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Abstract
In 2013, Marcus, Spielman, and Srivastava resolved the famous Kadison-Singer conjecture. It states
that for n independent random vectors v1, · · · , vn that have expected squared norm bounded by ϵ

and are in the isotropic position in expectation, there is a positive probability that the determinant
polynomial det(xI −

∑n

i=1 viv
⊤
i ) has roots bounded by (1 +

√
ϵ)2. An interpretation of the Kadison-

Singer theorem is that we can always find a partition of the vectors v1, · · · , vn into two sets with a
low discrepancy in terms of the spectral norm (in other words, rely on the determinant polynomial).

In this paper, we provide two results for a broader class of polynomials, the hyperbolic polynomials.
Furthermore, our results are in two generalized settings:

The first one shows that the Kadison-Singer result requires a weaker assumption that the vectors
have a bounded sum of hyperbolic norms.
The second one relaxes the Kadison-Singer result’s distribution assumption to the Strongly
Rayleigh distribution.

To the best of our knowledge, the previous results only support determinant polynomials [Anari
and Oveis Gharan’14, Kyng, Luh and Song’20]. It is unclear whether they can be generalized to
a broader class of polynomials. In addition, we also provide a sub-exponential time algorithm for
constructing our results.
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1 Introduction

Introduced by [30], the Kadison-Singer problem was a long-standing open problem in
mathematics. It was resolved by Marcus, Spielman, and Srivastrava in their seminal work [43]:
For any set of independent random vectors u1, · · · , un such that each ui has finite support,
and u1, · · · , un are in isotropic positions in expectation, there is positive probability that∑n

i=1 uiu
∗
i has spectral norm bounded by 1 + O(maxi∈[n] ∥ui∥). The main result of [43] is as

follows:
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108:2 A Hyperbolic Extension of Kadison-Singer Type Results

▶ Theorem 1 (Main result of [43]). Let ϵ > 0 and let v1, · · · , vn ∈ Cm be n independent
random vectors with finite support, such that E[

∑n
i=1 viv

∗
i ] = I, and E[∥vi∥2] ≤ ϵ, ∀i ∈ [n].

Then

Pr

∥∥∥ ∑
i∈[n]

viv
∗
i

∥∥∥ ≤ (1 +
√

ϵ)2

 > 0.

The Kadison-Singer problem is closely related to discrepancy theory, which is an essential
area in mathematics and theoretical computer science. A classical discrepancy problem
is as follows: given n sets over n elements, can we color each element in red or blue such
that each set has roughly the same number of elements in each color? More formally, for
vectors a1, . . . , an ∈ Rn with ∥ai∥∞ ≤ 1 and a coloring s ∈ {±1}n, the discrepancy is defined
by Disc(a1, . . . , an; s) := ∥

∑
i∈[n] siai∥∞. The famous Spencer’s Six Standard Deviations

Suffice Theorem [57] shows that there exists a coloring with discrepancy at most 6
√

n,
which beats the standard Chernoff bound showing that a random coloring has discrepancy√

n log n. More generally, we can consider the “matrix version” of discrepancy: for matrices
A1, . . . , An ∈ Rd×d and a coloring s ∈ {±1}n,

Disc(A1, . . . , An; s) :=
∥∥∥ ∑

i∈[n]

siAi

∥∥∥.

Theorem 1 is equivalent to the following discrepancy result for rank-1 matrices:

▶ Theorem 2 ([43]). Let u1, . . . , un ∈ Cm and suppose maxi∈[n] ∥uiu
∗
i ∥ ≤ ϵ and

∑n
i=1 uiu

∗
i =

I. Then,

min
s∈{±1}n

Disc(u1u∗
1, . . . , unu∗

n; s) ≤ O(
√

ϵ).

In other words, the minimum discrepancy of rank-1 isotropic matrices is bounded by
O(

√
ϵ), where ϵ is the maximum spectral norm. This result also beats the matrix Chernoff

bound [60], which shows that a random coloring for matrices has discrepancy O(
√

ϵ log d).
The main techniques in [43] are the method of interlacing polynomials and the barrier
methods developed in [42].

Several generalizations of the Kadison-Singer-type results, which have interesting ap-
plications in theoretical computer science, have been established using the same technical
framework as described in [43]. In particular, Kyng, Luh, and Song [36] provided a “four
derivations suffice” version of Kadison-Singer conjecture: Instead of assuming every inde-
pendent random vector has a bounded norm, the main result in [36] only requires that the
sum of the squared spectral norm is bounded by σ2, and showed a discrepancy bound of 4σ:

▶ Theorem 3 ([36]). Let u1, . . . , un ∈ Cm and σ2 = ∥
∑n

i=1(uiu
∗
i )2∥. Then, we have

Pr
ξ∼{±1}n

[∥∥∥ n∑
i=1

ξiuiu
∗
i

∥∥∥ ≤ 4σ

]
> 0.

This result was recently applied by [38] to approximate solutions of generalized network
design problems.

Moreover, Anari and Oveis-Gharan [6] generalized the Kadison-Singer conjecture into the
setting of real-stable polynomials. Instead of assuming the random vectors are independent,
[6] assumes that the vectors are sampled from any homogeneous strongly Rayleigh distribution
with bounded marginal probability, have bounded norm, and are in an isotropic position:
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▶ Theorem 4 ([6]). Let µ be a homogeneous strongly Rayleigh probability distribution on [n]
such that the marginal probability of each element is at most ϵ1, and let u1, · · · , un ∈ Rm be
vectors in an isotropic position,

∑n
i=1 uiu

∗
i = I, such that maxi∈[n] ∥ui∥2 ≤ ϵ2. Then

Pr
S∼µ

[∥∥∥∑
i∈S

uiu
∗
i

∥∥∥ ≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2

]
> 0.

Theorem 4 has a direct analog in spectral graph theory: Given any (weighted) connected
graph G = (V, E) with Laplacian LG. For any edge e = (u, v) ∈ E, define the vector
corresponding to e as ve = L

†/2
G (1u − 1v) (here L†

G is the Moore-Penrose inverse). Then
the set of {ve : e ∈ E} are in isotropic position, and ∥ve∥2 equals to the graph effective
resistance with respect to e. Also, any spanning tree distribution of the edges in E is
homogeneous strongly Rayleigh. It follows from Theorem 4 that any graph with bounded
maximum effective resistance has a spectrally-thin spanning tree [6]. Moreover, [7] provided
an exciting application to the asymmetric traveling salesman problem and obtained an
O(log log n)-approximation.

Another perspective of generalizing the Kadison-Singer theorem is to study the discrepancy
with respect to a more general norm than the spectral norm, which is the largest root of
a determinant polynomial. A recent work by Bränden [19] proved a high-rank version of
Theorem 2 for hyperbolic polynomial, which is a larger class of polynomials including the
determinant polynomial. Moreover, the hyperbolic norm on vectors is a natural generalization
of the matrix spectral norm. We will introduce hyperbolic polynomials in the full version of
our paper. From this perspective, it is very natural to ask:

Can we also extend Theorem 3 and Theorem 4 to a more general class of polynomials, e.g.,
hyperbolic polynomials?

1.1 Our results
In this work, we provide an affirmative answer by generalizing both Theorem 3 and Theorem 4
into the setting of hyperbolic polynomials. Before stating our main results, we first introduce
some basic notation of hyperbolic polynomials below.

Hyperbolic polynomials form a broader class of polynomials that encompasses determinant
polynomials and homogeneous real-stable polynomials. An m-variate, degree-d homogeneous
polynomial h ∈ R[x1, · · · , xm] is hyperbolic with respect to a direction e ∈ Rm if the univariate
polynomial t 7→ h(te − x) has only real roots for all x ∈ Rm. The set of x ∈ Rm such that all
roots of h(te − x) are non-negative (or strictly positive) is referred to as the hyperbolicity
cone Γh

+(e) (or Γh
++(e)). It is a widely recognized result [16] that any vector x in the open

hyperbolicity cone Γh
++(e) is itself hyperbolic with respect to the polynomial h and have

the same hyperbolicity cone as e, meaning that Γh
++(e) = Γh

++(x). Therefore, the unique
hyperbolicity cone of h can simply be expressed as Γh

+.
The hyperbolic polynomials have similarities to determinant polynomials of matrices, as

they both can be used to define trace, norm, and eigenvalues. Given a hyperbolic polynomial
h ∈ R[x1, · · · , xm] and any vector e ∈ Γh

++, we can define a norm with respect to h(x) and e

as follows: for any x ∈ Rm, its hyperbolic norm ∥x∥h is equal to the largest root (in absolute
value) of the linear restriction polynomial h(te − x) ∈ R[t]. Similar to the eigenvalues of
matrices, we define the hyperbolic eigenvalues of x to be the d roots of h(te − x), denoted by
λ1(x) ≥ · · · ≥ λd(x). We can also define the hyperbolic trace and the hyperbolic rank:

trh[x] :=
d∑

i=1
λi(x), and rank(x)h := |{i ∈ [d] : λi(x) ̸= 0}|.

ICALP 2023



108:4 A Hyperbolic Extension of Kadison-Singer Type Results

Recall that both Theorem 3 and Theorem 4 upper-bound the spectral norm of the
sum ∥

∑n
i=1 ξiviv

⊤
i ∥. In the setting of hyperbolic polynomials, we should upper bound the

hyperbolic norm ∥
∑n

i=1 ξivi∥h for vectors v1, . . . , vn in the hyperbolicity cone, which is the
set of vectors with all non-negative hyperbolic eigenvalues.

Our main results are as follows:

▶ Theorem 5 (Main Result I, informal hyperbolic version of Theorem 1.4, [36]). Let h ∈
R[x1, . . . , xm] denote a hyperbolic polynomial in direction e ∈ Rm. Let v1, . . . , vn ∈ Γh

+ be n

vectors in the closed hyperbolicity cone. Let ξ1, . . . , ξn be n independent random variables
with finite supports and E[ξi] = µi and Var[ξi] = τ2

i . Suppose σ := ∥
∑n

i=1 τ2
i trh[vi]vi∥h.

Then there exists an assignment (s1, . . . , sn) with si in the support of ξi for all i ∈ [n], such
that∥∥∥ n∑

i=1
(si − µi)vi

∥∥∥
h

≤ 4σ.

We remark that Theorem 5 does not require the isotropic position condition of v1, · · · , vn

as in [19]. In addition, we only need the sum of trh[vi]vi’s hyperbolic norm to be bounded,
while [19]’s result requires each vector’s trace to be bounded individually.

We would also like to note that the class of hyperbolic polynomials is much broader
than that of determinant polynomials, which were used in the original Kadison-Singer-type
theorems. Lax conjectured in [39] that every 3-variate hyperbolic/real-stable polynomial
could be represented as a determinant polynomial, this was later resolved in [28, 40]. However,
the Lax conjecture is false when the number of variables exceeds 3, as demonstrated in
[17, 20] with counterexamples of hyperbolic/real-stable polynomials h(x) for which even
(h(x))k cannot be represented by determinant polynomials for any k > 0.

Our second main result considers the setting where the random vectors are not independent,
but instead, sampled from a strongly Rayleigh distribution. We say a distribution µ over
the subsets of [n] is strongly Rayleigh if its generating polynomial gµ(z) :=

∑
S⊆[n] µ(S)zS ∈

R[z1, . . . , zn] is a real-stable polynomial, which means gµ(z) does not have any root in the
upper-half of the complex plane, i.e., gµ(z) ̸= 0 for any z ∈ Cn with ℜ(z) ≻ 0.

▶ Theorem 6 (Main Result II, informal hyperbolic version of Theorem 1.2, [6]). Let h ∈
R[x1, . . . , xm] denote hyperbolic polynomial in direction e ∈ Rm. Let µ be a homogeneous
strongly Rayleigh probability distribution on [n] such that the marginal probability of each
element is at most ϵ1.

Suppose v1, · · · , vn ∈ Γh
+ are in the hyperbolicity cone of h such that

∑n
i=1 vi = e, and

for all i ∈ [n], ∥vi∥h ≤ ϵ2. Then there exists S ⊆ [n] in the support of µ, such that∥∥∥∑
i∈S

vi

∥∥∥
h

≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2.

It is worth mentioning that the previous paper [36, 6] focused on the determinant
polynomial, leaving the question of whether their techniques could be extended to the
hyperbolic/real-stable setting unresolved. In our paper, we address this gap by developing
new techniques specifically tailored to hyperbolic polynomials.

In addition, we follow the results from [11] and give an algorithm that can find the
approximate solutions of both Theorem 5 and Theorem 6 in time sub-exponential to m:

▶ Proposition 7 (Sub-exponential algorithm for Theorem 5, informal). Let h ∈ R[x1, . . . , xm]
denote a hyperbolic polynomial with direction e ∈ Rm. Let v1, . . . , vn ∈ Γh

+ be n vectors in
the hyperbolicity cone Γh

+ of h. Suppose σ = ∥
∑n

i=1 trh[vi]vi∥h.
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Let P be the interlacing family used in the proof of Theorem 6. Then there exists an
sub-exponential time algorithm KadisonSinger(δ, P), such that for any δ > 0, it returns a
sign assignment (s1, · · · , sn) ∈ {±1}n satisfying∥∥∥ n∑

i=1
siui

∥∥∥
h

≤ 4(1 + δ)σ.

▶ Proposition 8 (Sub-Exponential algorithm for Theorem 6, informal). Let h ∈ R[x1, . . . , xm]
denote a hyperbolic polynomial in direction e ∈ Rm. Let µ be a homogeneous strongly Rayleigh
probability distribution on [n] such that the marginal probability of each element is at most ϵ1,
and let v1, · · · , vn ∈ Γh

+ be n vectors such that
∑n

i=1 vi = e, and for all i ∈ [n], ∥vi∥h ≤ ϵ2.
Let Q be the interlacing family used in the proof of Theorem 6. Then there exists an

sub-exponential time algorithm KadisonSinger(δ, Q), such that for any δ > 0, it returns a set
S in the support of µ satisfying∥∥∥∑

i∈S

ui

∥∥∥
h

≤ (1 + δ) ·
(
4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2) .

2 Related work

Real-Stable Polynomials

Real-stability is an important property for multivariate polynomials. In [13], the authors
used the real-stability to give a unified framework for Lee-Yang type problems in statistical
mechanics and combinatorics. Real-stable polynomials are also related to the permanent.
Gurvits [25] proved the Van der Waerden conjecture, which conjectures that the permanent
of n-by-n doubly stochastic matrices are lower-bounded by n!/nn, via the capacity of
real-stable polynomials. Recently, [26] improved the capacity lower bound for real-stable
polynomials, which has applications in matrix scaling and metric TSP. In addition, real-
stable polynomials are an important tool in solving many counting and sampling problems
[46, 9, 8, 58, 10, 5, 12, 3, 4].

Hyperbolic Polynomials

Hyperbolic polynomial was originally defined to study the stability of partial differential
equations [23, 29, 34]. In theoretical computer science, Güler [24] first introduced hyperbolic
polynomial for optimization (hyperbolic programming), which is a generalization of LP
and SDP. Later, a few algorithms [50, 44, 53, 51, 45, 52] were designed for hyperbolic
programming. On the other hand, a significant effort has been put into the equivalence
between hyperbolic programming and SDP, which is closely related to the “Generalized
Lax Conjecture” (which conjectures that every hyperbolicity cone is spectrahedral) and its
variants [28, 40, 18, 35, 54, 2, 48].

Strongly Rayleigh Distribution

The strongly Rayleigh distribution was introduced by [14]. The authors also proved numerous
basic properties of strongly Rayleigh distributions, including negative association, and closure
property under operations such as conditioning, product, and restriction to a subset. [47]
proved a concentration result for Lipschitz functions of strongly Rayleigh variables. [37]
showed a matrix concentration for strongly Rayleigh random variables, which implies that
adding a small number of uniformly random spanning trees gives a graph spectral sparsifier.

ICALP 2023



108:6 A Hyperbolic Extension of Kadison-Singer Type Results

Strongly Rayleigh distribution also has many algorithmic applications. [9] exploited
the negative dependence property of homogeneous strongly Rayleigh distributions, and
designed efficient algorithms for generating approximate samples from Determinantal Point
Process using Monte Carlo Markov Chain. The strongly Rayleigh property of spanning tree
distribution is a key component for improving the approximation ratios of TSP [31, 32] and
k-edge connected graph problem [33].

Other generalizations of the Kadison-Singer-type results

The upper bound of the rank-one Kadison-Singer theorem was improved by [15, 49]. [1]
further extended [49]’s result to prove a real-stable version of Anderson’s paving conjecture.
However, they used a different norm for real-stable polynomials, and hence their results
and ours are incomparable. In the high-rank case, [21] also proved a Kadison-Singer result
for high-rank matrices. [56] relaxed [19]’s result to the vectors in sub-isotropic position. In
addition, they proved a hyperbolic Spencer theorem for constant-rank vectors.

Another direction of generalizing the Kadison-Singer-type result is to relax the {+1, −1}-
coloring to {0, 1}-coloring, which is called the one-sided version of Kadison-Singer problem
in [61]. More specifically, given n isotropic vectors v1, . . . , vn ∈ Rm with norm 1√

N
, the goal

is to find a subset S ⊂ [n] of size k such that ∥
∑

i∈S viv
⊤
i ∥ ≤ k

n + O(1/
√

N). Unlike the
original Kadison-Singer problem, Weaver [61] showed that this problem can be solved in
polynomial time. Very recently, Song, Xu and Zhang [55] improved the time complexity of
the algorithm via an efficient inner product search data structure.

Applications of Kadison-Singer Problem

There are many interesting results developed from the Kadison-Singer theorem. In spectral
graph theory, [27] exploited the same proof technique of interlacing families to show a
sufficient condition of the spectrally thin tree conjecture. [6] used the strongly-Rayleigh
extension of Kadison-Singer theorem to show a weaker sufficient condition. Based on this
result, [7] showed that any k-edge-connected graph has an O( log log(n)

k )-thin tree, and gave
a poly(log log(n))-integrality gap of the asymmetric TSP. [41, 22] used the Kadison-Singer
theorem to construct bipartite Ramanujan graphs of all sizes and degrees. In the network
design problem, [38] exploited the result in [36], and built a spectral rounding algorithm for
the general network design convex program, which has applications in weighted experimental
design, spectral network design, and additive spectral sparsifier.

3 Proof Overview

3.1 Hyperbolic Deviations
In this section, we will sketch the proof of our hyperbolic generalization of the Kadison-Singer
theorem (Theorem 5). Details of the proof are deferred to the full version of the paper. We
will use the same strategy as the original Kadison-Singer theorem (Theorem 1) in [42, 43],
following three main technical steps.

For simplicity, we assume that the random variables ξ1, . . . , ξn ∈ {±1} are independent
Rademacher random variables, i.e., Pr[ξi = 1] = 1

2 and Pr[ξi = −1] = 1
2 for all i ∈ [n].

To generalize the Kadison-Singer statement into the hyperbolic norm, one main obstacle
is to define the variance of the hyperbolic norm of the sum of random vectors

∑n
i=1 ξivi. In

the determinant polynomial case, each vi corresponds to a rank-1 matrix uiu
∗
i , and it is easy
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to see that the variance of the spectral norm is ∥
∑n

i=1(uiu
∗
i )2∥. However, there is no analog

of “matrix square” in the setting of hyperbolic/real-stable polynomials. Instead, we define
the hyperbolic variance:∥∥∥∥∥

n∑
i=1

trh[vi]vi

∥∥∥∥∥
h

in terms of the hyperbolic trace, and show that four hyperbolic deviations suffice.

Defining interlacing family of characteristic polynomials

In the first step, we construct a family of characteristic polynomials {ps : s ∈ {±1}t, t ∈
{0, · · · , n}} as follows: For each s ∈ {±1}n, define the leaf-node-polynomial:

ps(x) :=
(

n∏
i=1

pi,si

)
· h

(
xe +

n∑
i=1

sivi

)
· h

(
xe −

n∑
i=1

sivi

)
,

and for all ℓ ∈ {0, . . . , n − 1}, s′ ∈ {±1}ℓ, we construct an inner node with a polynomial that
corresponds to the bit-string s′:

ps′(x) :=
∑

t∈{±1}n−ℓ

p(s′,t)(x).

where (s′, t) ∈ {±1}n is the bit-string concatenated by s′ and t.
We will then show that the above family of characteristic polynomials forms an interlacing

family. By basic properties of interlacing family, we can always find a leaf-root-polynomial ps

(where s ∈ {±1}n) whose largest root is upper bounded by the largest root of the top-most
polynomial.

p∅(x) = E
ξ1,··· ,ξn

[
h
(

xe +
n∑

i=1
ξivi

)
· h
(

xe −
n∑

i=1
ξivi

)]
.

(we call p∅ to be the mixed characteristic polynomial). Notice that by rewriting the largest
root of ps to be the expected hyperbolic norm of

∑n
i=1 sivi, we get that

λmax(p∅) =

∥∥∥∥∥
n∑

i=1
sivi

∥∥∥∥∥
h

. (1)

Also, we will take s ∈ {±1}n as the corresponding sign assignment in the main theorem
(Theorem 5) It then suffices to upper-bound the largest root of the mixed characteristic
polynomial.

From mixed characteristic polynomial to multivariate polynomial

In the second step, we will show that the mixed characteristic polynomial that takes the
average on n random variables

p∅(x) = E
ξ1,...,ξn

[
h
(

xe +
n∑

i=1
ξivi

)
· h
(

xe −
n∑

i=1
ξivi

)]
is equivalent to a polynomial with n extra variables z1, · · · , zn:

n∏
i=1

(
1 − 1

2
∂2

∂z2
i

)∣∣∣∣∣
z=0

(
h
(

xe +
n∑

i=1
zivi

))2

. (2)

ICALP 2023
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Thus, we can reduce the upper bound of χmax(p∅) to an upper bound of the largest root in
(2). The latter turns out to be easier to estimate with the help of a barrier argument [43].

To show such equivalence holds, we use induction on the random variables ξ1, . . . , ξn.
More specifically, we start from ξ1 and are conditioned on any fixed choice of ξ2, . . . , ξn. We
prove that taking expectation over ξ1 is equivalent to applying the operator (1 − ∂2

∂z2
1
) to the

polynomial(
h(xe + z1v1 +

n∑
i=2

ξivi)
)2

and setting z1 = 0. Here we use the relation between expectation and the second derivatives:
for any Rademacher random variable ξ,

E
ξ
[h(x1 − ξv) · h(x2 + ξv)] =

(
1 − 1

2
d2

dt2

) ∣∣∣∣∣
t=0

h(x1 + tv)h(x2 + tv).

Repeating this process and removing one random variable at a time. After n iterations, we
obtain the desired multivariate polynomial.

We also need to prove the real-rootedness of the multivariate polynomial (Eqn. (2)). We
first consider an easy case where h itself is a real-stable polynomial, as in the determinant
polynomial case. Then the real-rootedness easily follows from the closure properties of the
real-stable polynomial. More specifically, we can show that (h(xe +

∑n
i=1 zivi))2 is also a

real-stable polynomial. Furthermore, applying the operators (1 − 1
2

∂2

∂z2
i
) and restricting z = 0

preserve the real-stability. Therefore, the multivariate polynomial is a univariate real-stable
polynomial, which is equivalent to being real-rooted.

Next, we show that when h is a hyperbolic polynomial, the multivariate polynomial
(Eqn. (2)) is also real-rooted. our approach is to show that the linear restriction of h:
h(xe +

∑n
i=1 zivi) is a real-stable polynomial in R[x, z1, . . . , zn]. A well-known test for real-

stability is that if for any a ∈ Rn+1
>0 , b ∈ Rn+1, the one-dimensional restriction p(at+ b) ∈ R[t]

is non-zero and real-rooted, then p(x) is real-stable. We test h(xe +
∑n

i=1 zivi) by restricting
to at + b, and get the following polynomial:

h
(

(a1e +
n∑

i=1
ai+1vi)t + y

)
∈ R[t],

where y is a fixed vector depending on b. Since ai > 0 for all i ∈ [n + 1] and e, v1, . . . , vn are
vectors in the hyperbolicity cone, it implies that the vector a1e +

∑n
i=1 ai+1vi is also in the

hyperbolicity cone. Then, by the definition of hyperbolic polynomial, we immediately see
that h((a1e +

∑n
i=1 ai+1vi)t + y) is real-rooted for any a ∈ Rn+1

>0 and b ∈ Rn+1. Hence, we
can conclude that the restricted hyperbolic polynomial h(xe +

∑n
i=1 zivi) is real-stable and

the remaining proof is the same as the real-stable case.

Applying barrier argument

Finally, we use barrier argument to find an “upper barrier vector” whose components lie above
any roots of multivariate polynomial can take. In particular, we consider the multivariate
polynomial P (x, z) = (h(xe+

∑n
i=1 zivi))2. Define the barrier function of any variable i ∈ [n]

as the following:

Φi
P (α(t), −δ) = ∂zi

P (x, z)
P (x, z)

∣∣∣
x=α(t),z=−δ

,

where δ ∈ Rn where δi = t trh[vi] for i ∈ [n] and α(t) > t is a parameter that depends on t.
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As a warm-up, consider the case when σ = 1 and assuming ∥
∑n

i=1 trh[vi]vi∥h ≤ 1. It is
easy to show that (α(t), −δ) is an upper barrier of P , from the linearity of the hyperbolic
eigenvalues and the assumption. Next, we upper-bound the barrier function’s value at
(α(t), −δ). When h is a determinant polynomial, this step is easy because the derivative of
log det is the trace of the matrix. For a general hyperbolic polynomial, we will rewrite the
partial derivative ∂zi as a directional derivative Dvi and get

Φi
P (α(t), −δ) = 2 ·

(Dvi
h)(αe − te + t(e −

∑n
j=1 trh[vj ]vj))

h(αe − te + t(e −
∑n

j=1 trh[vj ]vj))
.

We observe that our assumption ∥
∑n

i=1 trh[vi]vi∥h ≤ 1 implies that e −
∑n

j=1 trh[vj ]vj ∈ Γh
+.

By the concavity of the function h(x)
Dvi

h(x) in the hyperbolicity cone, we can prove that

Φi
P (α(t), −δ) ≤ 2 trh[vi]

α(t) − t
.

Now, we can apply the barrier update lemma in [36] with α(t) = 2t = 4 to show that

Φj

(1− 1
2 ∂2

zi
)P

(4, −δ + δi1i) ≤ Φj
P (4, −δ).

In other words, the partial differential operator (1 − 1
2 ∂2

zi
) shifts the upper-barrier by

(0, · · · , 0, δi, 0, · · · , 0). Using induction for the variables δ1, · · · , δn, we can finally finally get
an upper-barrier of

(4, −δ +
n∑

i=1
δi1i) = (4, 0, . . . , 0),

which implies that (4, 0, . . . , 0) is above the roots of

n∏
i=1

(
1 − 1

2
∂2

∂z2
i

)(
h
(

xe +
n∑

i=1
ziτivi

))2

(3)

A challenge in this process is ensuring that the barrier function remains nonnegative. To
achieve this, we use the multidimensional convexity of the hyperbolic barrier function as
established in [59]. For cases where σ ̸= 1, this requirement is satisfied through a simple
scaling argument.

Combining the above three steps together, we can prove that Prξ1,··· ,ξn
[∥
∑n

i=1 ξivi∥h ≤
4σ] > 0 for vectors v1, . . . , vn in the hyperbolicity cone with ∥

∑n
i=1 trh[vi]vi∥h = σ2.

3.2 Generalization to Strongly Rayleigh Distributions
Our main technical contribution to Theorem 6 is a more universal and structured method to
characterize the mixed characteristic polynomial. Define the mixed characteristic polynomial
as

qS(x) = µ(S) · h

(
xe −

∑
i∈S

vi

)
. (4)

we want to show that it is equivalent to the restricted multivariate polynomial:
n∏

i=1
(1 − 1

2
∂2

∂z2
i

)
(

h(xe +
n∑

i=1
zivi)gµ(x1 + z)

)∣∣∣∣∣
z=0

∈ R[x, z1, · · · , zn]. (5)
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Although Eqn. (4) and Eqn. (5) are the hyperbolic generalization of [6], we are unable
to apply the previous techniques. This is because [6] computes the mixed characteristic
polynomial explicitly, which heavily relies on the fact that the characteristic polynomial
is a determinant. It is unclear how to generalize this method to hyperbolic/real-stable
characteristic polynomials.

The key step in [6] is to show the following equality between mixed characteristic
polynomial and multivariate polynomial:

xdµ−d · E
S∼µ

[
det
(

x2I −
∑
i∈S

2viv
⊤
i

)]

=
n∏

i=1
(1 − ∂2

zi
)
(

gµ(x1 + z) · det(xI +
n∑

i=1
ziviv

⊤
i )
)∣∣∣∣∣

z=0

where dµ is the degree of the homogeneous strongly-Rayleigh distribution µ (i.e. the degree
of gµ), and m is the dimension of vi.

Then they expand the right-hand side to get:

RHS =
m∑

k=0
(−1)kxdµ+m−2k

∑
S∈([n]

k )
Pr

T ∼µ
[S ⊆ T ] · σk(

∑
i∈S

2viv
⊤
i )

= xdµ−m · E
S∼µ

[
det
(

x2I −
∑
i∈S

2viv
⊤
i

)]
= LHS,

where σk(M) equals to the sum of all k × k principal minors of M ∈ Rm×m. The first step
comes from expanding the product

∏n
i=1(1 − ∂2zi), and the second step comes from that

det(x2I −
n∑

i=1
viv

⊤
i ) =

m∑
k=0

(−1)2kx2m−2k
∑

S∈([n]
k )

σk(
∑
i∈S

viv
⊤
i ).

The naive generalization of a technique to hyperbolic/real-stable polynomial h faces
challenges. One such challenge is the absence of an explicit form for h, unlike in the case of
h = det where the determinant can be expressed as a combination of minors. This lack of a
well-defined minor presents difficulty in rewriting the hyperbolic/real-stable polynomial. To
tackle this issue, we devised a new and structured proof that relies on induction, offering a
novel solution to this problem.

Inductive step

We first rewrite the expectation over the Strongly-Rayleigh distribution T ∼ µ as follows:

xdµ · 2−n · E
T ∼µ

[h(xe −
∑
i∈T

vi)] = 1
2 E

ξ2,··· ,ξn∼{0,1}n−1

[
(1 − ∂z1)h(x2 + z1v1)x∂z1g2(x + z1)

+ h(x2)(1 − x∂z1)g2(x + z1)
∣∣∣
z1=0

]
where g2 is defined as

g2(t) := x
∑n

i=2
ξi ·

n∏
i=2

(
ξi∂zi

+ (1 − ξi)(1 − x∂zi
)
)

gµ(t, x + z2, x + z3, · · · , x + zn)
∣∣∣
z2,...,zn=0
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and x2 = x2e −
∑n

i=2 ξivi. The main observation is that the marginals of a homogeneous
Strongly-Rayleigh distribution can be computed from the derivatives of its generating
polynomial.

Then, we can expand the term inside the expectation as

(1 − x

2 ∂2
z1

)
(

h(x2 + z1v1)g2(x + z1)
)∣∣∣

z1=0
,

using the fact that rank(v1)h ≤ 1 and the degree of g2(t) is at most 1.
Hence, we obtain our inductive step as

xdµ · 2−n · E
ξ∼µ

[
h(xe −

n∑
i=1

ξivi)
]

= 1
2(1 − x

2 ∂2
z1

)
(

E
ξ2,··· ,ξn

[
h(xe −

n∑
i=2

ξivi + z1v1) · g2(x + z1)
]) ∣∣∣∣∣

z1=0

.

Applying the step inductively

Repeating the above process for n times, we finally get

xdµ · E
ξ∼µ

[
h(x2e − (

n∑
i=1

ξivi))
]

=
∑

T ⊆[n]

(−x

2 )|T |∂2
zT

(
h(x2e +

n∑
i=1

zivi)gµ(x1 + z)
)∣∣∣∣∣

z=0

.

Then, we rewrite the partial derivatives as directional derivatives. For any subset T ⊆ [n] of
size k, we have

(−x

2 )k∂2
zT

(
h(x2e +

n∑
i=1

zivi)gµ(x1 + z)
)∣∣∣∣∣

z=0

= (−x

2 )k · 2k ·

(∏
i∈T

Dvi

)
h(x2e) · g(T )

µ (x1),

where g
(T )
µ (x1) =

∏
i∈T ∂zigµ(x1 + z)

∣∣∣
z=0

. And by the homogeneity of h, it further equals to

xd · (−1
2)k∂2

zT

(
h(xe +

n∑
i=1

zivi)gµ(x1 + z)
)∣∣∣∣∣

z=0

.

Therefore, we prove the following formula that relates the characteristic polynomial under
SR distribution to the multivariate polynomial:

xdµ · E
ξ∼µ

[
h(x2e − (

n∑
i=1

ξivi))
]

= xd ·
n∏

i=1
(1 − 1

2∂2
zi

)
(

h(xe +
n∑

i=1
zivi)gµ(x1 + z)

)∣∣∣∣∣
z=0

.
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