve the satisfiab-
ility problem for Constrained Horn Clauses over the theory of inductive datatypes. Tree
automata [6] are a well-know formalism to represent, approximate, and infer models on
functional programs [17, 11] or even on CHCs [16]. In all those works, the inferred model is
not relational, i.e., it only consists of a regular set of unrelated terms. For instance, in our
example, the first property ∀x l. less Z (len (Cons(x, l))) is not relational and can thus be
proven using regular sets like [16, 11, 17] do. To perform the proof, the solvers only need
to consider two regular languages: Llists containing all lists of natural numbers and LCons+
containing all non-empty lists of natural numbers. Then, the proof is carried out by showing
that if l ∈ Llists then, for any natural number x, the term Cons(x, l) belongs to LCons+.
Finally, since any list l′ ∈ LCons+ have a length strictly greater than 0 then the property is
true.

On the opposite, the second property, ∀x l. less (len l) (len Cons(x, l)), is relational
and, thus, out of the scope of the aforementioned approaches. We still have that if l ∈ Llists

then cons(x, l) ∈ LCons+ but for any l ∈ Llists and any l′ ∈ LCons+ we cannot prove that
less (len l) (len l′). To preserve the relation between the two occurrences of the list l, we
use convoluted automata [6] which can represent regular relations between terms. We build
upon the preliminary results obtained in [12] and propose a sound but incomplete procedure
for inferring an automaton that represents a model of the program and the property. This
procedure is defined as an Implication Counter Example (ICE) procedure [8].

T. Losekoot, T. Genet, and T. Jensen 7:3

Contributions

Definition of a sound model-checking procedure for CHCs on convoluted tree automata.
We propose two sound optimisations of this procedure so as to make it efficient in practice;
Definition of an ICE procedure for inferring models of CHCs;
Definition of a specific over-approximation technique enlarging the class of properties
which can be proved using regular models on CHCs programs;
Implementation of the ICE procedure;
On more than 120 examples, we show that our implementation automatically proves and
disproves non-trivial examples.

This paper is organised as follows: In Section 2, we give an overview demonstrating the
verification technique presented in this paper. In Section 3, we introduce the notions and
notations. In Section 4, we briefly present how to encode functional programs into Horn
clauses. In Section 5, we present a transformation from the model-checking procedure for
CHCs into a search for a proof in a proof system representing the model. In Section 6, we
present our use of the proof system for an efficient search. In Section 7, the ICE-procedure
for inferring a model is defined. In Section 8, we present our approximation method. In
Section 9, we discuss implementation-specific details and experiments. In Section 10, we
present related work. Finally, we conclude in Section 11.

2 An overview of the verification procedure on an example

We continue our example of Section 1. We first give more details about the proof of the
non-relational property ∀x l. less Z (len (Cons(x, l))). To represent the set Llists containing
all lists of natural numbers and the set LCons+ containing all non-empty lists of natural
numbers, we use tree automata. Tree automata recognize sets of terms into states using
transitions. E.g., a tree automaton with states {qnat, qNil, qCons+} and transitions {Z() →
qnat, S(qnat) → qnat, Nil() → qNil, Cons(qnat, qNil) → qCons+, Cons(qnat, qCons+) →
qCons+} recognizes Nil into the state qNil and any non-empty list of naturals into the
state qCons+. To recognize a term, transitions are used to rewrite the term into a state,
e.g, Nil → qNil, and Cons(S(Z), Nil) →∗ Cons(S(qnat), qNil) → Cons(qnat, qNil) →
qCons+. Similarly Cons(Z,Cons(S(S(Z)), Nil)) →∗ qCons+. To prove the property
∀x l.less Z (len (Cons(x, l))) using such an automaton, it is enough to show that if l
belongs to Llists (whose terms are recognized by qNil or qCons+), then Cons(x, l) belongs to
LCons+ (whose terms are recognized by qCons+). Using another automaton for Less, it is
possible to show that (len l′), with l′ recognized by qCons+, belongs to the language Lpos of
strictly positive natural numbers, whereas (len Nil) belongs to the language {Z}.

Now, we present a complete overview of our verification procedure for proving the second
property ∀x l. less (len l) (len Cons(x, l)) which is relational and, thus, out of the scope of
solvers like [16, 11, 17]. As shown before, the functions and the property are all translated
into a set of CHCs. In the following, we denote by C this set. Given C, we start the model
inference phase whose objective is to infer a model of this set, named M in the following.
For each relation R defined by the program, M contains an automaton AR recognizing a
language for the relation R. The model inference procedure can either

(i) succeed, i.e. find a model M satisfying C, and the properties are proved, or
(ii) fail, i.e. find a contradiction, and the properties are disproved, or
(iii) never terminates.

FSCD 2023

7:4 Automata-Based Verification of Relational Properties of Functions over Trees

This model inference is implemented as an Implication Counter-Example (ICE) procedure [8]
between two entities: a learner and a teacher. The learner’s goal is to infer a correct model
using only feedback from the teacher. The teacher’s goal is to verify if the clauses from C
satisfy M (the model proposed by the learner) and to give feedback in the form of logical
implications which are counter-examples.

Initially, M associates to each relation symbol an empty relation recognized by an empty
automaton, denoted by A∅. The relation recognized by A∅, denoted by R(A∅), is the empty
relation. On our example, the initial value for M is thus M = {Len 7→ A∅,Less 7→ A∅}.

First iteration of the learner-teacher algorithm

The learner proposes the model M = {Len 7→ A∅,Less 7→ A∅}. The teacher checks if M
satisfies each clause of C, i.e., for each φ ∈ C it checks if M |= φ. This is not true for the
clause Len(Nil, Z) which imposes that the pair (Nil, Z) is part of the relation associated
with Len. This is not the case here. Thus, the learner provides the ground clause Len(Nil, Z)
as a counter-example.

Second iteration of the learner-teacher algorithm

Starting from M = {Len 7→ A∅,Less 7→ A∅} and the counter-example Len(Nil, Z), the
learner improves M in order to add the pair (Nil, Z) into the relation associated with Len,
i.e., refines the automaton so as to recognize the pair (Nil, Z). For recognizing a relation,
we need to extend the tree automaton formalism to recognize regular sets of tuples of terms.
A solution proposed in [6] is to use a tree automaton recognizing convolutions of terms. A
convolution transforms a tuple of terms into a term built on tuples of symbols. It does so
by introducing new convoluted symbols which represent tuples of symbols. For example,
to recognize the pair (Nil, Z) we define a new symbol

〈
Nil, Z

〉
and a tree automaton A1

with the state q0 and the unique transition
〈
Nil, Z

〉
() → q0. With such an automaton,

the relation recognized by automaton A1 is R(A1) = {(Nil, Z)}. Finally, we now have
M = {Len 7→ A1,Less 7→ A∅}. Again, this model is given to the teacher which checks
if M |= C. The teacher finds out that M ̸|= Len(l, n) ⇒ Len(Cons(x, l), S(n)).
Indeed, since (Nil, Z) ∈ L(A1) we should have (Cons(i,Nil), S(Z)) ∈ L(A1) for all natural
numbers i. The teacher provides a ground instance of this clause as a counter-example, e.g.,
Len(Nil, Z) ⇒ Len(Cons(Z,Nil), S(Z)).

Third iteration of the learner-teacher algorithm: Learner part

Starting from M = {Len 7→ A1,Less 7→ A∅} and the counter-example obtained from the
previous iteration Len(Nil, Z) ⇒ Len(Cons(Z,Nil), S(Z)), the learner should refine A1
into A2 so that it also recognizes the pair (Cons(Z,Nil), S(Z)). This time, to build the
convolution we have to overlay the terms Cons(Z,Nil) and S(Z). However, because of
the different arities of Cons and S, the trees representing those two terms do not perfectly
overlap. The convolution adds a padding symbol □ to complement trees in order to have a
perfect overlap. Back to our example, with a convolution (known as right-convolution) the
tree for S(Z) becomes

S

□ Z and the convolution of
Cons

Z Nil and
S

□ Z is

〈
Cons, S

〉
〈
Z,□

〉〈
Nil, Z

〉
.

Thus, a refined automaton A2 recognizing both (Nil, Z) and (Cons(Z,Nil), S(Z)) has states
{q0, q1, q2} and transitions {

〈
Nil, Z

〉
() → q0,

〈
Z,□

〉
() → q1,

〈
Cons, S

〉
(q1, q0) → q2}. If we

declare states q0 and q2 as final (meaning that we ignore the languages recognized by non
final states) then R(A2) = {(Nil, Z), (Cons(Z,Nil), S(Z))}.

T. Losekoot, T. Genet, and T. Jensen 7:5

A last phase of the ICE learning process is to reduce the number of states of the automaton
and, doing so, possibly enlarge the recognized language. Note that this phase was skipped on
automaton A1 because it has only one state. Reducing the number of states consists in finding
state merging which are coherent w.r.t. the ground clauses sent by the teacher and coherent
w.r.t. types of recognized languages. For instance, on A2, merging q0 with q2 is possible
because both recognize pairs of lists and natural numbers. On the opposite, merging q0 with
q1 is incorrect because q0 recognize pairs of lists and q1 only recognizes a unique natural
number (omitting padding). After renaming q2 to q0, transitions of the automaton A2 become
{
〈
Nil, Z

〉
() → q0,

〈
Z,□

〉
() → q1,

〈
Cons, S

〉
(q1, q0) → q0}. Note that this automaton now

recognizes {(Nil, Z), (Cons(Z,Nil), S(Z)), (Cons(Z,Cons(Z,Nil)), S(S(Z))), . . .}, i.e.,
all pairs (l, n) where l is a list of Z whose length is n.

Conclusion of the learner-teacher algorithm

During following iterations, the learner-teacher proceed similarly to infer an automaton for
Less and to finish inferring that of Len. Finally, during the 6-th iteration, the learner ends up
on the following model M = {Len 7→ ALen,Less 7→ ALess} where ALen has final states {q0}
and the transitions {

〈
□, S

〉
(q1) → q1,

〈
□, Z

〉
() → q1,

〈
Nil, Z

〉
() → q0,

〈
Cons, S

〉
(q1, q0) →

q0}. This automaton is close to automaton A2 except that it recognizes any natural number
in place of Z in the list, i.e., it recognizes all pairs (l, n) where l is a list of natural numbers
whose length is n. The automaton ALess has the final states {q3} and the transitions
{
〈
□, Z

〉
() → q4,

〈
□, S

〉
(q4) → q4,

〈
Z, S

〉
(q4) → q3,

〈
S, S

〉
(q3) → q3}. This model is given

to the teacher which then checks that it satisfies all the clauses of C. This terminates the
verification and proves that ∀x l. less (len l) (len Cons(x, l)).

3 Prerequisites

3.1 Typed alphabet and term
▶ Definition 1 (Typed alphabet). A typed alphabet (Σ, τ,Γ) is a set of symbols Σ, a set of types
Γ, and a typing function τ which assigns to each symbol f a type τ(f) = τ1 × . . .× τn → τ0
with ∀i ∈ J0, nK, τi ∈ Γ and n ∈ N varying for each symbol f . When n = 0, the symbol is a
constant and does not take input. For f ∈ Σ and τ(f) = τ1 × . . .× τn → τ0, we say that f is
of arity n, written |f | = n, and that τ0 is the output type of f , written τout(f) = τ0. When
clear from context, we identify the tuple (Σ, τ,Γ) with Σ.

▶ Definition 2 (Term). A (typed) term t over an alphabet Σ is the data of a symbol f ∈ Σ,
called the root symbol of t and written Root(t), together with a list t1, . . . , t|f | of |f | terms,
called children of t, such that their type is compatible, i.e. τ(f) = τout(Root(t1)) × . . . ×
τout(Root(t|f |)) → τout(f). A term t is also written f(t1, . . . , t|f |). We overload τ with
τ(t) = τout(Root(t)). The set of terms over an alphabet Σ is written T (Σ).

▶ Definition 3 (Substitution). A substitution σ is a finite map between variables and terms
(which may contain variables). The application of a substitution σ to a variable x, written
σ(x), is defined as t if there exists a binding (x, t) ∈ σ and x otherwise. The application
of a substitution is generalized to terms by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). Even
more generally, a substitution can be applied to any structure containing variables. The
composition of substitution, which first applies σ1 and then σ2, is written σ1;σ2. The domain
of a substitution is the set of variables for which a binding is defined and is written dom(σ).

FSCD 2023

7:6 Automata-Based Verification of Relational Properties of Functions over Trees

A function V ars is used without definition, if unambiguous, to fetch the set of variables
contained in a structure. It can be called, for example, on a term or on a tuple of structures
containing variables.

3.2 Tree automaton
▶ Definition 4 (Tree automaton). A (bottom-up) tree automaton A = (Q,Qf ,∆) over an
alphabet Σ is given by a finite set of states Q, a set of final states Qf ⊆ Q, and a set of
transitions (or rules) ∆ such that transitions are of the form f(q1, . . . , q|f |) → q0, where
f ∈ Σ and ∀i ∈ J0, |f |K, qi ∈ Q.

▶ Definition 5 (Language recognized by an automaton). The set of terms recognized (or
accepted) in a state q of an automaton A is inductively defined as L(A, q) = {f(t1, . . . , tn) |
f(q1, . . . , qn) → q ∈ ∆ ∧

∧
i∈J1,nK ti ∈ L(A, qi)}. The language recognized by an automaton

is L(A) =
⋃

qf ∈Qf
L(A, qf).

▶ Definition 6 (Typed tree automaton). A typed tree automaton is a tree automaton whose
states are typed by types of the alphabet. We write τ(q) for the type of the state q. Transitions
have to be compatible with the types of the symbols, i.e., for any rule f(q1, . . . , qn) → q0 ∈ ∆,
τ(f) = τ(q1) × . . .× τ(qn) → τ(q0). All final states must be of the same type. The type of
the automaton, written τ(A), is the type of its final states.

We write A for the complement of the automaton A w.r.t its type, i.e., L(A) = {t | τ(t) =
τ(A)∧ t /∈ L(A)}. We also use Q, Qf , and ∆ as accessors, that is, as functions to respectively
extract states, final states, and transitions from an automaton. We usually write t or
f(t1, . . . , tn) for terms, q for a state, and A for an automaton. Tuple of elements (e1, . . . , en)
are also written e⃗ and e⃗[i] means ei.

3.3 Automata recognizing a relation
There exist multiple formalism for representing a relation on terms with an automaton. They
differ in their expressive power, closure properties, and decision procedure complexity. The
most well known are tuple automata, ground tree transducers, and automata on convoluted
terms, all described in [6]. We will pursue an approach based on automata on convoluted
terms, or simply convoluted automata.

Convoluted automata are defined w.r.t an operation called convolution which transforms
an n-tuple of terms into a unique term whose symbols are n-tuple of symbols. Intuitively,
an automaton defined on this alphabet of tuple reads n terms at the same time, thereby
recognizing a relation. The standard convolution operator amounts to overlaying the (syntax
tree of the) terms, starting from the root, and adding a padding symbol □ /∈ Σ (of type τ□)
as there is an arity mismatch between symbols. To this end, we extend any alphabet Σ to
Σ□ = Σ ∪ {□}. We call this standard convolution the left convolution, in order to distinguish
it from other convolutions, e.g. the right convolution, that has been used in section 2 and in
the rest of the paper. We first define left-convolution of a tuple of tuple, and then use it to
define convolution of terms.

▶ Definition 7 (Left-convolution).

⊕L ((e1
1, . . . , e

k1
1), . . . , (e1

n, . . . , e
kn
n)) =

(
(e1

1, . . . , e
1
n), . . . , (ek

1 , . . . , e
k
n)

)
with k = max

i∈J1,nK
(ki) and ∀i ∈ J1, nK,∀j ∈ J1, kK, ej

i = ej
i if j ≤ ki and □ otherwise

T. Losekoot, T. Genet, and T. Jensen 7:7

▶ Definition 8 (Left-convolution of terms). The n-ary left-convolution, written ⊕t
L, takes

n terms (t1, . . . , tn) on an alphabet Σ□ and returns a term ⊕t
L(t1, . . . , tn) on a convoluted

alphabet Σ⊕L
= Σ□

n whose elements are written
〈
f1, . . . , fn

〉
or f⃗ . The left-convolution of n

terms is recursively defined as:

⊕t
L(f1(⃗t1), . . . , fn(⃗tn)) =

〈
f1, . . . , fn

〉
(⊕t

L(t⃗′1), . . . ,⊕t
L(t⃗′k)) with

(
t⃗′1, . . . , t⃗

′
k

)
= ⊕L(⃗t1, . . . , t⃗n)

▶ Example 9 (Left convoluted terms). Let Σex = {Z, S,Nil, Cons}, with τ(Z) = nat,
τ(S) = nat → nat, τ(Nil) = natlist, τ(Cons) = nat× natlist → natlist, be a typed
alphabet for natural numbers and lists of natural numbers. Following are two examples of
left convolution of terms.

⊕t
L(,)S

Z

S

S

S

Z

=
〈
S, S

〉
〈
Z, S

〉
〈
□, S

〉
〈
□, Z

〉

With lex and nex as defined below,

lex = Cons lex =

Z Cons

Z Nil

nex = S nex =

S

Z

⊕t
L(lex, nex)

=〈
Cons, S

〉
〈
Z, S

〉
〈
□, Z

〉
〈
Cons,□

〉
〈
Z,□

〉 〈
Nil,□

〉
Note that, due to type constraints, T (Σ□) = T (Σ) ∪ {□}. The left-convolution ⊕t

L of n
terms is an isomorphism between T (Σ□)n and T (Σ⊕L

). Automata recognizing convoluted
terms thus recognize relations on T (Σ□)n.

▶ Definition 10 (Regular relation). A relation recognized by a tree automaton is said to be
regular. The relation recognized by automaton A is R(A) = ⊕L

−1(L(A)) = {t⃗ | ⊕L(⃗t) ∈
L(A)}. Similarly, the relation recognized by state q of A is R(A, q) = ⊕L

−1(L(A, q)).

We impose that the type of any final state qf is τ□-free, that is, τ(qf) = (τ1, . . . , τn) with
∀i ∈ Ji, nK, τi ̸= τ□. This ensures that an automaton defines a relation between terms of
T (Σ), i.e. terms without padding.

▶ Example 11 (Convoluted automata). Let A< be the automaton with states {q, qf }, of which
qf is final, and transitions {

〈
□, Z

〉
() → q,

〈
□, S

〉
(q) → q,

〈
Z, S

〉
(q) → qf ,

〈
S, S

〉
(qf) →

qf }. R(A<) is the < relation on Peano numbers and τ(A<) = nat× nat. For example, the
convolution of S(Z) and S(S(S(Z))) is recognized by this automaton, as shown below.〈

S, S
〉

〈
Z, S

〉
〈
□, S

〉
〈
□, Z

〉

〈
S, S

〉
〈
Z, S

〉
〈
□, S

〉
q

〈
S, S

〉
〈
Z, S

〉
q

〈
S, S

〉
qf

qf〈
□, Z

〉
() → q

−→

〈
□, S

〉
(q) → q

−→

〈
Z, S

〉
(q) → qf

−→

〈
S, S

〉
(qf) → qf

−→

Convolutions and their expressivity

Which relations are representable by convoluted tree automaton highly depends on the
precise datatypes definition. For example, when using the left-convolution, the Len relation
can only be represented if the Cons constructor had its arguments swapped. This is because
left-convoluting a list l and a natural number n will relate n with the left-most branch of l.
Instead of modifying constructors, we can define other convolutions. The right convolution,

FSCD 2023

7:8 Automata-Based Verification of Relational Properties of Functions over Trees

written ⊕R, is defined similarly to ⊕L but adds padding to the left of terms instead of
to the right. This right convolution is effective for proving properties relating lists and
unary natural numbers. Finally, we define the complete convolution, written ⊕C , which is
more expressive than both the left and the right convolution. This complete convolution
relates every combination of tuple’s element, which results in overlaying every same-depth
constructor when convoluting terms. The complete convolution has the advantage of not
depending on the constructor argument’s order and being able to duplicate terms, but the
drawback of generating big convoluted terms. Both convolution are extended to terms in the
same way ⊕L was.

▶ Example 12. On the left is depicted the right convolution of lex and nex (of example 11),
and on the right their complete convolution. Note how nex’s constructors have been duplicated
in the complete convolution.

⊕t
R(lex, nex)

=〈
Cons, S

〉
〈
Z,□

〉 〈
Cons, S

〉
〈
Z,□

〉 〈
Nil, Z

〉

⊕t
C(lex, nex)

=〈
Cons, S

〉
〈
Z, S

〉
〈
□, Z

〉
〈
Cons, S

〉
〈
Z,Z

〉 〈
Nil, Z

〉
Since definitions of this paper hold for any convolution, we write ⃝ for any of ⊕L, ⊕R, or
⊕C .

4 Functional programs and their logical representation

Regular models of functional programs

We consider first-order monomorphic functional programs. Such programs define a set of
functions of the form f : τ1 → . . . → τn and of the form f : τ1 → . . . → τn → bool, with each
τi being an algebraic datatype. Each of these can be viewed as a relation on τ1 × . . .× τn.
Formally, these relations constitute a (relational) first-order structure on L, with L being the
signature (the set of relation symbols together with their type). In our setting, the structures
are typed, i.e. a relation R of type τ(R) = τ1 × . . .× τn only relates terms t1, . . . , tn satisfying
∀i ∈ J1, nK, τ(ti) = τi.

▶ Definition 13 (Regular model). A regular model is a function M mapping each relation
symbol R ∈ L to an automaton AR. M denotes SM, the L-structure where every R ∈ L is
interpreted as R(AR). We naturally extend first-order semantic judgement to write M |= φ

for SM |= φ.

Regular models are close in essence to automatic structures. Automatic structures [14, 15, 10]
are a kind of recursive structures [13], which are part of the study of finite representation of
structures. Automatic structures have been studied for their decidable first-order theory. We
shall use tree automata to represent first-order structures that model functional programs.
This allows us to use specific and efficient methods for property checking.

We use Constrained Horn Clauses (CHCs) [2] as representation of our programs. CHCs
are first-order Horn clauses with additional constraints from a theory T (see example in the
Introduction). A CHC on a signature L is a closed formula of the form ∀x⃗, ψ(x⃗) ∧R1(x⃗1) ∧
. . . ∧ Rn(x⃗n) ⇒ R0(x⃗0), where ∀i ∈ J0, nK, Ri ∈ L. The formula ψ(x⃗) adds theory-related

T. Losekoot, T. Genet, and T. Jensen 7:9

constraints. The semantic judgement S |= φ is standard first-order logic (modulo theory T).
We usually leave out the universal quantifiers in front of CHCs: every variable in a formula is
implicitly universally quantified. In our setting, we use the theory of inductive datatypes [1]
over an alphabet Σ, which means that the value of variables are within T (Σ) and constraints
are of the form x = f(y⃗), where f ∈ Σ, x is a variable and y⃗ is a tuple of variables. For
simplicity, we sometimes write R(t) for x = t ∧ R(x). A ground CHC is one that has
no variables or, in our context, where every variable’s value is completely determined by
datatypes constraints (for example, x = Nil ⇒ R(x) is considered ground).

Our encoding of functional programs into clauses prevents us from using Horn clauses in
the translation of the if-then-else construct. For example, the simple translation of let f x
= if p x then e else e' yields the two clauses {P(x) ⇒ F(x, e), ¬P(x) ⇒ F(x, e′)}. We

therefore use non-Horn constrained clauses for modeling such functions. In the following,
we handle a negated literal in the body as a positive head, in disjunction with the other
heads. Other work [20] models similar programs with Horn clauses by reifying the truth of
a predicate in the terms as its last argument, allowing to negate it in the body of a clause.
Both ways of treating negation seems viable for our purpose but we have only experimented
with the first one.

5 Model-checking of regular structures

In this section, we present the procedure for checking the truth of a given CHC φ in a model
M, i.e., check if M |= φ. This model-checking fulfills the teacher role of the ICE model
inference procedure (See sections 2 and 7). This procedure is devised as a counter-example
search. A counter-example is a ground instantiation of each variable of φ, written as a ground
substitution σ, that disproves M |= φ. This procedure either returns None if M |= φ, and
otherwise Some(σ), with σ a counter-example. However, this problem is undecidable in
general, as showed in [18]. Therefore the procedure given here is correct but incomplete, that
is, it may diverge.

The model checking problem can be seen as a type checking procedure where typing rules
correspond to rules of automata.

▶ Definition 14 (Type checking instance). A typing obligation ω = [
〈
x1, . . . , xn

〉
: (A, q)]

is the data of a tuple
〈
x1, . . . , xn

〉
, with each xi being a variable or □, and of a target

type (A, q). A typing problem (E,Ω) is a set of typing obligations Ω together with a set
of constraints E, each of the form x = f(y⃗) with f a symbol of Σ. A solution for a typing
problem is a substitution σ : X → T (Σ) that satisfies every typing obligation and constraint:

σ |= (E,Ω) .= σ |= Ω ∧ σ |= E with

σ |= Ω .=
(
∀[x⃗ : (A, q)] ∈ Ω, σ(x⃗) ∈ R(A, q)

)
and

σ |= E
.=

(
∀(x = f(y⃗)) ∈ E, σ(x) = f(σ(y⃗))

)
▶ Definition 15 (Coherence of a constraint set). A set of constraints E is said to be coherent
if it admits a syntactic unifier. The most general unifier (MGU) of a coherent set E is
written σE.

Note that, given a typing problem (E,Ω) with a coherent E, any σ such that σ |= (E,Ω)
is equivalent to a σ′ such that σE ;σ′ |= Ω (by characterisation of the MGU).

FSCD 2023

7:10 Automata-Based Verification of Relational Properties of Functions over Trees

▶ Definition 16 (Model checking as type checking).
Let some CHC formula φ = ψ(x⃗) ∧R1(x⃗1) ∧ . . . ∧Rn(x⃗n) ⇒ R0(x⃗0) and model M.
The set of typing problems associated to φ and M is tp(φ,M) = {(ψ(x⃗),Ω) | Ω ∈ Ωs} with

Ωs =
{

{[x⃗1 : (A1, q1)], . . . , [x⃗n : (An, qn)], [x⃗0 : (A0, q0)]} |

A1 = M(R1) ∧ . . . ∧ An = M(Rn) ∧ A0 = M(R0) ∧ ∀i ∈ J0, nK, qi ∈ Qf (Ai)
}

The set of solutions σ to tp(M, φ) is the same as the set of counter-examples to M |= φ. In-
tuitively, for such a counter-example to exist, it should validate the atoms R1(x⃗1), . . . , Rn(x⃗n)
(i.e. be recognized by M(R1) . . . ,M(Rn)) and invalidate the atom R0(x⃗0) (i.e. be recognized
by M(R0)).

▶ Theorem 17 (Model checking as type checking).
For each model M and CHC property φ, M ̸|= φ ⇐⇒ ∃σ, ∃(E,Ω) ∈ tp(M, φ), σ |=

(E,Ω).

▶ Example 18 (Model checking a property). Let φ be Len(l, n) ⇒ Even(n), a formula stating
that all lists are of even length. Let M = {Len 7→ ALen, Even 7→ AEven} where ALen and
AEven respectively define the length relation on integer lists and the even predicate of integers.
ALen has states {qf , q}, final states {qf }, and rules {(A) :

〈
Z,□

〉
() → q, (B) :

〈
S,□

〉
(q) →

q, (C) :
〈
Cons, S

〉
(q, qf) → qf , (D) :

〈
Nil, Z

〉
() → qf }. AEven has states {qe, qo}, final

states {qe}, and rules {(1) :
〈
Z

〉
() → qe, (2) :

〈
S

〉
(qo) → qe, (3) :

〈
S

〉
(qe) → qo}.

To check whether M ̸|= φ, we first translate (M, φ) into a typing problem instance. Note
that Even appears in the head of the property φ, therefore we will need to complement
AEven. We write its complement AOdd, which is the same automaton but with final states
{qo}.

tp(M, φ) =
{

(E0,Ω0)
}

with E0 = ∅ and Ω0 =
{

[
〈
l, n

〉
: (ALen, qf)], [

〈
n

〉
: (AOdd, qo)]

}
In this case, tp(M, φ) only contains one element (as each automaton only has one final state),
therefore M ̸|= φ ⇐⇒ ∃σ, σ |= (∅,Ω0).

5.1 Proof system
A proof obligation is the assertion that some typing problem (E,Ω) admits a solution, which
is written as ⊢ (E,Ω). We first define the unfolding of typing obligations and then the proof
system. Any solution for a typing obligation ω = [

〈
x1, . . . , xn

〉
: (A, q)] can be found by

following transitions of the automaton A. A transition
〈
f1, . . . , fn

〉
(q1, . . . , qk) → q of A

(note that q is the same between the typing obligation and the rule’s goal state) can act as
a typing rule whose application generates k new typing obligations (one for each sub-state
qj of the rule) and n new algebraic datatype constraints, the ith stating that variable xi is
of the form fi(x⃗i) with x⃗i some fresh variables. We formally define this step as unfolding a
typing obligation.

▶ Definition 19 (Unfolding a typing obligation).
unfold([

〈
x1, . . . , xn

〉
: (A, q)]) = {

(
Er,Ωr

)
| r ∈ ∆(A) ∧ r =

〈
f1, . . . , fn

〉
(q1, . . . , qk) → q}

with Er = {xi = fi(x⃗i) | i ∈ J1, nK} and Ωr = {[⃝(x⃗1, . . . , x⃗n)[j] : (A, qj)] | j ∈ J1, kK} where
∀i ∈ J1, nK, x⃗i are fresh variables.

T. Losekoot, T. Genet, and T. Jensen 7:11

▶ Example 20 (Unfolding). Continuing with Example 18, we set ω1 = [
〈
l, n

〉
: (ALen, qf)]

and ω0 = [
〈
n

〉
: (AOdd, qo)]. Now, ω0 can be unfolded by rules {(3)} and ω1 by {(C), (D)}.

unfold(ω0) = {
(
E(3),Ω(3)

)
} with E(3) = {n = S(m)} and Ω(3) = [

〈
m

〉
: (AOdd, qe)].

unfold(ω1) = {
(
E(D),Ω(D)

)
,

(
E(C),Ω(C)

)
} with

E(D) = {l = Nil, n = Z}, Ω(D) = ∅,
E(C) = {l = Cons(l1, l2), n = S(n1)},
Ω(C) = {[

〈
l1,□

〉
: (ALen, qn)], [

〈
l2, n1

〉
: (ALen, qf)]}.

We define the unfolding of a set of typing obligations as the (combination of) unfolding of
each typing obligation at the same time, that is the application of one rule of the automaton
to each typing obligation.

▶ Definition 21 (Unfolding a typing problem).

unfolds(Ω) = {(
⋃

ω∈Ω
Eω,

⋃
ω∈Ω

Ωω,) | ∀ω ∈ Ω, (Eω,Ωω) ∈ unfold(ω)}

▶ Example 22. unfolds({ω0, ω1}) =
{

(E(3) ∪E(D), Ω(3) ∪Ω(D)), (E(3) ∪E(C), Ω(3) ∪Ω(C))
}

Finally, the proof system on typing problems consists of two deduction rules. The rule
Conclude concludes a proof when no typing obligation are left and when the algebraic
datatype constraints are consistent. The rule Step applies unfolding of typing problems
using rules of the tree automaton.

▶ Definition 23 (Proof system). Our proof system contains two rules.

Conclude
⊢ (E, ∅)

Step
⊢ (E ∪ E′,Ω′)

⊢ (E,Ω)
if Coherent(E) if Coherent(E ∪ E′) and (E′,Ω′) ∈ unfolds(Ω)

▶ Example 24. Continuing example 20, we build a proof tree of ⊢ (E0, Ω0). Rule Conclude
cannot be immediately applied, so let us consider Step, and thus unfolds(Ω0).

Its element (E(3)∪E(D), Ω(3)∪Ω(D)) can be discarded because E(3)∪E(D) is contradictory,
as both constraints n = Z and n = S(m) are present. Its other element, (E(3) ∪E(C), Ω(3) ∪
Ω(C)), is coherent, so we can apply the Step rule. We write it (E1,Ω1) where E1 =
{l = Cons(l1, l2), n = S(n1), n = S(m)} and Ω1 is the set of typing obligations Ω1 =
{[

〈
l1,□

〉
: (ALen, qn)], [

〈
l2, n1

〉
: (ALen, qf)], [

〈
m

〉
: (AOdd, qe)]}. We now have the new

typing problem (E0 ∪ E1,Ω1). Rule Conclude still cannot be applied. Then, unfolds(Ω1)
has 8 elements, only 4 of which are coherent. Its four coherent element can be seen as two
times the almost-same two elements, the only difference being which rule has been applied
to [

〈
l1,□

〉
: (ALen, qn)]. For this example, we only show the two elements that used rule (A),

(E2,Ω2) and (E′
2,Ω′

2) with

E2 = {l1 = Z, l2 = Nil, n1 = Z, m = Z}, Ω2 = ∅,
E′

2 = {l1 = Z, l2 = Cons(l21, l22), n1 = S(n11), m = S(m1)},
Ω′

2 = {[
〈
l21,□

〉
: (ALen, qn)], [

〈
l22, n11

〉
: (ALen, qf)], [

〈
m1

〉
: (AOdd, qo)]}

Constraints E1 ∪ E2 are coherent and Ω2 is empty, so rule Conclude can be applied and a
solution can be built from E0 ∪ E1 ∪ E2, that is {n 7→ S(Z), l 7→ Cons(Z,Nil)}. The final

FSCD 2023

7:12 Automata-Based Verification of Relational Properties of Functions over Trees

proof tree is depicted below. For now, every proof tree is a single line. This will no longer be
true with the introduction of the rule Split in section 6.

Step

Step

Conclude
⊢ (E1 ∪ E2, ∅)

⊢ (E1,Ω1)
⊢ (∅,Ω0)

▶ Definition 25 (Heights). We define a useful metric for proofs, the height:
The height of a term t = f(t1, . . . , tn) is inductively defined as h(t) = 1+maxi∈J1,nK(h(ti)).
The height of a ground formula φ, written h(φ), is defined as the height of the highest
term occurring in it.
The height of a substitution σ together with a typing obligation ω = [

〈
x1, . . . , xn

〉
: (A, q)]

is defined as h(σ, ω) = maxi∈J1,nK(h(σ(xi))).
The height of a substitution with a set of typing obligations is h(σ,Ω) = maxω∈Ω(h(σ, ω)).
The height of a proof tree T , written h(T), is defined as the maximal number of occurrences
of the Step rule on a branch.

▶ Theorem 26 (Proof system is correct and complete). We have ∀(E,Ω),
(
∃σ, σ |=

(E,Ω)
)

⇐⇒ ⊢ (E,Ω). More precisely, for any (E,Ω) and n ∈ N,
(A) For any proof tree T of ⊢ (E,Ω) with h(T) = n, there exists a substitution σ such that

σ |= (E,Ω) and h(σ,Ω) = n.
(B) For any substitution σ such that σ |= (E,Ω) and h(σ,Ω) = n, there exists a proof tree T

of ⊢ (E,Ω) such that h(T) = n.

The proof can be found in Appendix A.

▶ Corollary 27 (Smallest counter-example). By theorem 26, a breadth-first exploration of
proof trees for a given typing problem (E,Ω) admitting a solution yields a solution of minimal
height, that is, a substitution σ that has the minimal value h(σ,Ω).

6 Proof search procedure

The search of a proof or the certainty of the absence of proof is implemented as a breadth-first
exploration of the above-defined proof trees. This problem is undecidable in general [18],
thus this procedure either finds a solution to the typing problem (i.e. a counter-example
to M |= φ) or tries every possibility and finds no counter-example (meaning that M |= φ),
or diverges. We present two sound optimizations which significantly improve the proving
and disproving power of the proof search procedure. Using those optimizations makes this
procedure usable and efficient in practice (see experiments in Section 9).

The first optimisation consists in splitting independent typing obligations when they do
not depend on each other.

▶ Definition 28 (Independence). Let (E,Ω) be a typing problem with E coherent. Ωa ⊆ Ω
and Ωb ⊆ Ω are said independent w.r.t. E, written Ωa ∥E Ωb, when

∀σa, σb, [σE ;σa |= Ωa∧σE ;σb |= Ωb] ⇒ [∀x ∈ V ars(σE(Ωa))∩V ars(σE(Ωb)), σa(x) = σb(x)]

Therefore, any two solutions σ′
a of (E,Ωa) and σ′

b of (E,Ωb) with Ωa ∥E Ω can first
be factorized by σE by letting σa and σb such that σ′

a = σE ;σa and σ′
b = σE ;σb and then

joined into σab = σa ∪ σb, and we have σE ;σab |= (E,Ωa ∪ Ωb). Finding a most precise
partitioning of (E,Ω) into independent sub-problems is hard, as it may require to examine

T. Losekoot, T. Genet, and T. Jensen 7:13

the shape of automata. We define below a safe and easy-to-compute approximation of these
independence classes that splits typing obligations whose variables cannot be related even
using the equalities of E.

▶ Definition 29 (Splitting). Let E be a set of constraints. Let VE([x⃗ : (A, q)]) .= V ars(σE(x⃗)).
The set VE([x⃗ : (A, q)]) is the set of variables remaining in a typing obligation after application
of the most general unifier σE of E. Note how (A, q) has not been used. We define DE ⊆ Ω×Ω
as DE(ω1, ω2) .= (VE(ω1) ∩ VE(ω2) ̸= ∅). Since DE is symmetric, its reflexive and transitive
closure D∗

E is an equivalence relation. We define the function Split(E,Ω) to return the
equivalence classes of D∗

E defined on Ω.

▶ Lemma 30. ∀Ω1,Ω2 ∈ Split(E,Ω), Ω1 ∥E Ω2.

Proof. For any Ω1,Ω2 ∈ Split(E,Ω), V ars(σE(Ω1)) ∩ V ars(σE(Ω2)) = ∅. Therefore
Ω1 ∥E Ω2. ◀

This separation into independent problems makes the search less combinatorial and give rise
to a new rule for our typing system:

Split
⊢ (E,Ω1) . . . ⊢ (E,Ωn)

⊢ (E,Ω) with {Ω1, . . . ,Ωn} = Split(E,Ω)

▶ Example 31 (Splitting (E1,Ω1)). In example 24, we had E1 = {l = Cons(l1, l2), n =
S(n1), n = S(m)} and Ω1 = {ω1, ω2, ω3} with ω1 = [

〈
l1,□

〉
: (ALen, qn)], with ω2 =

[
〈
l2, n1

〉
: (ALen, qf)], and ω3 = [

〈
m

〉
: (AOdd, qe)]. We have σE1 = {l 7→ Cons(l1, l2), n 7→

S(n′), n1 7→ n′, m 7→ n′}, VE1(ω1) = {l1}, VE1(ω2) = {l2, n′}, and VE1(ω3) = {n′}. There-
fore Split(E1,Ω1) =

{
{ω1}, {ω2, ω3}

}
.

Solving ω1 have no impact on the solving of ω2 and ω3 because the values that l1 can take
do not influence the values that l2, n1, or m2 can take. On the other hand, because of E1,
m and n1 must take the same value, and therefore typing obligations ω2 and ω3 cannot be
separated. Note that applying this Split rule before the second Step (of example 24) would
have separated (E1,Ω1) into two independent problems.

The second optimisation consists in pruning the search tree. The search space is, for almost
all typing problems, infinite. Without pruning, it would be impossible to cover the whole
search space, and therefore negative instances would (almost) all never terminate. Pruning
the search tree allows, in some cases, to finitely ensure that no typing proof exists.

▶ Definition 32 (Pruning). Let T be a proof tree. A node ⊢ (Eb,Ωb) that appears in the
sub-tree of T whose root is some other node ⊢ (Ea,Ωa) is prunable when both

(i) At least one Step rule is used on the path between ⊢ (Ea,Ωa) and ⊢ (Eb,Ωb);
(ii) ∃σ, σ(σEa

(Ωa)) ⊆ σEb
(Ωb).

▶ Theorem 33 (Safety of pruning). For any proof tree that contains a prunable node, there
exist a strictly smaller (w.r.t the total number of times the Step rule is used) proof tree with
the same root.

The idea of pruning a proof T is to replace the orange proof sub-tree of ⊢ (Ea,Ωa) with the
purple proof tree of ⊢ (Eb,Ωb) (with minor modifications).

Step

FSCD 2023

7:14 Automata-Based Verification of Relational Properties of Functions over Trees

Proof. Let T be a prunable tree, that is such that there exists nodes ⊢ (Ea,Ωa) and ⊢ (Eb,Ωb)
with respective proof trees Ta and Tb, with Tb a sub-tree of Ta with a Step rule between
⊢ (Ea,Ωa) and ⊢ (Eb,Ωb), and σ a substitution such that σ(σEa

(Ωa)) ⊆ σEb
(Ωb).

By theorem 26(A) there exists a substitution σb with σb |= (Eb,Ωb) and h(σb,Ωb) = h(Tb).
Because σEb

is the most general unifier of Eb and σb |= Eb, there exists σ′ such that σb =
σEb

;σ′. Therefore the substitution σa = σEa ;σ;σ′ is such that σa(Ωa) ⊆ σb(Ωb). Because
σb |= Ωb, we also have σa |= Ωa. Because σa first applies σEa

, we have σa |= Ea. Therefore
σa |= (Ea,Ωa). Finally, again because σa(Ωa) ⊆ σb(Ωb), we have h(σa,Ωa) ≤ h(σb,Ωb). By
applying theorem 26(B) there exists a proof T ′

a of ⊢ (Ea,Ωa) with h(T ′
a) = h(σa,Ωa) ≤

h(σb,Ωb) = h(Tb).
Therefore, the proof tree T whose sub-tree Ta has been replaced by T ′

a is valid and smaller.
Besides, we know that the sub-tree T ′

a is strictly smaller than Ta because Ta contains at least
one application of the Step rule between its root and Tb. Therefore, this transformation
strictly decreases the size of the proof tree. ◀

▶ Corollary 34. By induction, if there exists a proof tree T of some initial typing problem,
then there exists one without any prunable node along the proof tree, and therefore abandoning
the search of prunable branches is safe.

▶ Example 35 (Pruning of the search tree). During the second Step application of example 24,
the typing problem (E′

2,Ω′
2) is also in unfolds(Ω1). This was no problem, as the algorithm

found a solution and stopped. Now, if (for example) automaton ALen did not have rule
(D), then there would be no solution to the initial typing problem (E0,Ω0). The search
would never stop, as, after a bit of unification and renaming, (E0,Ω0) can be included in
(E1 ∪E′

2,Ω′
2). Without pruning, the typing algorithm could therefore loop forever instead of

returning None. Fortunately, (E1 ∪E′
2,Ω′

2) can be pruned by taking σ = {l 7→ l22, n 7→ n11},
as σ(σ0(Ω0)) ⊆ σ2(Ω′

2) (with σ0 and σ2 being most general unifiers of E0 and E0 ∪ E1 ∪ E′
2,

respectively).

7 Regular structure inference

This section presents a procedure for inferring a regular model of a set of CHCs. The input
set of CHCs we later use the procedure for is C = Γ ∪ Γ′, with Γ defining a program and
Γ′ the desired properties. The procedure follows the Implication Counter-Example (ICE)
framework [8]. In this framework, the task of inferring a correct model is divided between
two entities (or procedures), a learner and a teacher, working iteratively. There are three
possible outcomes for this procedure: either the learner finds a correct model (that the
teacher validates), the learner finds a contradiction, or the procedure loops forever with more
and more refined models.

The teacher’s procedure takes as input a model M and a CHC system C, and returns
an optional ground Horn clause. It returns None if M |= C, and Some(σ(φ)) if M ̸|= φ

with counter-example σ for some φ ∈ C. With the model checking procedure already defined,
a teacher’s implementation is only a matter of selecting an order in which to check the
formulas. For example, taking as input the problem of example 18, the output would be
Len(Cons(Z,Nil), S(Z)) ⇒ Even(S(Z)).

The learner’s procedure is responsible for inferring a model from examples or finding
a contradiction. It takes as input a finite set C of ground CHCs and returns None if C is
contradictory and Some(M) otherwise, with M being a smallest model (in the number of
states) satisfying C. This procedure is divided into two steps, which are the main subject of
this section, the working model generation and the working model generalisation.

T. Losekoot, T. Genet, and T. Jensen 7:15

▶ Definition 36 (Working model generation). The working model W of a given finite set of
ground CHCs C is the smallest model (up to state renaming) recognizing exactly the terms
mentioned in C in a different state for each. That is, for any atom R(⃗t) of any φ ∈ C, there
exists a state q in W(R) such that R(W(R), q) = {t⃗}.

This working model construction is carried out by classical automaton algorithms [6]. The
model W can then be generalised by merging states and deciding which equivalence classes
are to be considered as final states. Merging states leads to additional terms being recognized
and makes regularity appear. We search for a merging that minimises the number of states
of W while ensuring that the resulting model satisfies C.

▶ Definition 37 (State merging problem). The minimisation problem we define is on the first-
order (functional) signature S = {cq | A ∈ dom(W) ∧ q ∈ Q(A)} ∪ {Final} containing only
constants, one for each state of every automaton in W, and one unary predicate Final. The
constraints are Cok ∪ Cf . The set Cok represents essential constraints: (i) merged states must
belong to the same automaton ; (ii) merged states must be of the same type ; (iii) any final
state must be of its automaton’s type. The set Cf forces states to be or not to be final, which
also have an impact on which states to merge. It is defined from C by transforming every clause
φ = R1(⃗t1) ∧ . . . ∧ Rn(⃗tn) ⇒ R0(⃗t0) into φq = Final(cq1) ∧ . . . ∧ Final(cqn

) ⇒ Final(cq0),
with each qi being the state of W(Ri) that recognizes exactly t⃗i. Recall that we use non-Horn
clauses, so the head of φ could be empty or contain multiple predicates.

A minimal solution J·K to the state merging problem can be computed by a finite model
finder. We write JFinalK for the set of final states of the solution and JcqK for the equivalence
class of constant cq.

▶ Definition 38 (Generalisation of working model). Given a solution J·K to the state merging
problem, we generalise the working model W by M with M(R) = (Q,Qf ,∆) with Q = {JcqK |
q ∈ Q(W(R))}, Qf = Q ∩ JFinalK and ∆ = {f⃗(Jcq1K, . . . , Jcqn

K) → Jcq0K | f⃗(q1, . . . , qn) →
q0 ∈ ∆(W(R))}.

▶ Example 39 (Learner: Model generation). We observe the ICE procedure after learner and
teacher already had two exchanges to learn the Len relation defined in Section 2. The learner
has accumulated the constraints {Len(Nil, Z), Len(Nil, Z) ⇒ Len(Cons(Z,Nil), S(Z))}.
The generated working model is W = {Len 7→ A} with A = (Q,Qf ,∆), Q = {ql0 , ql1 , qn},
Qf = ∅, and ∆ = {

〈
Nil, Z

〉
() → ql0 ;

〈
Cons, S

〉
(qn, ql0) → ql1 ;

〈
Z,□

〉
() → qn}. We

have R(A, ql0) = {(Nil, Z)}, R(A, qn) = {(Z,□)}, and R(A, ql1) = {(Cons(Z,Nil), S(Z))}.
Note that state qn recognizes the term

〈
Z,□

〉
which does not appear in C but is necessary

to recognize (Cons(Z,Nil), S(Z)).
The minimisation problem is therefore on the signature with unary predicate Final and

constant symbols cql0
, cql1

, and cqn . The constraints Cok are stating that qn cannot be
merged with ql0 nor ql1 because they are not of the same type, and that only ql0 and ql1 can
be final, as they are the only states of the automaton’s type, natlist× nat. The constraints
Cf , generated from C, are {Final(cql0

), F inal(cql0
) ⇒ Final(cql1

)}. The smallest model is
a two-elements set {ql, qz}, with JFinalK = {ql}, Jql0K = Jql1K = ql, and JqnK = qz.

The generalized model is M = {Len 7→ A′} with automaton A′ having states {ql, qz},
final states {ql}, and transitions {

〈
Nil, Z

〉
() → ql,

〈
Cons, S

〉
(qz, ql) → ql,

〈
Z,□

〉
() → qz}.

This automaton recognizes an almost-correct relation: the set of pairs (l, n) of a list of zeros
together with its size. The only missing rule is

〈
S,□

〉
(qz) → qz, which will be added by the

learner in the ICE step that follows.

FSCD 2023

7:16 Automata-Based Verification of Relational Properties of Functions over Trees

8 Approximation

As we suppose programs to be deterministic and terminating, the CHC representation of
a functional program has only one possible model. For many programs, this model is not
regular and cannot be represented using convoluted tree automata. As a result, trying
to verify a property using an exact model of the relation will fail on such programs. We
circumvent this problem by approximating relations.

Our verification goals are CHCs of the form ψ(x⃗) ∧ R1(x⃗1) ∧ . . . ∧ Rn(x⃗n) ⇒ R0(x⃗0).
Given a relation R we denote by R+ (resp. R−) an over-approximation (resp. under-
approximation) of R which can also be R itself. A safe way to prove the above implication
using approximations is to over-approximate R1, . . . , Rn and under-approximate R0. If
ψ(x⃗) ∧R+

1 (x⃗1) ∧ . . . ∧R+
n (x⃗n) ⇒ R−

0 (x⃗0) is true then so is the original CHC. Applying such
a reasoning on the CHCs of the verification goal, we can infer which relations can be over
or under-approximated. For instance, the functional program computing the sum of two
natural numbers is represented by the relation Plus(n,m, u) associating any two natural
numbers n and m with their sum u. This relation is not regular when using unary encoding
of numbers. The argument for seeing this is very similar to that of {an · bn | n ∈ N} not
being a regular string language. For the string automaton, it would require an unbounded
counter for as in order to later exactly match their number with bs. For a convoluted
tree automaton to recognize Plus(n,m, u), the counting is of the depth at which n and m

root symbol stop being both S, which later needs to match the number of Ss left on u.
However, to prove a property of the form Plus(n,m, u) ⇒ n ≤ u, we only need a regular
over-approximation of the relation Plus, say Plus+, and an under-approximation of ≤, say
≤−, such that Plus+(n,m, u) ⇒ n ≤− u.

In practice, we focus on over-approximation and do not under-approximate. We thus
prove the stronger goal Plus+(n,m, u) ⇒ n ≤ u. Here are the clauses defining the Plus
relation:

Plus(n, Z, n). Plus(n, m, u) ⇒ Plus(n, S(m), S(u)). Plus(v, w, x) ∧ Plus(v, w, y) ⇒ x = y.

These clauses form a system where the first clause invalidates under-approximations,
the second clause can invalidate both over and under approximations, whereas the third
only invalidates over-approximations. We can therefore obtain a safe approximation Plus+

from Plus by simply removing the third clause. In our example, this suffices to prove
Plus+(n,m, u) ⇒ n ≤ u because the approximation Plus+ we built relates any n,m with all
u greater than or equal to n (See the solver result for isaplanner_prop21.smt2 in http://
people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html).

Finally, some relations cannot be approximated. If a relation appears on both sides of the
verification goal then it cannot be approximated. E.g., to prove Z < m ∧ Plus(n,m, u) ⇒
n < u, we can safely use Plus+. Since < occurs (positively) on the left and right-hand
side of the implication, we could use <+ on the left-hand side and <− on the right-hand
side. We could use different approximations for relations appearing at different positions in
the formula. However, in our analyser, we choose to use a common approximation for any
relation. In our example, we use the intersection between <+ and <−, which is exactly <.

9 Implementation and Experiments

We implemented the verification algorithm in Ocaml. It can be found on https://gitlab.
inria.fr/tlosekoo/auto-forestation. This provides an implementation of terms, tree
automata, model checking, model-inference procedure, as well as left, right, and complete
convolution.

http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
http://people.irisa.fr/Thomas.Genet/AutoForestation/results_right/benchmarks.html
https://gitlab.inria.fr/tlosekoo/auto-forestation
https://gitlab.inria.fr/tlosekoo/auto-forestation

T. Losekoot, T. Genet, and T. Jensen 7:17

The teacher closely follows the depth-first search of the proof system described in section 5.
There is a lot of redundancy in the proof search, so we used canonization and memoisation
of typing problems. Memoisation avoids re-computing the unfolding of a typing problem if
the search already did. However, memoisation alone is not very useful, as even equivalent
typing problems are often different because of variable names. This is the reason for
using canonization, which ensures that equivalent typing problems have the same internal
representation. The learner delegates the merging of states to Clingo [9], a finite-model
finder.

The solver presented in this paper builds regular relations, as opposed to [16, 11, 17]
which only build regular sets of terms. Since regular sets are a particular case of regular
relations, our solver should be able to handle the examples covered by those techniques,
plus some relational problems. As a result, for the experiments, we choose some examples
coming from benchmarks of Timbuk [11], add relational examples taken from the Isaplanner
benchmark [7, 4] and built relational problems inspired by TIP [5, 4]. As shown in Section 2, a
typical property which can be automatically proved by those non-relational solvers [16, 11, 17]
is of the form ∀x l. less Z (len (Cons(x, l))) where l is any list of natural numbers.

Non-relational solvers can also handle a restricted form of relations: the finite union of
languages L1 × . . . × Ln where ∀i ∈ J1, nK, Li is a regular language. This allows to prove
properties with a limited form of relation. For instance, using a non-relational regular solver,
it is possible to prove the property ∀l1 l2. less Z (len l1) ⇒ less Z (len (append l1 l2))
where append is the function concatenating lists and l1 and l2 are lists of a. For the tuple of
variables (l1, l2) to cover all the possible cases, it is enough to consider the two languages
Lnil × Llists and LCons+ × Llists where Lnil = {Nil} and LCons+ = Llists \ Lnil. With the
first language, the property is true because the left-hand side of the implication is false. With
the second language LCons+ × Llist, both the left and right-hand side of the implication are
true.

One of the simplest problem which cannot be proved using a non-relational “regular”
solver is ∀x y. Cons(x, y) ̸= y. Proving such a property cannot be done using a finite union of
products of regular languages. However, this property can automatically be proven using our
relational solver. Additionally to the above examples, we highlight some relational properties
which are automatically proven using our solver.

∀(l : ablist). (len l) = (len (reverse l)) length_reverse_eq.smt2
∀(l1 : ablist) (l2 : ablist). (prefix l1 (append l1 l2)) prefix_append.smt2
∀(l : ablist). (len l) = (len (sort l)) sort_length_eq.smt2
∀(i : nat)(t1 : natbintree)(t2 : natbintree). t1 ̸= (node i t1 t2) tree_add_not_eq.smt2

On the following properties our solver is able to find a counter-example.
∀(n : nat). n < (double n) nat_double_is_le.smt2
∀(x : ab) (l : ablist). (delete_one x l) = (delete_all x l) list_delete_all_count.smt2

⇒ (count x l) = 1
On the following properties, our solver does not terminate due to trying to represent a
non-regular relation (ICE loops).

∀(x : ab) (l : ablist). (delete_one x l) = (delete_all x l) list_delete_all_count.smt2
⇒ (count x l) ≤ 1

∀(n : nat) (m : nat). n+m = m+ n plus_commutative.smt2

All of our experimental results for all convolution types are available at http://people.
irisa.fr/Thomas.Genet/AutoForestation/. Because the properties of our database were
mostly either on same-type relations or on lists and natural numbers, the right-convolution

FSCD 2023

http://people.irisa.fr/Thomas.Genet/AutoForestation/
http://people.irisa.fr/Thomas.Genet/AutoForestation/

7:18 Automata-Based Verification of Relational Properties of Functions over Trees

was the most efficient of convolution type. Left-convolution is not adapted for most of the
list-based examples and complete-convolution revealed to be too costly in practice though it
should help to prove properties on functions manipulating trees. On a total of 120 examples,
our solver (using right-convolution) proves 66, disproves 23, and timeouts on 31 after 60s.
Our solver succeeds on 20 out of the 79 first-order Isaplanner examples in less than 60s
(and 18 in less than 5s). Our solver reveals to be more efficient on examples where a single
level of structure have to be compared, i.e., natural numbers, lists of arbitrary elements,
etc. It is generally unsuccessful on examples mixing several layers of structure, e.g., lists of
natural numbers, or on examples where a precise counting is required to prove the property.
Finally, on examples where using a non-relational model suffices to prove the property, our
solving technique is flexible enough to find such a model, with an efficiency comparable with
non-relational solvers. For instance, on 11 examples coming from the Timbuk benchmarks,
we proved 6 of them (with execution times around 2 seconds), disproved 3, and have a
timeout on the 2 last.

10 Related work

Other approaches for automatically proving algebraic and relational properties also rely on a
CHC representation. The approach of [20] and [19] aims to solve the satisfiability problem
of Horn clauses over any underlying theory supported by an SMT solver. This approach
first reduces this problem to validity checking of first-order formulas with inductively-defined
predicates. It is then based on syntactic proof, together with calls to the underlying theory
solver. They design an inductive proof system tailored to Horn constraint solving. Using
the theory of inductive datatypes, their method can reason about, and automatically prove,
relational and algebraic properties.

Another approach, which is closer to ours, is that of [18]. This approach aims to check
properties on recursive data-structure by using symbolic automatic relations, which are
(almost) the languages defined by symbolic synchronous automata (ss-NFA), the combination
of symbolic automata and automatic relations. They devise a sound but (necessarily)
incomplete procedure for checking if a given formula admits an assignment of its free
variables that makes it true in a given ss-NFA. This procedure corresponds to the teacher
procedure, but for ss-NFAs. They plan to implement an ICE-based CHC solver, but have
left the model discovery (learner section) to future work.

By manually writing ss-NFAs, authors of [18] are able to benchmark their verification
procedure. Our approach and theirs seems to be complementary as they succeed on different
sets of examples. This can be observed on the IsaPlanner benchmark where our technique
fails on most of examples that [18] handles (i.e. 4, 5, 15, 16, 29, 30, 39, 42, 50, 62, 67, 71, 86)
and succeeds on examples on which they do not report any success (i.e. 17, 18, 21, 22, 23,
24, 25, 26, 31, 32, 33, 34, 45, 46, 65, 69).

In [3], the authors present an expressive formalism for representing relations between
trees called synchronized context-free programs. This formalism is more expressive than
convoluted tree automata presented here. In particular, it can represent languages of the
form {(gn(a), gn(b)) | n ∈ N} (like convoluted tree automata) and also languages of the form
{f(gn(a), gn(b)) | n ∈ N} and {gn(h(gn(a))) | n ∈ N} (out of the scope of convoluted tree
automata). This formalism is used to precisely approximate the set of outputs of a term
rewriting system. However, [3] does not show how to automatically infer such a representation
from the term rewriting system.

T. Losekoot, T. Genet, and T. Jensen 7:19

11 Conclusion and future work

This paper demonstrates that it is possible to use tree automata as a basis for analysing
the input-output behaviour of a first-order functional program. This shows that existing
automata-based techniques for approximating the set of reachable states of a function can be
extended to also compute relations between input and output of a function. Such relational
analysis is key to scaling static analyses to larger programs, because it enables a modular,
function-by-function analysis technique. The extension to relational analysis is based on the
notion of tree automata convolution. We argue that the standard left-convolution can be
complemented by other convolution techniques in order to verify more properties of programs.
Another technical contribution of the paper is the proof tree pruning used for verifying
models of constrained Horn clauses. An efficient implementation of this proof search has
been an essential part of the counter-example guided learner-teacher algorithm for inferring
models from the CHC representation of the program to be analysed. This is confirmed by
the benchmark used to evaluate our implementation of the verifier.

We believe our ICE procedure to be relatively refutationally complete and relatively
complete on regular structures. Relative means that we suppose the termination of the
model-checking procedure to be able to study the ICE cycle. Refutationally complete means
that if the set of clauses C given to the ICE procedure is contradictory, then the procedure
eventually finds a contradiction and stops. Complete on regular structures means that if
the set of clauses C given to the ICE procedure admits a regular model, then the procedure
eventually finds a model of C. This has to be investigated further.

Fixing the convolution to be the either left or right convolution is however insufficient for
proving non-trivial properties that would need a different overlay of terms, for example the
height function on trees. Complete convolution can theoretically overcome this restriction
but, as confirmed by our benchmarks, the size explosion of convoluted term makes it unusable
in practice. We believe the convolution can and should be non-static, that is, being inferred
together with the model.

Moreover, unlike the convolutions presented in this paper, we think that convolution could
be lossy. For instance, if a subterm in a relation is not useful to prove a property, we think
that we can forget about it in the convolution. Later on, if a new ground counter-example
comes to the learner showing that the subterm was, in fact, necessary to prove the property
then the convolution needs to be extended for that purpose.

References

1 Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision procedure for a
theory of inductive data types. Journal on Satisfiability, Boolean Modeling and Computation,
3(1-2):21–46, 2007.

2 Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. Horn clause solvers
for program verification. In Fields of Logic and Computation II, pages 24–51. Springer, 2015.

3 Yohan Boichut, Jacques Chabin, and Pierre Réty. Towards more precise rewriting approxima-
tions. J. Comput. Syst. Sci., 104:131–148, 2019.

4 Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Tip and isaplanner
benchmarks, 2015. URL: https://tip-org.github.io/.

5 Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Tip: tons of inductive
problems. In International Conference on Intelligent Computer Mathematics, pages 333–337.
Springer, 2015.

FSCD 2023

https://tip-org.github.io/

7:20 Automata-Based Verification of Relational Properties of Functions over Trees

6 Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. 2008.
URL: https://hal.inria.fr/hal-03367725.

7 Lucas Dixon and Jacques Fleuriot. Isaplanner: A prototype proof planner in isabelle. In
CADE’03, volume 2741, pages 279–283. Springer, 2003.

8 Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. Ice: A robust framework
for learning invariants. In International Conference on Computer Aided Verification, pages
69–87. Springer, 2014.

9 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2012.

10 Erich Grädel. Automatic structures: twenty years later. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 21–34, 2020.

11 Timothée Haudebourg, Thomas Genet, and Thomas Jensen. Regular Language Type Inference
with Term Rewriting. Proceedings of the ACM on Programming Languages, 4(ICFP):1–29,
2020.

12 Timothée Haudebourg. Automatic Verification of Higher-Order Functional Programs using
Regular Tree Languages. PhD thesis, Univ. Rennes1, 2020.

13 Tirza Hirst and David Harel. More about recursive structures: Descriptive complexity and
zero-one laws. In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,
pages 334–347. IEEE, 1996.

14 R Hodgson Bernard. Théories décidables par automate fini (Decidable theories via finite
automata). PhD thesis, Ph.D. thesis Département de Mathématiques et de Statistique,
Université de . . . , 1976.

15 Bakhadyr Khoussainov and Anil Nerode. Automatic Presentations of Structures. In Interna-
tional Workshop on Logic and Computational Complexity, pages 367–392. Springer, 1994.

16 Yurii Kostyukov, Dmitry Mordvinov, and Grigory Fedyukovich. Beyond the elementary
representations of program invariants over algebraic data types. In Stephen N. Freund
and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
pages 451–465. ACM, 2021.

17 Yuma Matsumoto, Naoki Kobayashi, and Hiroshi Unno. Automata-based abstraction for
automated verification of higher-order tree-processing programs. In Asian Symposium on
Programming Languages and Systems, pages 295–312. Springer, 2015.

18 Takumi Shimoda, Naoki Kobayashi, Ken Sakayori, and Ryosuke Sato. Symbolic automatic
relations and their applications to SMT and CHC solving. In International Static Analysis
Symposium, pages 405–428. Springer, 2021.

19 Takeshi Tsukada and Hiroshi Unno. Software model-checking as cyclic-proof search. Proceedings
of the ACM on Programming Languages, 6(POPL):1–29, 2022.

20 Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. Automating induction for solving horn clauses.
In International Conference on Computer Aided Verification, pages 571–591. Springer, 2017.

https://hal.inria.fr/hal-03367725

T. Losekoot, T. Genet, and T. Jensen 7:21

A Appendix

Proof of theorem 26

Proof of A. Let suppose that T proves ⊢ (E,Ω) and h(T) = n. Let us proceed by induction
on the last rule used in T .

case conclude:
By hypothesis, we have that T is of the form

⊢ (E, ∅)
with Coherent(E), and therefore

n = 0. Take σ = σE a most general unifier of E, which is well-defined, as E is coherent.
We have: (i) σ |= E is immediate, as σ unifies E; (ii) σ |= Ω is trivial, as Ω = ∅; (iii)
h(Ω, σ) = 0 = n, as Ω is empty.

case step:

By hypothesis, we have that T is of the form
Step

T ′

⊢ (E,Ω) with T ′ of the form
. . .

⊢ (E ∪ E′,Ω′)
and (E′,Ω′) ∈ unfolds(Ω). By induction, we have that there exists σ′ with σ′ |=
(E ∪E′,Ω′) and h(Ω′, σ′) = h(T ′). We also know that h(T ′) = n− 1. Take σ = σ′. Then:

σ |= E : Immediate by σ′ |= E ∪ E′ and monotonicity of first-order logic.
σ |= Ω : Let ω = [x⃗ : (A, q)] ∈ Ω. We must prove that σ(x⃗) ∈ R(A, q). For this, it is
sufficient (and necessary) to show that there exists a rule r = f⃗(q⃗) → q of A such that
∗ ∀i ∈ J1, |f⃗ |K, σ(xi) = fi(y⃗i) for some variables y⃗i ;
∗ ∀j ∈ J1, |q⃗|K, σ |= [⃝(y⃗1, . . . , y⃗|f⃗ |)[j] : (A, qj)].
Since (E′,Ω′) ∈ unfolds(Ω), we know that there exists such a rule r with (Er,Ωr) ∈
unfold(ω). The first property is immediate from σ |= E′ and Er ⊆ E′ while the
second is immediate from σ |= Ω′ and Ωr ⊆ Ω′.
h(Ω, σ) = n: Because (E′,Ω′) ∈ unfolds(Ω), every variable y in Ω′ is such that
there exists a variable x in Ω with σ(x) = f(. . . , σ(y), . . .) for some function f , that
is, h(σ,Ω′) < h(σ,Ω). Moreover, every variable x in Ω with h(σ(x)) > 1 yields a least
one variable y in Ω′ with h(σ(y)) = h(σ(x)) − 1.
Therefore, h(σ,Ω) = h(σ,Ω′) + 1 = h(T ′) + 1 = n. ◀

Proof of B.
Let us build a proof tree by induction on h(Ω, σ).
In any case, let suppose that there exists σ such that σ |= (E,Ω) and h(Ω, σ) = n. We

then construct a proof tree T of ⊢ (E,Ω) such that h(T) = n.

case h(Ω, σ) = 0: This is only possible when Ω = ∅. Take T =
conclude

⊢ (E,Ω) . This proof
tree T is correct, as Ω = ∅ and E is coherent (because σ |= E). Also h(T) = 0.

case h(Ω, σ) > 0:
Because σ |= Ω, we have, for each ω = [

〈
x1, . . . , xn

〉
: (A, q)] ∈ Ω, that there exists an

associated rule rω =
〈
f1, . . . , fn

〉
(q1, . . . , qk) → q such that

∀i ∈ J1, nK, σ(xi) = fi(⃗ti) for some terms t⃗i ;
∀j ∈ J1, kK,⃝(⃗t1, . . . , t⃗n)[j] ∈ R(A, qj).

Therefore we can build three functions, F c, F t, F s, which assign to each such typing
obligation and rule the following:
F c(ω) = {x1 = f1(x⃗1), . . . , xn = fn(x⃗n)}, with ∀i ∈ J1, nK, x⃗i are fresh variables.
F t(ω) = {[⃝(x⃗1, . . . , x⃗n)[j] : (A, qj)] | j ∈ J1, kK}
F s(ω) = {(xj

i , t
j
i) | xi = fi(x1

i , . . . , x
m
i) ∈ F c(ω) ∧ j ∈ J1,mK ∧ σ(xi) = f(t1i , . . . , tmi)}

FSCD 2023

7:22 Automata-Based Verification of Relational Properties of Functions over Trees

Let E′ =
⋃

ω∈Ω F
c(ω) and Ω′ =

⋃
ω∈Ω F

t(ω). Note that (E′,Ω′) ∈ unfolds(Ω).
Let σ′ = σ ∪

⋃
ω∈Ω F

s(ω). We have:
σ′ is well-defined: Any binding of σ′ which is not in σ is of the form xj

i = σ(tji) for
some fresh variable xj

i . Therefore, as σ is well-defined, so is σ′.
σ′ |= E ∪ E′: We have σ ⊆ σ′, therefore σ′ |= E. Any constraint of E′ is of the form
xi = fi(x⃗i) with xi a variable appearing in a node ω ∈ Ω, for which we therefore have
σ′(xi) = fi(σ′(x⃗i)) = σ′(fi(x⃗i)) by definition of F s(ω).
σ′ |= Ω′: For any typing obligation ω′ ∈ Ω′, we have ω′ ∈ F t(ω) for some ω ∈ Ω,
so ω′ = [

〈
x1, . . . , xn

〉
: (A, qj)] for some x1, . . . , xn such that

〈
σ′(x1), . . . , σ′(xn)

〉
∈

R(A, qj), by definition of F t(ω) and F s(ω).
h(Ω′, σ′) = h(Ω, σ) − 1: For this case, let ω = argmaxω∈Ω(h(σ, ω)) and ω′ =
argmaxω′∈Ω′(h(σ′, ω′)). By definition of F t(ω) and F s(ω), we have both h(σ′,Ω′) ≥
h(σ, ω) − 1 and h(σ′,Ω′) ≤ h(σ, ω) − 1.

By induction on σ′ |= (E∪E′,Ω′), we have that there exists a proof tree T ′ of ⊢ (E∪E′,Ω′)
such that h(T ′) = h(σ′,Ω′).

Therefore, take T =
Step

T ′

⊢ (E,Ω)
We have that T is a valid proof tree and that h(T) = h(T ′) + 1 = h(Ω, σ). ◀

	1 Introduction
	2 An overview of the verification procedure on an example
	3 Prerequisites
	3.1 Typed alphabet and term
	3.2 Tree automaton
	3.3 Automata recognizing a relation

	4 Functional programs and their logical representation
	5 Model-checking of regular structures
	5.1 Proof system

	6 Proof search procedure
	7 Regular structure inference
	8 Approximation
	9 Implementation and Experiments
	10 Related work
	11 Conclusion and future work
	A Appendix

