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Abstract
In the trace reconstruction problem, one is given many outputs (called traces) of a noise channel
applied to the same input message x, and is asked to recover the input message. Common noise
channels studied in the context of trace reconstruction include the deletion channel which deletes
each bit w.p. δ, the insertion channel which inserts a Gj i.i.d. uniformly distributed bits before each
bit of the input message (where Gj is i.i.d. geometrically distributed with parameter σ) and the
symmetry channel which flips each bit of the input message i.i.d. w.p. γ.

De et al. and Nazarov and Peres [12, 20] showed that any string x can be reconstructed from
exp(O(n1/3)) traces. Holden et al. [13] adapted the techniques used to prove this upper bound, to
construct an algorithm for average-case trace reconstruction from the insertion-deletion channel
with a sample complexity of exp(O(log1/3 n)). However, it is not clear how to apply their techniques
more generally and in particular for the recent worst-case upper bound of exp(Õ(n1/5)) shown by
Chase [7] for the deletion channel.

We prove a general reduction from the average-case to smaller instances of a problem similar to
worst-case and extend Chase’s upper-bound to this problem and to symmetry and insertion channels
as well. Using this reduction and generalization of Chase’s bound, we introduce an algorithm for
the average-case trace reconstruction from the symmetry-insertion-deletion channel with a sample
complexity of exp(Õ(log1/5 n)).
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1 Introduction

The symmetry-insertion-deletion (SID) channel with bit-flip probability γ ∈ [0, 1/2), insertion
probability σ ∈ [0, 1) and deletion probability δ ∈ [0, 1), takes as input a binary string
x ∈ {0, 1}n. For each j, the jth bit of x is flipped w.p. γ (we will sometimes think of this
portion of the channel as replacing the jth bit of x with a random bit w.p. 2γ). Then Gj

random uniform and independent bits are inserted before the jth bit of x, where the random
variables Gj ≥ 0 are i.i.d. geometrically distributed with parameter σ. Then, each bit of the
message is deleted independently with probability δ. The output string x̃ is called a trace1.

1 The trace reconstruction problem was originally defined with only the deletion channel [2] (i.e. with γ
and σ fixed to 0). The more general SID channels were first considered in the “open questions” of [18]
and were further researched by Andoni et al. [1] and by De et al. [12].
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102:2 Average-Case to (Shifted) Worst-Case Reduction

The trace reconstruction problem asks the following question: how many traces are
necessary to reconstruct an unknown string x?

The main motivation for studying trace reconstruction comes from computational biology,
where one often tries to align several DNA sequences to a common ancestor, and it has been
extensively researched since the early 2000’s [2].

Perhaps the most natural and well-researched version of the trace reconstruction problem,
is the worst-case, where the input string x is adversarially chosen. Holenstein et al. [15]
established an upper bound of exp(Õ(n1/2)) on its sample complexity. This was improved
by Nazarov and Peres [20], and De, O’Donnell and Servedio [12] who simultaneously proved
upper and lower bounds of exp(O(n1/3)) on the sample complexity of “mean-based” trace
reconstruction techniques. Recently, Chase [7] improved on these methods by proving that a
“non-linear” method can be used to solve the worst-case deletion-channel trace reconstruction
problem with a far lower sample complexity of exp(Õ(n1/5)).

De et al. and Nazarov and Peres’s results were highly influential and mean-based separ-
ators are used as a central component in the analysis of many other versions of the trace
reconstruction problem [5, 8, 10, 13, 16, 21]. However, so far, Chase’s techniques have not
been extended beyond worst-case trace reconstruction from a deletion channel. In particular,
we note the coded [5, 10] and the average-case [13, 21] trace reconstruction problems.

The average-case trace reconstruction problem was introduced by Batu et al. [2]. In
this problem, the input string x is chosen uniformly at random from {0, 1}n, and the
reconstruction only needs to succeed w.h.p. over the choice of x. McGregor et al. [17]
showed that if H(n) traces are necessary for the worst-case trace reconstruction, then at
least H(log n) are needed for the average-case (and under some conditions H(log n) log n).

Peres and Zhai [21] adapted mean-based separators to the average-case, construct-
ing an efficient algorithm for the average-case deletion-channel trace reconstruction with
exp(O(log1/2 n)) samples and low deletion probability (δ ≤ 1/2). This was further improved
by Holden et al. [14] who reduced the sample complexity to exp(O(log1/3 n)) and generalized
the algorithm to work for all insertion-deletion channels.

Motivated by the question of DNA storage, Cheraghchi et al. [10] introduced the coded
trace reconstruction problem, where one is asked to construct a code C ⊂ {0, 1}n s.t. any
codeword x ∈ C can be reconstructed w.h.p. given as few independent traces x̃ as possible.
Brakensiek et al. [5] proved that this problem is essentially equivalent to the average-case
trace reconstruction problem.

1.1 Our Contributions
Let n ∈ N be arbitrarily large, and let γ ∈ [0, 1/2), σ ∈ [0, 1) and δ ∈ [0, 1) be fixed bit-flip,
insertion and deletion probabilities, and let C be the SID channel with these parameters. Let
C be a sufficiently large constant2.

We introduce a new version of the trace reconstruction problem, called the shifted trace
reconstruction problem (see Definition 1). In this problem, one is asked to reconstruct the
first n bits of a much longer string x from its traces. Moreover, the error channel is also
allowed to “shift” the traces by some unknown distance s ∈ N (selected i.i.d. from a known
and bounded distribution S for each trace).

The shifted trace reconstruction problem often appears as a component in the analysis of
other versions of the trace reconstruction problem [14, 8], but so far it has not been formally
defined. Moreover, it could be of interest in its own right. Similar to the approximate trace
reconstruction problem introduced by Davies et al. [11] and the average-case approximate

2 C may depend on γ, σ, δ, but not on n.
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trace reconstruction problem by Chase and Peres [8] which model the question of using a
smaller number of traces to reconstruct some information about the input string x, the shifted
trace reconstruction problem asks a similar question, but with the goal of reconstructing the
prefix of a long string.

▶ Definition 1 (Shifted Trace Reconstruction Problem). In a shifted trace reconstruction
problem of size n ∈ N, with shift inaccuracy ∆S(n), one must reconstruct the n + 1th bit
of any string x ∈ {0, 1}N of length at most 2n given the value of its first n bits x:n, and
H(n) = exp(h(n)) i.i.d. traces x̃ produced by the following process.

A random shift s is applied to the input string x def= xs:, where s← S is drawn from a known
shift distribution S, with bounded support Supp(S) ⊆ [a, a + ∆S ] for some 0 ≤ a ≤ n−∆S.
Then the noise channel C is applied to the shifted string x to obtain a trace x̃.

The shifted trace reconstruction problem is clearly at least as hard as the worst-case
trace reconstruction problem, but the differences between the two do not seem to affect the
leading reconstruction techniques. In particular, we extend Chase’s analysis to SID channels
and to the shifted trace reconstruction problem, proving that exp(Õ(n1/5)) samples suffice
for the (shifted) worst-case trace reconstruction problem from an SID channel (Theorem 2).

▶ Theorem 2. For any SID channel C as defined above, and for any constant C > 0, there
exists an algorithm A which solves the shifted trace reconstruction problem of size n with shift
inaccuracy ∆S(n) = Ch(n) and sample complexity H(n) = exp(h(n)) = exp(O(n1/5 log7 n)).

Furthermore, when the deletion probability is sufficiently low (δ < 1/2), the algorithm A

runs in time exp(O(n4/5 log n)) and if q ≥ 1/2, then A runs in time exp(O(n)).

▶ Remark 3. Note that while De et al.’s reconstruction algorithm has a time complexity
polynomial in its sample complexity, Chase only proves an upper bound on the sample
complexity. A naïve adaptation of Chase’s upper bound to an algorithm would yield a time
complexity of exp(Θ(n)).

Holden et al.’s average-case trace reconstruction algorithm works by partially aligning
each trace and then using an oracle that solves a version of the shifted trace reconstruction
problem to reconstruct each bit of the input message x. However, much of their analysis is
specific to their sample complexity of exp(log1/3(n)).

We transform Holden et al.’s construction into a general reduction from an average-case
trace reconstruction of length n to linearly many instances of shifted trace reconstruction
problems of length O(log(n)) (Theorem 4). Moreover, our reduction applies to any SID chan-
nel.

▶ Theorem 4 (Average to Shifted Reduction). Let A be an oracle that solves the shifted trace
reconstruction problem with sample complexity H(n) = exp(h(n)) (for log(n) ≤ h(n) ≤

√
n),

shift inaccuracy ∆S = Ch(n), and failure probability < exp(−n).
Then there exists an algorithm A′ that solves the average-case trace reconstruction problem

with success probability 1−on(1), sample complexity of exp(Ch(C log n)), and time complexity
t(n) = n1+o(1), given n calls to the oracle A.

▶ Remark 5. Note that the assumption that log(n) ≤ h(n) ≤
√

n is not very restrictive, since
we show an upper bound of h(n) ≤ Õ(n1/5) and the lower bound by Chase [6] implies that

h(n) ≥ 3
2 log n .

ICALP 2023
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It is interesting to compare Theorem 4 to [17, Lemma 10]. Theorem 4 shows that if
H(n) traces suffice for shifted trace reconstruction then poly(H(log n)) traces suffice for
average-case trace reconstruction. Compare this to McGregor et al. [17, Lemma 10] who prove
that if H(n) traces are required for worst-case trace reconstruction, then H(log n) traces
are required for average-case trace reconstruction. This means that up to the differences
between shifted and worst-case trace reconstruction, Theorem 4 is essentially tight.

We also note Brakensiek et al. [5], who proved reductions between the coded and the
average-case trace reconstruction problems. When combined with Theorem 4 and [17, Lemma
10], a computational class of trace reconstruction problems begins to emerge (see Figure 1).

An important question to consider in future trace reconstruction research is whether
other versions of the trace reconstruction problem can be reduced to one of these classes.
For instance, consider the approximate average-case trace reconstruction problem. The
best known approximate average-case trace reconstruction technique at the time of writing
this paper is due to Chase and Peres [8], whose approach is based on performing calls to
a “shifted” average-case trace reconstruction oracle, making it a good candidate for a more
general reduction.

Shifted

Worst-Case

Worst-Case Average-Case
Coded Trace 

Reconstruction

McGregor
et al. Brakensiek

et al.

C
o

n
jectu

red

This paper

Figure 1 A diagram of several known reductions between trace reconstruction problems. McGregor
et al. [17] proved that any solution to the average-case trace reconstruction problem implies a solution
to a smaller instance of the worst-case trace reconstruction problem. Brakensiek et al. [5] proved
reductions from coded trace reconstruction to average-case trace reconstruction and vice versa. We
introduce the shifted trace reconstruction and prove a reduction from the average-case to it. We
also show that the current best-known solutions for worst-case trace reconstruction can be extended
to shifted trace reconstruction and conjecture that the two are equivalent.

Finally, Theorems 2 and 4 give us an algorithm for the average-case trace reconstruction
from SID channels with only exp(Õ(log1/5 n)) traces.

▶ Theorem 6 (Main Result). For any SID channel C as defined above, if x ∈ {0, 1}n is a
bit-string where the bits are chosen uniformly and independently at random, then we can
reconstruct x with probability 1 − on(1) using exp(C log1/5 n log7 log n) traces. Moreover,
when the deletion probability is sufficiently low (δ < 1/2), this can be done in n1+o(1) time
and otherwise, this can be done in polynomial time.
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1.2 An Overview of Previous Constructions
Many trace reconstruction techniques follow a similar high-level pattern [7, 12, 14, 20, 21].
First, a combinatorial analysis allows us to equate some property of the original message x
to a polynomial whose coefficients depend on the traces x̃. This polynomial is then analysed
on a small sub-arc of the complex disk D using Borwein and Erdélyi’s seminal research on
Littlewood polynomials [3] or an extension of it [7], yielding a statistical test on the traces
which can be used to reconstruct some property of the original message x.

Our analysis will also follow a similar pattern, and many of its steps will be based on
combinations and extensions of components used to prove previous results, so we begin with
a short overview of these techniques.

For any w ∈ {0, 1}N, let Iw : {0, 1}N → R be the function that maps a string x to 1 if it
begins with the prefix w and otherwise maps it to 0. For any function f : {0, 1}N → R, we
define its indicator polynomial on x to be the polynomial pf,x(z) =

∑
j f(xj:)zj ∈ R[z].

De et al. and Nazarov and Peres [12, 20] show that the polynomial px
def= pI1,x whose jth

coefficient is the jth bit of the original message xj and the polynomial px̃
def= E [pI1,x̃] whose

jth coefficient is the average over the jth bits of the traces E [x̃j ] are essentially equivalent
up to a parameter change:

px̃(ϕ−1(z)) ≈ (1− δ)(1− 2γ)px(z) (1)

where ϕ(z) = (1−σ)(δ+(1−δ)z)
1−σz is a Möbius transformation related to the channel para-

meters3. De et al. and Nazarov and Peres then consider points of the form z = exp(iα) for
small −n−1/3 < α < n−1/3. px̃(ϕ−1(z)) can be approximated at such points from a bounded
number of traces, because

∣∣ϕ−1(z)
∣∣ < 1 + O(n−2/3) and the linear transformation mapping

the traces x̃ to

px̃(ϕ−1(z)) =
∑

1≤j≤n

(
ϕ−1(z)

)j E [x̃j ]

has bounded coefficients
∣∣ϕ−1(z)

∣∣j ≤ exp(O(n1/3)).
Borwein and Erdélyi [3] showed that for any polynomial p(z) with {0,±1} coefficients,

there exists some z in this sub-arc {exp(iα) | |α| ≤ n−1/3} for which |p(z)| ≥ exp(−O(n1/3)).
In the context of trace reconstruction, we take p(z) to be the difference px(z)− py(z) where
x and y are two input messages between which we want to differentiate.

This yields a method of differentiating between any two potential input strings x, y with
exp(O(n1/3)) traces.

Peres and Zhai [21] and Holden et al. [13] use a similar relationship between the original
message and the traces, but in their construction the polynomials px and px̃ have a much
higher degree because they want to reconstruct the first bits of a long string. They overcome
this by extending the complex analysis to points of the form z = ρ exp(iα) for a carefully
chosen ρ = 1− o(1), effectively allowing them to truncate px and px̃ to a finite degree.

Holden et al. also use the fact that their input string is random to create partial alignments.
The alignments are based on a Boolean test which checks whether or not a substring w̃ of
a trace x̃ was the result of applying the channel to some substring w of the input message
x. This Boolean test is guaranteed to have a low false-positive rate and a non-negligible
true-positive rate, when the input string w is “sufficiently random”.

3 Equation (1) is correct up to minor technical details. Lemma 8 can be used to derive an accurate version
of this equation.

ICALP 2023



102:6 Average-Case to (Shifted) Worst-Case Reduction

Holden et al. use this alignment procedure to reconstruct x one bit at a time. For each
bit, they use this partial alignment to pin the traces to some nearby index and then use a
mean-based separator to reconstruct it.

Chen et al. [9] and Narayanan and Ren [19] generalize equation (1) to relate multi-indices
where some subsequence w appears in the input message x to multi-indices where the same
subsequence appears in the traces, but their proof is limited to the deletion channel. As a
results, Chase’s analysis [7] which relies heavily on this generalized relationship, cannot be
directly extended to insertion or symmetry channels.

Chase sets w to be an “a-periodic” string, in order to ensure that the set of indices
where w appears as a consecutive substring in x is sparse. Therefore, the polynomial
pw,x(z) def= pIw,x(z) has sparse coefficients. Chase uses an extension of Borwein and Erdélyi’s
methods to prove much stronger bounds on polynomials with sparse coefficients on similar
arcs of the unit disk. Balancing out the parameters yields Chase’s exp(Õ(n1/5)) bound on
the worst-case sample complexity.

Much of our paper will be devoted to generalizing and combining the results of Holden et
al. [14] and Chase [7]. For the sake of brevity, we will henceforth refer to these papers as the
HPPZ and the Chase constructions respectively.

1.3 Sketch of our Proof
We extend these analyses in three key ways.

In the first and most difficult portion of the paper, we extend Chen et al. and Narayanan
and Ren’s [9, 19] generalization of equation (1) to SID channels. This is non-trivial, as
the common method of dealing with insertions and bit-flips is to take a statistic where the
unbiased insertions average out to having no effect on the output (this is usually done by
looking at the difference between the traces x̃, ỹ of two potential input strings x, y). It is
not clear how to perform a similar analysis on a multi-bit property, such as an indicator of
some magic string w which is highly non-linear in its input.

Our main observation in dealing with this problem is that the function χ(−1,...,−1)(x) def=
(−1)x1 · · · (−1)xk , which we call a “full” character, has the property that if any of its input
bits x1, . . . , xk is an inserted bit or was replaced with a random bit by the symmetry channel,
then its output is unbiased and does not affect the average over traces. This allows us to
prove a similar relationship between pχ(−1,...,−1),x and pf,x̃.

Next, we extend this analysis to all characters f(x) = χω(x) def=
∏

j ω
xj

j for ω ∈ {±1}k.
This extension is more complex and requires several difficult technical lemmas, but it allows
us to reconstruct pf,x(z) for (almost) any function f : {0, 1}k → R from the traces. We do
this by applying the Fourier transformation on Boolean functions to f , allowing us to write
f(x) =

∑
ω χω(x)f̂(ω) as a linear combination of characters, and by extension

pf,x(z) = p∑
ω

χω(·)f̂(ω),x(z) =
∑

ω

f̂(ω)pχω,x(z).

In the second portion of our analysis, we extend the Borwein and Erdélyi-type bounds
proven by Chase [7] to deal with sparse polynomials when evaluated at points within the
unit disk. This step is necessary for our extension of Chase’s bounds to the shifted trace
reconstruction problem.

In the third and final portion of the paper, we generalize Holden et al.’s [13] construction
into a reduction from an average-case trace reconstruction problem of size n to linearly many
trace reconstruction problems of size Θ(log(n)). Moreover, we extend Holden et al.’s proofs
originally shown for the insertion-deletion channel to SID channels as well.
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1.4 Organization of the Paper
Sections 2 and 3 contain the heart of our analysis, where we convert the shifted trace
reconstruction problem into a complex analysis one (2) and use complex analysis techniques
to solve it (3). We adapt Holden et al.’s techniques to prove a general reduction in Section 4,
proving Theorems 4 and 6. Section 5 is reserved for a discussion of our results.

2 Conversion to Complex Analysis

Let x ∈ {0, 1}N be some input string and let x̃ denote its trace from some shifted trace
reconstruction problem. The first step of our analysis will be to relate a property of x to the
expectation of some function applied to its traces x̃. By bounding this function of the traces
in absolute value, we prove that this function can be approximated from a bounded number
of traces. Then, in Section 3, we will show that approximating this property of the input
string x allows us to reconstruct x one bit at a time.

This approach to trace reconstruction is common in recent literature. De et al., Holden et
al. and Nazarov and Peres [12, 14, 20] show how “single bit statistics” of the input string
x can be related to its traces through SID channels and shifts. Chase [7], building off of
the works of Chen et al. [9] and Narayanan and Ren [19], extended this relationship to
multi-bit statistics, in order to prove a stronger bound on the sample complexity of trace
reconstruction.

However, Chase’s analysis is limited to deletion channels and the main known tools for
dealing with insertions and bit-flips are inherently limited to single-bit statistics. Our goal in
this section will be to combine these approaches, allowing us to estimate multi-bit properties
of the input string x from traces through an SID channel.

Let 1 ≤ ℓ ≤ 2n1/5 + 1 be some integer. For any function f : {0, 1}ℓ → D from the
hypercube to the unit disk D (for our use-case, we will want f = Iw to be the indicator of
some marker w ∈ {0, 1}N), we define qf,x(z0, . . . , zℓ) to be

qf,x (z0, . . . , zℓ)
def=

∑
k0<k1<···<kℓ

(−1)x0zk0
0 f (xk1 , . . . , xkℓ

)
∏

1≤j≤ℓ

z
kj−kj−1−1
j .

In essence, qf,x(z0, . . . , zℓ) is a multivariate polynomial whose coefficients encode the
value of f when applied to subsequences of the input string x. Our goal will be to show that
the value of this polynomial can be estimated at certain points from a bounded number of
traces (see Theorem 7).

▶ Theorem 7. Let z0 be a point on the arc
{

(1− n−4/5 log6 n) exp(iα) | α ∈ [−n−2/5, n−2/5]
}

.
If δ < 1/2, let z1, . . . , zℓ = 0. Otherwise, let z1 = · · · = zℓ be any point in the segment
[1− c1, 1− c2] for sufficiently small constants c1 > c2 > 0.

Given H(n) = exp(h(n)) traces with shift inaccuracy η = O(h(n)), we can estimate
qf,x at the point (z0, . . . , zℓ) to within an additive error of order ± exp(−Ω(h(n))) and with
success probability 1− exp(−ω(n)), where h(n) = n1/5 log7 n.

We separate the proof of Theorem 7 into three parts. In the first part of the proof
(Lemma 8), we will show that the statement holds for the function f(x1, . . . , xℓ) =∏

1≤j≤ℓ(−1)xj . We will call this function a “full character”.
We will then extend this proof to any character f(x1, . . . , xℓ) = χω(x1, . . . , xℓ) =∏

1≤j≤ℓ ω
xj

j (with ω ∈ {±1}ℓ) of the Fourier transformation on Boolean functions. Fi-
nally, to complete the proof, we will use the fact that any function f : {0, 1}ℓ → D can
be written as a linear combination of characters f =

∑
ω f̂(ω)χω (where f̂ is the Fourier

transformation of f).

ICALP 2023



102:8 Average-Case to (Shifted) Worst-Case Reduction

▶ Lemma 8. Let S be a shift distribution with bounded support (Supp (S) ⊆ {0, 1, . . . , d}). Let
x ∈ {0, 1}N be an input string, and let x̃ be the trace of x, sampled by applying the SID channel
with deletion probability δ, insertion probability σ and bit-flip rate γ applied to the randomly
shifted string xs: (where s← S).

Define ϕ1(z) def= (1−δ)z +δ, ϕ2(z) def= (1−σ)z
1−σz , ϕ

def= ϕ2 ◦ϕ1. For all j, we set ζj = ϕ−1(zj).
Define P (z) def=

∑d
s=0 Pr [S = s]zs. Then:

P (z−1
0 )

∑
k0<k1<···<kℓ

(−1)x0zk0
0

∏
1≤j≤ℓ

z
kj−kj−1−1
j (−1)xj−xj−1−1 =

=

 ∏
0≤j≤ℓ

ϕ1 (ζj)
(1− δ)(1− 2γ)ζj

 Ẽ
x

 ∑
r0<···<rℓ

ζr0
0 (−1)x̃r0

 ℓ∏
j=1

(−1)x̃rj ζ
rj−rj−1−1
j

 (2)

Lemma 8 moves us closer to the goal of proving Theorem 7, because the left-hand-side
of equation (2) is essentially equivalent to qf,x(z0, . . . , zℓ) for the function f(x1, . . . , xℓ) =∏

1≤j≤ℓ(−1)xj , while the right-hand-side depends only on the traces.

2.1 Proof of Lemma 8
We begin by proving Lemma 8 for the simpler case, where the shift s and the bit-flip
probability are both fixed to 0.

Let Dk denote the event that the kth bit of the input string x was not deleted by the
channel. Conditioned on Dk, let Rk be the distribution of the index rk within the trace x̃ to
which this bit was mapped. For any distribution V , let GV (ζ) def=

∑
v Pr [V = v]ζv denote

its generating function.
Consider the generating function GRk

(ζ) of Rk. Each of the first k bits of the input
message x was expanded to an i.i.d. geometrically distributed number of bits, and then each
of those was either retained or deleted, resulting in a Bernoulli distribution of bits (except for
the last bit which was not deleted, because we conditioned on Dk). Using common identities
on products and compositions of generating functions, we derive equation (3).

GRk
(ζ) =

(
GGeom(σ)

(
GBern(δ)(ζ)

))k−1
GGeom(σ)−1

(
GBern(δ)(ζ)

)
ζ = ζ

ϕ1(ζ)ϕ(ζ)k (3)

Denote by Ir the event that the rth bit of the trace was an insertion. Conditioned
on Ir, the rth bit of x̃ is a Bernoulli

( 1
2
)

random variable independent of the rest of the
problem. Consider the expectation of f(x̃r0 , . . . , x̃rℓ

) =
∏

1≤j≤l(−1)x̃rj over the traces.
Due to our choice of f , if even one of its inputs is an insertion, then its expectation is
Ex̃

[∏
0≤j≤l(−1)x̃rj

∣∣∣Irj

]
= 0.

The event that the rth bit of the trace x̃r was not due to an insertion is exactly equal
to the event that some bit xk in the input message was not deleted (Dk) and that it was
transmitted as the rth bit of the trace (Rk = r). Therefore, the expectation of f on the
multi-index r0, . . . , rℓ of the trace is equal to

Ẽ
x

 ∏
0≤j≤l

(−1)x̃rj

 =
∑

k0<···<kℓ

(−1)xkj Pr

 ∧
0≤j≤ℓ

(
Dkj
∧

(
Rkj

= rj

))
= (1− δ)ℓ

∑
k0<···<kℓ

(−1)xkj Pr

 ∧
0≤j≤ℓ

(
Rkj

= rj

) ∣∣∣∣∣∣
∧

0≤j≤ℓ

Dkj

 (4)
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Finally, note that given Dkj and the value of rj = Rkj , the effect of the channel on the
next bits is independent of rj . Therefore, conditioned on Dk and Dk+1, we have

Pr
x̃

[
Rkj = rj

∣∣Rkj−1 = rj−1
]

= Pr
x̃

[
Rkj−kj−1−1 = rj − rj−1 − 1

]
. (5)

Combining equations (3), (4) and (5), we see that

(1− δ)−ℓẼ
x

 ∑
r0<···<rℓ

(−1)x̃r0 ζr0
0

∏
1≤j≤l

(−1)x̃rj ζ
rj−rj−1−1
j

 =

=
∑

r0<···<rℓ

∑
k0<···<kℓ

Pr

 ∧
0≤j≤ℓ

(
Rkj

= rj

) ∣∣∣∣∣∣
∧

0≤j≤ℓ

Dkj


(−1)xk0 ζr0

0

∏
1≤j≤l

ζ
rj−rj−1−1
j (−1)xkj =

=
∑

k0<···<kℓ

ζ0

ϕ1(ζ0)ϕ(ζ0)k0(−1)xk0
∏

1≤j≤l

ζj

ϕ1(ζj)ϕ(ζj)kj−kj−1−1(−1)xkj

(6)

Some minor manipulations to equation (6), yields equation (2) for the case when s and γ

are fixed to 0. Finally, we extend the proof to shifts and bit-flips. Let x denote the output of
the shift and symmetry portions of the channel. It is easy to show that

E
x

 ∑
k0<···<kℓ

zk0
0 (−1)xk0

∏
1≤j≤l

z
kj−kj−1−1
j (−1)xkj

 =

= (1− 2γ)ℓ E
s←S

 ∑
k0<···<kℓ

zk0
0 (−1)xk0+s

∏
1≤j≤l

z
kj−kj−1−1
j (−1)xkj +s

 =

= (1− 2γ)ℓP

(
1
z0

) ∑
k0<···<kℓ

zk0
0 (−1)xk0

∏
1≤j≤l

z
kj−kj−1−1
j (−1)xkj

(7)

Combining equations (6) and (7) yields Lemma 8.

2.2 Sketch of the Proof of Theorem 7
Due to space limitations, we reserve the rest of the proof of Theorem 7 to the full version of
the paper which can be found on arxiv [23], where we show that Lemma 8 implies Theorem 7.
The rest of this section is devoted to giving the high-level idea of this proof.

The first step of the proof is an analysis of the Möbius transformations in Lemma 8. In
particular, we show that for the points z0, . . . , zℓ chosen as in Theorem 7, the absolute values
of ζ0, . . . , ζℓ are bounded below 1.

This allows us to truncate the RHS of equation (2) to only its low degree terms with a
negligible effect on the output. This truncation enables us to evaluate this polynomial at the
required points, proving Theorem 7 for the full character f(x1, . . . , xℓ) =

∏
j(−1)xj .

In fact, this allows us to estimate qf,x(z0, . . . , zℓ) for any choice of z1, . . . , zℓ sufficiently
close to those defined Theorem 7 when f is the full character. We use this fact to prove
Theorem 7 for general characters. In essence, we show that qχω,x(z0, . . . , zℓ) can be written
as a high-order derivative of qf ′,x for a full character f ′ on fewer bits ℓ′ < ℓ and that this
derivative can be approximated from a limited number of samples using Lemma 9.
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▶ Lemma 9. Let c, δ > 0 be some real parameters and let P be an oracle that computes for
a given point z1, . . . , zl ∈ [−c, c]l the value of some polynomial p of degree at most n at the
given point, up to some additive error δ > 0. Let j = (j1, . . . , jl) be some vector of integers
(all smaller than n), define mj = zj1

1 · · · z
jl

l be the jth monomial and jtot =
∑

i ji.
Given poly(n, 1/c)O(l+jtot) queries to P , we can compute the coefficient of mj to within

an additive error of poly(n, 1/c)O(l+jtot)δ in time poly(n, 1/c)O(l+jtot).

Finally, we use the fact that qf,x is linear in our choice of f (i.e. for any f1, f2, qf1+f2,x =
qf1,x + qf2,x), and the fact that any function f can be written as a linear combination of
character functions f =

∑
ω∈{±1}ℓ f̂(ω)χω via a Fourier transformation. Combining these

observations, we see that

qf,x =
∑

ω∈{±1}ℓ

f̂(ω)qχω,x.

The RHS of this equation can be estimated from the traces (one element at a time) and the
LHS was our original goal, thus proving Theorem 7.

3 Proof of Theorem 2

In Section 2, we showed that for any function f from {0, 1}ℓ to the unit disk D, we can
map it into a polynomial related to the input message which can be approximated to a high
degree of accuracy from the traces. In this section, we will construct a function f for which
our approximation of qf,x as promised by Theorem 7 will suffice to reconstruct the n + 1th
bit of the input string x, proving Theorem 2.

A central component of our analysis will be Theorem 10, which is a slight generalisation
of [7, Theorem 5]. In this theorem we show that members of a certain class of polynomials
have some non-negligible values on a sufficiently small sub-arc of the unit disk D.

The polynomial p(z) in Theorem 10 should be thought of as the difference between two
polynomials qf,x(z, 0, . . . , 0)−qf,y(z, 0, . . . , 0) for two hypotheses x and y for the input string.
By proving that these polynomials differ at a point where they can be estimated from the
traces, we show that this estimation can be used to differentiate between the hypotheses.

▶ Theorem 10 (Extension of [7, Theorem 5]). Let Pµ
n denote the set of polynomials of the

form p(z) = ξ − ηzd +
∑

nµ≤j≤n ajzj where η ∈ {0, 1}, ξ ∈ ∂D and |aj | ≤ 2.
For any µ ∈ (0, 1), there exists some constant C > 0, such that for all sufficiently large n,

any p ∈ Pµ
n , it holds that for every ρ ∈ [0, 1]:

max
|α|≤n−2µ

∣∣p(ρeiα)
∣∣ ≥ exp

(
−Cnµ log5 n

)
Our proof of Theorem 10 is similar to Chase’s proof of [7, Theorem 5], and due to space

limitations, we reserve it for the full version of this paper [23]. Throughout the rest of this
section, we will prove that Theorem 2 follows from Theorem 10.

In Section 3.1, we will extend Theorem 10 to a wider class of polynomials, proving that
the estimation method described in Theorem 7 can be used to distinguish between the traces
of any two potential input strings x, y. In Section 3.2, we will show how this distinguishing
oracle can be used to reconstruct a string x from the shifted trace reconstruction problem,
proving Theorem 2.
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3.1 Corollaries of Theorem 10
In this section, we will extend Theorem 10 to prove that for any strings x, y which agree on
their first n bits, the estimation oracle described in Theorem 7 can be used to distinguish
between their traces. This proof will follow from two main components.

First, we will show that for any two such strings x, y, there exists some choice of
indicator function f = Iw, such that for pf,x(z) = qf,x(z, 0, . . . , 0), the polynomial pdiff(z) =
pf,x(z)− pf,y(z) (almost) fits the requirements of Theorem 10. Therefore, if δ < 1/2, then
there exists some point (z, 0, . . . , 0) such that we can estimate the evaluation of qf,x from
the traces and that qf,x and qf,y differ significantly at this same point. This yields a method
of distinguishing between their traces (see Corollary 11).

Then, in Corollary 12, we will extend this analysis to higher deletion probabilities,
by showing that a similar distinguishing method can also be used at points of the form
(z, 1−c, . . . , 1−c). For the rest of this section, let µ = 1/5, ρ = 1−n−4/5 log6 n, ℓ = 2n1/5 +1,
and A = {ρeiα | |α| ≤ n2/5}.

The following is a corollary of Theorem 10:

▶ Corollary 11 (Adaptation of Proposition 6.3 from [7]). Let x, y ∈ {0, 1}N be binary strings
that agree on their first n bits (x:n = y:n) and disagree on their (n + 1)th bit (xn+1 ̸= yn+1).
Then there exist some w ∈ {0, 1}ℓ and z0 ∈ A such that

|qIw,x (z0, 0, . . . , 0)− qIw,x (z0, 0, . . . , 0)| ≥ exp
(
−n1/5 log6 n

)
exp

(
−Cn1/5 log5 n

)
Proof of Corollary 11. Let x and y be two hypotheses for the input string to a shifted trace
reconstruction problem (that agree on their first n bits and not on their n + 1th bit).

Let w′ = x(n− ℓ + 1 : n). Lemmas 1 and 2 of [22] imply that at least one of w′0 or w′1
has no period of length ≤ n1/5 and that for this choice of w ∈ {w′0, w′1}, the indices k for
which xk:k+ℓ = w are n1/5 separated.

Consider the polynomial

pw(z) def= zℓ−n−1 [qIw,x(z, 0, . . . , 0)− qIw,y(z, 0, . . . , 0)]

=
∑

k

[
(−1)xk 1x(k+1:k+ℓ)=w − (−1)yk 1yk+1:k+ℓ=w

]
zk+ℓ−n−1

Because x and y agree on their first n bits, pw(z) has no negative powers. By our definition
of w to be either xn−ℓ+1:n+1 or yn−ℓ+1:n+1, the 0th power of pw(z) is ±1. Moreover, all of
pw(z)’s coefficients are bounded by 2 in absolute value and its non-zero powers maintain the
sparsity condition of Theorem 10.

The only problem with applying Theorem 10 to pw(z) is that its degree is not bounded
by n. We overcome this issue by defining p̃w(z) to be the truncation of pw(z) to its nth
power. Applying Theorem 10 to the polynomial p̃w, we see that there exists a point z0 ∈ A
for which |p̃w(z0)| ≥ exp

(
−C1nµ log5 n

)
Because we want to evaluate p̃w(z) at points z with absolute value |z| = ρ strictly below

1, we can also bound the effect of this truncation by

|p̃w(z)− pw(z)| ≤ ρn

1− ρ
= poly(n) exp(−nµ log6 n) = o (|p̃w|)

From here we apply the triangle inequality to show that |pw(z)| ≥ exp
(
−C2nµ log5 n

)
.

Finally, note that |qIw,x(z, 0, . . . , 0)− qIw,y(z, 0, . . . , 0)| = |pw(z)||z|n−ℓ+1, completing
the proof of Corollary 11. ◀
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Corollary 11 allowed us to use Theorem 7 to distinguish between the traces of any two
string x and y when the deletion probability of the channel is low (δ < 1/2).

However, this proof relied on our ability to estimate the value of qIw,x at points where
z1 = · · · = zℓ = 0, and when the deletion probability is high (δ ≥ 1/2), Theorem 7 only
allows us to evaluate qIw,x at points of the form z1 = · · · = zℓ ∈ [1− c1, 1− c2]. In order to
distinguish between the traces of x and y from high deletion probability channels, we extend
Theorem 7 to multivariate polynomials sampled at such points. We do this in Corollary 12.

▶ Corollary 12 (Adaptation of Corollary 6.1 from [7]). Let c1 > c2 > 0 be sufficiently small
positive constants, and let x, y ∈ {0, 1}N be as in Corollary 11. There exist some w ∈ {0, 1}l,
z0 ∈ A and z1 = · · · = zℓ ∈ [1− c1, 1− c2], such that

|qIw,x (z0, z1, . . . , z1)− qIw,x (z0, z1, . . . , z1)| ≥ exp
(
−n1/5 log6 n

)
exp

(
−Cn1/5 log5 n

)
Proof of Corollary 12. Fix w and z0 to be the same as in the proof of Corollary 11. We
define Q to be the following polynomial in z1, for z1 ∈ [0, 1− c2].

Q(z1) def= (1− ρ)
(

n

ℓ

)−1
[qIw,x(z0, z1, . . . , z1)− qIw,y(z0, z1, . . . , z1)]

Consider the coefficient of the jth power of z1 in Q. If j ≤ n, then this coefficient is
bounded by 1 in absolute value. This is because our summation over the powers of z0 can
contribute a factor of at most 1/(1− ρ), and the number of terms in qIw,x with total degree
j is at most

(
n
ℓ

)
.

If j > n, then the number of monomials of qIw,x with total degree j is at most
exp(O(ℓ log(j))), but the value of the monomial zj

1 is at most (1− c2)j = exp(−Ω(j)).
Therefore, truncating these higher powers of Q would have a negligible effect on its value.

Let Q̃(z1) be the truncation of Q to monomials of degree ≤ n. Q̃ is a univariate polynomial
in z1, with coefficients bounded from above by 1, and for any z1 ∈ [0, 1− c2], we have∣∣∣Q(z1)− Q̃(z1)

∣∣∣ ≤ exp(−Ω(n)) (8)

In Corollary 11, we showed that |Q(0)| is bounded from below, and this lower bound
can be naturally extended to

∣∣∣Q̃(0)
∣∣∣. Therefore, Q̃(z1) fits the requirements of Theorem 5.1

of [4], which can be used to show that

max
z1∈[1−c1,1−c2]

Q̃(z1) ≥ exp
(
Cnµ log6 n

)
(9)

Combining equations (8) and (9) yields our claim. ◀

3.2 Completing the Proof
In Section 3.1, we proved that the estimation method promised in Theorem 7 can be used
to differentiate between any two potential input strings x and y from their traces. In this
section, we will show how this distinguishing oracle can be transformed into a reconstruction
algorithm, completing the proof of Theorem 2.

The basic idea of this transformation is relatively simple. We enumerate over potential
pairs of input strings y0, y1, and use the distinguishing oracle to decide for each pair which
is a better candidate for being the input string x.

The main technical difficult we need to overcome is due to the fact that the input string x
may be arbitrarily long, so enumerating over all possible input strings can take an arbitrarily
long amount of time. We overcome this, by showing that it suffices to enumerate over the
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first O(n) bits of the input string. Moreover, when the deletion probability is below 1/2, we
show that it suffices to enumerate over only a small fraction of the entropy of these O(n)
bits, yielding a fast reconstruction algorithm.

Let x be the input string to the shifted trace reconstruction problem. By our definition
of the shifted trace reconstruction problem, the first n bits of x are known, and our goal is
to reconstruct the n + 1th bit of the input string x.

Let C > 0 be a sufficiently large constant. Let o0, o1 ∈ {0, 1}Cn−n−1 be two hypotheses
for the value of xn+1:Cn. In other words, y0 = x1:n0o0, y1 = x1:n1o1 are our hypotheses for
the first Cn bits of x.

If δ < 1/2, let z0 and w be as defined in Corollary 11, and let z1 = 0. If δ ≥ 1/2, let
z0, z1 and w be as defined in Corollary 12.

We use the traces to estimate pIw,x(z0, z1, . . . , z1) using the method promised by The-
orem 7. This method may have a small failure probability (which would result in a bad estim-
ate), but for the moment we assume that it succeeds. We then compute pIw,y(z0, z1, . . . , z1)
directly for y ∈ {y0, y1}.

Consider the case where yb = x:Cn for some b ∈ {0, 1}. Because we are evaluating pIw,y
at points with coordinates strictly below 1 in absolute value and this polynomial’s coefficients
are bounded by 1, the contribution of monomials with total degree above Cn is can be
bounded. In particular,∣∣pIw,yb(z0, z1, . . . , z1)− pIw,x(z0, z1, . . . , z1)

∣∣ < exp(−Ω(Cn1/5 log6 n))≪
≪

∣∣pIw,yb(z0, z1, . . . , z1)− pIw,y1−b(z0, z1, . . . , z1)
∣∣ (10)

Therefore, in this case, our estimate of pIw,x(z0, z1, . . . , z1) from the traces will be closer
to pIw,yb(z0, z1, . . . , z1) than to pIw,y1−b(z0, z1, . . . , z1).

We repeat this process for any such pair o0, o1 ∈ {0, 1}Cn−n−1, and for each such pair,
we output the value b for which our estimate of pIw,x(z0, z1, . . . , z1) from the traces is closest
to pIw,yb(z0, z1, . . . , z1).

If b = xn+1, then there exists at least one such ob for which the process above always
selects b for any o1−b. By enumerating over all pairs, we can find the value of b = xn+1 for
which such a string ob exists.

This leaves only a few minor technical details in order to prove Theorem 2.
First, we note that the estimation oracle promised in Theorem 7 has a small failure

probability. We use the union bound to show that the probability that it will fail even once
in the process described above is negligible.

Next we consider the time complexity of our reconstruction. For the high deletion
probability regime (δ ≥ 1/2), this process can clearly be completed in time exp(O(n)).

For lower deletion probabilities δ < 1/2, we note that pIw,y(z0, 0, . . . , 0) depends only on
the indices within y where the string w appears as a consecutive substring. By our definition
of w (see the proof of Corollary 11), this set of indices is sparse. By enumerating only over
the set of indices where w appears in y (and not over the entire Cn bits), we can reduce the
time complexity of this reconstruction algorithm to exp(o(n)), thus completing our proof of
Theorem 2.

4 Proof of Theorem 4

In Sections 2 and 3, we showed that Chase’s worst-case trace reconstruction method can
be naturally extended to the shift trace reconstruction problem and to SID channels. In
this section, we will construct a general reduction from the average-case trace reconstruction
problem to the shifted trace reconstruction problem, proving Theorems 4 and 6.

ICALP 2023



102:14 Average-Case to (Shifted) Worst-Case Reduction

Our proof will be based based on an adaptation of the HPPZ’s methods, and our main
contribution is to show that it can be used as a general reduction as well as to extend it to
symmetry channels. Due to space limitations, in this version of the paper we will give only a
sketch of the proof (for more details, see the full version of this paper [23])

Our reduction will consist of three main ingredients:
A Boolean test T (w, w̃) on pairs of bit-strings (w, w̃) that returns 1 if w̃ is a plausible
match for the output of applying the channel C to w.
A two-step alignment procedure comprised of a coarse and a fine alignment each of which
uses the test T to obtain an estimate τk for the positions within some of the traces
corresponding to the kth bit of the original message x.
The reduction target – a bit recovery procedure based on the target of our reduction to
produce an estimate of any bit of x from these aligned traces.

Finally, similar to HPPZ, throughout this section we will perform our analysis when
δ = σ, but all of these results can be similarly generalized for any values of δ, σ ∈ [0, 1).

4.1 The Boolean Test
The first component of our reduction is a Boolean test T designed to answer whether a string
w̃ is likely to have originated from a trace of some string w or not.

Let ℓ, λ <
√

ℓ and c ∈ (0, 1) be parameters of the test. The test T c
ℓ,λ (when c, ℓ, λ are

clear from the context we may omit them) is defined as follows. First, each of the strings w
and w̃ is split into ≈ ℓ/λ segments of length λ each. Each segment of each string is assigned
a sign +1 if most of the bits in this segment are 0s or −1 otherwise. In other words

si = sign

 ∑
iλ<j≤(i+1)λ

(wj − 1/2)

 ∈ {±1}.

Then, the signs of the segments are compared, and we compute the number of segment
pairs whose signs agree. If w and w̃ were two independently distributed random strings, then
the number of such pairs would be distributed according to the Bin(1/2, ℓ/λ) distribution. If
w and w̃ are similar, then we expect these signs to be roughly correlated to one another.

Therefore, we define the test to pass if at least (1 + c)/2 fraction of the signs agree.

T c
ℓ,λ =

{
1

∑
1≤i≤ℓ/λ sis̃i > c

0 otherwise

We consider this test with two sets of parameters for “coarse” and “fine” alignment pro-
cedures. Let H(n) = exp(h(n)) be the sample complexity of the shifted trace reconstruction
problem. Then for the coarse and fine alignments we set respectively

ℓc = Θ
(

log2(n)
h(Θ (log(n)))

)
; λc = Θ

(
log(n)

h(Θ (log(n)))

)
ℓf = Θ (h(log(n))) ; λf = Θ(1).

Ideally, we want this Boolean test to maintain two behaviours:
If w̃ is not a trace of w, the probability that T will return 1 (called a spurious match)
should be at most exp(−Ω(ℓ/λ)).
If w̃ is a trace of w, the probability that T will pass (called a true match) will be at least
exp(−O(ℓ/λ2)).
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If these conditions hold, then the probability of a true match may be very small, but
when λ is sufficiently large, it will be much higher than the probability of a spurious match.
Therefore, when conditioning on a match, it will most likely be a true match. Over the next
few paragraphs, we will give a sketch of the proof that these conditions hold for substrings of
a random string x.

4.1.1 Spurious Matches are Rare
If w and w̃ are two independently distributed strings chosen uniformly at random, then the
signs of their segments si as defined above will also be independent and uniformly distributed
vectors s, s̃ ∈ {±1}ℓ/λ. In this case, it can be easily shown from the Chernoff bound that the
probability that more than (1 + c)/2 fraction of their entries agree decays exponentially in
their dimension ℓ/λ.

The main difficulty is analysing how this relates to the traces of a random string. Let
w0 = xa0:b0 and w1 = xa1:b1 be two substrings of the random input string x. If the segments
[a0, b0] and [a1, b1] do not overlap, then (averaging over the random options for the input
string x) they are two independent random strings.

Let w̃i be the trace of wi. Clearly, when applying the channel C (which only deletes bits,
inserts i.i.d. uniformly distributed bits and replaces some of the bits of x with i.i.d. uniformly
distributed bits) to a random string of length ℓ, the output will also be a random string of
length roughly 1−δ

1−σ ℓ = ℓ. Therefore, if w0, w1 are non-overlapping substrings of x as defined
above, then w0 and w̃1 are two independent random strings.

Let us denote by ω the randomness of the channel C. Averaging over both the randomness
of the channel and over our selection of the input string x, we have

E
x

[
Pr
ω

[
T (w0, w̃1) = 1

]]
= Pr

ω,x

[
T (w0, w̃1) = 1

]
= Pr

w0,w1←{0,1}ℓ

[
T (w0, w1)

]
= exp (−Ω(ℓ/λ))

(11)

We will use equation (11) in the two settings of the alignment procedure. In the coarse
alignment, we set ℓc/λc = C log(n) = Θ(log(n)). Setting C to be sufficiently large, we can
ensure that Prω,x

[
T (w0, w̃1) = 1

]
= exp(−Ω(C log(n))) < n−10 is sufficiently small that a

simple union bound on the quasi-linear number of coarse alignment procedures we run will
never result in a spurious match.

For the fine alignment procedure, we will have a segment I = [a, a + C log(n)] of length
Θ(log n) of the input string x in which our goal will be to find a subsegment S = [b, b + ℓf ]
of length ℓf = o(log(n)) such that for any non-overlapping subsegment S′ ⊂ I of length ℓf ,
the probability of a spurious match between w0 = xS and a trace of w1 = xS′ is

Pr
ω

[
T (w0, w̃1) = 1

]
= exp(−Ω(ℓf /λf )).

It can be shown from a simple combination of a Markov inequality (used to show that
the probability of any such subsegment S to work is 1− exp(−Ω(ℓf ))) and an enumeration
over sufficiently many independent options for S, that at least 1 such subsegment exists w.p.
1− exp(−Ω(C log(n))) = 1− n−10. From here, we can simply apply the union bound over
the quasi-linear number of fine alignment procedures in the reduction.

4.1.2 True Matches are Frequent
The next step of our proof will be to show that a string w and its trace w̃ will pass the test
Tℓ,λ with probability at least exp

(
−O(ℓ/λ2)

)
. Due to space limitations, we give only a very

rough sketch of this proof (for a more detailed proof, see the full version of this paper [23]).
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Consider a substring u = wiλ:(i+1)λ of the string w the matching substring w̃iλ:(i+1)λ of
its trace. The total of the bits in u is binomially distributed, so there is a non-negligible
probability that ≈ 1/2 +

√
1/λ fraction of them will be 0 (in which case, its sign will be −1).

If this is the case, then with fairly high probability, for any substring u′ = wiλ+di,(i+1)λdi+1

where |di| < λ/100, at least ≈ 1/2 +
√

1/2λ fraction of its bits will be 0.
For now, assume that w̃iλ:(i+1)λ = ũ′ originated from the application of the channel C to

u′. The channel replaced a constant fraction of the bits of u′ with random bits (through the
symmetry portion of the channel or the insertion and deletion portions). However, a constant
fraction of these bits were retained, so there is some correlation between their total and that
of the string u′. It can be shown that this correlation suffices to ensure a probability of at
least 1/2 + Ω(1) that the sign of this segment s̃i of the trace will be equal to the sign of the
appropriate segment si of the input string w.

These correlations suffice to ensure that on average 1/2 + Ω(1) of the segments of the
trace w̃ of an input string w will have the same sign as the appropriate segments of the
input string w, conditioned on each of the mismatches di being at most |di| < λ/100 (with
probability 1− exp(−Ω(ℓ)) over the choice of w). Therefore, if we properly set the constant
c parameter of the test T , under these conditions the probability of a true match will be at
least Ω(1).

The next step of our analysis is to show that the mismatches di are sufficiently small
with probability at least exp(−O(ℓ/λ2)). A formal version of this analysis can be found in
the full version of our paper [23].

4.2 Coarse and Fine Alignments
Next, we define our coarse and fine alignment procedures. Let be C a sufficiently large
constant. We define the parameters for the test used in our coarse and fine alignment
procedures to be:

ℓc = C
log2 n

h(C log n) ; λc = C1/2 log n

h(C log n)
ℓf = C2/3h(C log n); λf = C1/12

In the full version of this paper [23], we define a precise condition on the input string x
being “well-behaved” (denoted by x ∈ Ξgood), and show that a string x ∈ {0, 1}n selected
uniformly at random is well-behaved with probability 1 − n−2. We define our alignment
procedure for well-behaved strings x.

Let x ∈ Ξgood be a well-behaved string. For any integer k ∈ [ℓc + C log n, n], we set the
index a1 = k − ℓc − C log n and select a2 ∈ [k − 2/3C log n, k − 1/3C] through a process
defined in the full version of this paper [23].

For any trace x̃, we set our coarse alignment τk
1 to be the first integer b for which

Tℓc,λc(x([a1, a1 + ℓc]), x̃([b, b + ℓc])) = 1

or ∞ if no such b exists. For any trace x̃ with τk
1 <∞, we define its fine alignment τk

2 to be
the first index b ∈ [τk

1 − ℓc, τk
1 + 2ℓc + C log n] such that

Tℓf ,λf
(x([a2, a2 + ℓf ]), x̃([b, b + ℓf ])) = 1.
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We define the mismatch d(k, τk
i ) of any finite alignment τk

i <∞ as the distance between
τk

i and the index of the first bit of the trace originating from the kth bit of the input
message onwards xk:. The following lemma (which we prove in the full version of this
paper [23]) promises that τk

i < ∞ with sufficiently high probability and that there is a
negligible probability that the mismatch of τk

i is large.

▶ Lemma 13. Let x ∈ Ξgood be a well-behaved string and let k ∈ {ℓc + C log n, . . . , n} be an
integer. Then for a1, a2, τk

1 , τk
2 as defined above, the following properties hold:

Pr
[
τk

1 <∞
]

> exp(−c1C1/2h(C log n))
Pr

[
τk

1 <∞∧ d(k, τk
1 ) > ℓc

]
< n−2

Pr
[
τk

2 <∞ | τk
1 <∞

]
≥ exp(−c2C1/2h(C log n))

Pr
[
τk

2 <∞∧ d(k, τk
2 ) > ℓf | τk

1 <∞
]

< exp(−c3C7/12h(C log n))
Where the probabilities are taken over the randomness of the channel and c1, c2, c3, c4 > 0
are positive constants that may depend on δ, σ, γ but not on C or n and originate from the
Ω(·)s and O(·)s of the previous sections.

Moreover, as we prove in the full version of this paper, this alignment can be performed
efficiently.

▶ Lemma 14 (τk
1 , τk

2 can be computed efficiently). There is an algorithm Aalign such that,
for any x ∈ Ξgood, k ∈ {ℓc + C log n, . . . , n} and any trace x̃ of x through the channel, given

k, x:k, (τ1
1 , . . . , τk−1

1 ), (τ1
2 , . . . , τk

2 )

Aalign computes τk
1 , τk

2 , a2 in time no(1), with probability ≥ 1− n−2.

4.3 Using the Oracle
In Section 4.1, we introduced the Boolean test which can be used to test whether a substring
of a trace x̃ originated from a specific substring of the input string x. Then, in Section 4.2,
we showed that this test can be used as a central component of an alignment procedure which
maps indices of the input string x to their positions in the traces x̃ with high probability.
In this section, we will complete the proof of our reduction from the average-case trace
reconstruction problem to the shifted trace reconstruction problem.

Proof of Theorem 4. Let C be an SID channel with parameters γ, σ, δ, and let C to be a
sufficiently large constant.

We will prove that given the first k ≥ ℓc + C log n bits of x, we can reconstruct the rest of
its bits one at a time. We can work under this assumption, by adding ℓc + C log n virtual 0
bits to the start of x and adding a trace of 0k to the beginning of each of the traces x̃ before
the reconstruction.

Given the first k bits of x, we will show that we can reconstruct the k + 1th bit of x and
from there, we can continue this process iteratively. Using the alignment algorithm from
Lemma 14, we compute τk

1 and τk
2 of each of the traces x̃.

Given a2, τk
2 , we run the shifted trace reconstruction algorithm A with parameters n′, n′−1,

where n′ = k − a2 ∈ [1/3C log n, 2/3C log n], on the set:

X =
{

x̃(τk
2 :)

∣∣∣x̃ is a sample
τk

2 (x̃)<∞

}
The first and third claims of Lemma 13, mean that for each of our N = exp(Ch(C log n))

traces, it will have a finite τk
2 , with probability at least

exp(−C1/2(c1 + c2)h(C log n)) ≥ exp(−1/3Ch(C log n)).

ICALP 2023
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Therefore, by Hoeffding’s inequality, the probability that we will have at least

1/2 exp(2/3Ch(C log n)) > exp(1/2Ch(2/3C log n)) ≥ exp(h(k − a2)) log2(n)

traces for which τk
2 <∞ is at least

1− exp(−Ω(Ch(C log n))) = 1− n−ω(1)

Lemma 13 gives us that the probability that any sample for which τk
2 <∞ is the result

of a spurious match is at most

ε(n) ≤ exp(−(C7/12c3 − C1/2(c1 + c2))h(C log n)) ≤ exp(−10h(k − a2))

Splitting our samples into log2(n) batches of size exp(h(k − a2)) each, we ensure that
1. From the union bound, for each batch, the probability that even a single sample is due

to a spurious match is at most exp(−9h(k − a2)) = o(1).
2. For each batch, if this batch contained no spurious matches, then applying the shifted

trace reconstruction oracle on this batch separately will yield the correct value of the bit
xk with probability 1− o(1).

3. The batches are independent of one another.

From here we can use to Chernoff bound to show that the probability that more than
1/3 of these batches either has at least one spurious match or yielded the wrong output from
the shifted trace reconstruction oracle is exp(−Ω(log2(n))) = n−ω(1), so taking a majority
vote on the applications of the shifted trace reconstruction oracle will yield the correct value
of x with probability 1− n−ω(1), completing our proof. ◀

5 Conclusions

In this paper we presented two main results. First, we proved a general reduction from
the average-case trace reconstruction problem to the shifted trace reconstruction problem,
which is similar to the worst-case trace reconstruction problem. Second, we generalised the
leading algorithm for the worst-case trace reconstruction problem from deletion channels
by Chase [7] to the shifted trace reconstruction problem and to the more general class of
symmetry-insertion-deletion channels.

Our reduction is based on the work of Holden et al. [14] who used a similar technique to
convert the specific methods of De et al. and Nazarov and Peres [12, 20] from worst-case
trace reconstruction to the average-case. Continuing the line of work of Brakensiek et al. [5]
who reduced the coded trace reconstruction problem to the average-case trace reconstruction
problem, we convert the specific construction of Holden et al. to a reduction. Altogether a
computational class of trace reconstruction problems begins to emerge.

Moreover, we note McGregor et al. [17] whose results prove that up to the differences
between shifted and worst-case trace reconstruction, our reduction is essentially tight. This
leads us to several interesting possibilities for future research on trace reconstruction.

First, many other versions of the trace reconstruction have been introduced over the
last few years and analysed with an extension of the methods of De et al. and Nazarov and
Peres [12, 20] for worst-case trace. If more of these analyses can be converted to reductions
to the worst-case or average-case trace reconstruction problems, this would help to simplify
the analysis of the many open questions in this field.

Secondly, it seems that the best known techniques for the worst-case trace reconstruction
problem translate nicely to the shifted trace reconstruction problem, leading to the conjecture
that the two are equivalent. A reduction between the two would help focus further research
on this problem.
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Finally, we note our extension of Chase’s analysis to symmetry-insertion-deletion channels.
This portion of our proof is complicated and would be difficult to extend to other settings.
An important question for future research is whether there exists a simpler and more elegant
analysis for these channels.
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