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Abstract
Our work concerns algorithms for a variant of Maximum Flow in unweighted graphs. In the All-Pairs
Connectivity (APC) problem, we are given a graph G on n vertices and m edges, and are tasked
with computing the maximum number of edge-disjoint paths from s to t (equivalently, the size of a
minimum (s, t)-cut) in G, for all pairs of vertices (s, t). Over undirected graphs, it is known that
APC can be solved in essentially optimal n2+o(1) time. In contrast, the true time complexity of APC
over directed graphs remains open: this problem can be solved in Õ(mω) time, where ω ∈ [2, 2.373)
is the exponent of matrix multiplication, but no matching conditional lower bound is known.

Following [Abboud et al., ICALP 2019], we study a bounded version of APC called the k-Bounded
All Pairs Connectivity (k-APC) problem. In this variant of APC, we are given an integer k in addition
to the graph G, and are now tasked with reporting the size of a minimum (s, t)-cut only for pairs
(s, t) of vertices with min-cut value less than k (if the minimum (s, t)-cut has size at least k, we can
just report it is “large” instead of computing the exact value).

Our main result is an Õ((kn)ω) time algorithm solving k-APC in directed graphs. This is the
first algorithm which solves k-APC faster than simply solving the more general APC problem exactly,
for all k ≥ 3. This runtime is Õ(nω) for all k ≤ poly(log n), which essentially matches the optimal
runtime for the k = 1 case of k-APC, under popular conjectures from fine-grained complexity.
Previously, this runtime was only achieved for general directed graphs when k ≤ 2 [Georgiadis et al.,
ICALP 2017]. Our result employs the same algebraic framework used in previous work, introduced
by [Cheung, Lau, and Leung, FOCS 2011]. A direct implementation of this framework involves
inverting a large random matrix. Our new algorithm is based off the insight that for solving k-APC,
it suffices to invert a low-rank random matrix instead of a generic random matrix.

We also obtain a new algorithm for a variant of k-APC, the k-Bounded All-Pairs Vertex Connectivity
(k-APVC) problem, where for every pair of vertices (s, t), we are now tasked with reporting the
maximum number of internally vertex-disjoint (rather than edge-disjoint) paths from s to t if this
number is less than k, and otherwise reporting that this number is at least k.

Our second result is an Õ(k2nω) time algorithm solving k-APVC in directed graphs. Previous
work showed how to solve an easier version of the k-APVC problem (where answers only need to be
returned for pairs of vertices (s, t) which are not edges in the graph) in Õ((kn)ω) time [Abboud et al,
ICALP 2019]. In comparison, our algorithm solves the full k-APVC problem, and is faster if ω > 2.
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1 Introduction

Computing maximum flows is a classic problem which has been extensively studied in graph
theory and computer science. In unweighted graphs, this task specializes to computing
connectivities, an interesting computational problem in its own right. Given a graph G on
n vertices and m edges, for any vertices s and t in G, the connectivity λ(s, t) from s to t is
defined to be the maximum number of edge-disjoint paths1 from s to t. Since maximum flow
can be computed in almost-linear time, we can compute λ(s, t) for any given vertices s and t

in m1+o(1) time [5].
What if instead of merely returning the value of a single connectivity, our goal is to

compute all connectivities in the graph? This brings us to the All-Pairs Connectivity (APC)
problem: in this problem, we are given a graph G as above, and are tasked with computing
λ(s, t) for all pairs of vertices (s, t) in G. In undirected graphs, APC can be solved in n2+o(1)

time [2], so that this “all-pairs” problem is essentially no harder than outputting a single
connectivity in dense graphs.

In directed graphs, APC appears to be much harder, with various conditional lower bounds
(discussed in Section 1.2) suggesting it is unlikely this problem can be solved in quadratic
time. Naively computing the connectivity separately for each pair yields an n2m1+o(1) time
algorithm for this problem. Using the flow vector framework (discussed in Section 3), it is
possible to solve APC in directed graphs in Õ(mω) time2 [7], where ω is the exponent of
matrix multiplication. Known algorithms imply that ω < 2.37286 [4], so the Õ(mω) time
algorithm is faster than the naive algorithm whenever the input graph is not too dense.

Our work focuses on a bounded version of the APC problem, which we formally state
as the k-Bounded All-Pairs Connectivity (k-APC) problem: in this problem, we are given a
directed graph G as above, and are tasked with computing min(k, λ(s, t)) for all pairs of
vertices (s, t) in G. Intuitively, this is a relaxation of the APC problem, where our goal is
to compute the exact values of λ(s, t) only for pairs (s, t) with small connectivity. For all
other pairs, it suffices to report that the connectivity is large, where k is our threshold for
distinguishing between small and large connectivity values.

When k = 1, the k-APC problem is equivalent to computing the transitive closure of the
input graph (in this problem, for each pair of vertices (s, t), we are tasked with determining if
G contains a path from s to t), which can be done in Õ(nω) time [8]. Similarly, for the special
case of k = 2, it is known that k-APC can be solved in Õ(nω) time, by a divide-and-conquer
algorithm employing a cleverly tailored matrix product [10]. As we discuss in Section 1.2,
there is evidence that these runtimes for k-APC when k ≤ 2 are essentially optimal.

Already for k = 3 however, it is open whether k-APC can be solved faster than computing
the exact values of λ(s, t) for all pairs (s, t) of vertices! Roughly speaking, this is because
the known Õ(mω) time algorithm for APC involves encoding the connectivity information
in the inverse of an m × m matrix, and inverting an m × m matrix takes O(mω) time in
general. This encoding step appears to be necessary for k-APC as well. For k = 2, clever
combinatorial observations about the structure of strongly connected graphs allow one to
skip this computation, but for k ≥ 3 it is not clear at all from previous work how to avoid
this bottleneck. Moreover, it is consistent with existing hardness results that k-APC could
be solved in O(nω) time for any constant k.

1 By Menger’s theorem, λ(s, t) is also equal to the minimum number of edges that must be deleted from
the graph G to produce a graph with no s to t path.

2 Given a function f , we write Õ(f) to denote f · poly(log f).
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▶ Open Problem 1. Can k-APC be solved in faster than Õ(mω) time for k = 3?

Due to this lack of knowledge about the complexity of k-APC, researchers have also
studied easier versions of this problem. Given vertices s and t in the graph G, we define the
vertex connectivity ν(s, t) from s to t to be the maximum number of internally vertex-disjoint
paths from s to t. We can consider vertex connectivity analogues of the APC and k-APC
problems. In the All-Pairs Vertex Connectivity (APVC) problem, we are given a graph G on
n vertices and m edges, and are tasked with computing the value of ν(s, t) for all pairs of
vertices (s, t) in G. In the k-Bounded All-Pairs Vertex Connectivity (k-APVC) problem, we are
given the same input G as above, but are now tasked with only computing min(k, ν(s, t)) for
all pairs of vertices (s, t) in G.

The k-APVC problem does not face the O(mω) barrier which existing algorithmic tech-
niques for k-APC seem to encounter, intuitively because it is possible to encode all the
vertex-connectivity information of a graph in the inverse of an n × n matrix instead of an
m × m matrix. As a consequence, [1] was able to present an Õ((kn)ω) time algorithm which
computes min(k, ν(s, t)) for all pairs of vertices (s, t) such that (s, t) is not an edge. Given
this result, it is natural to ask whether the more general k-APVC and k-APC problems can
also be solved in this same running time.

▶ Open Problem 2. Can k-APVC be solved in Õ((kn)ω) time?

▶ Open Problem 3. Can k-APC be solved in Õ((kn)ω) time?

1.1 Our Contribution
We resolve all three open problems raised in the previous section.

First, we present a faster algorithm for k-APC, whose time complexity matches the
runtime given by previous work for solving an easier version of k-APVC.

▶ Theorem 4. For any positive integer k, k-APC can be solved in Õ((kn)ω) time.

This is the first algorithm which solves k-APC faster than simply solving APC exactly using
the Õ(mω) time algorithm of [7], for all constant k ≥ 3.

Second, we present an algorithm for k-APVC, which is faster than the Õ((kn)ω) time
algorithm from [1] (which only solves a restricted version of k-APVC) if ω > 2.

▶ Theorem 5. For any positive integer k, k-APVC can be solved in Õ(k2nω) time.

1.2 Comparison to Previous Results
Conditional Lower Bounds
The field of fine-grained complexity contains many popular conjectures (which hypothesize
lower bounds on the complexity of certain computational tasks) which are used as the
basis of conditional hardness results for problems in computer science. In this section, we
review known hardness results for APC and its variants. The definitions of the problems and
conjectures used in this section can be found in...

Assuming that Boolean Matrix Multiplication (BMM) requires nω−o(1) time, it is known
that k-APC and k-APVC require nω−o(1) time to solve, even for k = 1 [8]. In particular, this
hypothesis implies our algorithms for k-APC and k-APVC are optimal for constant k.

Assuming the Strong Exponential Time Hypothesis (SETH), previous work shows that APC
requires (mn)1−o(1) time [12, Theorem 1.8], APVC requires m3/2−o(1) time [14, Theorem 1.7],
and k-APC requires

(
kn2)1−o(1) time [12, Theorem 4.3].

ICALP 2023
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Let ω(1, 2, 1) be the smallest real number3 such that we can compute the product of an
n × n2 matrix and n2 × n matrix in nω(1,2,1)+o(1) time. Assuming the 4-Clique Conjecture,
the k-APVC problem over directed graphs (and thus the k-APC problem as well) requires(
k2nω(1,2,1)−2)1−o(1) time [1]. This conjecture also implies that solving APVC even in

undirected graphs requires nω(1,2,1)−o(1) time [11].

Algorithms for Related Problems
As mentioned previously, no nontrivial algorithms for k-APC over general directed graphs
were known for k ≥ 3, prior to our work. However, faster algorithms were already known for
k-APC over directed acyclic graphs (DAGs). In particular, [1] presented two algorithms to
solve k-APC in DAGs, running in 2O(k2)mn time and (k log n)4k+o(k)nω time respectively.

In comparison, our algorithm from Theorem 4 solves k-APC in general directed graphs,
is faster than the former algorithm whenever m ≥ nω−1 or k ≥ ω(

√
log n) (for example),

is always faster than the latter algorithm, and is significantly simpler from a technical
perspective than these earlier arguments. However, these algorithms for k-APC on DAGs
also return cuts witnessing the connectivity values, while our algorithm does not.

In the special case of undirected graphs, APVC can be solved in m2+o(1) time [14,
Theorem 1.8], which is faster than the aforementioned Õ(mω) time algorithm if ω > 2. Over
undirected graphs, k-APVC can be solved in k3m1+o(1) + n2 poly(log n) time. In comparison,
our algorithm from Theorem 5 can handle k-APVC in both undirected and directed graphs,
and is faster for large enough values of k in dense graphs.

In directed planar graphs with maximum degree d, [7, Theorem 1.5] proves that APC can
be solved in O

(
dω−2nω/2+1)

time.
In [15], the authors consider a symmetric variant of k-APC. Here, the input is a directed

graph G on n vertices and m edges, and the goal is to compute for all pairs of vertices (s, t),
the value of min(k, λ(s, t), λ(t, s)). This easier problem can be solved in O(kmn) time [15].

1.3 Organization
The rest of this paper is devoted to proving Theorems 4 and 5. In Section 2 we introduce
notation, some useful definitions, and results on matrix computation which will be useful in
proving correctness of our algorithms. In Section 3 we provide an intuitive overview of our
algorithms for k-APC and k-APVC. In Section 4 we describe a framework of “flow vectors”
for capturing connectivity values, and in Section 5 use this framework to prove Theorem 4.
In Section 6 we present helpful results about vertex-connectivity, and in Section 7 use these
results to prove Theorem 5.

2 Preliminaries

Graph Assumptions

Throughout, we let G denote a directed graph on n vertices and m edges. Without loss
of generality, we assume that the underlying undirected graph of G is connected, i.e., G is
weakly connected (since, if not, we could simply run our algorithms separately on each weakly
connected component of G), so we have m ≥ n − 1. We assume G has no self-loops, since
these do not affect the connectivity or vertex-connectivity values between distinct vertices.

3 Known fast matrix multiplication algorithms imply that ω(1, 2, 1) < 3.25669 [9, Table 2].
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In Sections 4 and 5 we focus on the k-APC problem, and so allow G to have parallel
edges between vertices (i.e., G can be a multigraph). We assume however, without loss of
generality, that for any distinct vertices s and t, there are at most k edges from s to t (since
if there were more than k parallel edges from s to t, we could delete some and bring the
count of parallel edges down to k without changing the value of min(k, λ(s, t))). In Sections 6
and 7 we focus on the k-APVC problem, and so assume that G is a simple graph with no
parallel edges, since parallel edges from u to v cannot affect the value of a vertex connectivity
ν(s, t), unless u = s and v = t, in which case the value of ν(s, t) is simply increased by the
number of additional parallel edges from s to t.

Graph Terminology and Notation

Given an edge e from u to v in G, we write e = (u, v). We call u the tail of e and v the
head of e. Vertices which are tails of edges entering a vertex v are called in-neighbors of v.
Similarly, vertices which are heads of edges exiting v are called out-neighbors of v. Given
a vertex u in G, we let Ein(u) denote the set of edges entering u, and Eout(u) denote the
set of edges exiting u. Similarly, Vin(u) denotes the set of in-neighbors of u, and Vout(u)
denotes the set of out-neighbors of u. Furthermore, we define Vin[u] = Vin(u) ∪ {u} and
Vout[u] = Vout(u) ∪ {u}. Finally, let degin(u) = |Ein(u)| and degout(u) = |Eout(u)| denote
the indegree and outdegree of u respectively.

Given vertices s and t, an (s, t)-cut is a set C of edges, such that deleting the edges
in C produces a graph with no s to t path. By Menger’s theorem, the size of a minimum
(s, t)-cut is equal to the connectivity λ(s, t) from s to t. Similarly, an (s, t)-vertex cut is a set
of C ′ of vertices with s, t ̸∈ C ′, such that deleting C ′ produces a graph with no s to t path.
Clearly, a vertex cut exists if and only if (s, t) is not an edge. When (s, t) is not an edge,
Menger’s theorem implies that the size of a minimum (s, t)-vertex cut is equal to the vertex
connectivity ν(s, t) from s to t.

Matrix Notation

Let A be a matrix. For indices i and j, we let A[i, j] denote the (i, j) entry of A. More
generally, if S is a set of row indices and T a set of column indices, we let A[S, T ] denote the
submatrix of A restricted to rows from S and columns from T . Similarly, A[S, ∗] denotes A

restricted to rows from S, and A[∗, T ] denotes A restricted to columns from T . We let A⊤

denote the transpose of A. If A is a square matrix, then we let adj(A) denote the adjugate
of A. If A is invertible, we let A−1 denote its inverse. If a theorem, lemma, or proposition
statement refers to A−1, it is generally asserting that A−1 exists (or if A is a random matrix,
asserting that A−1 exists with some probability) as part of the statement. We let I denote
the identity matrix (the dimensions of this matrix will always be clear from context). Given
a vector v⃗, for any index i we let v⃗[i] denote the ith entry in v⃗. We let 0⃗ denote the zero
vector (the dimensions of this vector will always be clear from context). Given a positive
integer k, we let [k] = {1, . . . , k} denote the set of the first k positive integers.

Matrix and Polynomial Computation

Given a prime p, we let Fp denote the finite field on p elements. Arithmetic operations over
elements of Fp can be performed in Õ(log p) time.

We now recall some well-known results about computation with matrices and polynomials,
which will be useful for our algorithms.

ICALP 2023
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▶ Proposition 6. Let A be an a×b matrix, and B be a b×a matrix. If (I −BA) is invertible,
then the matrix (I − AB) is also invertible, with inverse

(I − AB)−1 = I + A(I − BA)−1B.

Proof. It suffices to verify that the product of (I − AB) with the right hand side of the
above equation yields the identity matrix. Indeed, we have

(I − AB)
(
I + A(I − BA)−1B

)
= I + A(I − BA)−1B − AB − ABA(I − BA)−1B

= I + A(I − BA)−1B − AB − A
(
I − (I − BA)

)
(I − BA)−1B

= I + A(I − BA)−1B − AB − A(I − BA)−1B + AB,

which simplifies to I, as desired. ◀

▶ Proposition 7. Let A be an a × a matrix over Fp. We can compute the inverse A−1 (if it
exists) in O(aω) field operations.

▶ Proposition 8 ([6, Theorem 1.1]). Let A be an a × b matrix over Fp. Then for any positive
integer k, we can compute min(k, rank A) in O(ab + kω) field operations.

▶ Proposition 9 (Schwartz-Zippel Lemma [13, Theorem 7.2]). Let f ∈ Fp[x1, . . . , xr] be a
degree d, nonzero polynomial. Let a⃗ be a uniform random point in Fr

p. Then f (⃗a) is nonzero
with probability at least 1 − d/p.

3 Proof Overview

3.1 Flow Vector Encodings
Previous algorithms for APC [7] and its variants work in two steps:
Step 1: Encode

In this step, we prepare a matrix M which implicitly encodes the connectivity information
of the input graph.

Step 2: Decode
In this step, we iterate over all pairs (s, t) of vertices in the graph, and for each pair run
a small computation on a submatrix of M to compute the desired connectivity value.

The construction in the encode step is based off the framework of flow vectors, introduced
in [7] as a generalization of classical techniques from network-coding. We give a high-level
overview of how this method has been previously applied in the APC problem.4

Given the input graph G, we fix a source vertex s. Let d = degout(s), and let F be some
ground field.5 Our end goal is to assign to each edge e in the graph a special vector e⃗ ∈ Fd

which we call a flow vector.
First, for each edge e ∈ Eout(s), we introduce a d-dimensional vector v⃗e. These vectors

intuitively correspond to some starting flow that is pumping out of s. It is important that
these vectors are linearly independent (and previous applications have always picked these
vectors to be distinct d-dimensional unit vectors). We then push this flow through the rest of
the graph, by having each edge get assigned a vector which is a random linear combination

4 For the APVC problem we employ a different, but analogous, framework described in Section 3.3.
5 In our applications, we will pick F to be a finite field of size poly(m).
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of the flow vectors assigned to the edges entering its tail. That is, given an edge e = (u, v)
with u ̸= s, the final flow vector e⃗ will be a random linear combination of the flow vectors for
the edges entering u. If instead the edge e = (s, v) is in Eout(s), the final flow vector e⃗ will
be a random linear combination of the flow vectors for the edges entering s, added to the
initial flow v⃗e.

The point of this random linear combination is to (with high probability) preserve linear
independence. In this setup, for any vertex v and integer ℓ, if some subset of ℓ flow vectors
assigned to edges in Ein(v) is independent, then we expect that every subset of at most ℓ

flow vectors assigned to edges in Eout(v) is also independent. This sort of behavior turns
out to generalize to preserving linear independence of flow vectors across cuts, which implies
that (with high probability) for any vertex t, the rank of the flow vectors assigned to edges
in Ein(t) equals λ(s, t).

Intuitively, this is because the flow vectors assigned to edges in Ein(t) will be a linear
combination of the λ(s, t) flow vectors assigned to edges in a minimum (s, t)-cut, and the
flow vectors assigned to edges in this cut should be independent.

Collecting all the flow vectors as column vectors in a matrix allows us to produce a single
matrix Ms, such that computing the rank of Ms[∗, Ein(t)] yields the desired connectivity
value λ(s, t) (computing these ranks constitutes the decode step mentioned previously).
Previous work [7, 1] set the initial pumped v⃗e to be distinct unit vectors. It turns out that
for this choice of starting vectors, it is possible to construct a single matrix M (independent
of a fixed choice of s), such that rank queries to submatrices of M correspond to the answers
we wish to output in the APC problem and its variants.

In Section 3.2 we describe how we employ the flow vector framework to prove Theorem 4.
Then in Section 3.3, we describe how we modify these methods to prove Theorem 5.

3.2 All-Pairs Connectivity
Our starting point is the Õ(mω) time algorithm for APC presented in [7], which uses the
flow vector encoding scheme outlined in Section 3.1.

Let K be an m × m matrix, whose rows and columns are indexed by edges in the input
graph. For each pair (e, f) of edges, if the head of e coincides with the tail of f , we set K[e, f ]
to be a uniform random field element in F. Otherwise, K[e, f ] = 0. These field elements
correspond precisely to the coefficients used in the random linear combinations of the flow
vector framework. Define the matrix

M = (I − K)−1. (1)

Then [7] proves that with high probability, for any pair (s, t) of vertices, we have

rank M [Eout(s), Ein(t)] = λ(s, t). (2)

With this setup, the algorithm for APC is simple: first compute M (the encode step),
and then for each pair of vertices (s, t), return the value of rank M [Eout(s), Ein(t)] as the
connectivity from s to t (the decode step).

By Equation (1), we can complete the encode step in Õ(mω) time, simply by inverting
an m × m matrix with entries from F. It turns out we can also complete the decode step in
the same time bound. So this gives an Õ(mω) time algorithm for APC.

Suppose now we want to solve the k-APC problem. A simple trick (observed in the proof
of [1, Theorem 5.2] for example) in this setting can allow us to speed up the runtime of
the decode step. However, it is not at all obvious how to speed up the encode step. To

ICALP 2023
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implement the flow vector scheme of Section 3.1 as written, it seems almost inherent that
one needs to invert an m × m matrix. Indeed, an inability to overcome this bottleneck is
stated explicitly as part of the motivation in [1] for focusing on the k-APVC problem instead.

Our Improvement
The main idea behind our new algorithm for k-APC is to work with a low-rank version of the
matrix K used in Equation (1) for the encode step.

Specifically, we construct certain random sparse matrices L and R with dimensions m×kn

and kn × m respectively. We then set K = LR, and argue that with high probability, the
matrix M defined in Equation (1) for this choice of K satisfies

rank M [Eout(s), Ein(t)] = min(k, λ(s, t)). (3)

This equation is just a k-bounded version of Equation (2). By Proposition 6, we have

M = (I − K)−1 = (I − LR)−1 = I + L(I − RL)−1R.

Note that (I − RL) is a kn × kn matrix. So, to compute M (and thus complete the encode
step) we no longer need to invert an m × m matrix! Instead we just need to invert a matrix
of size kn × kn. This is essentially where the Õ ((kn)ω) runtime in Theorem 4 comes from.

Conceptually, this argument corresponds to assigning flow vectors through the graph by
replacing random linear combinations with random “low-rank combinations.” That is, for an
edge e ∈ Eout(u) exiting a vertex u, we define the flow vector at e to be

e⃗ =
k∑

i=1

 ∑
f∈Ein(u)

Li[f, u]f⃗

 · Ri[u, e],

where the inner summation is over all edges f entering u, f⃗ denotes the flow vector assigned
to edge f , and the Li[f, u] and Ri[u, e] terms correspond to random field elements uniquely
determined by the index i and some (edge, vertex) pair.

Here, unlike in the method described in Section 3.1, the coefficient in front of f⃗ in its
contribution to e⃗ is not uniquely determined by the pair of edges f and e. Rather, if edge
f enters node u, then it has the same set of “weights” Li[f, u] it contributes to every flow
vector exiting u. However, since we use k distinct weights, this restricted rule for propagating
flow vectors still suffices to compute min(k, λ(s, t)).

A good way to think about the effect of this alternate approach is that now for any
vertex v and any integer ℓ ≤ k, if some subset of ℓ flow vectors assigned to edges in Ein(v) is
independent, then we expect that every subset of at most ℓ flow vectors assigned to edges in
Eout(v) is also independent. In the previous framework, this result held even for ℓ > k. By
relaxing the method used to determine flow vectors, we achieve a weaker condition, but this
is still enough to solve k-APC.

This modification makes the encode step more complicated (it now consists of two
parts: one where we invert a matrix, and one where we multiply that inverse with other
matrices), but speeds it up overall. To speed up the decode step, we use a variant of an
observation from the proof of [1, Theorem 5.2] to argue that we can assume every vertex in
our graph has indegree and outdegree k. By Proposition 8 and Equation (3), this means we
can compute min(k, λ(s, t)) for all pairs (s, t) of vertices in Õ(kωn2) time. So the bottleneck
in our algorithm comes from the encode step, which yields the Õ ((kn)ω) runtime.
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3.3 All-Pairs Vertex Connectivity
Our starting point is the Õ ((kn)ω) time algorithm in [1], which computes min(k, ν(s, t)) for
all pairs of vertices (s, t) which are not edges. That algorithm is based off a variant of the
flow vector encoding scheme outlined Section 3.1. Rather than assign vectors to edges, we
instead assign flow vectors to vertices (intuitively this is fine because we are working with
vertex connectivities in the k-APVC problem). The rest of the construction is similar: we
imagine pumping some initial vectors to s and its out-neighbors, and then we propagate the
flow through the graph so that at the end, for any vertex v, the flow vector assigned to v is a
random linear combination of flow vectors assigned to in-neighbors of v.6

Let K be an n × n matrix, whose rows and columns are indexed by vertices in the input
graph. For each pair (u, v) of vertices, if there is an edge from u to v, we set K[u, v] to be a
uniform random element in F. Otherwise, K[u, v] = 0. These entries correspond precisely to
coefficients used in the random linear combinations of the flow vector framework.

Now define the matrix

M = (I − K)−1. (4)

Then we argue that for any pair (s, t) of vertices, we have

rank M [Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge
ν(s, t) otherwise.

(5)

Previously, [1, Proof of Lemma 5.1] sketched a different argument, which shows that
rank M [Vout(s), Vin(t)] = ν(s, t) when (s, t) is not an edge.

We use Equation (5) to solve k-APVC. For the encode step, we compute M . By
Equation (4), we can do this by inverting an n × n matrix, which takes Õ(nω) time. For
the decode step, by Equation (5) and Proposition 8, we can compute min(k, ν(s, t)) for all
pairs (s, t) of vertices in asymptotically∑

s,t

(degout(s) degin(t) + kω) = m2 + kωn2

time, where the sum is over all vertices s and t in the graph. The runtime bound we get
here for the decode step is far too high – naively computing the ranks of submatrices is too
slow if the graph has many high-degree vertices.

To avoid this slowdown, [1] employs a simple trick to reduce degrees in the graph: we
can add layers of k new nodes to block off the ingoing and outgoing edges from each vertex
in the original graph. That is, for each vertex s in G, we add a set S of k new nodes, replace
the edges in Eout(s) with edges from s to all the nodes in S, and add edges from every node
in S to every vertex originally in Vout(s). Similarly, for each vertex t in G, we add a set T of
k new nodes, replace the edges in Ein(t) with edges from all the nodes in T to t, and add
edges from every vertex originally in Vin(t) to every node in T .

It is easy to check that this transformation preserves the value of min(k, ν(s, t)) for all
pairs (s, t) of vertices in the original graph where (s, t) is not an edge. Moreover, all vertices
in the original graph have indegree and outdegree exactly k in the new graph. Consequently,
the decode step can now be implemented to run in Õ(kωn2) time. Unfortunately, this

6 Actually, this behavior only holds for vertices v ̸∈ Vout[s]. The rule for flow vectors assigned to vertices
in Vout[s] is a little more complicated, and depends on the values of the initial pumped vectors.
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construction increases the number of vertices in the graph from n to (2k + 1)n. As a
consequence, in the encode step, the matrix K we work with is no longer n × n, but instead
is of size (2k + 1)n × (2k + 1)n. Now inverting I − K to compute M requires Õ ((kn)ω) time,
which is why [1] obtains this runtime for their algorithm.

Our Improvement
Intuitively, the modification used by [1] to reduce degrees in the graph feels very inefficient.
This transformation makes the graph larger in order to “lose information” about connectivity
values greater than k. Rather than modify the graph in this way, can we modify the flow
vector scheme itself to speed up the decode step? Our algorithm does this, essentially
modifying the matrix of flow vectors to simulate the effect of the previously described
transformation, without ever explicitly adding new nodes to the graph.

Instead of working directly with the matrix M from Equation (4), for each pair (s, t) of
vertices we define a (k + 1) × (k + 1) matrix

Ms,t = Bs (M [Vout[s], Vin[t]]) Ct

which is obtained from multiplying a submatrix of M on the left and right by small random
matrices Bs and Ct, with k + 1 rows and columns respectively. Since Bs has k + 1 rows and
Ct has k + 1 columns, we can argue that with high probability, Equation (5) implies that

rank Ms,t =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

So we can compute min(k, ν(s, t)) from the value of rank Ms,t. This idea is similar to the
preconditioning method used in algorithms for computing matrix rank efficiently (see [6] and
the references therein). Conceptually, we can view this approach as a modification of the
flow vector framework. Let d = degout(s). As noted in Section 3.1, previous work
1. starts by pumping out distinct d-dimensional unit vectors to nodes in Vout(s), and then
2. computes the rank of all flow vectors of vertices in Vin(t).
In our work, we instead
1. start by pumping out (d + 1) random (k + 1)-dimensional vectors to nodes in Vout[s], and

then
2. compute the rank of (k + 1) random linear combinations of flow vectors for vertices in

Vin[t].
This alternate approach suffices for solving the k-APVC problem, while avoiding the slow
Õ((kn)ω) encode step of previous work.

So, in the decode step of our algorithm, we compute min(k, ν(s, t)) for each pair (s, t) of
vertices by computing the rank of the (k + 1) × (k + 1) matrix Ms,t, in Õ(kωn2) time overall.

Our encode step is more complicated than previous work, because not only do we need
to compute the inverse (I − K)−1, we also have to construct the Ms,t matrices. Naively
computing each Ms,t matrix separately is too slow, so we end up using an indirect approach
to compute all entries of the Ms,t matrices simultaneously, with just O(k2) multiplications
of n × n matrices. This takes Õ(k2nω) time, which is the bottleneck for our algorithm.

4 Flow Vector Encoding

The arguments in this section are similar to the arguments from [7, Section 2], but involve
more complicated proofs because we work with low-rank random matrices as opposed to
generic random matrices.
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Fix a source vertex s in the input graph G. Let d = degout(s) denote the number of edges
leaving s. Let e1, . . . , ed ∈ Eout(s) be the outgoing edges from s.

Take a prime p = Θ(m5). Let u⃗1, . . . , u⃗d be distinct unit vectors in Fd
p.

Eventually, we will assign each edge e in G a vector e⃗ ∈ Fd
p, which we call a flow vector.

These flow vectors will be determined by a certain system of vector equations. To describe
these equations, we first introduce some symbolic matrices.

For each index i ∈ [k], we define an m × n matrix Xi, whose rows are indexed by edges
of G and columns are indexed by vertices of G, such that for each edge e = (u, v), entry
Xi[e, v] = xi,ev is an indeterminate. All entries in Xi not of this type are zero. Similarly, we
define n × m matrices Yi, with rows indexed by vertices of G and columns indexed by edges
of G, such that for every edge f = (u, v), the entry Yi[u, f ] = yi,uf is an indeterminate. All
entries in Yi not of this type are zero. Let X be the m × kn matrix formed by horizontally
concatenating the Xi matrices. Similarly, let Y be the kn × m matrix formed by vertically
concatenating the Yi matrices. Then we define the matrix

Z = XY = X1Y1 + · · · + XkYk. (6)

By construction, Z is an m × m matrix, with rows and columns indexed by edges of G, such
that for any edges e = (u, v) and f = (v, w), we have

Z[e, f ] =
k∑

i=1
xi,evyi,vf (7)

and all other entries of Z are set to zero.
Consider the following procedure. We assign independent, uniform random values from

Fp to each variable xi,ev and yi,uf . Let Li, L, Ri, R, and K be the matrices over Fp resulting
from this assignment to Xi, X, Yi, Y , and Z respectively. In particular, we have

K = LR. (8)

Now, to each edge e, we assign a flow vector e⃗ ∈ Fd
p, satisfying the following equalities:

1. Recall that e1, . . . , ed are all the edges exiting s, and u⃗1, . . . , u⃗d are distinct unit vectors
in Fd

p. For each edge ei ∈ Eout(s), we require its flow vector satisfy

e⃗i =

 ∑
f∈Ein(s)

f⃗ · K[f, ei]

 + u⃗i. (9)

2. For each edge e = (u, v) with u ̸= s, we require its flow vector satisfy

e⃗ =
∑

f∈Ein(u)

f⃗ · K[f, e]. (10)

A priori it is not obvious that flow vectors satisfying the above two conditions exist, but we
show below that they do (with high probability). Let Hs be the d × m matrix whose columns
are indexed by edges in G, such that the column associated with ei is u⃗i for each index i, and
the rest of the columns are zero vectors. Let F be the d × m matrix, with columns indexed
by edges in G, whose columns F [∗, e] = e⃗ are flow vectors for the corresponding edges. Then
Equations (9) and (10) are encapsulated by the simple matrix equation

F = FK + Hs. (11)

The following lemma shows we can solve for F in the above equation, with high probability.
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▶ Lemma 10. We have det(I − K) ̸= 0, with probability at least 1 − 1/m3.

Proof. Since the input graph has no self-loops, by Equation (7) and the discussion immedi-
ately following it, we know that the diagonal entries of the m × m matrix Z are zero. By
Equation (7), each entry of Z is a polynomial of degree at most two, with constant term set
to zero. Hence, det(I − Z) is a polynomial over Fp with degree at most 2m, and constant
term equal to 1. In particular, this polynomial is nonzero. Then by the Schwartz-Zippel
Lemma (Proposition 9), det(I − K) is nonzero with probability at least

1 − 2m/p ≥ 1 − 1/m3

by setting p ≥ 2m4. ◀

Suppose from now on that det(I−K) ̸= 0 (by Lemma 10, this occurs with high probability).
Then with this assumption, we can solve for F in Equation (11) to get

F = Hs(I − K)−1 = Hs (adj(I − K))
det(I − K) . (12)

This equation will allow us to relate ranks of collections of flow vectors to connectivity values
in the input graph.

▶ Lemma 11. For any vertex t in G, with probability at least 1 − 2/m3, we have

rank F [∗, Ein(t)] ≤ λ(s, t).

Proof. Abbreviate λ = λ(s, t). Conceptually, this proof works by arguing that the flow
vectors assigned to all edges entering t are linear combinations of the flow vectors assigned
to edges in a minimum (s, t)-cut of G.

Let C be a minimum (s, t)-cut. By Menger’s theorem, |C| = λ.
Let S be the set of nodes reachable from s without using an edge in C, and let T be the

set of nodes which can reach t without using an edge in C. By definition of an (s, t)-cut, S

and T partition the vertices in G.
Now, let E′ be the set of edges e = (u, v) with v ∈ T . Set K ′ = K[E′, E′] and

F ′ = F [∗, E′]. Finally, let H ′ be a matrix whose columns are indexed by edges in E′, such
that the column associated with an edge e ∈ C is e⃗, and all other columns are equal to 0⃗.

Then by Equations (9) and (10), we have

F ′ = F ′K ′ + H ′.

Indeed, for any edge e = (u, v) ∈ E′, if u ∈ S then e ∈ C so H ′[∗, e] = e⃗, and there can be
no edge f ∈ E′ entering u, so (F ′K ′)[∗, e] = 0⃗. If instead u ∈ T , then H ′[∗, e] = 0⃗, but every
edge f entering u is in E′, so by Equation (10), we have (F ′K ′)[∗, e] = F ′[∗, e] as desired.

Using similar reasoning to the proof of Lemma 10, we have det(I−K ′) ̸= 0 with probability
at least 1 − 1/m3. If this event occurs, we can solve for F ′ in the previous equation to get

F ′ = H ′(I − K ′)−1.

Since H ′ has at most λ nonzero columns, rank H ≤ λ. So by the above equation, rank F ′ ≤ λ.
By definition, Ein(t) ⊆ E′. Thus F [∗, Ein(t)] is a submatrix of F ′. Combining this with the
previous results, we see that rank F [∗, Ein(t)] ≤ λ, as desired. The claimed probability bound
follows by a union bound over the events that I − K and I − K ′ are both invertible. ◀
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▶ Lemma 12. For any vertex t in G, with probability at least 1 − 2/m3, we have

rank F [∗, Ein(t)] ≥ min(k, λ(s, t)).

Proof. Abbreviate λ = min(k, λ(s, t)). Intuitively, our proof will argue that the presence of
edge-disjoint paths from s to t will lead to certain edges in Ein(t) being assigned linearly
independent flow vectors (with high probability), which will then imply the desired rank
lower bound.

By Menger’s theorem, G contains λ edge-disjoint paths P1, . . . , Pλ from s to t.
Consider the following assignment to the variables of the symbolic matrices Xi and Yi.

For each index i ≤ λ and edge e = (u, v), we set variable xi,ev = 1 if e is an edge in Pi.
Similarly, for each index i ≤ λ and edge f = (u, v), we set variable yi,uf = 1 if f is an edge
in Pi. All other variables are set to zero. In particular, if i > λ, then Xi and Yi have all
their entries set to zero. With respect to this assignment, the matrix XiYi (whose rows and
columns are indexed by edges in the graph) has the property that (XiYi)[e, f ] = 1 if f is the
edge following e on path Pi, and all other entries are set to zero.

Then by Equation (6), we see that under this assignment, Z[e, f ] = 1 if e and f are
consecutive edges in some path Pi, and all other entries of Z are set to zero. For this
particular assignment, because the Pi are edge-disjoint paths, Equations (9) and (10) imply
that the last edge of each path Pi is assigned a distinct d-dimensional unit vector. These
vectors are independent, so, rank F [∗, Ein(t)] = λ in this case.

With respect to this assignment, this means that F [∗, Ein(t)] contains a λ × λ full-rank
submatrix. Let F ′ be a submatrix of F [∗, Ein(t)] with this property. Since F ′ has full rank,
we have det F ′ ̸= 0 for the assignment described above.

Now, before assigning values to variables, each entry of adj(I − Z) is a polynomial of
degree at most 2m. So by Equation (12), det F ′ is equal to some polynomial P of degree at
most 2λm, divided by (det(I − Z))λ. We know P is a nonzero polynomial, because we saw
above that det F ′ is nonzero for some assignment of values to the variables (and if P were
the zero polynomial, then det F ′ would evaluate to zero under every assignment).

By Lemma 10, with probability at least 1−1/m3, a random evaluation to the variables will
have det(I − Z) evaluate to a nonzero value. Assuming this event occurs, by Schwartz-Zippel
Lemma (Proposition 9), a random evaluation to the variables in Z will have det F ′ ̸= 0 with
probability at least 1 − (2λm)/p ≥ 1 − 1/m3 by setting p ≥ 2m5.

So by union bound, a particular λ × λ submatrix of F [∗, Ein(t)] will be full rank with
probability at least 1 − 2/m3. This proves the desired result. ◀

▶ Lemma 13. Fix vertices s and t. Define λ = rank (I − K)−1[Eout(s), Ein(t)]. With
probability at least 1 − 4/m3, we have min(k, λ) = min(k, λ(s, t)).

Proof. The definition of Hs together with Equation (12) implies that

F [∗, Ein(t)] = (I − K)−1[Eout(s), Ein(t)]. (13)

By union bound over Lemmas 11 and 12, with probability at least 1 − 4/m3 the inequalities

λ = rank (I − K)−1[Eout(s), Ein(t)] = rank F [∗, Ein(t)] ≤ λ(s, t)

and

λ = rank (I − K)−1[Eout(s), Ein(t)] = rank F [∗, Ein(t)] ≥ min(k, λ(s, t))

simultaneously hold. The desired result follows. ◀
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5 Connectivity Algorithm

In this section, we present our algorithm for k-APC.
We begin by modifying the input graph G as follows. For every vertex v in G, we

introduce two new nodes vout and vin. We replace each edge (u, v) originally in G is by the
edge (uout, vin). We add k parallel edges from v to vout, and k parallel edges from vin to v,
for all u and v. We call vertices present in the graph before modification the original vertices.

Suppose G originally had n nodes and m edges. Then the modified graph has nnew = 3n

nodes and mnew = m + 2kn edges. For any original vertices s and t, edge-disjoint paths from
s to t in the new graph correspond to edge disjoint paths from s to t in the original graph.
Moreover, for any integer ℓ ≤ k, if the original graph contained ℓ edge-disjoint paths from s

to t, then the new graph contains ℓ edge-disjoint paths from s to t as well.
Thus, for any original vertices s and t, the value of min(k, λ(s, t)) remains the same in

the old graph and the new graph. So, it suffices to solve k-APC on the new graph. In this
new graph, the indegrees and outdegrees of every original vertex are equal to k. Moreover,
sets Eout(s) and Ein(t) are pairwise disjoint, over all original vertices s and t.

We make use of the matrices defined in Section 4, except now these matrices are defined
with respect to the modified graph. In particular, K, L, and R are now matrices with
dimensions mnew × mnew, mnew × nnew, and nnew × mnew respectively.

Define L̃ to be the kn × nnew matrix obtained by vertically concatenating L[Eout(s), ∗]
over all original vertices s. Similarly, define R̃ to be the nnew × kn matrix obtained by
horizontally concatenating R[∗, Ein(t)] over all original vertices t.

The Algorithm

Using the above definitions, we present our approach for solving k-APC in Algorithm 1.

Algorithm 1 Our algorithm for solving k-APC.

1: Compute the nnew × nnew matrix (I − RL)−1.
2: Compute the knnew × knnew matrix M = L̃(I − RL)−1R̃.
3: For each pair (s, t) of original vertices, compute

rank M [Eout(s), Ein(t)]

and output this as the value for min(k, λ(s, t)).

▶ Theorem 14. With probability at least 1 − 5/(mnew), Algorithm 1 correctly solves k-APC.

Proof. By Lemma 10, with probability at least 1 − 1/(mnew)4 the matrix I − K is invertible.
Going forward, we assume that I − K is invertible.

By Lemma 13, with probability at least 1 − 4/(mnew)3, we have

rank(I − K)−1[Eout(s), Ein(t)] = min(k, λ(s, t)) (14)

for any given original vertices s and t. By union bound over all n2 ≤ (mnew)2 pairs of original
vertices (s, t), we see that Equation (14) holds for all original vertices s and t with probability
at least 1 − 4/(mnew).

Since I − K is invertible, by Equation (8) and Proposition 6 we have

(I − K)−1 = (I − LR)−1 = I + L(I − RL)−1R.
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Using the above equation in Equation (14) shows that for original vertices s and t, the
quantity min(k, λ(s, t)) is equal to the rank of

(I + L(I − RL)−1R)[Eout(s), Ein(t)] = L[Eout(s), ∗](I − RL)−1R[∗, Ein(t)]

where we use the fact that I[Eout(s), Ein(t)] is the all zeroes matrix, since in the modified
graph, Eout(s) and Ein(t) are disjoint sets for all pairs of original vertices (s, t).

Then by definition of L̃ and R̃, the above equation and discussion imply that

min(k, λ(s, t)) = rank (L̃(I − RL)−1R̃)[Eout(s), Ein(t)] = rank M [Eout(s), Ein(t)]

which proves that Algorithm 1 outputs the correct answers.
A union bound over the events that I − K is invertible and that Equation (14) holds for

all (s, t), shows that Algorithm 1 is correct with probability at least 1 − 5/(mnew). ◀

We are now ready to prove our main result.

▶ Theorem 4. For any positive integer k, k-APC can be solved in Õ((kn)ω) time.

Proof. By Theorem 14, Algorithm 1 correctly solves the k-APC problem. We now argue
that Algorithm 1 can be implemented to run in Õ((kn)ω) time.

In step 1 of Algorithm 1, we need to compute (I − RL)−1.
From the definitions of R and L, we see that to compute RL, it suffices to compute the

products RiLj for each pair of indices (i, j) ∈ [k]2. The matrix RiLj is nnew × nnew, and its
rows and columns are indexed by vertices in the graph. Given vertices u and v, let E(u, v)
denote the set of parallel edges from u to v. From the definitions of the Ri and Lj matrices,
we see that for any vertices u and v, we have

(RiLj)[u, v] =
∑

e∈E(u,v)

Ri[u, e]Lj [e, v]. (15)

As noted in Section 2, for all vertices u and v we may assume that |E(u, v)| ≤ k.
For each vertex u, define the k × degout(u) matrix R′

u, with rows indexed by [k] and
columns indexed by edges exiting u, by setting

R′
u[i, e] = Ri[u, e]

for all i ∈ [k] and e ∈ Eout(u).
Similarly, for each vertex v, define the degin(v) × k matrix L′

v by setting

L′
v[e, j] = Lj [e, v]

for all e ∈ Ein(v) and j ∈ [k].
Finally, for each pair (u, v) of vertices, define R′

uv = R′
u[∗, E(u, v)] and L′

uv =
L′

v[E(u, v), ∗]. Then by Equation (15), we have

(RiLj)[u, v] = R′
uvL′

uv[i, j].

Thus, to compute the RiLj products, it suffices to build the R′
u and L′

v matrices in O (kmnew)
time, and then compute the R′

uvL′
uv products. We can do this by computing (nnew)2 products

of pairs of k × k matrices. Since for every pair of vertices (u, v), there are at most k parallel
edges from u to v, kmnew ≤ k2n2, we can compute all the RiLj products, and hence the
entire matrix RL, in Õ(n2kω) time.
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We can then compute I −RL by modifying O(kn) entries of RL. Finally, by Proposition 7
we can compute (I − RL)−1 in Õ((kn)ω) time.

So overall, step 1 of Algorithm 1 takes Õ((kn)ω) time.
In step 2 of Algorithm 1, we need to compute M = L̃(I − RL)−1R̃.
Recall that L̃ is a kn × nnew matrix. By definition, each row of L̃ has a single nonzero

entry. Similarly, R̃ is an nnew × kn matrix, with a single nonzero entry in each column.
Thus we can compute M , and complete step 2 of Algorithm 1 in Õ((kn)2) time.
Finally, in step 3 of Algorithm 1, we need to compute

rank M [Eout(s), Ein(t)] (16)

for each pair of original vertices (s, t) in the graph. In the modified graph, each original
vertex has indegree and outdegree k, so each M [Eout(s), Ein(t)] is a k × k matrix. For any
fixed (s, t), by Proposition 8 we can compute the rank of M [Eout(s), Ein(t)] in Õ(kω) time.

So we can compute the ranks from Equation (16) for all n2 pairs of original vertices (s, t)
and complete step 3 of Algorithm 1 in Õ(kωn2) time.

Thus we can solve k-APC in Õ((kn)ω) time overall, as claimed. ◀

6 Encoding Vertex Connectivities

Take a prime p = Θ̃(n5). Let K be an n × n matrix, whose rows and columns are indexed by
vertices of G. For each pair (u, v) of vertices, if (u, v) is an edge in G, we set K[u, v] to be a
uniform random element of Fp. Otherwise, K[u, v] = 0.

Recall from Section 2 that given a vertex v in G, we let Vin[v] = Vin(v) ∪ {v} be the set
consisting of v and all in-neighbors of v, and Vout[v] = Vout(v) ∪ {v} be the set consisting of
v and all out-neighbors of v. The following proposition7 is based off ideas from [7, Section 2].
A proof of this result can be found in the full version of this paper [3, Appendix B.2].

▶ Proposition 15. For any vertices s and t in G, with probability at least 1 − 3/n3, the
matrix (I − K) is invertible and we have

rank (I − K)−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge
ν(s, t) otherwise.

Proposition 15 shows that we can compute vertex connectivities in G simply by computing
ranks of certain submatrices of (I − K)−1. However, these submatrices could potentially
be quite large, which is bad if we want to compute the vertex connectivities quickly. To
overcome this issue, we show how to decrease the size of (I − K)−1 while still preserving
relevant information about the value of ν(s, t).

▶ Lemma 16. Let M be an a × b matrix over Fp. Let Γ be a (k + 1) × a matrix with uniform
random entries from Fp. Then with probability at least 1 − (k + 1)/p, we have

rank ΓM = min(k + 1, rank M).

7 The result stated here differs from a similar claim used in [1, Section 5]. See the full version of this
paper [3, Appendix B.1] for a comparison of these arguments.
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Proof. Since ΓM has k + 1 rows, rank(ΓM) ≤ k + 1.
Similarly, since ΓM has M as a factor, rank(ΓM) ≤ rank M . Thus

rank ΓM ≤ min(k + 1, rank M). (17)

So, it suffices to show that ΓM has rank at least min(k + 1, rank M).
Set r = min(k + 1, rank M). Then there exist subsets S and T of row and column indices

respectively, such that |S| = |T | = r and M [S, T ] has rank r. Now, let U be an arbitrary set
of r rows in Γ. Consider the matrix M ′ = (ΓM)[U, T ].

We can view each entry of M ′ as a polynomial of degree at most 1 in the entries of Γ.
This means that det M ′ is a polynomial of degree at most r in the entries of Γ. Moreover,
if the submatrix Γ[U, T ] = I happens to be the identity matrix, then M ′ = M [S, T ]. This
implies that det M ′ is a nonzero polynomial in the entries of Γ, because for some assignment
of values to the entries of Γ, this polynomial has nonzero evaluation det M [S, T ] ̸= 0 (where
we are using the fact that M [S, T ] has full rank).

So by the Schwartz-Zippel Lemma (Proposition 9), the matrix ΓM has rank at least r,
with probability at least 1 − r/p.

Together with Equation (17), this implies the desired result. ◀

Now, to each vertex u in the graph, we assign a (k + 1)-dimensional column vector b⃗u

and a (k + 1)-dimensional row vector c⃗u.
Let B be the (k + 1) × n matrix formed by concatenating all of the b⃗u vectors horizontally,

and let C be the n × (k + 1) matrix formed by concatenating all of the c⃗u vectors vertically.
For each pair of distinct vertices (s, t), define the (k + 1) × (k + 1) matrix

Ms,t = B[∗, Vout[s]]
(
(I − K)−1[Vout[s], Vin[t]]

)
C[Vin[t], ∗]. (18)

The following result is the basis of our algorithm for k-APVC.

▶ Lemma 17. For any vertices s and t in G, with probability at least 1 − 5/n3, we have

rank Ms,t =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

Proof. Fix vertices s and t. Then, by Proposition 15, we have

rank (I − K)−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge
ν(s, t) otherwise

with probability at least 1 − 3/n3. Assume the above equation holds.
Then, by setting Γ = B[∗, Vout[s]] and M = (I − K)−1[Vout[s], Vin[t]] in Lemma 16, we

see that with probability at least 1 − 1/n3 we have

rank B[∗, Vout[s]](I − K)−1[Vout[s], Vin(t)] =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

.

Assume the above equation holds.
Finally, by setting Γ = C⊤[∗, Vin(t)] and M = (B[∗, Vout[s]](I − K)−1[Vout[s], Vin(t)])⊤ in

Lemma 16 and transposition, we see that with probability at least 1 − 1/n3 we have

rank B[∗, Vout[s]]
(
(I − K)−1[Vout[s], Vin(t)]

)
C[Vin(t), ∗] = min(k + 1, ν(s, t) + 1)

if there is an edge from s to t, and

rank B[∗, Vout[s]]
(
(I − K)−1[Vout[s], Vin(t)]

)
C[Vin(t), ∗] = min(k + 1, ν(s, t))

otherwise. So by union bound, the desired result holds with probability at least 1 − 5/n3. ◀

ICALP 2023
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7 Vertex Connectivity Algorithm

Let A be the adjacency matrix of the graph G with self-loops. That is, A is the n × n matrix
whose rows and columns are indexed by vertices of G, and for every pair (u, v) of vertices,
A[u, v] = 1 if v ∈ Vout[u] (equivalently, u ∈ Vin[v]), and A[u, v] = 0 otherwise.

Recall the definitions of the b⃗u and c⃗u vectors, and the K, B, C and Ms,t matrices from
Section 6. For each i ∈ [k + 1], let Pi be the n × n diagonal matrix, with rows and columns
indexed by vertices of G, such that Pi[u, u] = b⃗u[i]. Similarly, let Qi be the n × n diagonal
matrix, with rows and columns indexed by vertices of G, such that Qi[u, u] = c⃗u[i].

With these definitions, we present our approach for solving k-APVC in Algorithm 2.

Algorithm 2 Our algorithm for solving k-APVC.

1: Compute the n × n matrix (I − K)−1.
2: For each pair (i, j) ∈ [k + 1]2 of indices, compute the n × n matrix

Dij = APi(I − K)−1QjA⊤.

3: For each pair (s, t) of vertices, let Fs,t be the (k + 1) × (k + 1) matrix whose (i, j) entry is
equal to Dij [s, t]. If (s, t) is an edge, output (rank Fs,t)−1 as the value for min(k, ν(s, t)).
Otherwise, output min(k, rank Fs,t) as the value for min(k, ν(s, t)).

The main idea of Algorithm 2 is to use Lemma 17 to reduce computing min(k, ν(s, t))
for a given pair of vertices (s, t) to computing the rank of a corresponding (k + 1) × (k + 1)
matrix, Ms,t. To make this approach efficient, we compute the entries of all Ms,t matrices
simultaneously, using a somewhat indirect argument.

▶ Theorem 18. With probability at least 1 − 5/n, Algorithm 2 correctly solves k-APVC.

Proof. We prove correctness of Algorithm 2 using the following claim.

▷ Claim 19. For all pairs of indices (i, j) ∈ [k + 1]2 and all pairs of vertices (s, t), we have

Ms,t[i, j] = Dij [s, t],

where Dij is the matrix computed in step 2 of Algorithm 2.

Proof. By expanding out the expression for Dij from step 2 of Algorithm 2, we have

Dij [s, t] =
∑
u,v

A[s, u]Pi[u, u]
(
(I − K)−1[u, v]

)
Qj [v, v]A[v, t],

where the sum is over all vertices u, v in the graph (here, we use the fact that Pi and Qj are
diagonal matrices). By the definitions of A, the Pi, and the Qj matrices, we have

Dij [s, t] =
∑

u∈Vout[s]
v∈Vin[t]

b⃗u[i]
(
(I − K)−1[u, v]

)
c⃗v[j]. (19)

On the other hand, the definition of Ms,t from Equation (18) implies that

Ms,t[i, j] =
∑

u∈Vout[s]
v∈Vin[t]

B[i, u]
(
(I − K)−1[u, v]

)
C[v, j].
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Since B[i, u] = b⃗u[i] and C[v, j] = c⃗v[j], the above equation and Equation (19) imply that

Ms,t[i, j] = Dij [s, t]

for all (i, j) and (s, t), as desired. ◁

By Claim 19, the matrix Fs,t computed in step 3 of Algorithm 2 is equal to Ms,t. So by
Lemma 17, for any fixed pair (s, t) of vertices we have

rank Fs,t =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

(20)

with probability at least 1 − 5/n3. Then by a union bound over all pairs of vertices (s, t), we
see that Equation (20) holds for all pairs (s, t), with probability at least 1 − 5/n.

Assume this event occurs. Then if (s, t) is an edge, by Equation (20) we correctly return

(rank Fs,t) − 1 = min(k + 1, ν(s, t) + 1) − 1 = min(k, ν(s, t))

as our answer for this pair.
Similarly, if (s, t) is not an edge, by Equation (20) we correctly return

min(k, rank Fs,t) = min(k, k + 1, ν(s, t)) = min(k, ν(s, t))

as our answer for this pair. This proves the desired result. ◀

With Theorem 18 established, we can prove our result for vertex connectivities.

▶ Theorem 5. For any positive integer k, k-APVC can be solved in Õ(k2nω) time.

Proof. By Theorem 18, Algorithm 2 correctly solves the k-APVC problem. We now argue
that Algorithm 2 can be implemented to run in Õ(k2nω) time.

In step 1 of Algorithm 2, we need to compute (I − K)−1. Since K is an n × n matrix, by
Proposition 7 we can complete this step in Õ(nω) time.

In step 2 of Algorithm 2, we need to compute Dij for each pair (i, j) ∈ [k + 1]2. For each
fixed pair (i, j), the Dij matrix is defined as a product of five n × n matrices whose entries
we know, so this step takes Õ(k2nω) time overall.

In step 3 of Algorithm 2, we need to construct each Fst matrix, and compute its rank.
Since each Fst matrix has dimensions (k + 1) × (k + 1) and its entries can be filled in simply
by reading entries of the Dij matrices we have already computed, by Proposition 8 this step
can be completed in Õ(kωn2) time.

By adding up the runtimes for each of the steps and noting that k ≤ n, we see that
Algorithm 2 solves k-APVC in Õ(k2nω) time, as claimed. ◀
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