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Abstract
In this work, we give a unifying view of locality in four settings: distributed algorithms, sequential
greedy algorithms, dynamic algorithms, and online algorithms. We introduce a new model of
computing, called the online-LOCAL model: the adversary presents the nodes of the input graph
one by one, in the same way as in classical online algorithms, but for each node we get to see its
radius-T neighborhood before choosing the output. Instead of looking ahead in time, we have the
power of looking around in space.

We compare the online-LOCAL model with three other models: the LOCAL model of distributed
computing, where each node produces its output based on its radius-T neighborhood, the SLOCAL
model, which is the sequential counterpart of LOCAL, and the dynamic-LOCAL model, where
changes in the dynamic input graph only influence the radius-T neighborhood of the point of change.

The SLOCAL and dynamic-LOCAL models are sandwiched between the LOCAL and online-
LOCAL models. In general, all four models are distinct, but we study in particular locally checkable
labeling problems (LCLs), which is a family of graph problems extensively studied in the context of
distributed graph algorithms. We prove that for LCL problems in paths, cycles, and rooted trees,
all four models are roughly equivalent: the locality of any LCL problem falls in the same broad
class – O(log∗ n), Θ(log n), or nΘ(1) – in all four models. In particular, this result enables one to
generalize prior lower-bound results from the LOCAL model to all four models, and it also allows
one to simulate e.g. dynamic-LOCAL algorithms efficiently in the LOCAL model.

We also show that this equivalence does not hold in two-dimensional grids or general bipartite
graphs. We provide an online-LOCAL algorithm with locality O(log n) for the 3-coloring problem in
bipartite graphs – this is a problem with locality Ω(n1/2) in the LOCAL model and Ω(n1/10) in the
SLOCAL model.

2012 ACM Subject Classification Theory of computation → Online algorithms; Computing method-
ologies → Distributed algorithms; Theory of computation → Dynamic graph algorithms

Keywords and phrases Online computation, spatial advice, distributed algorithms, computational
complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.10

Category Track A: Algorithms, Complexity and Games

EA
T

C
S

© Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi,
and Jukka Suomela;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amirreza.akbari@aalto.fi
https://orcid.org/0009-0002-1433-3781
mailto:navid.eslami@sharif.edu
mailto:henrik.lievonen@aalto.fi
https://henriklievonen.fi/
https://orcid.org/0000-0002-1136-522X
mailto:melnyk@tu-berlin.de
https://darya-melnyk.github.io/
mailto:joona.sarkijarvi@gmail.com
mailto:jukka.suomela@aalto.fi
https://jukkasuomela.fi/
https://orcid.org/0000-0001-6117-8089
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

Related Version Full Version: https://arxiv.org/abs/2109.06593

Funding This work was supported in part by the Academy of Finland, Grant 333837.

Acknowledgements We would like to thank Alkida Balliu, Sameep Dahal, Chetan Gupta, Fabian
Kuhn, Dennis Olivetti, Jan Studený, and Jara Uitto for useful discussions. We would also like
to thank the anonymous reviewers for the very helpful feedback they have provided for previous
versions of this work.

1 Introduction

In online graph algorithms, the adversary reveals the input graph one node at a time: In
step i, the adversary presents some node vi. The algorithm gets to see the subgraph induced
by the nodes v1, . . . , vi, and the algorithm has to respond by labeling node vi. For example,
in online graph coloring, the algorithm has to pick a color for node vi in such a way that the
end result is a proper coloring of the input graph.

In this work, we consider a more general setting, which we call the online-LOCAL model:
in step i, the algorithm gets to see the subgraph induced by all nodes that are within distance
T from v1, . . . , vi. That is, the algorithm can look T hops further in the input graph around
the nodes presented by the adversary. For T = 0, this corresponds to the usual online model.
For T = n, on the other hand, any graph problem (in connected graphs) is solvable in this
setting. The key question is what value of T is sufficient for a given graph problem. Put
otherwise, what is the locality of a given online problem?

It turns out that this question is very closely connected to questions studied in the context
of distributed graph algorithms, and we can identify problem classes in which the online
setting coincides with the distributed setting. However, we also see surprising differences, the
prime example being the problem of 3-coloring bipartite graphs, which is a fundamentally
global problem in the distributed setting, while we show that we can do much better in the
online setting.

1.1 Contribution 1: landscape of models
In Section 2, we define the online-LOCAL model, and we also recall the definitions of three
models familiar from the fields of distributed and dynamic graph algorithms:

The LOCAL model [37,44]: the nodes are processed simultaneously in parallel; each node
looks at its radius-T neighborhood and picks its own output.
The SLOCAL model [26]: the nodes are processed sequentially in an adversarial order;
each node in its turn looks at its radius-T neighborhood and picks its own output (note
that here the output of a node may depend on the outputs of other nodes that were
previously processed).
The dynamic-LOCAL model: the adversary constructs the graph by adding nodes and
edges one by one; after each modification, the algorithm can only update the solution
within the radius-T neighborhood of the point of change. While this is not one of the
standard models, there is a number of papers [3, 9, 11,21,28,34,43] that implicitly make
use of this model. We also occasionally consider the dynamic-LOCAL± model, in which
we can have both additions and deletions.

In Section 3, we show that we can sandwich SLOCAL and both versions of dynamic-LOCAL
between LOCAL and online-LOCAL, as shown in Figure 1. In particular, this implies that
if we can prove that LOCAL and online-LOCAL are equally expressive for some family of
graph problems, we immediately get the same result also for SLOCAL and dynamic-LOCAL.
This is indeed what we achieve in our next contribution.

https://arxiv.org/abs/2109.06593
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Figure 1 The landscape of models – see Section 2 for the definitions. Each box represents the set
of problems solvable with locality O(T ) in the given model of computation (except for online graph
algorithms, which do not have a notion of locality). For example, any problem with locality O(T ) in
the LOCAL model can also be solved with locality O(T ) in both the SLOCAL and the online-LOCAL
models. On the other hand, the SLOCAL and the dynamic-LOCAL models are incomparable, as
there exist problems that are solvable with locality O(T ) in one of the models but that require ω(T )
locality in the other model.

1.2 Contribution 2: collapse for LCLs in rooted regular trees
A lot of focus in the study of distributed graph algorithms and the LOCAL model has been
on understanding locally checkable labeling problems (in brief, LCLs) [4,5,7,8,13,15,17,18,42].
These are problems where feasible solutions are defined with local constraints – a solution
is feasible if it looks good in all constant-radius neighborhoods (see Definition 3). Coloring
graphs of maximum degree ∆ with k colors (for some constants ∆ and k) is an example of
an LCL problem.

In Section 5, we study LCL problems in paths, cycles, and rooted regular trees, and we
show that all four models are approximately equally strong in these settings – see Table 1.
For example, we show that if the locality of an LCL problem in rooted trees is nΘ(1) in
the LOCAL model, it is also nΘ(1) in the dynamic-LOCAL, SLOCAL, and online-LOCAL
models.

Table 1 In all four models, LCL problems have got the same locality classes in paths, cycles, and
rooted trees. Here nΘ(1) refers to locality Θ(nα) for some constant α > 0. See Section 5 for more
details.

LOCAL SLOCAL dynamic- online-
LOCAL LOCAL

LCLs in paths and cycles O(log∗ n) ⇔ O(1) ⇔ O(1) ⇔ O(1)
Θ(n) ⇔ Θ(n) ⇔ Θ(n) ⇔ Θ(n)

LCLs in rooted regular trees O(log∗ n) ⇔ O(1) ⇔ O(1) ⇔ O(1)
Θ(log n) ⇔ Θ(log n) ⇔ Θ(log n) ⇔ Θ(log n)
nΘ(1) ⇔ nΘ(1) ⇔ nΘ(1) ⇔ nΘ(1)

ICALP 2023



10:4 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

By previous work, we know that LCL complexities in paths, cycles, and rooted regular
trees are decidable in the LOCAL model [4, 7,18]. Our equivalence result allows us to extend
this decidability to the SLOCAL, dynamic-LOCAL, and online-LOCAL models. For example,
there is an algorithm that gets as input the description of an LCL problem in rooted trees
and produces as output in which of the classes of Table 1 it is, for any of the four models.

1.3 Contribution 3: 3-coloring bipartite graphs in online-LOCAL
Given the equivalence results for LCLs in paths, cycles, and rooted regular trees, it would
be tempting to conjecture that the models are approximately equal for LCLs in any graph
class. In Section 4, we show that this is not the case: we provide an exponential separation
between the SLOCAL and online-LOCAL models for the problem of 3-coloring bipartite
graphs. By prior work it is known that in the LOCAL model, the locality of 3-coloring is
Ω(n1/2) in two-dimensional grids [13], which are a special case of bipartite graphs; using this
result we can derive a lower bound of Ω(n1/10) also for the SLOCAL model (see the full
version). In Section 4, we prove the following:

▶ Theorem 1. There is an online-LOCAL algorithm that finds a 3-coloring in bipartite
graphs with locality O(log n).

That is, in bipartite graphs, there is an LCL problem that requires locality nΩ(1) in the
LOCAL and SLOCAL models and is solvable with locality O(log n) in the online-LOCAL
model.

The algorithm that we present for coloring bipartite graphs is also interesting from the
perspective of competitive analysis of online algorithms. With locality O(log n), the online-
LOCAL algorithm can compute a 3-coloring. Since bipartite graphs are 2-colorable, this
gives us a 1.5-competitive online-LOCAL algorithm. On the other hand, it has been shown
that any online algorithm for coloring bipartite graphs is at least Ω(log n)-competitive [10],
with a matching algorithm presented in [38]. This result shows how much the competitive
ratio of an algorithm can be improved by increasing the view of each node.

1.4 Contribution 4: locality of online coloring
As a corollary of our work, together with results on distributed graph coloring from prior
work [13,19,37], we now have a near-complete understanding of the locality of graph coloring
in paths, cycles, rooted trees, and grids in both distributed and online settings. Table 2
summarizes our key results. For the proofs of the localities in the online-LOCAL model, see
Sections 4 and 5.

1.5 Motivation
Before we discuss the key technical ideas, we briefly explain the practical motivation for the
study of online-LOCAL and dynamic-LOCAL models. As a running example, consider the
challenge of providing public services (e.g. local schools) in a rapidly growing city. The future
is unknown, depending on future political decisions, yet the residents need services every day.

The offline solution would result in a city-wide redesign of e.g. the entire school network
every time the city plan is revised; this is not only costly but also disruptive. On the other
hand, a strict online solution without any consideration of the future would commit to a
solution that is far from optimal. The models that we study in this work capture the essence
of two natural strategies for coping with such a situation:
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Table 2 The locality of the vertex coloring problem in distributed vs. online settings, for two
graph families: rooted trees and paths (with n nodes) and 2-dimensional grids (with

√
n ×

√
n

nodes). Note that most results for the online-LOCAL model follow from the equivalence results
discussed in Section 1.2. See Sections 4 and 5 and the full version for more details.

colors competitive LOCAL SLOCAL online- references
ratio LOCAL

Rooted trees 2 1 Θ(n) Θ(n) Θ(n) trivial
and paths 3 1.5 Θ(log∗ n) O(1) O(1) [19, 37]

4 2 Θ(log∗ n) O(1) O(1) [19, 37]
. . .

Grids 2 1 Θ(n1/2) Θ(n1/2) Θ(n1/2) trivial
3 1.5 Θ(n1/2) Ω(n1/10) O(log n) Section 4, [13]
4 2 Θ(log∗ n) O(1) O(1) [13]
5 2.5 Θ(log∗ n) O(1) 0 [13]
. . .

Redesign the public service network only in the local neighborhoods in which there are
new developments. This corresponds to the dynamic-LOCAL model, and the locality
parameter T captures the redesign cost and the disruption it causes.
Wait until new developments in a neighborhood are completed before providing permanent
public services in the area. This corresponds to the online-LOCAL model, and the locality
parameter T captures the inconvenience for the residents (the width of the “buffer zone”
without permanent public services around areas in which the city plan is not yet finalized).

These two models make it possible to formally explore trade-offs between the quality of
the solution in the long term vs. the inconvenience of those living close to the areas where
the city is changing. In these kinds of scenarios, the key challenge is not related to the
computational cost of finding an optimal solution (which is traditionally considered in the
context of dynamic graph algorithms) but to the quality of the solution (which is typically
the focus in online algorithms). The key constraint is not the availability of information
on the current state of the world (which is traditionally considered in distributed graph
algorithms), but the cost of changing the solution.

1.6 Techniques and key ideas
For the equivalence in paths and cycles (Section 5.1), we first make use of pumping-style
arguments that were introduced by Chang and Pettie [17] in the context of distributed
algorithms. We show that such ideas can be used to also analyze locality in the context
of online algorithms: we start by showing that we can “speed up” (or “further localize”)
online-LOCAL algorithms with a sublinear locality to online-LOCAL algorithms with a
constant locality in paths and cycles. Then, once we have reached constant locality in the
online-LOCAL model, we show how to turn it into a LOCAL-model algorithm with locality
O(log∗ n). In this part, the key insight is that we cannot directly simulate online-LOCAL in
LOCAL. Instead, we can use an online-LOCAL algorithm with a constant locality to find a
canonical labeling for each possible input-labeled fragment, and use this information to design
a LOCAL-model algorithm. The main trick is that we first present only disconnected path
fragments to an online-LOCAL algorithm, and force it to commit to some output labeling in
each fragment without knowing how the fragments are connected to each other.

ICALP 2023



10:6 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

In the case of rooted regular trees (Section 5.2), we face the same fundamental challenge:
we cannot directly simulate black-box online-LOCAL algorithms in the LOCAL model.
Instead, we need to look at the combinatorial properties of a given LCL problem Π. We
proceed in two steps: (1) Assume that the locality of Π is nΘ(1) in the LOCAL model;
we need to show that the locality is nΘ(1) also in the online-LOCAL model. Using the
result of [7], high LOCAL-model locality implies that the structure of Π has to have certain
“inflexibilities”, and we use this property to present a strategy that the adversary can use to
force any online-LOCAL algorithm with locality no(1) to fail. (2) Assume that we have an
online-LOCAL algorithm A for Π with locality o(log n); we need to show that the locality
is O(log∗ n) in the LOCAL model. Here we design a family of inputs and a strategy of the
adversary that forces algorithm A to construct a “certificate” (in the sense of [7]) that shows
that Π is efficiently solvable in the LOCAL model.

For 3-coloring bipartite graphs in online-LOCAL (Section 4), we make use of the following
ideas. We maintain a collection of graph fragments such that each of the fragments has got a
boundary that is properly 2-colored. Each such fragment has got one of two possible parities
(let us call them here “odd” and “even”) with respect to the underlying bipartition. We do
not know the global parity of a given graph fragment until we have seen almost the entire
graph. Nevertheless, it is possible to merge two fragments and maintain the invariant: if two
fragments A and B have parities that are not compatible with each other, we can surround
either A or B with a barrier that uses the third color, and thus change parities. Now we
can merge A and B into one fragment that has got a properly 2-colored boundary. The key
observation here is that we can make a choice between surrounding A vs. B, and if we always
pick the one with the smallest number of nested barriers, we never need to use more than a
logarithmic number of nested barriers. It turns out that this is enough to ensure that seeing
up to distance O(log n) suffices to color any node chosen by the adversary.

1.7 Open questions

Our work gives rise to a number of open questions. First, we can take a more fine-grained
view of the results in Tables 1 and 2:
1. Is there any problem in rooted trees with locality Θ(nα) in the online-LOCAL model and

locality Θ(nβ) in the LOCAL model, for some α < β?
2. Is it possible to find a 3-coloring in 2-dimensional grids in the dynamic-LOCAL model

with locality O(log n)?
3. Is it possible to find a 3-coloring in bipartite graphs in the online-LOCAL model with

locality o(log n)?
Perhaps even more interesting is what happens if we consider unrooted trees instead of
rooted trees. In unrooted trees we can separate randomized and deterministic versions
of the LOCAL model [16], and SLOCAL is strong enough to derandomize randomized
LOCAL-model algorithms [25]; hence the key question is:
4. Does randomized-LOCAL ≈ SLOCAL ≈ dynamic-LOCAL ≈ online-LOCAL hold for

LCL problems in unrooted trees?
Finally, our work shows a trade-off between the competitive ratio and the locality of coloring:
With locality O(log n), one can achieve O(1)-coloring of a bipartite graph, and to achieve
locality 0, one needs to use Ω(log n) colors. This raises the following question:
5. What trade-offs exist between the locality and number of colors needed to color a

(bipartite) graph in the online-LOCAL model?
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2 Definitions and related work

Throughout this work, graphs are simple, undirected, and finite, unless otherwise stated. We
write G = (V, E) for a graph G with the set of nodes V and the set of edges E, and we use
n to denote the number of nodes in the graph. For a node v and a natural number T , we use
B(v, T ) to denote the set of all nodes in the radius-T neighborhood of node v. For a set of
nodes U , we write G[U ] for the subgraph of G induced by U . By radius-T neighborhood
of v we refer to the induced subgraph G[B(v, T )], together with possible input and output
labelings.

We use the following notation for graph problems. We write G for the family of graphs, Σ
for the set of input labels, and Γ for the set of output labels. For a graph G = (V, E), we write
I : V → Σ for the input labeling and L : V → Γ for the output labeling. We consider here
node labelings, but edge labelings can be defined in an analogous manner. A graph problem
Π associates with each possible input (G, I) a set of feasible solutions L; this assignment
must be invariant under graph isomorphism.

Locality. In what follows, we define five models of computing: LOCAL, SLOCAL, two
versions of dynamic-LOCAL, and online-LOCAL. In all of these models, an algorithm is
characterized by a locality T (a.k.a. locality radius, local horizon, time complexity, or round
complexity, depending on the context). In general, T can be a function of n. We assume
that the algorithm knows the value of n.

In each of these models M, we say that algorithm A solves problem Π if, for each possible
input (G, I) and for each possible adversarial choice, the labeling L produced by A is a
feasible solution. We say that problem Π has locality T in model M if T is the pointwise
smallest function such that there exists an M-model algorithm A that solves Π with locality
at most T .

LOCAL model. In the LOCAL model of distributed computing [37,44], the adversary labels
the nodes with unique identifiers from {1, 2, . . . , poly(n)}. In a LOCAL model algorithm,
each node in parallel chooses its local output based on its radius-T neighborhood (the output
may depend on the graph structure, input labels, and the unique identifiers).

Naor and Stockmeyer [42] initiated the study of the locality of LCL problems (see
Definition 3) in the LOCAL model. Today, LCL problems are well classified with respect to
their locality for the special cases of paths [4,5, 13,18,42], grids [13], directed and undirected
trees [5, 7, 8, 15,17] as well as general graphs [13,42], with only a few unknown gaps [7].

SLOCAL model. In the SLOCAL model [26], we have got adversarial unique identifiers
similar to the LOCAL model, but the nodes are processed sequentially with respect to an
adversarial input sequence σ = v1, v2, v3, . . . , vn. Each node v is equipped with an unbounded
local memory; initially, all local memories are empty. When a node v is processed, it can
query the local memories of the nodes in its radius-T neighborhood, and based on this
information, it has to decide what is its own final output and what to store in its own local
memory.

The SLOCAL model has been used as a tool to e.g. better understand the role of
randomness in the LOCAL model [25, 26]. It is also well-known that SLOCAL is strictly
stronger than LOCAL. For example, it is trivial to find a maximal independent set greedily
in the SLOCAL model, while this is a nontrivial problem in the general case in the LOCAL
model [6, 36]. There are many LCL problems with LOCAL-locality Θ(log∗ n) [19,37], and
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10:8 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

all of them have SLOCAL-locality O(1). There are also LCL problems (e.g. the so-called
sinkless orientation problem), where the locality in the (deterministic) LOCAL model is
Θ(log n), while the locality in the (deterministic) SLOCAL model is Θ(log log n) [16, 25].

Dynamic-LOCAL model. To our knowledge, there is no standard definition or name for
what we call dynamic-LOCAL here; however, the idea has appeared implicitly in a wide
range of work. For example, many efficient dynamic algorithms for graph problems, such as
vertex or edge coloring, maximal independent set, and maximal matching, also satisfy the
property that the solution is only modified in the (immediate) local neighborhood of a point
of change [3, 9, 11,21,28,34,43], and hence all of them fall in the class dynamic-LOCAL.

We use the following definition for dynamic-LOCAL: Computation starts with an empty
graph G0. In step i, the adversary constructs a supergraph Gi of Gi−1 such that Gi and
Gi−1 differ in only one edge or one node; let Ci denote the set of nodes v in Gi with
Gi[B(v, T )] ̸= Gi−1[B(v, T )], i.e., nodes that are within distance at most T from the point
of change. In each step, the algorithm has to produce a feasible labeling Li for problem Π
in graph Gi, and the labeling can only be modified in the local neighborhood of a point of
change, i.e., Li(v) = Li−1(v) for all v /∈ Ci.

Note that we defined the dynamic-LOCAL model for the incremental case, where nodes
and edges are only added. If we do not require that Gi is a supergraph of Gi−1, we arrive at
what we call the dynamic-LOCAL± model with both additions and deletions.

Online graph algorithms. In online graph algorithms, nodes are processed sequentially with
respect to an adversarial input sequence σ = v1, v2, . . . , vn. Let σi = v1, v2, . . . , vi denote the
first i nodes of the sequence, and let Gi = G[{v1, v2, . . . , vi}] be the subgraph induced by
these nodes. When the adversary presents a node vi, the algorithm has to label vi based on
σi and Gi.

Online algorithms on graphs have been studied for many problems such as matching [35]
and independent set [30], but closest to our work is the extensive literature on online graph
coloring [1,10,29,31,33,38,47]. There is also prior work that has considered various ways
to strengthen the notion of online algorithms; the performance of online algorithms can
be improved by letting the algorithm know the input graph [20,32], by giving it an advice
string [12,14,22] with knowledge about the request sequence, or allowing the algorithm to
delay decisions [23]. The online-LOCAL model can be interpreted as online graph algorithms
with spatial advice, and it can also be interpreted as a model where the online algorithm
can delay its decision for node v until it has seen the whole neighborhood around v (this
interpretation is equivalent to the definition we give next).

Online-LOCAL model. We define the online-LOCAL model as follows. The nodes are
processed sequentially with respect to an adversarial input sequence σ = v1, v2, . . . , vn. Let
σi = v1, v2, . . . , vi denote the first i nodes of the sequence, and let Gi = G

[⋃i
j=1 B(vj , T )

]
be the subgraph induced by the radius-T neighborhoods of these nodes. When the adversary
presents a node vi, the algorithm has to label vi based on σi and Gi.

Observe that any online graph algorithm is an online-LOCAL algorithm with locality
0. Further note that in the online-LOCAL model, unique identifiers would not give any
additional information. This is because the nodes can always be numbered with respect to
the point in time when the algorithm first sees them in some Gi.

Yet another way to interpret the online-LOCAL model is that it is an extension of the
SLOCAL model, where the algorithm is equipped with unbounded global memory where it
can store arbitrary information on what has been revealed so far. When they introduced
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the SLOCAL model, Ghaffari, Kuhn, and Maus [26] mentioned the possibility of such an
extension but pointed out that it would make the model “too powerful”, as just one bit
of global memory would already make it possible to solve e.g. leader election (and this
observation already shows that the online-LOCAL model is indeed strictly stronger than the
SLOCAL model). In our work, we show that even though online-LOCAL can trivially solve
e.g. leader election thanks to the global memory, it is not that easy to exploit this extra
power in the context of LCL problems. Indeed, online-LOCAL turns out to be as weak as
SLOCAL when we look at LCL problems in paths, cycles, and rooted trees.

Local computation algorithms. We do not discuss local computation algorithms (LCAs) [2,
24, 39, 40, 46, 46] in this work in more detail, but we briefly point out a direct connection
between the online-LOCAL model and LCAs. It is known that for a broad family of graph
problems (that includes LCLs), we can w.l.o.g. assume that whenever the adversary queries
a node v, the LCA makes probes to learn a connected subgraph around node v [27]. For such
problems, an online-LOCAL algorithm with locality T is at least as strong as an LCA that
makes T probes per query: an LCA can learn some subgraph of the radius-T neighborhood
of v and, depending on the size of the state space, remember some part of that, while in
the online-LOCAL model the algorithm can learn the entire radius-T neighborhood of v

and remember all of that. We leave a more detailed exploration of the distinction between
distance (how far to see) and volume (how much to see), in the spirit of e.g. [41, 45], for
future work.

3 Landscape of models

As an introduction to the models, we first check that all relations in Figure 1 indeed hold.
In each case, we are interested in asymptotic equivalence: for example, when we claim that
A ⊊ B, the interpretation is that locality T in model A implies locality O(T ) in model B,
but the converse is not true. Note that the relation between the online-LOCAL problems
and the online graph algorithms has already been discussed in Sections 1 and 2.

Inclusions. Let us first argue that the subset relations in Figure 1 hold. These cases are
trivial:

Any LOCAL algorithm can be simulated in the SLOCAL model, and any SLOCAL
algorithm can be simulated in the online-LOCAL model (this is easiest to see if one
interprets online-LOCAL as an extension of SLOCAL with the global memory).
Any dynamic-LOCAL± algorithm can be directly used in the dynamic-LOCAL model
(an algorithm that supports both additions and deletions can handle additions).

These are a bit more interesting cases:
To simulate a LOCAL algorithm A in the dynamic-LOCAL± model, we can simply
recompute the entire output with A after each change. If the locality of A is T , then the
output of A only changes within distance T from a point of change.
To simulate a dynamic-LOCAL algorithm A in the online-LOCAL model, we proceed as
follows: When the adversary reveals a node v, we feed v along with the new nodes in its
radius-O(T ) neighborhood to A edge by edge. Now there will not be any further changes
within distance T from v, and hence A will not change the label L(v) of v anymore.
Hence the online-LOCAL algorithm can also label v with L(v).

ICALP 2023



10:10 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

Table 3 Problems that we use to separate the models, and the bounds that we show for their
locality.

Problem LOCAL SLOCAL dynamic- dynamic- online-
LOCAL± LOCAL LOCAL

3-coloring paths Ω(log∗ n) O(1) O(1) O(1) O(1)
weak reconstruction Ω(n) Ω(n) O(1) O(1) O(1)
cycle detection Ω(n) Ω(n) Ω(n) O(1) O(1)
component-wise leader election Ω(n) Ω(n) Ω(n) Ω(n) O(1)
nested orientation ω(1) O(1) ω(1) ω(1) O(1)

Separations. To prove the separations of Figure 1, we make use of the classic distributed
graph problem of 3-coloring paths, as well as the following problems that are constructed to
highlight the differences between the models:

Weak reconstruction: in each connected component C there has to be at least one node v

such that its label L(v) is an encoding of a graph isomorphic to C.
Cycle detection: for each cycle there has to be at least one node that outputs “yes”, and
each node that outputs “yes” has to be part of at least one cycle.
Component-wise leader election: in each connected component exactly one node has to
be marked as the leader.
Nested orientation: find an acyclic orientation of the edges and label each node recursively
with its own identifier, the identifiers of its neighbors, and the labels of its in-neighbors
(see the full version for the precise definition).

We can prove the bounds shown in Table 3 for the locality of these problems in the five
models; see the full version for the details. Now each separation in Figure 1 follows from one
of the rows of Table 3.

4 3-coloring bipartite graphs

In this section, we present our Contribution 3: we design an algorithm for 3-coloring
bipartite graphs in the online-LOCAL model and show that this gives us an exponential
separation between the SLOCAL and online-LOCAL models. This section also serves as an
introduction into the algorithmic techniques that work in online-LOCAL. Equipped with
this understanding, in Section 5, we start to develop more technical tools that we need for
our Contribution 2.

By prior work [13], it is known that the locality of 3-coloring in
√

n ×
√

n grids is at least
Ω(

√
n) in the LOCAL model. The aforementioned paper considers the case of toroidal grid

graphs, but the same argument can be applied for non-toroidal grids (in essence, if you could
color locally anywhere in the middle of a non-toroidal grid, you could also apply the same
algorithm to color a toroidal grid). We can easily extend this result to show a polynomial
lower bound for 3-coloring grids in the SLOCAL model:

▶ Theorem 2. There is no SLOCAL algorithm that finds a 3-coloring in 2-dimensional grids
with locality o(n1/10).

To prove the result, we show that we can simulate SLOCAL algorithms sufficiently
efficiently in the LOCAL model. We use the standard technique of first precomputing a
distance-o(n1/10) coloring, and then using the colors as a schedule for applying the SLOCAL
algorithm. Such a simulation can be done efficiently and would lead to a LOCAL algorithm
running in o(

√
n) time, which is a contradiction. The full proof of the lower bound is presented
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in the full version of the paper. As grids are bipartite graphs, the problem of 3-coloring
in grids already gives an exponential separation between the SLOCAL and online-LOCAL
models. For the special case of grids, we discuss the known locality bounds for the coloring
problem in the full version. A summary of these results can be found in Table 2.

In Section 4.1, we introduce the 3-coloring algorithm in the online-LOCAL, and we use the
special case of grids in order to visualize it. Besides providing a natural separation between
the SLOCAL and online-LOCAL models, the 3-coloring problem also shows the advantage
of allowing online algorithms to look around: while the best online coloring algorithm on
bipartite graphs is Θ(log n)-competitive, our algorithm in the online-LOCAL model achieves
a competitive ratio of 1.5.

Note that an optimal solution would be to color a bipartite graph with 2 colors. In all
models that we consider here, we know it is not possible to solve 2-coloring with locality
o(n), the worst case being a path with n nodes. We show that allowing an online-LOCAL
algorithm to use only one extra color makes it possible to find a valid coloring with locality
O(log n):

▶ Theorem 1. There is an online-LOCAL algorithm that finds a 3-coloring in bipartite
graphs with locality O(log n).

4.1 Algorithm for 3-coloring bipartite graphs in online-LOCAL
Algorithm overview. The high-level idea of our online-LOCAL algorithm is to color the
presented nodes of the graph with 2 colors until the algorithm sees two areas where the
2-colorings are not compatible. In essence, when the adversary presents a node far from
any other node the algorithm has seen, the algorithm blindly start constructing a 2-coloring.
When the adversary presents nodes in the neighborhood of already colored nodes, the
algorithm simply expands the 2-colored component – we call such a component a group.
The algorithm keeps expanding such properly 2-colored groups until, eventually, two groups
with incompatible 2-colorings meet (i.e., groups that have different parities). Then, the
algorithm uses the third color in order to create a barrier around one of the groups, effectively
flipping its parity. Our algorithm thereby makes use of the knowledge of previously queried
neighborhoods that are given by the online-LOCAL model: the algorithm is committing to
colors for nodes in the revealed subgraphs before they are queried.

Algorithm in detail. At the beginning, no nodes are revealed to the algorithm, and we
therefore say that all nodes are unseen. We refer to connected components of the subgraph
Gi of G as groups. With each of these groups, we associate a border count, which is a natural
number that is initially 0. The algorithm uses colors 0 and 1 for the 2-coloring, reserving
color 2 as the barrier color. Each time the adversary points at a node vi, the algorithm
gets to see the radius-T neighborhood B(vi, T ) of this node. Now consider different types of
nodes in B(vi, T + 1). There are three different cases that the algorithm needs to address
(we visualize them in Figures 2–4 using grids as an example):
1. All nodes in B(vi, T + 1) are unseen. In this case, the nodes in B(vi, T ) form a new

connected component, i.e. a new group. This group has a border count of 0. The algorithm
colors vi with 0, thus fixing the parity for this group (see Figure 2).

2. The algorithm has already seen some nodes in B(vi, T + 1), but all of them belong to the
same group. In this case, the adversary has shown an area next to an existing group.
If vi was already committed to a color, the algorithm uses that color. Otherwise, the
algorithm colors vi according to the 2-coloring of the group. All nodes in B(vi, T ) are
now considered to be in this group (see Figure 3).
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x x

Figure 2 3-coloring algorithm, case 1/3. The adversary queries node x. Here node x is in the
middle of an unseen region (shaded). The algorithm creates a new group (white) and fixes the color
of node x arbitrarily.

y y

A

Figure 3 3-coloring algorithm, case 2/3. The adversary queries node y. Some nodes in the local
neighborhood of y are already part of a group (white), and hence y joins this group. The algorithm
fixes the color of node y so that it is consistent with the coloring of the group.

C

B
z z

Figure 4 3-coloring algorithm, case 3/3. The adversary queries node z. Some nodes in the local
neighborhood of z belong to two different groups, B and C. The algorithm merges the groups. As
they have incompatible parities, the algorithm adds a new border around one of the groups, in this
case C, as both groups have the same number of borders around them and the algorithm can choose
arbitrarily. Nodes in the local neighborhood of z join the group, and z is colored in a way compatible
with the coloring of the newly created group.
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Algorithm 1 join_groups(A, B).

Input: Groups A, B

Output: Group X

1 if A and B have different parities then
2 Let S be the group with the smaller border count. If they are equal, S = A;
3 For all nodes of color 0 in S, commit all uncolored neighbors to color 1;
4 For all nodes of color 1 in S, commit all uncolored neighbors to color 2;
5 For all nodes of color 2 in S, commit all uncolored neighbors to color 0;
6 Increase border count of S by 1.
7 end
8 Set all nodes in groups A, B to be in group X;
9 Set the border count for X to be the maximum of border counts for A, B and S;

10 return X

3. There are nodes in B(vi, T + 1) that belong to different groups. In this case, the algorithm
has to join groups. Here, we only define the join of two groups A and B; if there are
more groups, this join can be applied iteratively.
If A and B have different parities (i.e., the 2-colorings at their boundaries are not
compatible), the algorithm takes the group with the smaller border count and uses a
layer of nodes of color 2 to create a barrier that changes its parity, and then it increases
the group’s border count; see Algorithm 1 for the details. Then, the algorithm joins the
groups, that are now compatible, and sets the border count of the newly created group
to the maximum of the border counts of A and B.
By merging all groups in the local neighborhood of vi, the algorithm eventually ends up
in a situation where vi only sees nodes in a single group, and we are in a scenario similar
to case 2 above: nodes in the local neighborhood of vi also join the newly created group,
and if vi has not already committed to a color, the algorithm colors it according to the
2-coloring of this group (see Figure 4).

4.2 Analysis of the 3-coloring Algorithm in online-LOCAL
In order to show the correctness of the coloring algorithm, we first prove that this process
creates a valid 3-coloring provided that all our commitments remain within the visible area,
that is, inside subgraph Gi. Next, we show that by choosing T (n) = O(log n), all our
commitments indeed remain inside the visible area. Together, these parts prove Theorem 1.

Validity of the 3-coloring. We first prove that our algorithm always continues a valid
3-coloring, as long as it does not need to make commitments to unseen nodes. We consider
all three cases of the algorithm individually.
1. All nodes in B(vi, T + 1) are unseen. In this case, the algorithm colors vi with 0. As all

neighboring nodes were unseen, they have not been committed to any color, and thus
this case causes no errors.

2. The algorithm has already seen some nodes in B(vi, T + 1), but all of them belong to the
same group. In this case, the algorithm would either use the committed color or the
parity of the group. As previously committed colors do not cause errors, and the group
has consistent parity, this case cannot cause any errors.
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3. There are nodes in B(vi, T + 1) that belong to different groups. In this case, we want to
join groups without breaking the coloring. If the two groups have the same parity, clearly,
no errors can be caused by continuing the 2-coloring. The interesting case is when the
two groups have different parities. Then, we need to show that the new commitments
made by Algorithm 1 do not create any errors.
Let S be the group with the smaller border count. By examining Algorithm 1, we can
see that all colored nodes that have uncolored neighbors are either of color 0 or color 1:
only in line 4, nodes can be colored with color 2, and all of those nodes’ neighbors are
then colored in line 5. Thus, in order for an error to occur, there either needs to be two
nodes of colors 0 and 1 that have uncolored neighbors and different parities in S, or the
algorithm commits to a color of a node that it has not yet seen. This could cause an
error, as two groups could commit a single node to two different colors.
As for the first case, we assume that all nodes in S that have uncolored neighbors also
have consistent parity. This trivially holds for a group that has border count 0, as all
colored nodes in it have the same parity. From the assumption, it follows that all nodes
colored with 1 in line 3 have the same parity, so they cannot create an error. After this,
all colored nodes with uncolored neighbors in the group have the same parity, and are
colored with 1. Thus all nodes colored with 2 in line 4 also have the same parity, as do
the nodes colored with 0 in line 5. As these are the only lines where nodes are colored,
this procedure cannot create any errors. It also ensures that, after the procedure, the only
colored nodes in the group that have uncolored neighbors are the nodes colored in line 5,
which have the same parity. Therefore, our assumption holds for all groups. Those nodes
also have a parity different from the nodes in S that had uncolored neighbors before this
procedure, so in essence, we have flipped the parity of group S to match the parity of the
other group.
As for the second case, this can be avoided by choosing a large enough T , so that all
commitments remain within the visible area of Gi. Next, we discuss how to choose
such a T .

Locality of the 3-coloring algorithm. In this part, we prove that by choosing locality
T (n) = 3⌈log2 n⌉ = O(log n), no nodes outside the visible area of Gi need to be committed.

We first make the observation that a group with border count b contains at least 2b nodes;
this is a simple induction:
b = 0: A newly created group contains at least 1 node.
b > 0: Consider the cases in which Algorithm 1 returns a group X with border count b.

One possibility is that A or B already had border count b, and hence by assumption it
already contained at least 2b nodes. The only other possibility is that both A and B

had border count exactly b − 1, they had different parities, one of the border counts was
increased, and hence X has now got a border count of b. But, in this case, both A and B

contained at least 2b−1 nodes each.
Hence the border count is bounded by b ≤ log2 n in a graph with n nodes.

We next consider the maximum distance between a node that the adversary has queried
and a node with a committed color. Note that the only place where the algorithm commits
a color to a node that the adversary has not queried yet is when building a border around
a group. There are three steps (lines 3–5) where the algorithm commits to the color of a
neighbor of a committed node, and thus effectively extends the distance by at most one in
each step. Therefore, if the border count is b, in the worst case, the algorithm commits a
color for a node that is within distance 3b from a node that was queried by the adversary.
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As we have b ≤ log2 n, a locality of 3⌈log2 n⌉ ≥ 3b suffices to ensure that all the
commitments of the algorithm are safely within the visible region. This concludes the proof
of Theorem 1.

5 LCL problems in paths, cycles, rooted regular trees

We just showed that the online-LOCAL model is much more powerful than LOCAL and
SLOCAL for an LCL on bipartite graphs and grids. In this section, we discuss what happens
when we restrict our attention to LCL problems in paths, cycles, and trees. We start by
defining LCL problems more formally.

We say that Π is a locally verifiable problem with verification radius r if the following
holds: there is a collection of labeled local neighborhoods T such that L is a feasible solution
for input (G, I) if and only if for all nodes v, the radius-r neighborhood of v in (G, I, L) is in
T . Informally, a solution is feasible if it looks good in all radius-r neighborhoods.

▶ Definition 3 (Locally checkable labeling [42]). A locally verifiable problem Π is a locally
checkable labeling (LCL) problem if the set of the input labels Σ is finite, the set of the output
labels Γ is finite, and there is a natural number ∆ such that maximum degree of any graph
G ∈ G is at most ∆.

Note that in LCL problems, T is also finite since there are only finitely many possible
non-isomorphic labeled local neighborhoods.

It turns out that in the case of paths, cycles, and rooted regular trees, the LOCAL, SLO-
CAL, dynamic-LOCAL, and online-LOCAL models are all approximately equally expressive
for LCL problems. In particular, all classification and decidability results related to LCLs in
paths, cycles, and rooted regular trees in the LOCAL model [4, 7, 18] directly apply also in
the online-LOCAL model, the SLOCAL model, and both versions of the dynamic-LOCAL
model.

We show first that the LOCAL and online-LOCAL models are equivalent in the case of
paths and cycles, even when the LCL problems can have inputs. We then continue to prove
that the models are equivalent also in the more general case of LCL problems rooted regular
trees, but in this case we do not consider the possibility of having input labels.

Formally, we prove the following theorem for cycles and paths:

▶ Theorem 4. Let Π be an LCL problem in paths or cycles (possibly with inputs). If the
locality of Π is T in the online-LOCAL model, then its locality is O(T +log∗ n) in the LOCAL
model.

For the case of rooted trees, we prove the following two theorems:

▶ Theorem 5. Let Π be an LCL problem in rooted regular trees (without inputs). Problem Π
has locality nΩ(1) in the LOCAL model if and only if it has locality nΩ(1) in the online-LOCAL
model.

▶ Theorem 6. Let Π be an LCL problem in rooted regular trees (without inputs). Problem
Π has locality Ω(log n) in the LOCAL model if and only if it has locality Ω(log n) in the
online-LOCAL model.

These two theorems show that all LCL problems in rooted regular trees belong to one of
the known complexity classes O(log∗ n), Θ(log n) and nΩ(1) in all of the models we study.
In what follows, we introduce the high-level ideas of the proofs of these theorems. For full
proofs, we refer the reader to the full version.
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5.1 Cycles and paths
We prove Theorem 4 by first showing that any LCL problem in cycles and paths has either
locality O(1) or Ω(n) in the online-LOCAL model. Next, we show that if a problem is solvable
with locality O(1) in the online-LOCAL model, then it is also solvable in locality O(log∗ n)
in the LOCAL model. These steps are described by the following two lemmas:

▶ Lemma 7. Let Π be an LCL problem in paths or cycles (possibly with inputs), and let A be
an online-LOCAL algorithm solving Π with locality o(n). Then, there exists an online-LOCAL
algorithm A′ solving Π with locality O(1).

The high-level idea of the proof of Lemma 7 is to construct a large virtual graph P ′ such
that when the original algorithm runs on the virtual graph P ′, the labeling produced by the
algorithm is locally compatible with the labeling in the original graph P . We ensure this
by applying a pumping-lemma-style argument on the LCL problem. The proof uses similar
ideas as the ones presented by Chang and Pettie [17].

▶ Lemma 8. Let Π be an LCL problem in paths or cycles (possibly with inputs), and let A
be an online-LOCAL algorithm solving Π with locality O(1). Then, there exists a LOCAL
algorithm A′ solving Π with locality O(log∗ n).

The high-level idea of the proof of Lemma 8 is to use the constant locality online-
LOCAL algorithm to construct a canonical output labeling for each possible neighborhood
of input labels. The fast LOCAL algorithm can then use these canonical labelings in disjoint
neighborhoods of the real graph, and the construction of the canonical labelings ensures that
the labeling also extends to the path segments between these neighborhoods.

The full proofs of these lemmas can be found in the full version of this paper. In order to
prove Theorem 4, it is sufficient to combine these lemmas with the fact that the possible
localities on paths and cycles in the LOCAL model are O(1), Θ(log∗ n) and Θ(n) [18].

5.2 Rooted regular trees
We prove the equivalence of the LOCAL and the online-LOCAL models for LCL problems
in rooted regular trees in two parts. We start out with Theorem 5 and show that if an
LCL problem requires locality nΩ(1) in the LOCAL model, then for every locality-no(1)

online-LOCAL algorithm we can construct an input instance which the algorithm must fail
to solve. To prove Theorem 6, we show that a locality-o(log n) online-LOCAL algorithm for
solving an LCL problem implies that there exists a locality-O(log∗ n) LOCAL algorithm for
solving that same problem. In the following, we outline the proofs of both theorems; the full
proofs can be found in the full version of the paper. Before considering the full proof, we
advise the reader to look at the example in the full version of this paper, where we show
that the 2.5-coloring problem requires locality Ω(

√
n) in the online-LOCAL model.

Proof outline of Theorem 5. Our proof is based on the fact that any LCL problem requiring
locality nΩ(1) in the LOCAL model has a specific structure. In particular, the problem can
be decomposed into a sequence of path-inflexible labels and the corresponding sequence of
more and more restricted problems [7]. Informally, a label is path-inflexible if two nodes
having that label can exist only at specific distances apart from each other. For example,
when 2-coloring a graph, two nodes having label 1 can exist only at even distances from
each other. The problems in the path-inflexible decomposition are formed by removing the
path-inflexible labels from the previous problem in the sequence until an empty problem is
reached.
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This decomposition of the problem into restricted problems with path-inflexible labels
allows us to construct an input graph for any locality-no(1) online-LOCAL algorithm. In
particular, we force the algorithm to commit labels in disjoint fragments of the graph. Any
label that the algorithm uses must be a path-inflexible label in some problem of the sequence
of restricted problems. By combining two fragments containing labels that are path-inflexible
in the same problem, we can ensure that the algorithm cannot solve that problem in the
resulting graph. Hence the algorithm must use a label from a problem earlier in the sequence.
At some point, the algorithm must use labels that are path-inflexible in the original problem.
At that point, we can combine two fragments having path-inflexible labels in the original
problem in such a way that no valid labeling for the original problem exists, and hence the
algorithm must fail to solve the problem on the resulting graph.

Proof outline of Theorem 6. Here, we show that a locality-o(log n) online-LOCAL algo-
rithm solving an LCL problem implies that there exists a certificate for O(log∗ n) solvability
for that problem. It is known that the existence of such a certificate for a problem implies
that there exists a locality-O(log∗ n) LOCAL algorithm for solving the problem [7].

Informally, the certificate for O(log∗ n) solvability for LCL problem Π with label set Γ
and arity δ consists of a subset ΓT = {γ1, . . . , γt} of labels Γ, and two sequences of correctly
labeled complete δ-ary trees T 1 and T 2. The leaves of each tree in the sequence T 1 (resp.
T 2) are labeled in the same way using only labels from set ΓT . For every label of set ΓT ,
there exists a tree in both of the sequences having a root labeled with that label.

We can use the online-LOCAL algorithm to construct such a certificate. We do this by
constructing exponentially many deep complete δ-ary trees and using the algorithm to label
nodes in the middle of those trees. We then glue these trees together in various ways. When
the trees are glued together, we use the online-LOCAL algorithm to label the rest of the
nodes to form one tree of the sequence. We repeat this procedure until all trees of both
sequences have been constructed.
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