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Abstract
A closed random walk of length ℓ on an undirected and connected graph G = (V, E) is a random
walk that returns to the start vertex at step ℓ, and its properties have been recently related to
problems in different mathematical fields, e.g., geometry and combinatorics (Jiang et al., Annals
of Mathematics ’21) and spectral graph theory (McKenzie et al., STOC ’21). For instance, in
the context of analyzing the eigenvalue multiplicity of graph matrices, McKenzie et al. show that,
with high probability, the support of a closed random walk of length ℓ ⩾ 1 is Ω(ℓ1/5) on any
bounded-degree graph, and leaves as an open problem whether a stronger bound of Ω(ℓ1/2) holds
for any regular graph.

First, we show that the support of a closed random walk of length ℓ is at least Ω(ℓ1/2/
√

log n) for
any regular or bounded-degree graph on n vertices. Secondly, we prove for every ℓ ⩾ 1 the existence
of a family of bounded-degree graphs, together with a start vertex such that the support is bounded
by O(ℓ1/2/

√
log n). Besides addressing the open problem of McKenzie et al., these two results also

establish a subtle separation between closed random walks and open random walks, for which the
support on any regular (or bounded-degree) graph is well-known to be Ω(ℓ1/2) for all ℓ ⩾ 1. For
irregular graphs, we prove that even if the start vertex is chosen uniformly, the support of a closed
random walk may still be O(log ℓ). This rules out a general polynomial lower bound in ℓ for all
graphs. Finally, we apply our results on random walks to obtain new bounds on the multiplicity of
the second largest eigenvalue of the adjacency matrices of graphs.
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1 Introduction

A random walk on a graph is a Markov chain in which, starting from some vertex of an
undirected graph G = (V, E), the walk moves to one of the neighbors of the current vertex
according to the transition matrix of G. As a fundamental stochastic process, random walks
have been employed to model numerous mathematical and physical processes. In computer
science, random walks have been widely applied in designing randomized and distributed
algorithms. Classical examples range from algorithms for satisfiability, deciding connectivity
to approximating the volume of convex bodies. The vast majority of research on random
walks focuses on “open” random walks, as opposed to closed random walks, which are random
walks of fixed length ℓ conditioned on being at the start vertex at step ℓ.
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103:2 The Support of Open Versus Closed Random Walks

Following up on an earlier work by Jiang, Tidor, Yao, Zhang and Zhao [11], McKenzie,
Rasmussen and Srivastava [16] develop a more systematic study of closed random walks on
finite graphs. In particular, they study the support of closed random walks, which is the
number of distinct vertices visited by a closed random walk of some length ℓ. As in [11],
they then leverage their proven lower bounds on the support of closed random walks to
upper bound the eigenvalue multiplicities via the trace method of graph matrices. One of
the main ingredients in [16] are general lower bounds on the support of a random walk for
any connected graph. For instance, for any bounded-degree graph, a closed random walk is
shown to have support at least Ω(ℓ1/5). In the same work, they also ask for sharper bounds:

Open Question 3 ([16]): Let d > 1 be a fixed integer. Does there exist an α > 1/5
such that for every connected d-regular graph G on n vertices and every vertex u of G,
a closed random walk1 of length 2ℓ < n rooted at u has support Ω (ℓα) in expectation?
Is α = 1/2 true? Does such a bound hold for simple random walks in general?

Note that the constant α = 1/2 is a natural target, since any open random walk on a regular
graph has support Ω(ℓ1/2) (cf. [3, 7]), and this is matched by the n-cycle. Furthermore, also
for closed random walks on n-cycles as well as the continuous analogue called Brownian
bridges, the support can be shown to be Θ(ℓ1/2). In fact, McKenzie et al. [16] states that
“we know of no example where the answer is o(ℓ1/2)”.

In this paper, we address the Open Question 3 of McKenzie et al. [16]. Our first result
proves a lower bound of almost Ω(ℓ1/2), provided the random walk is sufficiently long. Here
we use Xt to denote the vertex that a (lazy) random walk visits in time t, suppP(ℓ) to denote
the number of distinct vertices that a lazy random walk of length ℓ visits, and P to denote
the associated transition matrix (see Section 2 for more on notation).

▶ Theorem 1.1 (informal version of Theorem 3.1). Consider any connected, n-vertex graph
G = (V, E) with minimum degree δ and maximum degree ∆. Then, for a lazy random walk
of length ℓ = O((∆/δ) · n2 log n) and any vertex u ∈ V , it holds that

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = u

]
= Ω

(
ℓ1/2√

(∆/δ) · log n

)
.

This theorem shows that, for any regular or bounded-degree graph, the support of a
closed random walk of length ℓ is at least Ω

(
ℓ1/2/

√
log n

)
; this result improves the lower

bound of Ω
(
ℓ1/5) from [16, Theorem 1.3] whenever ℓ ⩾ (log n)5/3. Apart from the ℓ1/2-term

in our lower bound, one may wonder about the
√

log n-term, which intuitively does not seem
tight. However, we can construct a family of graphs to demonstrate that this

√
log n-term is

needed, establishing that our lower bound is tight up to constant factors. Our upper bound
result is summarized as follows:

▶ Theorem 1.2 (informal version of Theorem 4.1). The following statements hold:
For any ℓ = Ω((log n)7/2), there exists a family of bounded-degree n-vertex graph G =
(V, E) such that a lazy random walk of length ℓ starting at some vertex r satisfies

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = r

]
= O

(
ℓ1/2

√
log n

)
.

1 The original formulation in [16] is stated for a randomly chosen closed walk, which has the same
distribution as a closed random walk since G is regular.
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Table 1 Overview of the lower and upper bounds on the support of closed and open random walk.
Results highlighted in green are from this work. The lower bound of Ω(ℓ1/5) holds for bounded-degree
graphs. Note that, while our lower bounds hold for all such graphs and all ℓ, the upper bounds only
hold for a specific graph (family) which depends on ℓ and ℓ may be additionally restricted.

Graph
Closed Random Walk Open Random Walk

Lower Bound Upper Bound Lower B. Upper B.

reg./bound. deg.
Ω(ℓ1/5) [16] O(ℓ5/14), ℓ ⩽ (log n)7/2

Ω(ℓ1/2/
√

log n) O(ℓ1/2/
√

log n), ℓ ⩾ (log n)7/2
Ω(ℓ1/2) [7] O(ℓ1/2)

arbitrary – O(log ℓ), ℓ = Θ(log n) Ω(ℓ1/3) [7] –

For any ℓ = O((log n)7/2), there exists a family of bounded-degree n-vertex graph G =
(V, E) such that a lazy random walk of length ℓ starting at some vertex r satisfies

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = r

]
= O

(
ℓ5/14

)
.

This result shows that the potential lower bound of Ω(ℓ1/2) mentioned in [16] (Open
Question 3) does not hold in general. In fact, on certain graphs the support of a closed lazy
random walk can be as small as O(ℓ5/14); therefore the “right” exponent must be between
1/5 and 5/14, which is a strong separation from the exponent 1/2 for open random walks.
In contrast, when assuming a suitable lower bound on ℓ, the support of closed random walks
is Θ(ℓ1/2/

√
log n), which is nearly the Θ(ℓ1/2) bound for open random walks. Table 1 lists

the known upper and lower bounds for closed and open random walks; the interplay of these
bounds for regular and bounded-degree graphs is further illustrated in Figure 1.

We now proceed to study closed random walks, with a focus on (highly) irregular graphs.
McKenzie et al. [16] proves that the support of a randomly chosen closed walk can be as
small as O(log ℓ), if starting from a specific vertex (note that a randomly chosen closed walk
will have a different distribution to a closed random walk, unless the graph is regular). Here
we provide a similar upper bound for the support of a closed random walk on a family of
irregular graphs. Interestingly, this upper bound even holds if we assume that the start
vertex is chosen uniformly at random. This lower bound also establishes an “exponential
discrepancy” on the support of closed random walks versus open random walks on irregular
graphs: while the support of open random walks is known to be at least ℓ1/3 (cf. [3]) for any
graph and any start vertex, one can construct graphs for which the support is only O(log ℓ)
for closed random walks.

▶ Theorem 1.3 (informal version of Theorem 4.5). There exists a family of connected, n-vertex
graphs G = (V, E) such that a lazy random walk of some length ℓ = Θ(log n) that starts from
a vertex chosen uniformly at random satisfies

E
[

suppP(ℓ) | Xℓ = X0 ] = O(log ℓ).

Consequently, there is a vertex r ∈ V such that

E
[

suppP(ℓ) | Xℓ = X0 = r
]

= O(log ℓ).

As side results, we apply our lower bounds on the support of closed random walks to
obtain new eigenvalue multiplicity bounds for certain classes of graphs. We state one result
below, and an additional result is presented in Section 5.

ICALP 2023
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1 (log n)5/3 (log n)7/2
1(log n)1/3

(log n)5/4

= ℓ1/2

= ℓ1/2/
√

log n

⩾ ℓ1/2/
√

log n

⩽ ℓ5/14

⩾ ℓ1/5

ℓ

supp(ℓ)

Figure 1 Comparison of the (worst case) support of open random walks to that of closed random
walks for bounded-degree graphs. We prove for any ℓ = Ω((log n)7/2) (and ℓ ⩽ n1/5) that the
asymptotic worst case bound for closed random walks equals ℓ1/2/

√
log n, while for ℓ = O((log n)7/2)

the correct asymptotic bound is confined in the orange area. Since the lower bound ℓ1/2/
√

log n

is tight for any ℓ ⩾ (log n)7/2 but becomes trivial for ℓ ⩽ log n, we can infer that there must be a
phase transition in the interval [(log n)5/3, (log n)7/2].

▶ Theorem 1.4 (informal version of Theorem 5.1). Consider any connected, n-vertex graph
G = (V, E) with minimum degree δ and maximum degree ∆, such that its second largest
eigenvalue λ of P satisfies |1 − λ| = O( δ

∆ · 1
log4 n

). Then, the number of eigenvalues of P in

the range
[(

1 − δ
32c∆·log5 n

)
· λ, λ

]
is at most O

(
n

log n

)
.

Our eigenvalue multiplicity results are in general incomparable with the ones in [16], and
have their own features. For instance, our eigenvalue multiplicity bound above is based on
the spectral gap condition of P; as such, this result brings a new connection between the
eigenvalue multiplicity and the eigenvalue distribution, the relationship of which is informally
established in spectral graph theory through the high-order Cheeger inequalities [12].

1.1 Further Related Work
There is a plethora of works on random walks on graphs, which often revolves around
quantities such as mixing times, hitting times and cover times [14]. In particular, properties
of short random walks such as their support or return probabilities have found numerous
applications in the analysis of randomness amplification [10], space-efficient graph explor-
ation with random walks [2, 7] and the voter model [17]. These concepts have been also
successfully applied to algorithmic tasks such as estimating network sizes and densities [4],
load balancing [19], information spreading [8], property testing [6] and clustering [20]. In
addition to these applications, many of the random walk quantities have close connections to
other mathematical areas, such as geometry, group theory, electrical networks and spectral
graph theory (see [13, 14] for more details).

More closely related to this work, Benjamini, Izkovsky and Kesten [5] analyze the support
of closed random walks on various finite and infinite graphs, with a focus on vertex-transitive
and Cayley graphs. In particular, for high-girth expander graphs, they prove that the support
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of closed random walks is linear in their length. While there are some studies of closed
random walks on finite or infinite graphs with special geometry or symmetries as well as
studies of Brownian bridges in continuous space, much less is known about the support of
closed random walks on finite graphs (without additional assumptions on their symmetry or
geometry).

One specific motivation for studying closed random walks is the relation to the second
eigenvalue multiplicity of the normalized adjacency matrix of graphs, as established recently
in [11, 15, 16]. By examining the support of closed random walks of short length, it is
shown that, for any connected graph G of maximum degree ∆, the second eigenvalue
multiplicity of G’s normalized adjacency matrix is Õ

(
n · ∆7/5/ log1/5 n

)
, where the notation

Õ(·) suppresses poly log log(n) terms. Haiman, Schildkraut, Zhang and Zhao [9] show
the existence of infinitely many connected 18-regular graphs G on n vertices with the
second largest eigenvalue multiplicity at least n2/5 − 1, and the existence of infinitely many
connected n-vertex graphs with maximum degree 4 and second eigenvalue multiplicity at
least

√
n/ log2 n.

1.2 Organization
The remaining part of the paper is organized as follows. Section 2 introduces our notation
and provides some basic lemmas used in this work. We derive our lower bound on the
support of closed random walks in Section 3, and the proofs of our two upper bound results
are presented in Section 4. Finally, we employ our random walk results to analyze the
eigenvalue multiplicity problem in Section 5. We summarize our results and point to some
open questions in Section 6.

2 Definitions and Preliminaries

All graphs in this paper will be undirected. For any vertex u ∈ V of a graph G = (V, E), the
degree of u is denoted by deg(u); the maximum and minimum degrees of G are denoted by
∆ and δ, respectively. For any u ∈ V and ℓ ∈ N, let B⩽ℓ/2(u) ≜ {v ∈ V : dist(u, v) ⩽ ℓ/2}.
For any integer k, let [k] ≜ {1, . . . , k}.

We use Q to represent the transition matrix of a non-lazy random walk in G defined
by Qu,v = 1

deg(u) if {u, v} ∈ E(G) and Qu,v = 0 otherwise. We use P to represent the lazy
random walk matrix of G, where Pu,u = 1

2 for all u ∈ V , Pu,v = 1
2 deg(u) if {u, v} ∈ E(G),

and Pu,v = 0 otherwise. We use A to represent the adjacency matrix of G, and D to
represent the diagonal matrix of degrees of G. For any matrix ♢ ∈ {P, Q} of size n × n, the
eigenvalues of ♢ are denoted by λ1(♢) ⩾ . . . ⩾ λn(♢). We define M♢[x, y] to be the number
of eigenvalues of the matrix ♢ in the interval [x, y].

For any (non-)lazy random walk that starts from a vertex (or possibly distribution over
vertices) X0 ∈ V , we use Xt to denote the vertex that the random walk reaches at step t for
any t ⩾ 0, and define

pt
u,v ≜ Pr

[
Xt = v

∣∣ X0 = u
]

to be the probability that a random walk that starts from u is located at v after t steps; if the
start vertex is deterministic and clear from the context, we sometimes omit the conditioning
on X0 = u. Further, we write X0 ∼ U if the start vertex of the random walk is chosen
uniformly at random from V . We define the support of a random walk of length ℓ to be

supp♢(ℓ) ≜
∣∣{Xi | i ⩽ ℓ

}∣∣ ,

ICALP 2023



103:6 The Support of Open Versus Closed Random Walks

where we use ♢ ∈ {P, Q} to distinguish a lazy random walk from a non-lazy one. It is
well-known that, for a lazy random walk with loop probability 1/2 on a connected graph G, it
holds for all u, v ∈ V that limt→∞ pt

u,v = π(v), where π ∈ Rn
⩾0 is the stationary distribution

defined by π(u) ≜ deg(u)
2·|E(G)| for any u ∈ V .

We list two lemmas used in our analysis. Our first lemma allows us to translate bounds
on the support from lazy random walks to non-lazy ones (and vice versa) at the cost of a
small constant factor.

▶ Lemma 2.1. For any graph G = (V, E) and any fixed ℓ ⩾ 0, it holds that suppQ(ℓ) is
stochastically larger than suppP(ℓ). Moreover, we have for any x ⩾ 0 that

Pr [ suppP(4 · ℓ) ⩾ x ] ⩾ 1
2 · Pr

[
suppQ(ℓ) ⩾ x

]
,

and thus

E [ suppP(4 · ℓ) ] ⩾ 1
2 · E

[
suppQ(ℓ)

]
.

The next lemma gives a lower bound on the return probability of a random walk.
While there are a number of results upper bounding the return probability of a random
walk (e.g., [13, 14, 18]),to the best of our knowledge much less is known in terms of lower
bounds.

▶ Lemma 2.2. For any connected, n-vertex graph G = (V, E) and a lazy random walk with
transition matrix P, it holds for any vertex u ∈ V and step t ⩾ 0 that

pt
u,u ⩾ π(u) = deg(u)

2|E|
⩾

1
n2 .

The same also holds for non-lazy random walks with transition matrix Q, if additionally t is
even. Furthermore, if G has minimum degree δ and maximum degree ∆, we also have for
any t ⩾ 2,

pt
u,u ⩾

δt

∆t+1 · 1
|B⩽t/2(u)| ,

and the same inequality holds for the transition matrix Q if t ⩾ 2 is even.

3 A Lower Bound on the Support of Closed Random Walks

This section provides lower bounds on the support of closed random walks, in particular,
we will prove Theorem 1.1. We first present a more detailed formulation of Theorem 1.1, in
which all the hidden constants are stated precisely.

▶ Theorem 3.1. Consider any connected, n-vertex graph G = (V, E) with minimum degree
δ and maximum degree ∆. Then there is a constant c ⩾ 1 independent of n, such that a
random walk of length ℓ ⩽ 512 ∆

δ cn2 log n satisfies for any u ∈ V that

E
[

supp♢(ℓ)
∣∣∣ Xℓ = X0 = u

]
⩾

1
2 ·

⌊√
1

576c
· δ

∆ · ℓ

log n

⌋
,

where ♢ ∈ {P, Q} (in the case of ♢ = Q, the length ℓ needs additionally to be even).
Furthermore, for any µ ∈ [1, ℓ] satisfying ℓ ⩽ 32 ∆

δ cn2µ, it holds that

Pr
[

supp♢(ℓ) ⩽
⌊√

1
64c

· δ

∆ · ℓ

µ

⌋ ∣∣∣∣∣ Xℓ = X0 = u

]
⩽ (5/8)µ/2 · 1

pℓ
u,u

,

where ℓ is required to be even if ♢ = Q.
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To examine the significance of this result, notice that it is shown in [16, Theorem 1.3]
that

Pr
[

suppQ(ℓ) ⩽ s

∣∣∣∣∣ Xℓ = u

]
⩽ exp

(
− ℓ

130∆7s4

)
,

if s ⩽ 1
4

(
ℓ

2∆7 log ∆

)1/5
and ℓ is even. In comparison to their result, our bound is not

affected by the density, but only by the degree ratio ∆/δ. Regarding the expected support,
it follows that for bounded-degree graphs, the first statement in Theorem 3.1 improves
on [16, Theorem 1.3] for moderately longer walks, i.e., ℓ ⩾ (log n)5/3, whereas it is worse for
ℓ ⩽ (log n)5/3.

Next, we present the lemmas needed to prove Theorem 3.1. The first lemma (Lemma 3.3)
lower bounds the support of open random walks, and relies on the following result by Feige [7]
bounding the expected time until a certain number of distinct vertices are visited; similar
results are also shown in [3].

▶ Lemma 3.2 ([7, Theorem 4]). Consider any connected, n-vertex graph G = (V, E) with
minimum degree δ and maximum degree ∆. For any s ∈ [1, n], let T (s) be the time until a
random walk visits s distinct vertices. Then there is a constant c ⩾ 1 (independent of s and
n), such that for any lazy random walk and any vertex u ∈ V ,

E
[

T (s) | X0 = u
]
⩽ c ·

(
s + s2

δ
· min{s, ∆}

)
.

▶ Lemma 3.3. Consider any connected, n-vertex graph G = (V, E), and a random walk of
length ℓ for some ℓ ≜ 32 ·

⌈
c · ∆

δ · s2⌉, where 1 ⩽ s ⩽ n is any integer. Then, there is some
constant c ⩾ 1 (independent of n and ℓ), such that it holds for any start vertex u ∈ V that

Pr
[

supp♢(ℓ) ⩾ s | X0 = u
]
⩾

3
8 ,

where ♢ ∈ {P, Q}.

Proof. First of all, we note that the constant c involved in this result is the constant from
Lemma 3.2. With this, we first prove the result for non-lazy random walks, i.e., for ♢ = Q.
Let

ℓ̃ ≜ 8 ·
⌈

c · ∆
δ

· s2
⌉

.

Recall that T (s) is the stopping time until a walk has visited s different vertices. By
Lemma 3.2, we have

E
[

T (s)
∣∣∣ X0 = u

]
⩽ c ·

(
s + ∆

δ
s2
)

⩽ 2 ·
⌈

c · ∆
δ

s2
⌉

= 1
4 · ℓ̃.

By Markov’s inequality, it holds that

Pr
[

T (s) ⩾ ℓ̃
∣∣∣ X0 = u

]
⩽ Pr

[
T (s) ⩾ 4 · E [ T (s) ]

∣∣∣ X0 = u
]
⩽

1
4 .

Note that T (s) ⩽ ℓ̃ is equivalent to supp(ℓ̃) ⩾ s, and this gives us that

Pr
[

supp(ℓ̃) ⩾ s
∣∣∣ X0 = u

]
⩾

3
4 ⩾

3
8 , (1)

which completes the proof in case of ♢ = Q. For ♢ = P, the statement follows immediately
from (1), and the second statement of Lemma 2.1, since ℓ = 4 · ℓ̃. ◀

ICALP 2023
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We remark that the bound presented in Lemma 3.3 is essentially tight: if one takes
a random walk of length ℓ on a path (or cycle), then by the Central Limit Theorem the
probability that the walk visits at least ε ·

√
ℓ vertices can be upper bounded by 1 − δ for

some δ = δ(ε) > 0; in particular, this probability can be bounded independently of ℓ.

Proof of Theorem 3.1. Fix an arbitrary start vertex u ∈ V as X0 = u. We split the
random walk of length ℓ into consecutive sections of length ℓ′ ≜ ⌈ℓ/(9 log n)⌉. Without loss
of generality, we assume that ℓ ⩾ 576 ∆

δ c log n, since otherwise the statement holds trivially.
Given ℓ ⩾ 576 ∆

δ c log n (and c ⩾ 1), we have ℓ′ ⩽ ℓ/(8 log n). Hence, it would take a random
walk (at least) 8 log n sections before reaching step ℓ. Next we define the integer

γ ≜

⌊√
1

64c
· δ

∆ · ℓ′

⌋
,

with c being the constant from Lemma 3.2. We make the following observations about the
range of γ:

Since ℓ′ ⩽ ℓ/(8 log n) and by the precondition ℓ ⩽ 512 ∆
δ cn2 log n, we have

γ ⩽

√
1

64c
· δ

∆ · ℓ

8 log n
⩽ n.

Similarly, since ℓ′ ⩾ ℓ/(9 log n) and ℓ ⩾ 576 ∆
δ c log n, we have

γ ⩾

⌊√
1

64c
· δ

∆ · ℓ

9 log n

⌋
⩾ 1.

In conclusion, γ is an integer between 1 and n. Notice that the definition of γ implies

γ ⩽

√
1

64c
· δ

∆ · ℓ′,

and thus ℓ′ ⩾ 64c · ∆
δ · γ2. Since γ ⩾ 1, we have c · ∆

δ · γ2 ⩾ 1 and

c · ∆
δ

· γ2 ⩾
1
2

⌈
c · ∆

δ
· γ2
⌉

.

This implies that

ℓ′ ⩾ 64c · ∆
δ

· γ2 ⩾ 32 ·
⌈

c · ∆
δ

· γ2
⌉

.

We now apply Lemma 3.3 (with s = γ) and conclude

Pr
[

supp♢(ℓ′) ⩾ γ
∣∣∣ X0 = u

]
⩾ Pr

[
supp♢

(
32 ·

⌈
c · ∆

δ
· γ2
⌉)

⩾ γ
∣∣∣ X0 = u

]
⩾

3
8 ,

which holds for any start vertex u ∈ V . Therefore, by considering the at least 8 log n

consecutive sections of length ℓ′ each, and using the Markov property we have

Pr
[

supp♢(ℓ) < γ
∣∣∣ X0 = u

]
⩽

(
max
v∈V

Pr
[

supp♢(ℓ′) < γ
∣∣∣ X0 = v

])8 log n

⩽

(
5
8

)8 log n

⩽ n−3,

since (5/8)8 ⩽ e−3.
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By Lemma 2.2, it holds for a lazy random walk (i.e., ♢ = P) starting with any u ∈ V

and integer ℓ ⩾ 0 that

Pr
[

Xℓ = u
∣∣∣ X0 = u

]
⩾ π(u) ⩾ δ

∆ · n
;

we also know that the same statement holds for a non-lazy random walk (i.e., ♢ = Q) and
an even value of ℓ. Hence,

Pr
[

supp♢(ℓ) < γ
∣∣∣ X0 = Xℓ = u

]
=

Pr
[

supp♢(ℓ) < γ ∩ X0 = Xℓ = u
]

Pr [ X0 = Xℓ = u ]

⩽
Pr
[

supp♢(ℓ) < γ
]

Pr
[

Xℓ = u
∣∣∣ X0 = u

]
⩽

n−3

n−2 = n−1. (2)

Consequently,

E
[

supp♢(ℓ)
∣∣∣ X0 = Xℓ = u

]
⩾ γ · Pr

[
supp♢(ℓ) ⩾ γ

∣∣∣ X0 = Xℓ = u
]

⩾ γ ·
(
1 − n−1)

⩾
1
2 ·

⌊√
1

64c
· δ

∆ · ℓ

9 log n

⌋
= 1

2 ·

⌊√
1

576c
· δ

∆ · ℓ

log n

⌋
,

which proves the first statement.
We proceed to the proof of the second statement, which essentially uses the same argument

as before but with different parameters. First note that we may assume ℓ ⩾ 64c · ∆
δ · µ, since

otherwise the statement holds trivially. In particular, this implies ℓ/µ ⩾ 1, so if we split
the random walk of length ℓ into consecutive sections of length ℓ′ ≜ ⌈ℓ/µ⌉, it holds that
ℓ′ ⩽ 2ℓ/µ. Hence there are at least µ/2 consecutive sections before reaching step ℓ. We define

γ ≜

⌊√
1

64c
· δ

∆ · ℓ′

⌋
,

and rearranging this implies

ℓ′ ⩾ 64c · ∆
δ

· γ2 ⩾ 32 ·
⌈

c · ∆
δ

· γ2
⌉

.

Again, we examine the range of γ:
Since ℓ′ ⩽ 2ℓ/µ and by the precondition ℓ ⩽ 32 ∆

δ cn2µ, we have γ ⩽ n.
Since ℓ′ ⩾ ℓ/µ and ℓ ⩾ 64c · ∆

δ · µ, we have γ ⩾ 1.
In conclusion, γ is an integer between 1 and n. By Lemma 3.3 (with s = γ), it holds that

Pr
[

supp♢(ℓ′) ⩾ γ
∣∣∣ X0 = u

]
⩾ Pr

[
supp♢

(
32
⌈

c · ∆
δ

· γ2
⌉)

⩾ γ
∣∣∣ X0 = u

]
⩾

3
8 ,

and, as in the proof of the first statement,

Pr
[

supp♢(ℓ) ⩽ γ
∣∣∣ X0 = u

]
⩽ (5/8)µ/2.

Finally, we apply the same argument as in (2) to conclude that

Pr
[

supp♢(ℓ) ⩽ γ
∣∣∣ X0 = Xℓ = u

]
⩽ (5/8)µ/2 · 1

pℓ
u,u

. ◀
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4 Upper Bounds on the Support of Closed Random Walks

This section studies upper bounds on the support of closed random walks, by examining
certain “worst-case” graphs. The section is structured as follows: we first study a family of
bounded-degree graphs, and give the proof of Theorem 1.2 in Section 4.1. We present a more
formal statement of Theorem 1.3, and prove the statement in Section 4.2.

4.1 Proof of Theorem 1.2
We first present a more detailed formulation of Theorem 1.2, in which all the hidden constants
are stated precisely.

▶ Theorem 4.1. There is a constant C ⩾ 1, such that for any pair of integers β being a
power of 2 and ℓ with C ⩽ ℓ ⩽ β1/5 the following holds: there is a connected, n-vertex graph
G satisfying n ∈ [2β + 1, 2β + β1/10 − 1], ∆ = 3, and some vertex r ∈ V (G), such that it
holds for a random walk of length ℓ that starts at r that

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = r

]
⩽ 3 · ℓ1/2−ε,

where ε ≜ min (1/2 · log(1/16 · log12 β)/ log ℓ, 1/7) .

We first construct the family of graphs G used in the proof. Given two integers p ⩾ 1
and D ⩾ 1, our constructed graph G = G[p, D] is based on the following two graphs:

let G1 = (V1, E1) be a path graph of length p + 1, where V1 = {v0, v1, . . . , vp} and
E1 = {{vi, vi+1} | 0 ⩽ i < p};
let G2 = (V2, E2) be a complete binary tree over D ⩾ 1 levels labelled 0, 1, . . . , D − 1.
Hence, G2 has 2D+1 − 1 vertices.

We set the root of the binary tree to be vertex z = v0, and let G be the union of the graphs
G1 and G2; see Figure 2 for an illustration of our considered graph. Notice that G has
n = p + (2D+1 − 1) vertices, as vertex z = v0 appears in both G1 and G2. Since all vertices
of graph G have degree one, two or three, we have ∆ = 3.

r = vp

z = v0
level 0
level 1
level 2
level 3

p = 5

D = 3

Figure 2 The construction of the graph G = G[p, D] for p = 5, D = 3. We have 24 − 1 = 15
vertices on the binary tree, and the total number of vertices of G is n = 5 + 16 − 1 = 20.

Now we explain the intuition behind our construction. We study a closed random walk
from r of length p2+c for some suitably small constant c > 0. On one hand, if the closed
random walk remains only on the path, then the support of this walk is at most p ≪ (p2+c)1/2.
On the other hand, once the random walk leaves the path, the walk is likely to “get lost” in
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the binary tree, and the probability for the walk to return to r = vp is very small. Hence, if
we sample from the space of all closed random walks, there is a strong bias towards those
walks that never leave the path (and thus have necessarily small support).

Now we turn this intuition into a formal proof. Recall that the level of a vertex in the
binary tree is the distance to the root vertex z, and recall that the maximum level is equal
to the depth D.

▶ Lemma 4.2. Consider a lazy random walk on G = G[p, D] starting at r. For any integer
ℓ ⩾ 0, the following holds with probability at least 1 − exp(−ℓ/288): if the random walk makes
at least ℓ transitions within the binary tree, it reaches at least once a vertex which is at level
min(D, ℓ/12).

This lemma is quite intuitive, as there is a strong drift on the binary tree to increase the
distance to the root, and one can exploit this using Hoeffding’s inequality. Next, we present
a simple fact of random walks on binary trees.

▶ Lemma 4.3. Consider a lazy random walk in a complete binary tree with levels 0, 1, . . . , D

starting at a vertex which has distance k ∈ [1, D] from the root. Then the probability that the
walk reaches the root within ℓ steps is upper bounded by ℓ · 2−k.

Lemmas 4.2 and 4.3 together establish the intuitive fact that, once the random walks
makes sufficiently many transitions in the binary tree, it is unlikely to return to the root of
the tree within a small number of steps.

Next, we consider a lazy random walk on a path with vertices 0, 1, . . . , p, starting from
p, with the special property that the random walk “gets killed” once it reaches the other
endpoint 0. The following lemma lower bounds the probability of the random walk “surviving”
after γ · p2 steps, i.e., the probability that a random walk does not reach the other endpoint
before step γ · p2.

▶ Lemma 4.4. Consider a lazy random walk on the integers {0, 1, . . . , p}, starting at vertex
p, such that the random walk gets killed after reaching vertex 0. More precisely, we define
the following p × p matrix R: 2

Ri,j =


1
2 if j = i ∈ {1, . . . , p},
1
2 if i = p, j = p − 1,
1
4 if j = i − 1, 1 < i < p,
1
4 if j = i + 1, 1 ⩽ i < p.

Let rt
p,. be the probability distribution3 of this t-step random walk, when starting at vertex p.

Then, it holds for any integer γ ⩾ 1 that

rγ·p2

p,p ⩾
1
2p

· 12−8·γ .

With the previous lemmas at hand, we are now ready to prove Theorem 4.1.

2 This matrix is called a “substochastic” matrix [1, Section 3.6.5, page 95]. Note that this is not a
transition matrix, since from state 1 with probability 1/4 the walk gets killed.

3 Since the random walk gets killed at vertex 0, ∥rt
p,.∥1 may generally not be equal to 1, but it is upper

bounded by 1.
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Proof of Theorem 4.1. Given the two integers ℓ and β being a power of 2, we will now
instantiate a graph G = G[p, D]. Firstly, the length of the path is p ≜ ℓδ and δ ≜ 1/2 − ε;
recall that

ε = min (1/2 · log(1/16 · log12 β)/ log ℓ, 1/7) .

Secondly, the depth of the binary tree is D ≜ log2 β (so in turn, the binary tree has
2log2(β)+1 − 1 vertices). Hence, the total number of vertices in G is

n = ℓδ + 2log2(β)+1 − 1,

which is at least 2β + 1 and at most 2β + β1/10, as ℓ ⩽ β1/5.
Our objective is to show that the expected support of a closed random walk of length ℓ

starting at vertex r is at most 3 · ℓδ = 3 · ℓ1/2−ε. We first upper bound the probability of the
event that a random walk (not necessarily closed) visits at least 2ℓδ + 1 vertices in ℓ steps
and then returns to r.

In the following, let us define the following events and stopping time:
1. The event A :=

{
supp(ℓ) ⩾ 2ℓδ + 1

}
, meaning the random walk of length ℓ visits at least

2ℓδ + 1 vertices.
2. The event B :=

{
Xℓ = r

}
, meaning the random walk is at the start vertex at time ℓ.

3. The event C which occurs if the random walk of length ℓ makes at least ℓδ transitions on
the binary tree.

4. The stopping time τ , which is the number of transitions on the binary tree until a vertex
at level min{D, ℓδ/12} is reached for the first time.

5. The event C(τ) which occurs if the random walk of length ℓ makes at least τ transitions
on the binary tree.

In order to visit at least 2ℓδ+1 vertices, the walk needs to visit at least 2ℓδ+1−(ℓδ+1) = ℓδ

vertices on the tree (excluding the vertex z = v0), since there are only ℓδ + 1 vertices on the
path. Hence we have

A ⊆ C. (3)

Furthermore, we have by Lemma 4.2 (applied to a random walk on the binary tree with ℓδ

transitions),

Pr
[

τ ⩽ ℓδ
]
⩾ 1 − exp(−ℓδ/288). (4)

Furthermore, let T (τ) be the time-step of the random walk on G when the τ -th transition
on the binary tree is made; so, T (τ) ⩾ τ . Then,

Pr
[

Xℓ = r | FT (τ), T (τ) ⩽ ℓ
]
⩽ ℓ · max

(
2−D, 2−ℓδ/12

)
, (5)

since by Lemma 4.3, the random walk starting from a vertex at level level min{D, ℓδ/12} in
the binary tree does not even reach z = v0 within ℓ additional steps (and therefore cannot
reach the vertex r at step ℓ). By combining the last three inequalities,
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Pr
[

A ∩
{

Xℓ = r
} ]

⩽ Pr
[

C ∩
{

Xℓ = r
} ]

⩽ Pr
[

C ∩
{

τ ⩽ ℓδ
}

∩
{

Xℓ = r
} ]

+ Pr
[

τ > ℓδ
]

⩽ Pr
[

C(τ) ∩
{

τ ⩽ ℓδ
}

∩
{

Xℓ = r
} ]

+ exp
(
−ℓδ/288

)
⩽ Pr

[
τ ⩽ ℓδ

]
· Pr

[
C(τ) | τ ⩽ ℓδ

]
· Pr

[
Xℓ = r | C(τ), τ ⩽ ℓδ

]
+ exp

(
−ℓδ

)
⩽ Pr

[
Xℓ = r | FT (τ), T (τ) ⩽ ℓ

]
+ exp

(
−ℓδ/288

)
⩽ ℓ · max

(
2−D, 2−ℓδ/12

)
+ exp

(
−ℓδ/288

)
⩽ 16ℓ · max

(
exp(−ℓδ/288), 1/β

)
=: pbad.

On the other hand, we will now lower bound the probability that a random walk starting
at r never leaves the path of length ℓδ and is located at vertex r at step ℓ. By Lemma 4.4,
we have that this probability is lower bounded by

Pr
[ {

supp(ℓ) ⩽ 2ℓδ
}

∩
{

Xℓ = r
} ]

⩾
1
2 · ℓ−1/2+ε · 12−8ℓ2ε

⩾ ℓ−1/2 · 12−8ℓ2ε

=: pgood.

Finally, we can now upper bound the expected size of the support of a closed random
walk of length ℓ. Using the conditional probabilities and the definitions of pbad and pgood, we
have that

Pr
[

supp(ℓ) ⩾ 2ℓδ + 1 | Xℓ = r
]

Pr [ supp(ℓ) ⩽ 2ℓδ + 1 | Xℓ = r ] =
Pr
[ {

supp(ℓ) ⩾ 2ℓδ + 1
}

∩
{

Xℓ = r
} ]

Pr [ {supp(ℓ) ⩽ 2ℓδ + 1} ∩ {Xℓ = r} ] ⩽
pbad
pgood

⩽ 16ℓ1.5 · max
(
exp(−ℓδ/288), 1/β

)
· 128ℓ2ε

,

which implies that

Pr
[

supp(ℓ) ⩾ 2ℓδ + 1 | Xℓ = r
]
⩽ 16ℓ1.5 · max

(
exp(−ℓδ/288), 1/β

)
· 128ℓ2ε

.

Therefore, it holds that

E
[

supp(ℓ) | Xℓ = r
]

⩽ Pr
[

supp(ℓ) < 2ℓδ + 1 | Xℓ = r
]

· 2ℓδ + Pr
[

supp(ℓ) ⩾ 2ℓδ + 1 | Xℓ = r
]

· ℓ

⩽ 2ℓδ + 1 + 16ℓ2.5 · max
(
exp(−ℓδ/288), 1/β

)
· 128ℓ2ε

.

Since ε = min (1/2 · log(1/16 · log12 β)/ log ℓ, 1/7) by definition, we have ε ⩽ 1/7. Together
with δ = 1/2 − ε, this implies 2ε ⩽ δ − 1/14 and therefore

128ℓ2ε

⩽ 128ℓδ−1/14
⩽ exp

(
ℓδ/572

)
,

where the last inequality holds if ℓ is lower bounded by a sufficiently large constant C > 0.
Applying this gives us that

16ℓ2.5 · exp(−ℓδ/288) · 128ℓ2ε

⩽ 16ℓ2.5 · exp
(
−ℓδ/572

)
.

Similarly, we have ε ⩽ 1/2 · log(1/16 · log12 β)/ log ℓ by definition, and obtain

16ℓ2.5 · 1
β

· 128ℓ2ε

⩽ 16ℓ2.5 · 1
β

·
√

β.
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Figure 3 The construction of the graph G, where a large clique of β/⌈log log β⌉ vertices is
connected to β/⌈log log β⌉ small cliques of size ⌈log log β⌉ each; recall that our choice of β ensures
that β/⌈log log β⌉ is an integer.

Combining the last two inequalities gives us that

E [ supp(ℓ) | Xs = r ] ⩽ 2ℓδ + 1 + 16ℓ2.5 · max
(

exp
(
−ℓδ/572

)
,

1√
β

)
⩽ 3ℓδ,

using that ℓ ⩾ C for some large constant C > 0 as well as ℓ ⩽ β1/5. This completes the
proof. ◀

4.2 Proof of Theorem 1.3
In this subsection we present a more detailed formulation of Theorem 1.3, and prove the
statement afterwards.

▶ Theorem 4.5 (Formal version of Theorem 1.3). Let C ⩾ 1 be a constant. Then, for
every integer β ⩾ C such that β/⌈log log β⌉ is an integer, there is a graph G with n =
β + β/⌈log log β⌉ vertices such that a lazy random walk of length ℓ = ⌊log β⌋ starting from
some vertex chosen uniformly at random from V (G) satisfies

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]
⩽ 5 log ℓ.

In particular, there is a start vertex r ∈ V such that

E
[

suppP(ℓ) | Xℓ = X0 = r
]
⩽ 5 log ℓ.

We first define the graphs used in proving Theorem 4.5. For any given parameter β ∈ N,
our graph G is defined as follows:

Let G1 = (V1, E1) consist of β/⌈log log β⌉ disjoint, “small” cliques of size ⌈log log β⌉ each.
Let G2 = (V2, E2) = Kβ/⌈log log β⌉ be a “big” clique of size β/⌈log log β⌉.
Our studied graph G is constructed by taking the union of G1 and G2, and additionally
connecting each vertex of the smaller cliques to one distinct vertex in the big clique.

See Figure 3 for an illustration of our construction.
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Proof of Theorem 4.5. We use the graph G defined above in the proof, and decompose the
expected support based on the sampled start vertex according to the uniform distribution
over V (G):

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

· Pr
[

X0 = u | Xℓ = X0 ]
=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = X0 = u
]

Pr [ Xℓ = X0 ]

=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [ Xℓ = X0 ]

Splitting the above sum yields

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

=
∑

u∈V (G1)

E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [ Xℓ = X0 ]

+
∑

v∈V (G2)

E
[

suppP(ℓ) | Xℓ = X0 = v
]

·
Pr
[

Xℓ = v | X0 = v
]

· 1
n

Pr [ Xℓ = X0 ]

= |V (G1)| · E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [ Xℓ = X0 ]

+ |V (G2)| · E
[

suppP(ℓ) | Xℓ = X0 = v
]

·
Pr
[

Xℓ = v | X0 = v
]

· 1
n

Pr [ Xℓ = X0 ] , (6)

where u is an arbitrary vertex in G1, v is an arbitrary vertex in G2, and the last equation
holds by symmetry.

Consider now a lazy random walk which starts from some vertex u ∈ V1 in a small clique.
Then the probability that this random walk never leaves the small clique and is at u in step
ℓ ≜ ⌊log β⌋ is at least

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ ∩ {Xℓ = u} | X0 = u
]

⩾

(
1 − 1

2⌈log log β⌉

)⌊log β⌋−1
· min

(
1
2 ,

1
2⌈log log β⌉

)
⩾ 8− log β/ log log β . (7)

If the random walk leaves a small clique, then the probability of returning to the small clique
within ℓ steps is at most ℓ · (⌈log log β⌉)2/n; hence, it holds that

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ ∩ {Xℓ = u} | X0 = u
]
⩽ ℓ · ⌈log log β⌉

β/⌈log log β⌉ − 1 + ⌈log log β⌉

⩽ ℓ · (⌈log log β⌉)2

β
.
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Therefore, as in the proof of Theorem 4.1,

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ | Xℓ = X0 = u
]

Pr [ suppP(ℓ) ⩽ ⌈log log β⌉ | Xℓ = X0 = u ]

=
Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ ∩
{

Xℓ = u
}

| X0 = u
]

Pr [ suppP(ℓ) ⩽ ⌈log log β⌉ ∩ {Xℓ = u} | X0 = u ]

⩽
ℓ · (⌈log log β⌉)2

β

8− log β/ log log β
,

and upper bounding the denominator on the left hand side by 1 yields

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ | Xℓ = u
]
⩽

ℓ · (⌈log log β⌉)2

n

8− log β/ log log β
.

Therefore, it holds that

E
[

suppP(ℓ) | Xℓ = X0 = u
]

⩽ Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ | X0 = u
]

· ℓ

+ Pr
[

suppP(ℓ) ⩽ ⌈log log β⌉ | X0 = u
]

· ⌈log log β⌉

⩽ ℓ2 · 8log β/ log log β · (⌈log log β⌉)2

β
+ 1 · ⌈log log β⌉ ⩽ 2 · ⌈log log β⌉,

as ℓ = ⌊log β⌋.
Now we return to (6). By using the three trivial estimates, (i) |V1| ⩽ n, (ii) |V2| ⩽ n and

(iii) E
[

suppP(ℓ) | Xℓ = X0 = v
]
⩽ ℓ, we have

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

⩽ n · 2 · ⌈log log β⌉ ·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [ Xℓ = X0 ] + n · ℓ ·
Pr
[

Xℓ = v | X0 = v
]

· 1
n

Pr [ Xℓ = X0 ]

⩽ 2 · ⌈log log β⌉ ·
Pr
[

Xℓ = u | X0 = u
]

Pr [ Xℓ = X0 ] + ℓ ·
Pr
[

Xℓ = v | X0 = v
]

Pr [ Xℓ = X0 ] . (8)

We now proceed to upper bound the expression in Equation (8), by considering the
two addends separately. We first upper bound Pr[ Xℓ=u | X0=u ]

Pr[ Xℓ=X0 ] . By decomposing and lower
bounding the denominator, we have that

Pr
[

Xℓ = X0 ] ⩾ ∑
u∈V1

Pr
[

X0 = u
]

· Pr
[

Xℓ = u | X0 = u
]

⩾
1
2 · Pr

[
Xℓ = u | X0 = u

]
(9)

since the probability Pr
[

Xℓ = X0 | X0 = u
]

is the same for all u ∈ V1 by symmetry, and
by construction of G, at least half of the vertices in G are in V1. Therefore,

Pr
[

Xℓ = u | X0 = u
]

Pr [ Xℓ = X0 ] ⩽ 2. (10)

We now turn to the second addend in (8). We first upper bound Pr
[

Xℓ = v | X0 = v
]

=
pℓ

v,v, where v ∈ V2. To this end, note that the random walk can only be at v at step ℓ if at
least one of the following three cases occurs: (i) the random walk always remains on v by
taking ℓ self-loops, (ii) the random walk leaves v, and then returns to v from another vertex
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in the big clique, and (iii) the random walk leaves v, and then returns to v from a neighbor
in the small clique. Regarding (i), the probability is 2−ℓ. Regarding (ii), the probability of
ever using an edge {x, v} ∈ E with x ∈ V2 during ℓ steps is at most

ℓ · 1
2 deg(x) ⩽ ℓ · 1

2 ·
(

β
⌈log log β⌉ − 1 + ⌈log log β⌉

) ⩽ ℓ · ⌈log log β⌉
2β

.

Finally, regarding (iii), the probability that the random walk ever reaches any vertex in V1
within ℓ steps is upper bounded by

ℓ · max
z∈V2

degV1(z)
2 deg(z) ⩽ ℓ · ⌈log log β⌉

2 ·
(

β
⌈log log β⌉ − 1 + ⌈log log β⌉

) ⩽ ℓ · (⌈log log β⌉)2

2β
.

Combining these three cases, we have

Pr
[

Xℓ = v | X0 = v
]
⩽ 2−ℓ + ℓ · (⌈log log β⌉)2

β
. (11)

To lower bound Pr
[

Xℓ = X0 ], we apply (9) and the estimate from (7) to obtain that

Pr
[

Xℓ = X0 ] ⩾ 1
2 · Pr

[
Xℓ = u | X0 = u

]
⩾

1
2 · 8− log β/ log log β . (12)

Finally, combining (10), (11), (12) with (8) gives us that

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

⩽ 4 · ⌈log log β⌉ + 2 · ℓ · 8log β/ log log β ·
(

2−ℓ + ℓ · (⌈log log β⌉)2

β

)
⩽ 4 · ⌈log log β⌉ + 2 · ℓ · 8log β/ log log β ·

(
2 · ℓ · (⌈log log β⌉)2

β

)
⩽ 4 · ⌈log log β⌉ + o(1)
⩽ 5 · log ℓ,

where in the second inequality we used the definition ℓ = ⌊log β⌋ ⩾ log β − 1, and similarly
the third inequality holds since ℓ = ⌊log β⌋, and thus the 1/β term dominates.

For the second statement, note that by conditioning on the vertex sampled for X0,

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

· Pr
[

Xℓ = X0 = u | Xℓ = X0 ]
⩾ min

u∈V
E
[

suppP(ℓ) | Xℓ = X0 = u
]

,

and thereore the second statement follows immediately from the first statement. ◀

5 Results on Eigenvalue Multiplicity

This section presents some new eigenvalue multiplicity bounds on the transition matrices of
random walks. For ease of presentation, we focus on lazy random walks in this section, but
our presented method can be employed to analyze non-lazy random walks, too. Our first
eigenvalue multiplicity bound is as follows:
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▶ Theorem 5.1 (Formal Statement of Theorem 1.4). Consider any connected, n-vertex graph
G = (V, E) with minimum degree δ and maximum degree ∆. Further assume λ = λ2 ⩾ γ,
where γ ≜ 1 − δ

32c∆ · 1
log4 n

and c ⩾ 1 is the constant from Lemma 3.2. Then, it holds that

MP

[(
1 − δ

32c∆ · log5 n

)
· λ, λ

]
= O

(
n

log n

)
. (13)

It is shown in [16] that, for the normalized adjacency matrix of any n-vertex graph G

with maximum degree ∆, the number of eigenvalues in the range
[(

1 − log log∆
log∆ n

)
· λ2, λ2

]
is

Õ

(
n · ∆7/5

log1/5 n

)
. (14)

In comparison to their bound, our presented result only holds for graphs with poor expansion.
However, Theorem 5.1 does show for such graphs that the number of eigenvalues in our
studied range is O(n/ log n), which is significantly smaller than the bound in (14).

The proof of Theorem 5.1 closely follows the approach in [16], by reducing the multiplicity
analysis to the support of closed random walks. We consider a lazy random walk of length
ℓ on G, and assume that the start vertex X0 is sampled uniformly at random. We denote
by W ℓ the event {Xℓ = X0} and by W ℓ,s the event {Xℓ = X0, supp(ℓ) ⩽ s}; that is, the
random walk is closed and has support at most s. Abusing notation a bit, let W ℓ,⩾s be the
event where the random walk is closed and has support at least s. We now state the following
bound, which is based on the arguments of [16] and the probability bound in Theorem 3.1.

▶ Lemma 5.2. Consider any connected, n-vertex graph, and a lazy random walk of length
ℓ ⩽ 32cµ · ∆

δ n2 starting from a uniform random vertex. Then with c > 0 being the constant
from Lemma 3.2, it holds for any s ⩽

⌊√ 1
64c · δ

∆ · ℓ
µ

⌋
that

Pr
[

W ℓ,s
]
⩽

∆
δ

· n ·
(

5
8

)µ/2
Pr
[

W ℓ
]

.

Combining Lemma 5.2 with the techniques developed in [16] proves Theorem 5.1.
We further present a different and more elementary approach to bound the multiplicities

of the eigenvalue λ2, and our proof is based on the Random Target Lemma [14, (3.3)].

▶ Theorem 5.3. Consider any connected, n-vertex graph G = (V, E) with average degree d

and minimum degree δ. Then there is some constant C > 0, such that it holds for any ε > 0
that

MP[(1 − ε)λ2, λ2] ⩽ C · d

δ
· n · 1 − (1 − ε)λ2√

1 − λ2
.

In particular, it holds with ε = (1 − λ2)/λ2 that

MP[(1 − ε)λ2, λ2] ⩽ 2C · d

δ
· n ·

√
1 − λ2.

6 Conclusions

In this work we analyze the support of closed random walks of length ℓ on different graph
classes. Contrary to the well-understood worst-case support of open random walks, especially
on regular and bounded-degree graphs, our results demonstrate that the (worst-case) support
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of closed random walks is much more complex, and undergoes a delicate phase transition as
ℓ varies. While the support is Θ(ℓ1/2/

√
log n) for ℓ = Ω((log n)7/2), for smaller values of ℓ it

is sandwiched between Ω(ℓ1/5) and O(ℓ5/14). This proves a strong separation from the open
random walk case, where the support is known to be Ω(ℓ1/2) [3, 7], and provides a negative
answer to [16, Open Problem 3].

For (highly) irregular graphs, we prove that even with a randomly sampled start vertex,
the support may only be logarithmic in ℓ. This is once more in sharp contrast to open walks,
where a lower bound of Ω(ℓ1/3) holds for any start vertex and any 1 ⩽ ℓ ⩽ n3 [3].

One interesting open problem is to derive refined bounds on the support of closed random
walks. For instance, it is tempting to conjecture that on any bounded-degree expander graph,
the lower bound on the support can be improved, possibly even to Ω(ℓ), which would be
tight and match the bound for open random walks. To the best of our knowledge, this is
only known for the special case where ℓ is upper bounded by the girth of the expander [5].
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A Auxiliary Tools

This section lists the auxiliary results used in the paper. Our first lemma is a simple upper
bound on the lower tails of a sub-multiplicative random variable. We remark that this is a
standard result, however we present the proof here for the sake of completeness.

▶ Lemma A.1. Let X be a non-negative integer random variable such that E [ X ] ⩾ b, and
there exists integer c ⩾ 1 such that Pr [ X > kc ] ⩽ Pr [ X > c ]k for all integers k ⩾ 0. Then,
it holds for any a < c that

Pr [ X > a ] ⩾ b − a

b + 2c
.

Proof. Let p ≜ Pr [ X > a ] ⩾ Pr [ X > c ], since a < c and Pr [ X > x ] decreasing in x.
Hence, it holds that

b ⩽ E [ X ]

=
∞∑

i=0
Pr [ X > i ]

⩽ a +
c−1∑
i=a

Pr [ X > i ] + c

∞∑
k=1

Pr [ X > kc ]

⩽ a +
c−1∑
i=a

Pr [ X > i ] + c

∞∑
k=1

Pr [ X > c ]k

⩽ a + p(c − a) + cp/(1 − p).

This implies (1 − p)b ⩽ a + 2pc, rearranging gives the result. ◀

▶ Theorem A.2 (Cauchy’s Interlacing Theorem). Let A be a real symmetric n × n matrix,
and B an m × m principal submatrix of A (that is, B is obtained by deleting both the ith

row and column for some values of i). Suppose A has eigenvalues λ1, . . . , λn, and B has
eigenvalues β1, . . . , βm. Then, it holds for 1 ⩽ k ⩽ m that λk ⩽ βk ⩽ λk+n−m.

https://doi.org/10.1109/FOCS.2012.86
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▶ Theorem A.3 (Hoeffding’s Bound). Let Y1, . . . , Yℓ be independent bounded random variables
with Yi ∈ [a, b] for each i ⩽ ℓ, and define Y =

∑ℓ
i=1 Yi. Then, the following hold for all

λ ⩾ 0:

Pr [ Yi − E [ Y ] ⩾ λ ] ⩽ exp
(

− 2λ2

ℓ(b − a)2

)
and

Pr [ Yi − E [ Y ] ⩽ −λ ] ⩽ exp
(

− 2λ2

ℓ(b − a)2

)
.
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