
The Wrong Direction of Jensen’s Inequality Is
Algorithmically Right
Or Zamir #

Princeton University, NJ, USA

Abstract
Let A be an algorithm with expected running time eX , conditioned on the value of some random
variable X. We construct an algorithm A′ with expected running time O

(
eE[X]), that fully executes A.

In particular, an algorithm whose running time is a random variable T can be converted to one with
expected running time O

(
eE[ln T]), which is never worse than O(E[T]). No information about the

distribution of X is required for the construction of A′.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Algorithm design techniques; Theory of computation →
Computational complexity and cryptography

Keywords and phrases algorithms, complexity, Jensen’s inequality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.107

Category Track A: Algorithms, Complexity and Games

Acknowledgements The author would like to thank Avi Wigderson for pointing out important
references.

1 Introduction

Let A be a Las Vegas1 randomized algorithm. Assume that conditioned on the value of some
random variable X, the expected running time of A is eX . By Jensen’s inequality, E[eX] ≥
eE[X], and in fact A’s expected running time might be much larger than eE[X]: Consider for
example X that gets the value 1

pE[X] with probability p and 0 otherwise, for any choice
of p > 0; While the expectation of X is always E[X], the expectation of eX is p · e

1
p E[X]

which can be arbitrarily large. We show that, surprisingly, any such A can be converted to a
different Las-Vegas randomized algorithm A′ that gives the same answer yet runs in expected
time O

(
eE[X]). Transforming A to A′ does not require any assumption or knowledge about

the distribution of X.

▶ Theorem 1. There exists an algorithm T that receives as an input a randomized Las
Vegas algorithm A, and fully executes it. If the expected running time of A is eX when
conditioned on the value of some random variable X, then the expected running time of T (A)
is O

(
eE[X]).

As a corollary, any algorithm whose running time is a random variable T can be converted
to one with expected running time O

(
eE[ln T]), which is never worse than O(E[T]).

Recently we used the following simple version of Theorem 1 in a late revision of [10] to
substantially simplify the analysis in the paper. The paper improves the running time of
exact exponential-time algorithms for general Constraint Satisfaction Problems.

1 A randomized algorithm is called Las Vegas if it always returns the correct answer, but its running time
is a random variable.

EA
T
C
S

© Or Zamir;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 107; pp. 107:1–107:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orzamir@princeton.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.107
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

107:2 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

▶ Lemma 2 (from an up-to-date version of [10]). Let A be an algorithm with expected running
time 2X conditioned on the value of a random variable X. There exists an algorithm A′

that fully executes A and has an expected running time of O
(
2E[X] · E [X]

)
. Transforming A

to A′ requires knowing E[X].
In this paper we focus on Theorem 1 itself, obtaining an optimal version of it.
We transform an algorithm A by using a sequence of truncated evaluations. A truncated

evaluation of an algorithm A for t steps is the process of running algorithm A and aborting
its run if it did not fully execute in the first t computational steps of its run. Each of
the algorithms we present is thus a sequence of values t1, t2, . . . , ti, . . . which we use as
thresholds for truncated evaluations of A. We stop at the first time A is fully executed.
These thresholds can be defined deterministically or be random variables. In the simpler
algorithms we present, the thresholds depend on E[X] or even on the entire distribution X.
For the proof of Theorem 1 the thresholds are completely independent of X and A.

Truncated evaluations are frequently used in complexity theory (for example, see the
proof of the time and space hierarchies in [2]). The first algorithmic use of such a sequence of
truncated evaluations that we are aware of, is by Alt, Guibas, Mehlhorn, Karp and Wigderson
[1]. They used it to convert Las Vegas randomized algorithms to Monte Carlo randomized
algorithms, with success probability larger than what Markov’s inequality gives. Luby,
Sinclair and Zuckerman [5] then introduced a universal strategy for truncated evaluations.
That is a sequence that is guaranteed to run in time O(s log s) if there exists any sequence
that runs in time O(s) for the same algorithm. Our contribution thus is two-fold: first, we
prove the existence of good strategies in terms of E[X], and second, we show that these
strategies can be explicitly constructed (i.e., without paying additional logarithmic factors).
Not paying additional factors guarantees, due to Jensen’s inequality, that our transformed
algorithm is never worse than the original algorithm.

A natural use for such theorems is the regime of exponential-time algorithms. Consider
the following toy example. As part of the classic algorithm of Schöning [9] it was shown that
given an assignment α and a 3-SAT formula φ it is possible to test in O (2r) expected time
whether φ has a satisfying assignment α0 with HAM (α0, α) ≤ r, where HAM(·, ·) is the
standard Hamming distance. This claim was also derandomized later [6]. We can use this
primitive naively to obtain a non-trivial 3-SAT algorithm: Pick a random assignment α, and
then run the above procedure of Schöning. Let X be the Hamming distance between α and
a satisfying assignment α0 of the input formula φ, this is a random variable. Conditioned
on X, the expected running time of our algorithm is 2X . The expected running time of our
algorithm is thus E

[
2X

]
=

∑n
r=0

(
n
r

)
2−n2r = 2−n(1 + 2)n =

(3
2
)n. Using this paper’s main

Theorem, on the other hand, we can notice that E[X] = n
2 and thus we can convert the above

algorithm in a black-box manner into one with expected running time 2E[X] =
(√

2
)n

<
(3

2
)n.

We note that Schöning already presented an algorithm using this procedure that is faster
than both of the algorithms above.

Another similar example is the famous PPSZ algorithm for solving k-SAT, including
its recent improvements, and generalizations for CSPs [7, 4, 3, 10]. In these algorithms, a
randomly chosen permutation determines the number of input variables that we need to
guess the values of. The expectation of this number of variables is then analyzed. The success
probability or running time is exponential in this number. In the original PPSZ algorithm
the analyzed quantity is the success probability and thus Jensen’s inequality is applicable
to bound this probability from below. In other variations (including [10]), the analyzed
quantity is the running time and then Jensen’s inequality is no longer applicable and either
a more complicated analysis or the statement of this paper is necessary. Further discussion
on possible applications and in particular possible implications for SAT algorithms appears
in Section 3.

O. Zamir 107:3

1.1 Preliminaries

We use standard notation throughout the paper. The notation ln x is used for the natural
logarithm, and log x is used for the base two logarithm.

▶ Definition 3 (Iterated functions). Let f : R → R be a function. We define the iterated
functions f (k) : R → R recursively as follows. f (0)(x) := x, and for any k > 0 we
let f (k)(x) := f

(
f (k−1) (x)

)
.

▶ Definition 4 (Star functions). Let f : R → R be a function. Assume f is strictly increasing
and strictly shrinking2 for all x ≥ x0. The star function of f , defined with respect to x0 for
every x ≥ x0, is

f⋆(x) = min{k | f (k)(x) ≤ x0}.

The (general) Tower function Towerb (n, x) : N × R → R is defined as f (n)(x)
where f(x) = bx. The standard Tower function Tower : N → N is defined as Tower(n) =
Tower2(n, 1). The discrete inverse of the Tower function is log⋆, defined with respect
to x0 = 2. That is, log⋆ n is the smallest integer such that Tower(log⋆ n) ≥ n.

2 Proof of Theorem 1

We begin by presenting a simple proof of Lemma 2.
Let A be an algorithm whose expected running time is eX when we condition on the

value of some non-negative random variable X. We observe, by Markov’s inequality, that

Pr (X > E[X] + 1) ≤ E[X]
E[X] + 1 = 1 − 1

E[X] + 1 .

Hence, consider the following algorithm.

Algorithm 1 Simple repetition.

Input: A, E[X].
1: repeat
2: Run A for 2eE[X]+1 computational steps.
3: until A completed a run.

▶ Lemma 5. Algorithm 1 is expected to terminate in O
(
eE[X] · E [X]

)
time.

Proof. If X ≤ E[X]+1 then the expected running time of A is at most eE[X]+1, and hence by
Markov’s inequality a truncated evaluation of A for 2eE[X]+1 steps concludes with probability
at least 1

2 . By another application of Markov’s inequality we got Pr (X ≤ E[X] + 1) > 1
E[X]+1 .

Hence, the expected number of iterations until the truncated evaluations concludes is at
most 2 (E [X] + 1). Each iteration takes O

(
eE[X]) time. ◀

2 That is, f(x) < x.

ICALP 2023

107:4 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

2.1 Optimal bound when the distribution of X is known
The bound given by Markov’s inequality in

Pr (X ≥ E[X] + 1) ≤ E[X]
E[X] + 1 = 1 − 1

E[X] + 1

is attained only by the following distribution of X:

Pr (X = k) :=
{

1
E[X]+1 k = 0
1 − 1

E[X]+1 k = E[X] + 1
.

In this distribution, on the other hand, the value of X is very small with a relatively high
probability. In particular, in the case where X < E[X] + 1 we need to run A for much less
than eE[X]+1 computational steps. Hence, it is sensible to hope that every distribution X has
some threshold other than E[X] + 1 for which an algorithm similar to Algorithm 1 results in
a better bound. Consider the following algorithm, which is a generalization of Algorithm 1
in which the threshold can be arbitrary.

Algorithm 2 Simple repetition with variable threshold.

Input: A, t.
1: repeat
2: Run A for 2et computational steps.
3: until A completed a run.

▶ Lemma 6. Let X be a non-negative random variable. There exists t ∈ [0, E[X] + 1] such
that et

Pr(X<t) ≤ eE[X]+1.

Proof. Assume by contradiction that et

Pr(X<t) > eE[X]+1 for every t ∈ [0, E[X] + 1]. Equival-
ently,

Pr (X ≥ t) = 1 − Pr (X < t) > 1 − et−(E[X]+1).

Therefore,

E[X] =
∫ ∞

0
Pr(X ≥ t) dt ≥

∫ E[X]+1

0
Pr(X ≥ t) dt

>

∫ E[X]+1

0

(
1 − et−(E[X]+1)

)
dt

= (E[X] + 1) −
(

1 − e−(E[X]+1)
)

= E[X] + e−(E[X]+1)

> E[X],

which is a contradiction. ◀

Lemma 6 implies the following.

▶ Corollary 7. For every distribution X there exists a value of t = t(X) for which Algorithm 2
runs in O

(
eE[X]) time.

O. Zamir 107:5

We note that the additive constant +1 in the exponent in Lemma 6 is necessary. For
a parameter E, consider the random variable X supported on [0, E + 1 + ln

(
1 + e−(E+1))]

and distributed with density f(x) := ex−(E+1); Its expectation is

E[X] =
∫ E+1+ln(1+e−(E+1))

0
xf(x) dx

=
(

(x − 1) ex−(E+1)
) ∣∣∣∣E+1+ln(1+e−(E+1))

0

=
(

E + ln
(

1 + e−(E+1)
))

·
(

1 + e−(E+1)
)

+ e−(E+1)

= E + O
(

e−(E+1)
)

= E + o(1),

where the o(1) term is vanishing when E → ∞. On the other hand, for any t ≥ 0 we have

et

Pr (X < t) = et

min
(
1, et−(E+1) − e−(E+1)

) >
et

et−(E+1) = eE+1.

2.2 Optimal algorithm when the distribution of X is unknown
If the only thing known about the distribution of X is its expectation E[X], then there is no
fixed value of t for which Algorithm 2 is better than Algorithm 1. Fix a value of E[X] and
a choice of t. If t < E[X] then with the constant distribution X ≡ E[X] Algorithm 2 never
terminates. Otherwise, t ≥ E[X] and we consider the following distribution X:

Pr (X = k) :=
{

1 − E[X]
t+1 k = 0

E[X]
t+1 k = t + 1

.

For this distribution, the expected running time of Algorithm 2 is

et

1 − E[X]
t+1

= eE[X] · es(
s+1

E[X]+s+1

) = eE[X]
(

1 + E[X]
s + 1

)
es ≥ eE[X]E[X] · es

s + 1 ≥ eE[X]E[X],

where s := t − E[X] ≥ 0 and the last inequality follows as es ≥ s + 1 for any s.
To improve Algorithm 1 then, we need to consider several thresholds. We demonstrate

this idea with the following Lemma.

▶ Lemma 8. Let X be a non-negative random variable. It holds that
either Pr (X ≤ E [X] − ln E [X]) > 1

E[X]+1 or Pr (X ≤ E [X] + 2) > 1
ln E[X]+2 .

Proof. Assume that p := Pr (X ≤ E [X] − ln E [X]) ≤ 1
E[X]+1 . We observe that

E [X] = p E [X | X ≤ E [X] − ln E [X]] + (1 − p) E [X | X > E [X] − ln E [X]]
≥ (1 − p) E [X | X > E [X] − ln E [X]] ,

and hence

E [X | X > E [X] − ln E [X]] ≤ 1
1 − p

E[X]

≤ 1
1 − 1

E[X]+1
E[X]

= E[X] + 1.

ICALP 2023

107:6 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

Denote by Y := X − (E [X] − ln E [X]). The above can now be rephrased as E [Y | Y > 0] ≤
ln E [X] + 1. Applying Markov’s inequality to Y conditioned on Y > 0, we get

Pr (Y > ln E [X] + 2 | Y > 0) ≤ ln E [X] + 1
ln E [X] + 2 = 1 − 1

ln E [X] + 2 .

We conclude by noting that

Pr (X > E [X] + 2) = Pr (Y > ln E [X] + 2) ≤ Pr (Y > ln E [X] + 2 | Y > 0) . ◀

Consider the following Algorithm.

Algorithm 3 Two thresholds algorithm.

Input: A, E[X].
1: repeat
2: for ⌈E[X] + 1⌉ times do
3: Run A for 2eE[X]−ln E[X] computational steps.
4: for ⌈ln E[X] + 2⌉ times do
5: Run A for 2eE[X]+2 computational steps.
6: until A completed a run.

Due to Lemma 8, each iteration of the outermost loop of Algorithm 3 succeeds to fully
execute A with probability larger than 1 − e−1. Thus, in expectation we run this loop for a
constant number of iterations. The first for loop takes O

(
E [X] · eE[X]−ln E[X]) = O

(
eE[X])

expected time, and the second takes O
(
eE[X] ln E [X]

)
. We conclude the following.

▶ Corollary 9. Algorithm 3 runs in expected time O
(
eE[X] ln E [X]

)
.

Intuitively, the proof of Lemma 8 can be viewed as a reduction from the variable X to
the variable Y | (Y > 0), that has a much lower expectation: E [Y | Y > 0] ≤ ln E[X] + 1. We
can thus hope that iterating the proof for ln⋆ E[X] times would result in reducing X to a
variable with constant expectation. A natural implementation of this idea would result in an
algorithm that runs in expected time O

(
eE[X] ln⋆ E [X]

)
. We next formalize this intuition,

and do so in a more careful manner to avoid the ln⋆ E [X] factor.

▶ Definition 10. Let λ(x) := 3 ln(x) and note it is strictly increasing and shrinking for
all x ≥ 5. We define λ⋆(x), for x ≥ 5, to be the smallest k ∈ N such that λ(k)(x) ≤ 5.

▷ Claim 11. The following hold for all x ≥ 5:
1. λ⋆(x) = Θ (log⋆ x).
2. λ(λ⋆(x))(x) > 4.
3.

∑λ⋆(x)
i=0

1
λ(i)(x) < 2.

Proof. (1) We have that λ(2)(x) ≤ log x ≤ λ(x) for all x ≥ 410. In particular, log⋆ x ≤
λ⋆(x) ≤ 2 log⋆ x + λ⋆(410).

(2) λ(λ⋆(x)−1)(x) > 5 and hence λ(λ⋆(x))(x) > λ(5) > 4.82.
(3) For all x ≥ 17 it holds that λ(x) ≤ x

2 . Let k′ be the smallest integer such that λ(k′)(x) <

17. We thus have

k′−1∑
i=0

1
λ(i)(x)

<
1
17

∞∑
i=0

2−i = 2
17 .

O. Zamir 107:7

On the other hand, there are at most λ⋆(17) summands that are strictly larger than 1
17 , thus

by (2) we have

λ⋆(x)∑
i=k′

1
λ(i)(x)

<
λ⋆(17)

4 = 5
4 . ◁

We are now ready to prove a generalized version of Lemma 8, that is going to be the core
of our final algorithm.

▶ Lemma 12. Let X be a non-negative distribution and E ≥ max (E [X] , 5)
be an upper bound on its expectation. There either exists 1 ≤ k ≤ λ⋆(E)
such that Pr

(
X < E − λ(k) (E)

)
≥

((
λ(k−1) (E) + 2

)2 + 1
)−1

, or it holds that
Pr (X < E + 10) ≥ 1

2 .

Proof. We recursively denote by E0 := E and by Ek := λ(k)(E)+
∑k−1

i=0
1

Ei
for 1 ≤ k ≤ λ⋆(E).

Note that Ek ≥ λ(k)(E) and hence also

Ek = λ(k)(E) +
k−1∑
i=0

1
Ei

≤ λ(k)(E) +
k−1∑
i=0

1
λ(i)(E)

< λ(k)(E) + 2,

where the last inequality follows from Claim 11. In particular, λ(k)(E) ≤ Ek < λ(k)(E) + 2.

Assume that Pr
(
X < E − λ(k) (E)

)
<

((
λ(k−1) (E) + 2

)2 + 1
)−1

< 1
(Ek−1)2+1 for

every 1 ≤ k ≤ λ⋆ (E).
Denote by Yk := X −

(
E − λ(k) (E)

)
for k ≥ 0. We prove by induction on k

that E [Yk | Yk ≥ 0] ≤ Ek. For k = 0 the claim is straightforward as Y0 = X and E0 = E.
For the inductive step, we assume the hypothesis holds for k − 1 and show it holds for k. We
note that Yk−1 > Yk and hence if Yk ≥ 0 then Yk−1 ≥ 0 as well. Hence,

E[Yk−1 | Yk−1 ≥ 0] ≥ Pr (Yk ≥ 0 | Yk−1 ≥ 0) E [Yk−1 | Yk ≥ 0]
≥ Pr (Yk ≥ 0) E [Yk−1 | Yk ≥ 0] .

Thus, by the induction hypothesis we have

E [Yk−1 | Yk ≥ 0] ≤ E[Yk−1 | Yk−1 ≥ 0]
Pr (Yk ≥ 0)

≤ Ek−1

1 − 1
(Ek−1)2+1

= Ek−1 + 1
Ek−1

.

Therefore,

E[Yk | Yk ≥ 0] = E[Yk−1 | Yk ≥ 0] + λ(k) (E) − λ(k−1) (E)

≤ Ek−1 + 1
Ek−1

+ λ(k) (E) − λ(k−1) (E)

= Ek.

In particular, we have that E
[
Yλ⋆(E) | Yλ⋆(E) ≥ 0

]
≤ Eλ⋆(E) < λ(λ⋆(E))(E) + 2 ≤ 7.

ICALP 2023

107:8 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

Therefore,

Pr (X ≥ E + 10) ≤ Pr
(

X ≥ E + 10
∣∣∣∣ X ≥ E − λ(λ⋆(E))(E)

)
= Pr

(
Yλ⋆(E) ≥ λ(λ⋆(E))(E) + 10

∣∣∣∣ Yλ⋆(E) ≥ 0
)

≤ Pr
(

Yλ⋆(E) ≥ 14
∣∣∣∣ Yλ⋆(E) ≥ 0

)
<

7
14 = 1

2 . ◀

Consider the following algorithm.

Algorithm 4 Multiple thresholds algorithm.

Input: A, E.
1: repeat
2: for k = 1 to λ⋆(E) do
3: for 2⌈

(
λ(k−1) (E) + 2

)2 + 1⌉ times do
4: Run A for 2eE−λ(k)(E) computational steps.
5: for 2 times do
6: Run A for 2eE+10 computational steps.
7: until A completed a run.

▶ Corollary 13 (of Lemma 12). Each repeat loop of Algorithm 4 fully executes A with
probability at least 3

4 .

▶ Lemma 14. Let E ≥ max (E[X], 5), Algorithm 4 runs in O
(
eE

)
expected time.

Proof. By Corollary 13 we enter the repeat loop a constant number of times in expectation.
We thus analyze the computational cost of a single repeat loop. The evaluations in Lines 5−6
take O

(
eE

)
time. The evaluations in Lines 2 − 4 take

λ⋆(E)∑
k=1

2⌈
(

λ(k−1) (E) + 2
)2

+ 1⌉ · 2eE−λ(k)(E) = O

eE ·
λ⋆(E)∑
k=1

(
λ(k−1) (E)

)2
e−λ(k)(E)


time. By the definition of λ(x), we have e−λ(k)(x) = e−3 ln(λ(k−1)(x)) =

(
λ(k−1) (x)

)−3. In
particular,

λ⋆(E)∑
k=1

(
λ(k−1) (E)

)2
e−λ(k)(E) =

λ⋆(E)∑
k=1

(
λ(k−1) (E)

)−1
< 2,

where the last inequality follows from Claim 11. ◀

Finally, we also get rid of the necessity to provide the algorithm with E or E[X].

▶ Theorem 15. Algorithm 5 runs in expected time O
(
eE[X]).

Proof. By Lemma 14 the iteration of the outermost for loop corresponding to E takes
at most C · eE time, for some global constant C. All iterations in which E < E[X] thus
take O

(
eE[X]) time. By Corollary 13, each subsequent iteration succeeds with probability at

least 3
4 . Thus the expected running time is bounded by

CeE[X] ·
∞∑

t=0
et

(
1
4

)t

= O
(

eE[X]
)

. ◀

O. Zamir 107:9

Algorithm 5 Final algorithm.

Input: A.
1: for E = 5 to ∞ do
2: for k = 1 to λ⋆(E) do
3: for 2⌈

(
λ(k−1) (E) + 2

)2 + 1⌉ times do
4: Run A for 2eE−λ(k)(E) computational steps.
5: for 2 times do
6: Run A for 2eE+10 computational steps.
7: return if A completed a run.

3 Conclusions and Open Problems

We showed that a Las-Vegas algorithm with expected running eX conditioned on the
value of some random variable X, can always be converted to a Las-Vegas algorithm with
expected running time O

(
eE[X]). In particular, an algorithm whose running time is a random

variable T can be converted to one with expected running time O
(
eE[ln T]), which is never

worse than O(E[T]).
We demonstrated a use of this theorem to simplify a proof in the regime of exponential time

algorithms [10]. It is interesting to try applying it to other exponential and non-exponential
time algorithms and see if it can simplify or even improve the analysis.

3.1 Considering the variance
In terms of E[X] only, we can not get any better than O

(
eE[X]) as the distribution of X

might be constant. In that case though, the variance of X is zero. Can we get a better
bound just by assuming that the variance of X is large? Unfortunately, with the standard
definition of variance this is not the case. For any choice of E and V ≥ 2E2e−E consider the
following distribution:

Pr (X = k) :=


e−E k = 0
1 − V e−E

V −E2e−E k = E

(Ee−E)2

V −E2e−E k = V
Ee−E

.

Its expectation is E, its variance is V , which can be arbitrarily large, and nevertheless Pr(X <

E) = e−E so no strategy can beat O
(
eE

)
.

On the other hand, the wishful thinking above is true with some other notions of deviation.
For example, if we consider mean absolute deviation instead of standard deviation (i.e.,
E [|X − E [X] |]), then it is true that if the deviation is large then we can get a better running
time. It is intriguing to find useful notion of deviation for which such a statement is true,
with the goal of improving the running time of algorithms by analyzing the deviation of X.

In particular, consider the PPSZ algorithm for solving k-SAT [7] [4]. The algorithm
uses randomization in two ways: first, a random permutation of the variables in the input
formulas is drawn; Then, the chosen permutation determines the number of variables we
need to guess the value of. In a recent improvement of the PPSZ analysis, Scheder [8] showed
that in some large subset of permutations the number of guessed variables is smaller than
what we expect when taking a uniformly random permutation. In particular, this implies
that there is some non-negligible variance in the original algorithm’s running time. Can we
get better SAT algorithms by analyzing this variance?

ICALP 2023

107:10 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

References
1 Helmut Alt, Leonidas Guibas, Kurt Mehlhorn, Richard Karp, and Avi Wigderson. A method

for obtaining randomized algorithms with small tail probabilities. Algorithmica, 16(4):543–547,
1996.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-sat algorithms
using biased-ppsz. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 578–589, 2019.

4 Timon Hertli. 3-sat faster and simpler—unique-sat bounds for ppsz hold in general. SIAM
Journal on Computing, 43(2):718–729, 2014.

5 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

6 Robin A Moser and Dominik Scheder. A full derandomization of schöning’s k-sat algorithm. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 245–252,
2011.

7 Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved exponential-
time algorithm for k-sat. Journal of the ACM (JACM), 52(3):337–364, 2005.

8 Dominik Scheder. Ppsz is better than you think. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 205–216. IEEE, 2022.

9 T Schoning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
410–414. IEEE, 1999.

10 Or Zamir. Faster algorithm for unique (k, 2)-csp. ESA, 2022.

	1 Introduction
	1.1 Preliminaries

	2 Proof of Theorem 1
	2.1 Optimal bound when the distribution of X is known
	2.2 Optimal algorithm when the distribution of X is unknown

	3 Conclusions and Open Problems
	3.1 Considering the variance

