
On the Limits of Decision:
the Adjacent Fragment of First-Order Logic
Bartosz Bednarczyk #Ñ

Computational Logic Group, Technische Universität Dresden, Germany
Institute of Computer Science, University of Wrocław, Poland

Daumantas Kojelis #Ñ

Department of Computer Science, University of Manchester, UK

Ian Pratt-Hartmann # Ñ

Department of Computer Science, University of Manchester, UK
Institute of Computer Science, University of Opole, Poland

Abstract
We define the adjacent fragment AF of first-order logic, obtained by restricting the sequences of
variables occurring as arguments in atomic formulas. The adjacent fragment generalizes (after a
routine renaming) two-variable logic as well as the fluted fragment. We show that the adjacent
fragment has the finite model property, and that its satisfiability problem is no harder than for
the fluted fragment (and hence is Tower-complete). We further show that any relaxation of the
adjacency condition on the allowed order of variables in argument sequences yields a logic whose
satisfiability and finite satisfiability problems are undecidable. Finally, we study the effect of the
adjacency requirement on the well-known guarded fragment (GF) of first-order logic. We show that
the satisfiability problem for the guarded adjacent fragment (GA) remains 2ExpTime-hard, thus
strengthening the known lower bound for GF .

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases decidability, satisfiability, variable-ordered logics, complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.111

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.03133 [5]

Funding Bartosz Bednarczyk: supported by the ERC Consolidator Grant No. 771779 (DeciGUT).
Ian Pratt-Hartmann: supported by the NCN grant 2018/31/B/ST6/03662.

Acknowledgements B. Bednarczyk thanks R. Jaakkola for many inspiring discussions.

1 Introduction

The quest to find fragments of first-order logic for which satisfiability is algorithmically
decidable has been a central undertaking of mathematical logic since the appearance of
Hilbert and Ackermann’s Grundzüge der theoretischen Logik [15, 16] almost a century ago.
The great majority of such fragments so far discovered, however, belong to just three families:
(i) quantifier prefix fragments [8], where we are restricted to prenex formulas with a specified
quantifier sequence; (ii) two-variable logics [13], where the only logical variables occurring
as arguments of predicates are x1 and x2; and (iii) guarded logics [1], where quantifiers are
relativized by atomic formulas featuring all the free variables in their scope.

There is, however, a fourth family of decidable logics, originating in the work of
W.V.O. Quine [33], and based on restricting the allowed sequences of variables occurring
as arguments in atomic formulas. This family of logics, which includes the fluted fragment,

EA
T

C
S

© Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 111; pp. 111:1–111:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartosz.bednarczyk@cs.uni.wroc.pl
https://bartoszjanbednarczyk.github.io/
https://orcid.org/0000-0002-8267-7554
mailto:daumantas.kojelis@manchester.ac.uk
https://daumantaskojelis.github.io/
https://orcid.org/0000-0002-1632-9498
mailto:ian.pratt@manchester.ac.uk
https://www.cs.man.ac.uk/~ipratt/
https://orcid.org/0000-0003-0062-043X
https://doi.org/10.4230/LIPIcs.ICALP.2023.111
https://arxiv.org/abs/2305.03133
https://iccl.inf.tu-dresden.de/web/DeciGUT/en
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

111:2 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

the ordered fragment and the forward fragment, has languished in relative obscurity. In this
paper, we investigate the potential for obtaining decidable fragments in this way, identifying
a new fragment, which we call the adjacent fragment. This fragment not only includes the
fluted, ordered and forward fragments, but also subsumes, in a sense we make precise, the
two-variable fragment. We show that the satisfiability problem for the adjacent fragment is
decidable, and determine bounds on its complexity.

To explain how restrictions on argument orderings work, we consider presentations of first-
order logic without equality over purely relational signatures, employing individual variables
from the alphabet {x1, x2, x3, . . .}. Any atomic formula in this logic has the form p(x̄), where p
is a predicate of arity m ≥ 0 and x̄ is a word over the alphabet of variables of length m. Call
a first-order formula φ index-normal if, for any quantified sub-formula Qxk ψ of φ, ψ is a
Boolean combination of formulas that are either atomic with free variables among x1, . . . , xk,
or have as their major connective a quantifier binding xk+1. By re-indexing variables, any
first-order formula can easily be written as a logically equivalent index-normal formula.
In the fluted fragment, denoted FL, as defined by W. Purdy [32], we confine attention
to index-normal formulas, but additionally insist that any atom occurring in a context in
which xk is quantified have the form p(xk−m+1 · · ·xk), i.e. p(x̄) with x̄ a suffix of x1 · · ·xk.
In the ordered fragment, due to A. Herzig [14], by contrast, we insist that x̄ be a prefix of
x1 · · ·xk. In the forward fragment [2], we insist only that x̄ be an infix of x1 · · ·xk.

All these logics have the finite model property, and hence are decidable for satisfiability.
Denoting by FLk the sub-fragment of FL involving at most k variables (free or bound),
the satisfiability problem for FLk is known to be in (k−2)-NExpTime for all k ≥ 3,
and ⌊k/2⌋-NExpTime-hard for all k ≥ 2 [30]. Thus, satisfiability for the whole fluted
fragment is Tower-complete, in the system of trans-elementary complexity classes due
to [35]. By contrast, the satisfiability problem for the ordered fragment is known to be
PSpace-complete [14, 18]. On the other hand, the apparent liberalization afforded by the
forward fragment yields no difference in expressive power [4], and moreover there is a
polynomial time satisfiability-preserving reduction of the forward fragment to the fluted
fragment [2]. The term “fluted” originates with Quine [34], and presumably invites us to
imagine the atoms in formulas aligned in such a way that the variables form columns. Note
that none of these fragments can state that a relation is reflexive or symmetric (see [4] for a
discussion of their expressivity).

Say that a word x̄ over the alphabet {x1, . . . , xk} (k ≥ 0) is adjacent if the indices of
neighbouring letters differ by at most 1. For example, x3x2x1x2x2x2x3x4x3 is adjacent, but
x1x3x2 is not. The adjacent fragment, denoted AF , is analogous to the fluted, ordered and
forward fragments, but we allow any atom p(x̄) to occur in a context where xk is available
for quantification as long as x̄ is an adjacent word over {x1, . . . , xk}. (A formal definition is
given in Sec. 2.) As a simple example, the formula

∀x1∀x2∀x3∃x4∀x5
(
p(x1x2x3x2x3x4x5)→ p(x1x2x3x4x3x4x5)

)
(1)

is a validity ofAF , as can be seen by assigning x4 the same value as x2. Evidently,AF includes
the fluted, ordered and forward fragments; the inclusion is strict, since the formulas ∀x1 r(x1x1)
and ∀x1x2(r(x1x2)→ r(x2x1)), stating that r is reflexive and symmetric, respectively, are
in AF . As every word over {x1, x2} is adjacent, we may transform any formula of the
two-variable fragment without equality, FO2, in polynomial time, to a logically equivalent
formula of AF . The converse is true over signatures with predicates of arity at most two.
Since the system of basic multimodal propositional logic is, under the standard translation
to first-order logic, included within FO2, this logic is similarly subsumed by AF , as indeed is
its notational variant, the description logic ALC (see, e.g. [17]).

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:3

We show that the satisfiability problem for the restriction of the adjacent fragment to
formulas involving at most k variables (free or bound) is in (k−2)-NExpTime for all k ≥ 3 –
and hence no more difficult than the k-variable fluted fragment, which it properly contains.
The critical step in our analysis is a lemma on the combinatorics of strings (Theorem 3.1),
which may be of independent interest. We also consider minimal relaxations of adjacency
involving the fragment with just three variables, and show that, in all cases of interest, the
satisfiability and finite satisfiability problems for the resulting logics are undecidable. Thus,
adjacency is as far as we can go in seeking decidable fragments based on straightforward
argument ordering restrictions of the type envisaged by Quine.

The adjacent fragment is incomparable in expressive power to the guarded fragment.
Moreover, the satisfiability problem for the union of GF and AF is undecidable, as one can use
adjacent formulas to introduce any k-ary universal relations, which makes GF as expressive
as first-order logic. Therefore, we study the effect of the adjacency restriction on GF . We
investigate the complexity of satisfiability for the resulting logic, GA, showing that the
problem is 2ExpTime-complete, thus sharpening the existing 2ExpTime-hardness proof
for GF [11].

2 Preliminaries

Let m and k be non-negative integers. For any integers i and j, we write [i, j] to denote the set
of integers h such that i ≤ h ≤ j. A function f : [1,m]→ [1, k] is adjacent if |f(i+1)−f(i)| ≤ 1
for all i (1 ≤ i < m). We write Am

k to denote the set of adjacent functions f : [1,m]→ [1, k].
Since [1, 0] = ∅, we have A0

k = {∅}, and Am
0 = ∅ if m > 0. Let A be a non-empty set. A word

ā over the alphabet A is simply a tuple of elements from A; we alternate freely in the sequel
between these two ways of speaking as the context requires. Accordingly, Ak denotes the set
of words over A having length exactly k, and A∗ is the set of all finite words over A. If ā ∈ A∗,
denote the length of ā by |ā|, and the reversal of ā by ā−1. Any function f : [1,m]→ [1, k]
(adjacent or not) induces a natural map from Ak to Am defined by āf = af(1) · · · af(m),
where ā = a1 · · · ak. If f ∈ Am

k (i.e. if f is adjacent), we may think of āf as the result of
a “walk” on the tuple ā, starting at the element af(1), and moving left, right, or remaining
stationary according to the sequence of values f(i+ 1)−f(i) (1 ≤ i < m).

For any k ≥ 0, denote by xk the fixed word x1 · · ·xk (if k = 0, this is the empty
word). A k-atom is an expression p(xf

k), where p is a predicate of some arity m ≥ 0, and
f : [1,m] → [1, k]. Thus, in a k-atom, each argument is a variable chosen from xk. If f
is adjacent, we speak of an adjacent k-atom. Thus, in an adjacent k-atom, the indices of
neighbouring arguments differ by at most one. When k ≤ 2, the adjacency requirement is
vacuous, and in this case we prefer to speak simply of k-atoms. Proposition letters (predicates
of arity m = 0) count as (adjacent) k-atoms for all k ≥ 0, taking f to be the empty function.
When k = 0, we perforce have m = 0, since otherwise, there are no functions from [1,m]
to [1, k]; thus the 0-atoms are precisely the proposition letters.

We define the sets of first-order formulas AF [k] by simultaneous structural induction:
1. every adjacent k-atom is in AF [k];
2. AF [k] is closed under Boolean combinations;
3. if φ is in AF [k+1], ∃xk+1 φ and ∀xk+1 φ are in AF [k].
Now let AF =

⋃
k≥0AF

[k] and define AFk to be the set of formulas of AF featuring no
variables other than xk, free or bound. We call AF the adjacent fragment and AFk the
k-variable adjacent fragment. Note that formulas of AF contain no individual constants,
function symbols or equality. The primary objects of interest here are the languages AF

ICALP 2023

111:4 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

and AFk; however, the sets of formulas AF [k] play an important auxiliary role in their
analysis. Thus, for example, formula (1) is in AFk for all k ≥ 5, but in AF [k] only for k = 0.
On the other hand, the quantifier-free formulas of AF [k] and AFk are the same.

We silently assume the variables xk = x1 · · ·xk to be ordered in the standard way. That
is: if φ is a formula of AF [k], A a structure interpreting its signature, and ā = a1 · · · ak ∈ Ak,
we say simply that ā satisfies φ in A, and write A |= φ[ā] to mean that ā satisfies φ in A

under the assignment xi ← ai (1 ≤ i ≤ k). (This does not necessarily mean that each of the
variables of xk actually appears in φ.) If φ is true under all assignments in all structures, we
write |= φ; the notation φ |= ψ means the same as |= φ→ ψ (i.e. variables are consistently
instantiated in φ and ψ). The notation φ(v̄), where v̄ = v1 · · · vk are variables, will always
be used to denote the formula that results from substituting vi for xi (1 ≤ i ≤ k) in φ. We
write ∀xk;ℓ in place of ∀xk∀xk+1 · · · ∀xℓ (and just ∀xℓ if k = 1). A sentence is a formula
with no free variables. Necessarily, all formulas of AF [0] are sentences. For a sentence φ we
write simply A |= φ to mean that φ is true in A. We call the set of predicates used in φ the
signature of φ (denoted sig(φ)). By routine renaming of variables we establish:

▶ Lemma 2.1. Every FO2-formula is logically equivalent to an AF-formula. The converse
holds for AF-formulas featuring predicates of arity at most two.

We adapt the standard notion of (atomic) k-types for the fragments studied here. Fix
some signature σ. An adjacent k-literal over σ is an adjacent k-atom or its negation, featuring
a predicate in σ. An adjacent k-type over σ is a maximal consistent set of adjacent k-literals
over σ. Reference to σ is suppressed where clear from context. We use the letters ζ and η

to range over adjacent k-types for various k. We denote by Atpσ
k the set of all adjacent

k-types over σ. For finite σ, we identify members of Atpσ
k with their conjunctions, and treat

them as (quantifier-free) AFk-formulas, writing ζ instead of
∧
ζ. When k ≤ 2, the adjacency

requirement is vacuous, and in this case we shall simply speak simply of k-types. It is obvious
that every quantifier-free AFk-formula χ is logically equivalent to a disjunction of adjacent
k-types, in essence the adjacent disjunctive normal form of χ. In particular, if χ is satisfiable,
then there is an adjacent k-type which entails it. If A is a σ-structure and ā a k-tuple of
elements from A, there is a unique adjacent k-type ζ such that A |= ζ[ā]; we denote this
adjacent k-type by atpA[ā], and call it the adjacent type of ā in A. If τ ⊆ σ, we use atpA

τ [ā]
to denote the adjacent type of ā in A restricted to predicates from τ . It is not required that
the elements ā be distinct. Again, if k ≤ 2, adjacency is vacuous, and we write tpA[ā] rather
than atpA[ā], and refer to tpA[ā] as the type of ā in A.

Since adjacent formulas do not contain equality, we may freely duplicate elements in their
models. Let B be a σ-structure, and I a non-empty set of indices. We define the structure
B × I over the Cartesian product B × I by setting, for any p ∈ σ of arity m, and any
m-tuples b1 · · · bm from B and i1 · · · im from Im, B× I |= p[⟨b1, i1⟩ · · · ⟨bm, im⟩] if and only
if B |= p[b1 · · · bm]. By routine structural induction:

▶ Lemma 2.2. Let ψ be an equality-free first-order formula all of whose free variables occur in
xk, B a structure interpreting the signature of ψ, and I a non-empty set. Then, for any tuples
b̄ = b1 · · · bk from B and i1 · · · ik from I, B |= ψ[b̄] if and only if B×I |= ψ[⟨b1, i1⟩ · · · ⟨bk, ik⟩].

The following combinatorial lemma allows us to extend the technique of “circular witness-
ing” [12], frequently used in the analysis of two-variable logics, to the languages AFk.

▶ Lemma 2.3. For any integer k > 0 there is a set J with |J | = (k2 + k + 1)k+1 and a
function g : Jk → J such that, for any tuple t̄ ∈ Jk consisting of the elements t1, . . . , tk in
some order: (i) g(t̄) is not in t̄; (ii) if t̄′ ∈ Jk consists of the elements {t2, . . . , tk, g(t̄)} in
some order, then g(t̄′) is not in t̄ either.

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:5

3 Primitive generators of words

The upper complexity bounds obtained below depend on an observation concerning the
combinatorics of words, which may be of independent interest. For words ā, c̄ ∈ A∗ with
|ā| = k and |c̄| = m, say that ā generates c̄ if c̄ = āf for some surjective function f ∈ Am

k . As
explained above, it helps to think of āf as the sequence of letters encountered on an m-step
“walk” backwards and forwards on the tuple ā, with f(i) giving the index of our position in ā
at the ith step. The condition that f is adjacent ensures that we never change position by
more than one letter at a time; the condition that f is surjective ensures that we visit every
position of ā. We may picture a walk as a piecewise linear function, with the generated word
superimposed on the abscissa and the generating word on the ordinate, c.f. Figure 1.

c̄

ā
cb

ad
e

fb
a

a b c b a a a d e f e d a d e f b a b f

Figure 1 Generation of abcbaaadefedadefbabf from cbadefba.

Every word generates both itself and its reversal. Moreover, if ā generates c̄, then |c̄| ≥ |ā|;
in fact, ā and ā−1 are the only words of length |ā| generated by ā. Finally, generation is
transitive: if ā generates b̄ and b̄ generates c̄, then ā generates c̄. We call ā primitive if it is
not generated by any word shorter than itself, equivalently, if it is generated only by itself
and its reversal. For example, babcd and abcbcd are not primitive, because they are generated
by abcd; but abcbda is primitive. Note that an infix (factor) of a primitive word need not
be primitive. Define a primitive generator of c̄ to be a generator of c̄ that is itself primitive.
From the foregoing remarks, it is obvious that every word c̄ has some primitive generator
ā, and indeed, ā−1 as well, since the reversal of a primitive generator is clearly a primitive
generator. The following result, by contrast, is anything but obvious. Notwithstanding the
naturalness of the question it answers, we believe it to be new. Since it is concerned only
with the combinatorics of strings, however, we refer the reader to [29] for the proof.

▶ Theorem 3.1. The primitive generator of any word is unique up to reversal.

Remarkably, while primitive generators are unique up to reversal, modes of generation are
not. The word c̄ = abcbcbd has primitive generator ā = abcbd. But there are distinct surjective
functions f, g ∈ A7

5 such that c̄ = āf = āg, as is easily verified. Define the primitive length of
any word c̄ to be the length of any primitive generator of c̄. By Theorem 3.1, this notion is
well-defined; it will play a significant role in our analysis of the adjacent fragment. Obviously,
the primitive length of c̄ is at most |c̄|, but will be strictly less if c̄ is not primitive.

Let χ be a quantifier-free AFℓ-formula, and let g ∈ Aℓ
k. We denote by χg the formula

χ(xg(1) · · ·xg(ℓ)). We claim that χg ∈ AFk. Indeed, any atom α appearing in χ is of the
form p(xf

k), where p is a predicate of some arity m and f ∈ Am
ℓ . But then the corresponding

atom in χg has the form β := α(xg(1) · · ·xg(ℓ)) = p(xg(f(1)) · · ·xg(f(m))) = p(x(g◦f)
k). Since

the composition of adjacent functions is adjacent, the claim follows. The following (almost
trivial) lemma is useful when manipulating adjacent formulas. Recall in this regard that any
function g ∈ Aℓ

k maps a k-tuple ā over some set to an ℓ-tuple āg over the same set.

ICALP 2023

111:6 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

▶ Lemma 3.2. Let χ be a quantifier-free formula of AFℓ, and g ∈ Aℓ
k. For any sig(χ)-

structure A and any ā ∈ Ak, we have A |= χg[ā] if and only if A |= χ[āg].

Proof. We may assume without loss of generality that χ = p(xf
k) is atomic, with f ∈ Am

ℓ ;
the general case follows by an easy structural induction. But then, writing ā = a1 · · · am,
both sides of the bi-conditional amount to the statement ag(f(1)) · · · ag(f(m)) ∈ pA. ◀

The adjacent type of any tuple in A is thus completely determined by that of its primitive
generator. Indeed, let A be a σ-structure, and ā an ℓ-tuple from A. Then ā has a primitive
generator, say b̄ of length k ≤ ℓ, with ā = b̄g for some surjective g ∈ Aℓ

k. Now consider any
atomic AFℓ-formula α. By Lemma 3.2 we have A |= α[ā] if and only if A |= αg[b̄].

When evaluating AFℓ-formulas, for fixed ℓ, we can disregard any tuples whose primitive
length is greater than ℓ. Indeed, consider a pair of σ-structures A and A′ over a common do-
main A. We write A ≈ℓ A

′, if, for any predicate p (of any arity m ≥ 0), and any m-tuple ā
from A of primitive length at most ℓ, ā ∈ pA if and only if ā ∈ pA′ . That is, A ≈ℓ A′ just
in case pA and pA

′ agree on all those m-tuples whose primitive length is at most ℓ. The
following may be proved by structural induction, using Lemma 3.2.

▶ Lemma 3.3. Let φ be an AFℓ-sentence, and suppose A and A′ are sig(φ)-structures over
a common domain A such that A ≈ℓ A

′. Then A |= φ⇒ A′ |= φ.

Proof. Let ψ be a formula of AFℓ (possibly featuring free variables), and let k (0 ≤ k ≤ ℓ)
be such that ψ ∈ AF [k]. (We may as well take the smallest such k.) We claim that, for any
k-tuple of elements ā, A |= ψ[ā] if and only if A′ |= ψ[ā]. To see this, suppose first that ψ is
atomic. We may write ψ := p(xf

k), where p is a predicate (of arity, say, m), and f ∈ Am
k . If

ā is a k-tuple of elements from A, then A |= ψ[ā] if and only if āf ∈ pA. But the primitive
length of āf is certainly at most k = |ā|. This proves our claim for all k (0 ≤ k ≤ ℓ) and for
all atomic ψ ∈ AF [k]. The general case follows simply by structural induction. The statement
of the lemma is the special case where ψ has no free variables. ◀

In view of Lemma 3.3, when considering models of AFℓ-sentences, it will be useful to
take the extensions of predicates (of whatever arity) to be undefined in respect of tuples
whose primitive length is greater than ℓ, since these cannot affect the outcome of semantic
evaluation. That is, where ℓ is clear from context, we typically suppose any model A of φ
to determine whether ā ∈ pA for any m-ary predicate p and any m-tuple ā of primitive
length at most ℓ; but with respect to m-tuples ā having greater primitive length, A remains
agnostic. To make it clear that the structure A need not be fully defined, we speak of such
a structure A as a layered structure, and we refer to ℓ as its primitive length. Notice that
the notion of primitive length is independent of the arities of the predicates interpreted.
A layered structure A may have primitive length, say 3, but still interpret a predicate p
of arity, say, 5. In this case, it is determined whether A |= p[babcc], because the primitive
generator of babcc is abc; however, it will not be determined whether A |= p[abcab], because
abcab is primitive.

One of the intriguing aspects of layered structures is that they allow us to build up
models of AF-formulas layer by layer. Suppose A has primitive length k; and we wish to
construct a layered structure A+ of primitive length k+1 over the same domain A, agreeing
with the assignments made by A. Clearly, it suffices to fix the adjacent type of each primitive
(k+1)-tuple b̄ from A. To fix the adjacent type of b̄ – and hence that of its reversal, b̄−1 – we
consider each predicate p in turn – of arity, say, m – and decide, for any m-tuple c̄ from A

whose primitive generator is b̄, whether A |= p[c̄]. Now repeat this process for all pairs of
mutually inverse primitive words (b̄, b̄−1) from A having primitive length k+1. Since every

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:7

tuple c̄ considered for inclusion in the extension of some predicate has primitive length k+1,
these assignments will not clash with any previously made in the original structure A.
Moreover, since, by Theorem 3.1, every m-tuple c̄ assigned in this process has a unique
primitive generator b̄ (up to reversal), these assignments will not clash with each other.
Thus, to increment the primitive length of A, one takes each inverse pair (b̄, b̄−1) of primitive
(k + 1)-tuples in turn, and fixes the adjacent type of each b̄ consistently with the existing
assignments of all tuples generated by proper infixes of b̄, as given in the original structure A.

We finish this section with an easy technical observation that will be needed in the sequel.
Denote by A⃗m

k the set of all functions f ∈ Am
k such that f(m) = k. Thus, if f ∈ A⃗m

k is used
to define a walk of length m on some word ā of length k, then the walk in question ends at
the final position of ā.

▶ Lemma 3.4. Let c̄ be a word of length m ≥ 0 over some alphabet A, and d an element
of A that does not appear in c̄. If c̄d is not primitive, then neither is c̄. In fact, there is a
word ā of length k < m and a function f ∈ A⃗m

k such that āf = c̄.

Proof. Suppose c̄d = b̄g for some word b̄ of length k + 1 ≤ m and some surjective g ∈ Am+1
k+1 .

Since d does not occur in c̄, it is immediate that d occupies either the first or last position in
b̄ for, otherwise, it would be encountered again in the entire traversal of b̄ (as g is adjacent
and surjective). By reversing b̄ if necessary, assume the latter, so that we may write b̄ = ād,
with g(m+ 1) = k + 1. By adjacency, g(m) = k, so that setting f = g \ {⟨m+ 1, k + 1⟩}, we
have the required ā and f . ◀

Finally, we remark that, if f ∈ A⃗m
k , then the function f+ = f ∪ ⟨m+ 1, k + 1⟩ satisfies

f+ ∈ A⃗m+1
k+1 . That is, we can extend f by setting f(m+ 1) = k + 1, retaining adjacency.

4 Upper bounds for AF and AFk

In this section, we establish a small model property for each of the fragments AFk with
k ≥ 3. Define the function t(k, n) inductively by t(0, n) = n and t(k+1, n) = 2t(k,n). We show
that, for some fixed polynomial p, if φ is a satisfiable formula of AFk, then φ is satisfied
in a structure of size at most t(k − 2, p(||φ||)). We proceed by induction, establishing first
the base case for k = 3, and then reducing the case k+1 to the case k. It follows that the
satisfiability problem (= finite satisfiability problem) for AFk is in (k−2)-NExpTime for
all k ≥ 3. The best lower complexity bound is ⌊k/2⌋-NExpTime-hard, from the k-variable
fluted fragment [30]. For k ≤ 2, the adjacency restriction has no effect on the complexity of
satisfiability. Thus satisfiability for AF2 is NExpTime-complete, while for AF1 and AF0 it
is NPTime-complete. We begin by establishing a normal form lemma for AF .

▶ Lemma 4.1. Let φ be a sentence of AFℓ+1, where ℓ ≥ 2. We can compute, in polynomial
time, an AFℓ+1-formula ψ satisfiable over the same domains as φ, of the form∧

i∈I

∀xℓ∃xℓ+1 γi ∧ ∀xℓ+1 δ, (2)

where I is a finite index set, the formulas γi and δ are quantifier-free.

Let φ be a normal-form AFℓ+1-formula as given in (2), over signature σ. Recall the
operation ·f on quantifier-free adjacent formulas employed in Lemma 3.2, as well as the sets
of functions A⃗ℓ

k employed in Lemma 3.4. For any f ∈ A⃗ℓ
k, we continue to write f+ for the

function (in A⃗ℓ+1
k+1) extending f by setting f(ℓ+ 1) = k + 1. Now define the adjacent closure

of φ, denoted φ#, to be:

ICALP 2023

111:8 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

∧
i∈I

ℓ−1∧
k=1

∧
f∈A⃗ℓ

k

∀xk∃xk+1 γ
f+

i ∧
ℓ∧

k=1

∧
g∈Aℓ+1

k

∀xk δ
g.

Observe that the conjunctions for the ∀ℓ∃-formulas range over A⃗ℓ
k, while the conjunctions for

the purely universal formula range over the whole of Aℓ+1
k . Up to trivial logical rearrangement

and re-indexing of variables, φ# is actually a normal-form AFℓ-formula. In effect, φ# is the
result of identifying various universally quantified variables in φ in a way which preserves
adjacency. The following lemma is therefore immediate.

▶ Lemma 4.2. Let φ ∈ AFℓ+1 be in normal-form. Then φ |= φ#.

The following notation will be useful. If χ is any quantifier-free AFℓ+1-formula, we denote
by χ−1 the formula χ(xℓ+1, . . . , x1) obtained by simultaneously replacing each variable xh

by xℓ−h+2 (1 ≤ h ≤ ℓ+ 1); and we denote by χ̂ the formula χ ∧ χ−1. Obviously χ−1 and χ̂

are also in AFℓ+1. If η is an adjacent ℓ-type, we denote by η+ the quantifier-free AFℓ+1-
formula η(x2, . . . , xℓ+1) obtained by incrementing the index of each variable. Finally, if χ is a
quantifier-free AFℓ+1-formula over some signature σ (which we take to be given by context),
we denote by χ◦ the quantifier-free AFℓ-formula

∨
{η ∈ Atpσ

ℓ | χ ∧ η+ is consistent}. The
intuition in this last case is that, if a is an element and ā an ℓ-tuple of elements such that aā
satisfies χ in some structure, then χ◦ is the strongest statement that follows regarding ā.

Now we are in a position to tackle the main task of this section, namely, to bound
the complexity of the satisfiability problem for AFk (k ≥ 3). Certainly the satisfiability
problem for AF2 is in NExpTime, since any normal-form AF2-formula is in FO2. Here,
we strengthen that result to AF3 (which will sharpen the bound of Theorem 4.9 by one
exponential). The proof is similar to an analogous result for the three-variable fluted fragment,
FL3 [30, Lemma 4.5]

Let σ be a relational signature. If π is a 1-type over σ, define the 2-type π2, over the
same signature, to be {λ | λ a literal in AF [2] s.t. λ(x1, x1) ∈ π}. The intuition here is that
if π is the type of an element a in some structure, then π2 is the type of the pair aa. A
connector-type (over σ) is a set ω of 2-types over σ subject to the condition that there exists
some 1-type π over σ such that π2 ∈ ω and ζ |= π for all ζ ∈ ω. This 1-type π is clearly
unique, and we denote it by tp(ω). If A is any structure interpreting σ and a ∈ A, then a

defines a connector-type ω over σ in a natural way by setting ω = {tpA[a, b] | b ∈ A}. We
refer to ω as the connector-type of a in A, and denote it conA[a]. It follows immediately
from the above definitions that tp(conA[a]) = tpA[a]. When speaking of connector-types, we
suppress reference to σ if irrelevant or clear from context.

Let φ be a normal-form formula of AF3, as given in (2), with ℓ = 2, with σ = sig(φ). In
the sequel we refer freely to the subformulas γi (i ∈ I) and δ of φ. Say that a connector-type ω
is compatible with φ if the following conditions hold:
L∃1: for all i ∈ I, there exists η ∈ ω s.t. η |= γi(x1, x1, x2).
L∃2: for all ζ such that ζ−1 ∈ ω and all i ∈ I, there exists η ∈ ω such that the AF3-formula

ζ ∧ η+ ∧ γi ∧ δ̂ is consistent;
L∀1: for all η ∈ ω and all f ∈ A3

2, η |= δf ;
L∀2: for all ζ such that ζ−1 ∈ ω and all η ∈ ω, the AF3-formula ζ ∧ η+ ∧ δ̂ is consistent.

The proofs of Lemmas 4.3–4.5 are straightforward and will be omitted.

▶ Lemma 4.3. If φ is a normal-form AF3-formula, A |= φ and a ∈ A, then conA[a] is
compatible with φ.

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:9

A set Ω of connector-types is said to be coherent if the following conditions hold:
G∃: for all ω ∈ Ω and all ζ ∈ ω, there exists ω′ ∈ Ω such that ζ−1 ∈ ω′;
G∀: for all ω, ω′ ∈ Ω, there exists a 2-type ζ such that ζ ∈ ω and ζ−1 ∈ ω′.

▶ Lemma 4.4. Let A be a structure. Then Ω = {conA[a] | a ∈ A} is coherent.
Define a certificate for φ to be a non-empty, coherent set of connector-types, all of which are
compatible with φ.

▶ Lemma 4.5. Any satisfiable normal-form AF3-formula has a certificate Ω such that
both |Ω| and |

⋃
Ω| are 2O(||φ||).

We are now in a position to obtain a bound on the size of models of AF3-formulas.

▶ Lemma 4.6. Let φ be a normal-form AF3-formula over a signature σ. If φ is satisfiable,
then it has a model of size 2O(||φ||).

Proof. We may assume without loss of generality that σ features no proposition letters.
Let φ be as given by (2). By Lemma 4.5, φ has a certificate Ω of cardinality at most 2O(||φ||);
moreover the set of 2-types T occurring anywhere in Ω is 2O(||φ||). Let H = {0, 1, 2}, let I
be the index set occurring in φ, let J be a set of cardinality 343 = 73, and let g : J2 → J a
function satisfying the conditions of Lemma 2.3 with k = 2. Defining A = Ω×T×H×I×J , we
see that |A| is 2O(||φ||), as required by the lemma. We write any element a ∈ A as (ω, ζ, h, i, j).
We shall construct a layered model A |= φ of primitive length 3 over this domain, proceeding
layer by layer. In the sequel, bear in mind that a pair or triple of elements is primitive if and
only if those elements are distinct.

Stage 1. We set the 1-type of any a = (ω, ζ, h, i, j) to be tpA[a] = tp(ω). Clearly, all these
determinations can be made independently, since σ features no proposition letters. At this
point, we have a layered structure of primitive length 1.

Stage 2. Now consider any a = (ω, ζ, h, i, j) ∈ A and any η ∈ ω. By (G∃), there exists ωη ∈
Ω such that η−1 ∈ ωη. For each i′ ∈ I and j′ ∈ J set tpA[a, ai′,j′] = η, where ai′,j′ denotes
the element (ωη, η, h+1, i′, j′). (Here the addition in “h+1” is taken modulo 3.) The index η
ensures that the ai′,j′ are chosen to be distinct for distinct η ∈ ω. Moreover, the index h+1
ensures that this process can be carried out for every a ∈ A without danger of clashes. (This
is the familiar technique of “circular witnessing” [12].) Finally, suppose a = (ω, ζ, h, i, j)
and a′ = (ω′, ζ ′, h′, i′, j′) are distinct elements of A for which tpA[a, a′] has not yet been
defined. By (G∀), there exists η ∈ ω such that η−1 ∈ ω′, and we set tpA[a, a′] = η. At
the end of this process, all 1- and 2-types have been defined, and we thus have a layered
structure of primitive length 2. From the foregoing construction, if a = (ω, ζ, h, i, j) ∈ A
and η ∈ ω, then there exists a constructor-type ω′ such that tpA[a, b] = η for each b ∈ A
of the form (ω′, η, h+ 1, i′, j′) (where i′ ∈ I, j′ ∈ J); moreover, for all a = (ω, ζ, h, i, j) and
b = (ω′, ζ ′, h′, i′, j′) with tpA[a, b] = η, we are guaranteed that η ∈ ω and η−1 ∈ ω′. We
remark that, in particular, conA[a] = ω. It follows from L∃1 that, for every a ∈ A and every
i ∈ I, there exists b ∈ A such that γi[a, a, b]. Another way of saying this is that, for every
pair of elements a1, a2 whose primitive length is 1 (i.e. a1 = a2), A provides a witness for the
formula ∃x3 γi. Likewise, it follows from L∀1 that, for every triple ā whose primitive length is
either 1 or 2, A |= δ[ā]. Indeed, if ā = b̄f where |b̄| ≤ 2, we have A |= δf [b̄], whence A |= δ[ā]
by Lemma 3.2.

ICALP 2023

111:10 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

Stage 3. We now increment the primitive length of A to 3 by setting the adjacent 3-
types of all primitive triples in A. Fix any pair of distinct elements a = (ω, τ, h, i, j) and
a′ = (ω′, τ ′, h′, i′, j′). Let us write ζ = tpA[a, a′], so that, by construction of A in the
previous stage, ζ ∈ ω and ζ−1 ∈ ω′. By (L∃2), there exists some η ∈ ω′ such that the
AF3-formula ψ := ζ ∧ η+ ∧ γi ∧ δ̂ is consistent; let θi be an adjacent 3-type entailing
this formula. By the construction of the previous stage again, we can find an element
bi := (ω′′, η, h′ + 1, i, g(j, j′)) ∈ A such that tpA[a′, bi] = η. We shall set atpA[a, a′, bi] = θi

for all i ∈ I. From the index i, the elements bi are distinct, and so these assignments do not
clash with each other. Since θi entails ζ ∧ η+, they do not clash with the 2-types assigned
so far. Since θi entails γi, the pair a, a′ now has a witness in respect of the formula ∃x3 γi.
From property (i) of g secured by Lemma 2.3, the triple a, a′, bi is primitive; hence the only
primitive triples whose adjacent types are thereby defined are a, a′, bi and bi, a

′, a. But since
θi entails δ̂, neither of these triples violates ∀x1x2x3 δ. Now repeat this construction for all
pairs of distinct elements a = (ω, τ, h, i, j) and a′ = (ω′, τ ′, h′, i′, j′). We claim that no tuple c̄
is assigned to the extensions of any predicates twice in this process. Since c̄ must have some
primitive generators a1a2a3 and a3a2a1, the only possibility for double assignment of c̄ is if a3
is chosen as some witness for the pair a1, a2, and a1 is chosen as some witness for the pair
a3, a2. Remembering that a1, a2 and a3 are actually quintuples, let their final components
be, respectively, j, j′, j′′. By the choice of witnesses, j′′ = g(j, j′) and j = g(j′′, j′). But this
contradicts property (ii) of g secured by Lemma 2.3, thus establishing the claim that no
primitive triple is assigned to extensions of predicates twice. At this point, for every pair
of elements a1a2 (of primitive length either 1 or 2) and every i ∈ I, A provides a witness
for the formula ∃x3 γi. Moreover, no adjacent 3-type so-far assigned violates δ. To complete
the extension of A to primitive length 3, it remains only to assign adjacent types to all
remaining primitive triples without violating δ. Suppose, then a, a′, a′′ are distinct elements
whose adjacent type in A has not yet been defined. Let ζ = tpA[a1, a2] and η = tpA[a2, a3].
By the previous stage, ζ ∧ η+ ∧ δ̂ is consistent, so let θ be an adjacent 3-type entailing this
formula, and set tpA[a1, a2, a3] = θ. Observe that we are also thereby assigning the adjacent
3-type of tpA[a3, a2, a1], but are assigning no other adjacent 3-types. Since θ entails ζ ∧ η+,
this assignment does not clash with the assignments of the previous step. Since θ entails δ̂,
no newly assigned triple violates δ. This completes the construction of the model A. ◀

Extending Lemma 4.6 to the whole of AF represents a greater challenge. For the next
two lemmas (4.7 and 4.8), fix a normal-form AFℓ+1-formula φ over some signature σ,
as given in (2), with ℓ ≥ 3. We construct a normal-form formula φ′ ∈ AFℓ such that:
(i) if φ is satisfiable over some domain A, then so is φ′; and (ii) if φ′ is satisfiable over
some domain B, then φ is satisfiable over a domain A, with |A|/|B| bounded by some
exponential function of ||φ||.

Recall that the adjacent closure, φ# of φ, may be regarded as a normal-form AFℓ-formula
over the same signature. For every adjacent ℓ-type ζ over σ, let pζ be a fresh predicate
of arity ℓ−1. Intuitively, we shall think of p(x2 · · ·xℓ) as stating “for some x1, the ℓ-tuple
xℓ = x1 · · ·xℓ is of adjacent type ζ”. Now define φ′ to be the conjunction of φ# with the
following AFℓ-formulas:∧

ζ∈Atpσ

ℓ

∀xℓ

(
ζ → pζ(x2 · · ·xℓ)

)
(3)

∧
ζ∈Atpσ

ℓ

∧
i∈I

∀xℓ−1∃xℓ

(
pζ(xℓ−1)→ (ζ ∧ δ̂ ∧ γi)◦) (4)

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:11

∧
ζ∈Atpσ

ℓ

∀xℓ

(
pζ(xℓ−1)→ (ζ ∧ δ̂)◦) (5)

▶ Lemma 4.7. Suppose A |= φ. Then we can expand A to a model A+ |= φ′.

Proof. Set pA+

ζ = {ā ∈ Aℓ−1 : A |= ζ[aā] for some a ∈ A}, for every ζ ∈ Atpσ
ℓ . The truth

of (3) in A+ is then immediate. To see the same for (4), fix ζ ∈ Atpσ
ℓ and i ∈ I, and suppose

A+ |= pζ(ā), where ā ∈ Aℓ−1. Then there exists a ∈ A such that A |= ζ[aā]. Moreover, since
A |= φ, there exists b ∈ A such that A |= γi[aāb] and A |= δ̂[aāb]. Now let η = atpA[āb].
Writing χ for ζ ∧ δ̂ ∧ γi, we have A |= χ[aāb], whence χ is consistent; and since A |= η[āb],
it follows that η |= χ◦. Thus, b is a witness for the (ℓ−1)-tuple ā required by the relevant
conjunct of (4). This secures the truth of (4) in A+. Formula (5) is handled similarly. ◀

▶ Lemma 4.8. Suppose B |= φ′. Then we can construct a model C+ |= φ such that
|C+|/|B| ≤ |I| · (ℓ2 + ℓ+ 1)ℓ.

Proof. Since φ′ ∈ AFℓ, we may assume by Lemma 3.3 that B is a layered structure of
primitive length ℓ – that is, does not specify the extensions of predicates in respect of tuples
whose primitive length is greater than ℓ. Let B− be the reduct of B to the signature σ
(i.e. we forget the predicates pζ). Thus, every ℓ-tuple from B satisfies a unique element
of Atpσ

ℓ . We first define a collection of “witness” functions vi : Bℓ → B, where i ∈ I. For
any ℓ-tuple b̄ = b1 · · · bℓ, let ζ = atpB− [b̄]. By (3), B |= pζ [b2 · · · bℓ], whence, by (4), we
may select b ∈ B such that B |= (ζ ∧ δ̂ ∧ γi)◦[(b2 · · · bkb)]. Set vi(b̄) = b. Now let J be a
set of cardinality ℓ2 + ℓ+ 1 and let g : Jℓ → J a function satisfying conditions (i) and (ii)
guaranteed by Lemma 2.3. We inflate the structure B− using the product construction of
Lemma 2.2. Specifically, we define C = B− × (I × J), writing elements of C as triples (b, i, j),
where b ∈ B, i ∈ I and j ∈ J . Now, predicate extensions featuring tuples of primitive length
greater than ℓ can be safely disregarded in the structure C. We next define a collection of
witness functions wi : Cℓ → C, based on the functions vi defined above. The motivation is
that these functions will allow us to choose witnesses in C for the conjuncts (4) that do
not, as it were, tread on each others’ toes. Consider any ℓ-tuple c̄ = c1 · · · cℓ of elements
in C, with ch = (bh, ih, jh) for each h (1 ≤ h ≤ ℓ). Writing b̄ = b1 · · · bℓ, we define wi(c̄) to
be the element (vi(b̄), i, g(j1 · · · jℓ)). Since B− |= (ζ ∧ δ̂ ∧ γi)◦[b2 · · · bℓ wi(b̄)], it follows from
Lemma 2.2 that C |= (ζ ∧ δ̂ ∧ γi)◦[c2 · · · cℓ wi(c̄)]. In addition, the functions wi satisfy the
following two additional properties:
(w1) for fixed c̄, the wi(c̄) are distinct as i varies over I;
(w2) wi(c̄) does not occur in c̄;
(w3) if c̄′ is an ℓ-tuple consisting of the elements c2, . . . , cℓ, wi(c̄) in some order, then wi′(c̄′)

does not occur in c̄ for any i′ ∈ I.
Indeed, (w1) is immediate from the fact wi(c̄) contains i as its second element; (w2) and
(w3) follow, respectively, from conditions (i) and (ii) on g guaranteed in Lemma 2.3.

We are now ready to extend C to a structure C+ of primitive length ℓ+1 such that C+ |= φ.
We first manufacture witnesses required by the conjuncts ∀x̄∃xℓ+1γi, insofar as these are not
already present. Fix any ℓ-tuple c̄ = c1 · · · cℓ, and let ζ = atpC[c̄]. Now consider any i ∈ I,
and write c = wi(c̄). We have two cases, depending on whether the word c̄c is primitive.
Suppose first that it is not. By (w2), c is not an element of c̄, whence by Lemma 3.4 there is
some k-tuple d̄ (k < ℓ) and f ∈ A⃗ℓ

k such that d̄ = c̄f . As before, define f+ ∈ A⃗ℓ+1
k+1 extending

f by setting f(k + 1) = ℓ + 1. Since k < ℓ, and C |= φ#, there exists c′ ∈ C such that
C |= γf+

i [d̄c′]. By Lemma 3.2, C |= γi[(d̄c′)f+], or in other words, C |= γi[c̄c′], so that a witness
c′ is already present in respect of the tuple c̄ and the index i. (Notice that we are throwing

ICALP 2023

111:12 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

our original witness, c, away.) Suppose on the other hand that c̄c is primitive. Since C has
primitive length ℓ, no tuple with primitive generator c̄c has been assigned to the extension
of any predicate in C. Let η = atpC[c2 · · · cℓc]. Writing χ for the AFℓ-formula ζ ∧ δ̂ ∧ γi

it follows from the choice of c that C |= χ◦[c̄c], whence, by the definition of the operator
(·)◦, the AFℓ+1-formula η+ ∧ (ζ ∧ δ̂ ∧ γi) is consistent. Therefore, there exists an adjacent
(ℓ+ 1)-type ω entailing it, and we may fix atpC+ [c̄c] = ω. To see that this assignment makes
sense and extends C, recall that atpC+ [c̄c] specifies whether C+ |= q[d̄] for any m-tuple d̄
whose primitive generator is an infix, say ē, of c̄c. If ē is of length ℓ or less, then its adjacent
type has already been fixed in C consistently with ζ or η+. Otherwise, the primitive generator
of d̄ is c̄c, so that C does not determine satisfaction of q by d̄; writing d̄ = (c̄c)f , then, we may
set C+ |= q[d̄] if and only if |= ω → q((xℓxℓ+1)f). Since ω |= γi, we see that, following these
assignments, C+ has been provided with a witness in respect of the tuple c̄ and the index i.
We claim in addition that the newly assigned tuples do not violate ∀xℓxℓ+1 δ. For suppose
that d̄ is an (ℓ+ 1)-tuple whose adjacent type in C+ has been defined. If the primitive length
of d̄ is ℓ or less, then we have d̄ = ēg for some primitive ē of length k ≤ ℓ and some g ∈ Aℓ+1

k .
Since C |= φ#, we have C |= δg[ē], whence by Lemma 3.2, C |= δ[d̄]. If, however, the primitive
length of d̄ is ℓ+ 1, then d̄ is either c̄c or its reversal, and by the fact that ω |= δ̂, we have
C+ |= δ[d̄] as required. Still keeping c̄ fixed for the moment, we may carry out the above
procedure for all i ∈ I. To see that these assignments do not interfere with each other, we
simply note property (w1) of the functions wi.

Now make these assignments as just described for each word c̄ ∈ Cℓ. To ensure that these
assignments do not interfere with each other, we make use of properties (w1) and (w3) of the
functions wi. If d̄ is an m-tuple that has been assigned (or not) to the extensions of various
predicates by the process described above, then the two primitive generators of d̄ must be of
the form c̄c and (c̄c)−1, where c = wi(c̄) for some i ∈ I. Since primitive generators are unique
up to reversal by Theorem 3.1, it suffices to show that, for distinct pairs (c̄, i) and (c̄′, i′), the
corresponding (ℓ+1)-tuples (c̄ wi(c̄)) and (c̄′ wi′(c̄′)) are not the same up to reversal. Now
c̄ wi(c̄) = c̄′ wi′(c̄′) implies c̄ = c̄′, whence i and i′ are distinct, whence wi(c̄) ̸= wi′(c̄′) by
(w1), a contradiction. On the other hand if c̄ wi(c̄) = (c̄′ wi′(c̄))−1, then c̄′ = wi(c̄), cℓ · · · c2,
whence wi′(c̄′) does not occur in c̄ by (w3), again a contradiction.

At this point, we have assigned a collection of tuples with primitive length ℓ+1 to the
extensions of predicates in σ so as to guarantee that C+ |= ∀xℓ∃xℓ+1 γi for all i ∈ I. In
addition, no adjacent (ℓ+1)-types thus defined violate ∀xℓ+1 δ. It remains to complete the
specification of C+ by defining the adjacent types of all remaining primitive ℓ+1-tuples, and
showing that, in the resulting structure, every (ℓ+1)-tuple (primitive or not) satisfies δ. Let
c1 · · · cℓ+1 be a primitive (ℓ+1)-tuple whose adjacent type has not yet been defined. Let
ζ = atpC[c1 · · · cℓ] and η = atpC[c2 · · · cℓ+1]. Writing ch = (bh, ih, jh) for all h (1 ≤ h ≤ ℓ+ 1),
we have ζ = atpB− [b1 · · · bℓ] and η = atpB− [b2 · · · bℓ+1]. By (3), B |= pζ [b2 · · · bℓ+1], and
hence by (5), B |= (ζ ∧ δ̂)◦[b2 · · · bℓ+1], whence ζ ∧ η+ ∧ δ̂ is consistent, by the definition of
the operator (·)◦. So let ω ∈ Atpσ

ℓ+1 entail this formula, and set atpC+ [c̄c] = ω. Carrying this
procedure out for all remaining primitive ℓ+1-tuples, we obtain a layered structure C+ of
primitive length ℓ+ 1. Let d̄ be any (ℓ+1)-tuple of elements from C. If d̄ is primitive, then
we have just ensured that C+ |= δ[d̄]. If, on the other hand, d̄ = ēf for some k-tuple ē and
some f ∈ Aℓ+1

k , where k ≤ ℓ, then, since φ#, we have C |= δf [ē] and hence, by Lemma 3.2,
C |= δ[d̄]. This completes the construction of C+. We have shown that C+ |= φ. ◀

Lemma 4.6 establishes the decidability of satisfiability for AF3. Lemmas 4.7 and 4.8, on
the other hand, reduce the satisfiability problem for AFℓ+1 to that for AFℓ (ℓ ≥ 3), though
with exponential blow-up. Putting these together, we obtain the decidability of satisfiability

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:13

for the whole of AF . More precisely:

▶ Theorem 4.9. If φ is a satisfiable AFℓ+1-formula, with ℓ ≥ 2, then φ is satisfied in
a structure of size at most t(ℓ−1, O(||φ||)). Hence the satisfiability problem for AFℓ is in
(ℓ−2)-NExpTime for all ℓ ≥ 3, and the adjacent fragment is Tower-complete.

Proof. Fix ℓ ≥ 2 and suppose φ is a satisfiable AFℓ+1-formula over a signature σ. By
Lemma 4.1, we may assume that φ is in normal form. Writing φℓ+1 for φ, let φℓ be the
formula φ′ given by the conjunction of φ# and formulas (3)–(5) as described before Lemma 4.7.
Repeating this process, we obtain a sequence of formulas φℓ+1, . . . , φ3. By Lemma 4.7, φ3
is satisfiable. For all k, (3 ≤ k ≤ ℓ + 1), let φk have signature σk, and for k ≤ ℓ, consider
the construction of φk from φk+1. Since

∑k+1
k′=1 |A

k+1
k′ | is bounded by a constant, we see that

||φ#
k+1|| is O(||φk+1||). Turning now to the formulas corresponding to (3)–(5), we employ the

same technique used in the proof of Lemma 4.5. When considering the adjacent k-types over
σk+1, we may disregard all adjacent atoms whose argument sequence is not a substitution
instance of some argument sequence xg

k occurring in an atom of φk+1, as these cannot affect
the evaluation of φk+1. And since k ≤ ℓ, the number of functions from xk to itself is again
bounded by a constant, so that the number of adjacent k-atoms over σk+1 that we need
to consider is O(||φk+1||). Thus, the number of adjacent k-types over σk+1 that we need to
consider is 2O(||φk+1||); and this bounds the number of conjuncts in (3)–(5) taken together.
Some care is needed when calculating the sizes of these conjuncts themselves, as they feature
the subformulas (ζ ∧ δ̂ ∧ γi)◦ and (ζ ∧ δ̂)◦. However, these are simply, in effect, disjunctive
normal forms over atoms contained in φk+1, and hence have cardinality 2O(||φk+1||), whence
||φk|| is 2O(||φk+1||). By an easy induction, then, ||φ3|| is t(ℓ− 2, O(||φℓ+1||)), i.e. t(ℓ− 2, O(||φ||)).

By Lemma 4.6, φ3 has a model of cardinality t(ℓ− 1, O(||φ||)). Moreover, by Lemma 4.7,
each of the formulas φk (3 ≤ k ≤ ℓ) has a model over a set, say Bk, such that |Bk+1| ≤
|Bk| · ||φk+1|| · (ℓ2 + ℓ+ 1)ℓ. Since ||φk|| is t(ℓ− 3, O(||φ||)) for all k and remembering that ℓ is
a constant, we see that φ = φℓ+1 has a model of cardinality O(||φ||ℓ−1t(ℓ− 1, O(||φ||))), that
is to say t(ℓ− 1, O(||φ||)). ◀

5 The Guarded Subfragment

We next shift our attention to the guarded subfragment of the adjacent fragment, denoted GA,
defined as the intersection of the guarded fragment GF and AF . Recall that in GF , quanti-
fication is relativized by atoms, e.g. all universal quantification takes the form ∀x̄(α→ ψ),
where α (a guard) is an atom featuring all the variables in x̄ and all the free variables of ψ.
We show that the satisfiability problem for GA, in contrast to GF2 (the two-variable guarded
fragment), is 2ExpTime-complete, and thus as difficult as full GF .

Our proof employs the same strategy as the 2ExpTime-hardness proof for GF by
Grädel [11]. The novel part of the reduction here concerns a feature characteristic of hardness
results for guarded logics [11, 19]. However, the fact that we are working in the guarded
adjacent fragment means that existing techniques are not directly available.

Let m ∈ N and consider the following adjacent functions (the upper index is mapped to
the lower one):

λ1 :=
(

1 2 3 4 . . . m+2
1 2 2 3 . . . m+1

)
, λ2 :=

(
1 2 3 4 . . . m+2
1 2 1 2 . . . m

)
, λ3 :=

(
1 2 3 4 . . . m+2
1 2 3 3 . . . m+1

)
.

We show that repeated application of λ1–λ3 on the bit-string 011m yields the whole of
01{0,1}m.

ICALP 2023

111:14 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

▶ Lemma 5.1. Let W0 ⊆ {0,1}∗ contain 011m and Wi := Wi−1 ∪{w̄λ1 , w̄λ2 , w̄λ3 | w̄ ∈
Wi−1}. Setting W :=

⋃
i≥0 Wi, we have 01{0,1}m ⊆W .

Proof. We inductively prove that, for any i ∈ [0,m] and any c̄ ∈ {0,1}i, we have 01c̄1m−i ∈
W . The base case (i = 0) follows from the assumption that W0 contains 011m, so let i > 0.
We aim at generating any word u = 01xc̄1m−i−1 for x ∈ {0,1}. By induction hypothesis
both v̄ = 01c̄1m−i−11 and w̄ = 01d̄1m−i−111 (where c̄ = c1d̄) are in W . We consider cases:
(i) if x = 1 then ū = v̄λ1 , (ii) if both x and c1 = 0 then ū = v̄λ3 , and otherwise, (iii) x = 0,
c1 = 1 and ū = w̄λ2 . Thus ū ∈W . ◀

Let Gm and P be, respectively, (m+ 2)-ary and binary predicates. We define ζP
m to be

the sentence below:

∀xy
(
P (xy)→ Gm(xy y · · · y︸ ︷︷ ︸

m

)
)
∧

∧
i=1,2,3

∀zm+2

(
Gm(zm+2)→ Gm(zλi

m+2)
)
.

Let A be a model of ζP
m, and take any (a, b) ∈ PA. By Lemma 5.1 we conclude that GA

m

contains every word of the form ab{a, b}m. Let R be some 4-ary relation symbol. In the
forthcoming proof we also consider a (2m+ 4)-ary predicate Fm described by ϵRm which is a
conjunction of the following two sentences:

∀yxx′y′
(
R(yxx′y′)→ Fm(y . . . y︸ ︷︷ ︸

m

yxx′y′ y′ . . . y′︸ ︷︷ ︸
m

)
)

∧
i,j∈{0,1,2,3}

∀z−1
m+2z′

m+2

(
Fm(z−1

m+2z′
m+2)→ Fm(zλi(m+2) . . . zλi(1)z

′
λj(1) . . . z

′
λj(m+2))

)
.

Here λ0 is the identity function (i.e. k 7→ k for each k ∈ [1,m]). The intended meaning is
that whenever A |= ζR

m holds, this implies that for any quadruple baa′b′ ∈ RA we have that
A |= G[c̄baa′b′c̄′] holds for all c̄ ∈ {a, b}m and c̄′ ∈ {a′, b′}m.

ATMs. An Alternating Turing Machine (ATM) M is a tuple ⟨Q,S, Tl, Tr, q0, κ⟩, where
Q is a finite set of states, S is a finite alphabet containing an empty-cell symbol “⌞⌟”,
Tl, Tr : Q × S → Q × S × [−1, 1] are, respectively, the left and right transition functions,
q0 ∈ Q is the initial state, and κ : Q → {∀∀∀,∃∃∃} is the state descriptor function stating if a
given state is, respectively, universal ∀∀∀ or existential ∃∃∃. We say that a state q is accepting
if and only if κ(q) = ∀∀∀, and there are no possible transitions given by Tl(q, s) and Tr(q, s)
for any symbol s ∈ S. Dually, q is rejecting if and only if κ(q) = ∃∃∃, and, again, there are no
possible transitions. By tracking every step of the computation byM on w̄ ∈ S∗ we obtain a
binary tree structure G = ⟨V, El, Er⟩. Each vertex v ∈ V is labelled with some configuration
⟨q, s̄, h⟩, where q ∈ Q is a machine state, s̄ ∈ Sm a word indicating the contents of the
tape, and h ∈ [0,m− 1] an integer indicating the position of the head at some point in the
computation. Each edge (v, u) ∈ Eη (where η = l, r) is labelled by a transition Tη(q, sh),
enabled in the configuration labelling of v. We call G the configuration tree of the computation
by M on w̄. Assuming G is finite, we say that it is accepting if no vertex is associated with a
rejecting state. We identify the following three properties of G. The root node is labelled
with a configuration in which the machine is in state q0, the head position is 0, and the tape
is written with the string w̄ followed by blanks. We call this property initial configuration
(IC). Let u be a vertex labelled with a configuration in which the machine is in state q. If q
is universal, then u will have two children; if q is existential, then u will have a single child;

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:15

if q is accepting, or rejecting then u will have no children. We call this property successor
existence (SE). Suppose further that, in the configuration labelling of some node u we have
that the head is reading the symbol s whilst in state q. Then any child vη (s.t. (u, vη) ∈ Tη,
where η = l or η = r) represents the result of a single transition Tη(q, s) = (p, s′, k), and thus
is labelled with a configuration in which the machine state is p, s′ is written in place of s, and
the head is moved by a distance of k. We call this property configuration succession (CS).

Encoding numbers. Let binm
x,y be the canonical map from [0, 2n − 1] to bit-string repres-

entations of length m ∈ N, using x as the zero bit and y as the unit bit. In the sequel, we will
consider structures A with elements labelled by a unary predicate O. If A |= ¬O[a] ∧O[b]
we say that a, b act as zero and unit bits. We thus associate every word c̄ ∈ {a, b}+ with an
integer value given by the canonical map valA (this function depends on A, because it is
A that determines which is the zero bit and which is the unit bit.) Given two bit-strings c̄
and d̄ (not necessarily composed of the same elements) there is a classical way to define the
following properties in the monadic fragment of FO (hence also in GA):

A |= less(c̄, d̄) iff valA(c̄) < valA(d̄)
A |= eq(c̄, d̄) iff valA(c̄) = valA(d̄)
A |= eq(c̄, d̄+ k) iff valA(c̄) = valA(d̄) + k, where k ∈ [−1, 1].

Formally, the formulas are defined as follows:

less(zm, z′
m) :=

m∨
i=1

(
¬O(zi) ∧O(z′

i) ∧
m∧

j=i+1

(
O(zj)↔ O(z′

j)
))

eq(zm, z′
m) :=

m∧
i=1

(
O(zi)↔ O(z′

i)
)

eq(zm, z′
m + 1) :=

m∧
i=1

((
O(zi)↔ O(z′

i)
)
↔

i−1∨
j=1

O(zj)
)

and where eq(zm, z′
m + 0) := eq(zm, z′

m) and eq(zm, z′
m − 1) := eq(z′

m, zm + 1).
Fix an ATM M working in exponential space w.r.t any given input w̄. Our goal is to

construct a polynomial-size GA-sentence φM,w̄ which is satisfiable if and only if M has
an accepting configuration tree on a given input w̄. Utilising the fact that AExpSpace
equals 2ExpTime, the reduction yields the desired bound on GA. Now, take an accepting
configuration tree G = (V, El, Er) for M and w̄, and fix n = |w̄|. We consider structures
interpreting binary predicates V,R,Qq (for each q ∈ Q), quaternary predicates El, Er and
n-ary predicates H,Ss (for each s ∈ S). We say that A0 embeds G if there is f : V → A2

0 such
that for all v ∈ V
(a) A0 |= V [f(v)],
(b) A0 |= R[f(v)] if v is the root node,
(c) A0 |= Eη[f(u)−1, f(v)] if (u, v) ∈ Eη, where η = l, r,
(d) A0 |= Qq[f(v)] if the configuration v is in state q,
(e) A0 |= Ss[binn

f(v)(i)] if v’s i-th tape cell has symbol s,
(f) A0 |= H[binn

f(v)(i)] if v’s head is located over the i-th tape square.
We construct A0 embedding G as follows: the domain A0 is composed of fresh symbols 0v, 1v

for each vertex v ∈ V, for which we also put f(v) = 0v1v. (Notice that 0v1v is a word over
A0 of length 2.) We interpret the predicates V,R,E,Qq, Ss and H as required by conditions
(a)–(f). Then, we construct a φM,w̄ in GA such that: (i) A0 can be expanded to a model A
of φM,w̄; and (ii) every model of φM,w̄ embeds G.

ICALP 2023

111:16 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

The first conjunct of φM,w̄ requires pairs ab satisfying the predicate V to act as zero bits
and unit bits, indicated by the predicate O:

φ1 = ∀xy
(
V (xy)→ ¬O(x) ∧O(y)

)
We now add ζV

n and ζV
2n to the main formula φM,w̄. Recall that the sentence ζV

m features
an (m + 2)-ary predicate Gm, and ensures that, if A |= V [ab], then A |= Gm[abc̄] for all
c ∈ {a, b}m. Writing φ2, φ3 and φ4 as

p ̸=q∧
p,q∈Q

∀xy
(
V (xy)→

(
¬Qp(xy) ∨ ¬Qq(xy)

))
,

s̸=s′∧
s,s′∈S

∀xyzn

(
Gn(xyz)→¬

(
Ss(zn)∧Ss′(zn)

))
,

∀xyznz′
n

(
G2n(xyznz′

n)→
((
H(zn) ∧H(z′

n)
)
→ eq(zn, z′

n)
))

respectively, we ensure that every configuration is in at most one state at a time, every
tape square of a configuration has at most one symbol, and the read-write head of any
configuration is pointing to a single square at a time. Note that all of these formulas are
guarded. However, the advertised behaviour of the guard predicates Gn and G2n means, in
essence, that the guards have no semantic effect.

We now secure the property (IC). Let µ1 abbreviate the formula Qq0(xy)∧H(binn
xy(0))∧∧|w̄|

i=1 Swi
(binn

x,y(i−1)), and µ2 the formula less(binn
x,y(|w̄|−1), zn)→ S⌞⌟(zn). Writing

φ5 := ∃xy
(
V (xy) ∧R(xy)

)
∧ ∀xy

(
R(xy)→

(
µ1 ∧ ∀zn(G(xyzn)→ µ2)

))
,

we ensure that there is a root configuration in which the machine state is q0, the head is
scanning square “0”, and the tape is written with the string w̄ followed by the requisite
number of blanks.

Let K∀∀∀ be the formula
∨κ(q)=∀∀∀

q∈Q Qq(xy), and define K∃∃∃ analogously. Similarly, we define
K××× to be a disjunction of rejecting states. The formula φ6 := ∀xy(V (xy) → ¬K×××(xy))
ensures that no configuration is labelled with a rejecting state.

We next encode the transitions of M, securing the property (SE). Let ψ∀∀∀ abbrevi-
ate the formula ∃x′y′El(yxx′y′) ∧ ∃x′y′Er(yxx′y′), and ψ∃∃∃ the formula ∃x′y′El(yxx′y′) ∨
∃x′y′Er(yxx′y′). Writing

φ7 :=
∧

k=∀∀∀,∃∃∃

∀yx
(
V (xy)→

(
Kk(xy)→ ψk

))
.

we ensure that, if A |= V [a, b]∧Kk[ab], then A contains pairs encoding the appropriate
successor configurations.

We next ensure that the transitions have the expected effect on the configurations they
connect, securing the property (CS). For this, we need a further predicate, Fn, to act as
a dummy guard. By adding ϵ

Eη
n to the main formula (for both η = l, r), we secure A |=

Fn[c̄baa′b′c̄′] for all a, b, a′, b′ such that A |= Eη[baa′b′] with c̄ ∈ {a, b}n, c̄′ ∈ {a′, b′}n. The
formula φ8 then ensures that any pair of parent and successor configurations have identical
tape contents except (possibly) for the position scanned by the head, thus:

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:17

φ8 := ∀znyxx
′y′z′

n

(
Fn(znyxx

′y′z′
n)→

((
¬H(zn) ∧ eq(zn, z′

n)
)
→
(∧

s∈S

(
Ss(zn) → Ss(z′

n)
))))

.

Now let χ1 abbreviate the formula Qp(x′y′), χ2 the formula eq(z′
n, zn)→ Ss′(z′

n), and χ3
the formula eq(z′

n, zn + k)→ H(z′
n). In addition, we write ξτη

for the sentence

∀znyxx
′y′z′

n

(
G(znyxx

′y′z′
n)→

((
Eη(yxx′y′)∧Qq(xy)∧H(zn)∧Ss(zn)

)
→
(
χ1∧χ2∧χ3

)))
.

Assuming the transition τη is of the form (q, s) 7→ (p, s′, k), the formula ξτη
states that, if

in a certain configuration, the machine state is q and the head is reading symbol s, then in
the η-side successor configuration defined by Tη, the machine state will be p, the symbol s
will have been replaced by s′, and the head will have moved by k. To encode all possible
transitions, we write φ9 to be a conjunction of ξτη for each transition τη ∈ Tη for both η = l, r.

Let A0 embed some accepting G as described in (a)–(f). We expand A0 to A by setting
A = A0 with
1. A |= ¬O[a] and A |= O[b] if A0 |= V [ab],
2. A |= Gm[abc̄] where A0 |= V [ab] and c̄ ∈ {a, b}m (for m = n, 2n),
3. A |= Fn[c̄baa′b′c̄′] where A0 |= Sη[baa′b′], c̄ ∈ {a, b}n and c̄′ ∈ {a′, b′}n (here η = l, r).
Recalling that G contains an initial configuration (IC), we have that A |= φ5. Additionally,
G has the property (SE), we see that A |= φ7. Lastly, since G has the property (CS), we
have that A |= φ8. At this point it is easy to verify that A |= φM,w̄.

Conversely, suppose A |= φM,w̄. We construct an embedding f : V→A2 for an accepting
G by well-founded induction. The following observations will be used. Suppose A |= V [ab].
Intuitively, we think of the pair ab as a vertex of the computation tree labelled by some
configuration, as determined by the predicates Qq, Ss and H. By φ2, there is a unique Qq

(for q ∈ Q) satisfied by ab. Moreover, by φ3, any bit-string c̄ ∈ {a, b}n satisfies a unique Ss

(for s ∈ S). Similarly, by φ4, there is a unique c̄ satisfying H.
Proceeding with the induction, for the base case, pick a, b s.t. A |= R[ab]. By φ5 we see

that A |= Qq0 [ab], A |= H[binn
a,b(0)], and A |= Swi [c̄] for each 1 ≤ i ≤ |w̄| with valA(c̄) = i−1

and A |= S⌞⌟[c̄] otherwise. We then set V = {v} and f(v) = ab. Labeling v with the state,
tape and head position as suggested by (a)–(f), we have secured the property (IC).

For the inductive step, let u be vertex which has been added to the tree. Assume u is
labelled with a configuration in which the machine state q is universal, and the head is
at position h, reading symbol s. If q is accepting, then we stop. Otherwise, φ7 guarantees
that there are words aηbη ∈ A2 such that A |= Sη[f(u)−1aηbη] for both η = l, r. Notice
that by φ8 if the configuration labelling u has the symbol s′ written on tape square i (for
i ̸= h), then A |= Ss′ [binn

aηbη
(i)]. By φ9 the pair aηbη satisfies the predicate Qp that is in

accordance with the transition Tη(q, s) = (p, s′, k). Additionally, A |= Ss′ [binn
aηbη

(h)] and
A |= H[binn

aηbη
(h+ k)].

We thus set V := V ∪ {vη}, f(vη) = (aη, bη) and Eη := Eη ∪ {(u, vη)} thus securing (SE).
By interpreting the state, tape and head position of vη as suggested by (a)–(f) we see that vη

is a proper successor of u as required by (CS). The case for when q is existential is similar.
Since there are no rejecting states in conf. tree (reference φ6), there is an initial configur-

ation by (IC), each parent has children complying with (SE), and each parent-child pair
conforms to (CS), we conclude that G is an accepting configuration tree.

ICALP 2023

111:18 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

6 Conclusions

The adjacent fragment AF is defined as the union of the formulas sets AF [k], each of which
restricts the allowed argument sequences appearing in atomic formulas to adjacent words
over the alphabet xk. The question arises as to whether these restrictions might be further
relaxed without compromising the decidability of satisfiability. Under reasonable assumptions
about the fragment in question, the answer must be no. Indeed, assume, for simplicity, that
the argument sequence x1x2 is allowed in the 2-variable case, and x2x3 in the 3-variable case.
Now the only non-adjacent words of length 2 over x3 are x1x3 and x3x1. In the first case,
this allows us to write the formula ∀x1∀x2(r(x1x2)→ ∀x3(r(x2x3)→ r(x1x3))), which says
that r is transitive. But even two-variable logic with (at least two) transitive relations yields
a logic for which satisfiability and finite satisfiability are undecidable [20], since it is simple to
write formulas all of whose models embed grids of unbounded size. Similar remarks apply to
the formula ∀x1∀x2(r(x1x2)→ ∀x3(r(x2x3)→ r(x3x1))), and indeed to the case of formulas
featuring ternary non-adjacent atoms such as p(x1x3x2). It is therefore difficult to conceive
of meaningful fragments of first-order logic defined purely by reference to restrictions on the
allowable argument sequences that do not define sub-fragments of the adjacent fragment,
and that are at the same time decidable for satisfiability. In this respect, AF appears to be
the end of the road.

On the other hand, the last two decades have witnessed concerted attempts to investigate
the decidability of the satisfiability problem for FO2 over various classes of structures, where
some distinguished predicates are interpreted in a special way, e.g. as linear orders [24, 36, 37];
other such semantic constraints have also been investigated [25, 10, 21, 7, 9, 3]. It is therefore
natural to ask whether the adjacent fragment remains decidable when subject to similar
semantic constraints. Of course, since AF extends FO2, all the undecidability results for
FO2 immediately transfer to AF . Thus, AF extended with two transitive relations [20], or
with three equivalence relations [22], or with one transitive and one equivalence relation [24],
or with two linear orders and their two corresponding successor relations [25], must all be
undecidable. (See [23] for a survey.) Regarding positive results, existing results on the fluted
fragment give cause for some hope. Thus, for example, the fluted fragment remains decidable
with the addition of one transitive relation (and equality) [31]; moreover, finite satisfiability
for FO2 with one transitive relation is also known to be decidable [27].

A second generalization of FO2 which preserves decidability of satisfiability is the extension
with counting quantifiers [26, 28, 6]. (Here, however, the finite model property is lost.) It has
been shown that the corresponding extension of the fluted fragment retains the finite model
property [28]. Extending the adjacent fragment with counting quantifiers certainly results in
loss of the finite model property, because AF includes FO2; however, the decidability of the
satisfiability and finite satisfiability problems is left for future work.

References

1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998. doi:
10.1023/a:1004275029985.

2 Bartosz Bednarczyk. Exploiting forwardness: Satisfiability and query-entailment in forward
guarded fragment. In Wolfgang Faber, Gerhard Friedrich, Martin Gebser, and Michael Morak,
editors, Logics in Artificial Intelligence – 17th European Conference, JELIA 2021, Virtual
Event, May 17-20, 2021, Proceedings, volume 12678 of Lecture Notes in Computer Science,
pages 179–193. Springer, 2021. doi:10.1007/978-3-030-75775-5_13.

https://doi.org/10.1023/a:1004275029985
https://doi.org/10.1023/a:1004275029985
https://doi.org/10.1007/978-3-030-75775-5_13

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:19

3 Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieroński. Extending two-variable
logic on trees. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference
on Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82
of LIPIcs, pages 11:1–11:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.CSL.2017.11.

4 Bartosz Bednarczyk and Reijo Jaakkola. Towards a model theory of ordered logics: Expressivity
and interpolation. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2022,
August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.15.

5 Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann. On the limits of decision:
the adjacent fragment of first-order logic. ArXiV, abs/2305.03133, 2023. arXiv:2305.03133.

6 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately
periodic counting. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 112:1–112:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.
112.

7 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic, 12(4), July
2011. doi:10.1145/1970398.1970403.

8 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

9 Witold Charatonik, Emanuel Kieroński, and Filip Mazowiecki. Decidability of weak logics
with deterministic transitive closure. In Thomas A. Henzinger and Dale Miller, editors,
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14–18, 2014, pages 29:1–29:10. ACM, 2014.
doi:10.1145/2603088.2603134.

10 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. ACM
Transactions on Computational Logic, 17(4), November 2016. doi:10.1145/2983622.

11 Erich Grädel. On the restraining power of guards. The Journal of Symbolic Logic, 64(4):1719–
1742, 1999. URL: http://www.jstor.org/stable/2586808.

12 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-
variable first-order logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997. URL: http:
//www.jstor.org/stable/421196.

13 Leon Henkin. Logical Systems Containing Only a Finite Number of Symbols. Séminaire
de mathématiques supérieures. Presses de l’Université de Montréal, 1967. URL: https:
//books.google.pl/books?id=0jPQAAAAMAAJ.

14 Andreas Herzig. A new decidable fragment of first order logic. In Abstracts of the 3rd Logical
Biennial Summer School and Conference in honour of S. C. Kleene, Varna, Bulgaria, June
1990.

15 David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik. Springer, Berlin,
1928.

16 David Hilbert and Wilhelm Ackermann. Principles of Mathematical Logic. Chelsea, New York,
1950.

17 Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. A survey of decidable first-order
fragments and description logics. Journal of Relational Methods in Computer Science, 1(3):251–
276, 2004.

18 Reijo Jaakkola. Ordered fragments of first-order logic. In Filippo Bonchi and Simon J. Puglisi,
editors, 46th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 62:1–62:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.
62.

ICALP 2023

https://doi.org/10.4230/LIPIcs.CSL.2017.11
https://doi.org/10.4230/LIPIcs.CSL.2017.11
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://arxiv.org/abs/2305.03133
https://doi.org/10.4230/LIPIcs.ICALP.2020.112
https://doi.org/10.4230/LIPIcs.ICALP.2020.112
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/2603088.2603134
https://doi.org/10.1145/2983622
http://www.jstor.org/stable/2586808
http://www.jstor.org/stable/421196
http://www.jstor.org/stable/421196
https://books.google.pl/books?id=0jPQAAAAMAAJ
https://books.google.pl/books?id=0jPQAAAAMAAJ
https://doi.org/10.4230/LIPIcs.MFCS.2021.62
https://doi.org/10.4230/LIPIcs.MFCS.2021.62

111:20 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

19 Emanuel Kieroński. One-dimensional guarded fragments. In Peter Rossmanith, Pinar Heg-
gernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume
138 of LIPIcs, pages 16:1–16:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.MFCS.2019.16.

20 Emanuel Kieroński and Jakub Michaliszyn. Two-variable universal logic with transitive
closure. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL’12) –
26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September
3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 396–410. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.CSL.2012.396.

21 Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable
first-order logic with equivalence closure. SIAM Journal on Computing, 43(3):1012–1063, 2014.
doi:10.1137/120900095.

22 Emanuel Kieroński and Martin Otto. Small substructures and decidability issues for first-order
logic with two variables. Journal of Symbolic Logic, 77(3):729–765, 2012. doi:10.2178/jsl/
1344862160.

23 Emanuel Kieroński, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable logics with counting
and semantic constraints. ACM SIGLOG News, 5(3):22–43, 2018. doi:10.1145/3242953.
3242958.

24 Emanuel Kieroński and Lidia Tendera. On finite satisfiability of two-variable first-order logic
with equivalence relations. In Proceedings of the 24th Annual IEEE Symposium on Logic in
Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 123–132.
IEEE Computer Society, 2009. doi:10.1109/LICS.2009.39.

25 Amaldev Manuel. Two variables and two successors. In Petr Hlinený and Antonín Kucera,
editors, Mathematical Foundations of Computer Science 2010, 35th International Symposium,
MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6281 of Lecture
Notes in Computer Science, pages 513–524. Springer, 2010. doi:10.1007/978-3-642-15155-2_
45.

26 Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In Anuj Dawar
and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and Computation, 17th
International Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceedings, volume
6188 of Lecture Notes in Computer Science, pages 42–54. Springer, 2010. doi:10.1007/
978-3-642-13824-9_4.

27 Ian Pratt-Hartmann. Finite satisfiability for two-variable, first-order logic with one transitive
relation is decidable. Mathematical Logic Quarterly, 64(3):218–248, 2018. doi:10.1002/malq.
201700055.

28 Ian Pratt-Hartmann. Fluted logic with counting. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 141:1–141:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.141.

29 Ian Pratt-Hartmann. Walking on words. ArXiV, abs/2208.08913, 2022. doi:10.48550/arXiv.
2208.08913.

30 Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. The fluted fragment revisited.
Journal of Symbolic Logic, 84(3):1020–1048, 2019.

31 Ian Pratt-Hartmann and Lidia Tendera. The fluted fragment with transitive relations. Annals
of Pure and Applied Logic, 173(1):103042, 2022. doi:10.1016/j.apal.2021.103042.

32 William C. Purdy. Fluted formulas and the limits of decidability. The Journal of Symbolic
Logic, 61(2):608–620, 1996. URL: http://www.jstor.org/stable/2275678.

33 Willard Van Orman Quine. On the limits of decision. In Proceedings of the 14th International
Congress of Philosophy, volume III, pages 57–62. University of Vienna, 1969.

https://doi.org/10.4230/LIPIcs.MFCS.2019.16
https://doi.org/10.4230/LIPIcs.CSL.2012.396
https://doi.org/10.1137/120900095
https://doi.org/10.2178/jsl/1344862160
https://doi.org/10.2178/jsl/1344862160
https://doi.org/10.1145/3242953.3242958
https://doi.org/10.1145/3242953.3242958
https://doi.org/10.1109/LICS.2009.39
https://doi.org/10.1007/978-3-642-15155-2_45
https://doi.org/10.1007/978-3-642-15155-2_45
https://doi.org/10.1007/978-3-642-13824-9_4
https://doi.org/10.1007/978-3-642-13824-9_4
https://doi.org/10.1002/malq.201700055
https://doi.org/10.1002/malq.201700055
https://doi.org/10.4230/LIPIcs.ICALP.2021.141
https://doi.org/10.48550/arXiv.2208.08913
https://doi.org/10.48550/arXiv.2208.08913
https://doi.org/10.1016/j.apal.2021.103042
http://www.jstor.org/stable/2275678

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:21

34 Willard Van Orman Quine. Algebraic logic and predicate functors. In The Ways of Paradox,
pages 283–307. Harvard University Press, Cambridge, MA, revised and enlarged edition, 1976.

35 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Transactions on Computa-
tional Logic, 8(1), February 2016. doi:10.1145/2858784.

36 Thomas Schwentick and Thomas Zeume. Two-Variable Logic with Two Order Relations.
Logical Methods in Computer Science, Volume 8, Issue 1, March 2012. doi:10.2168/LMCS-8(1:
15)2012.

37 Thomas Zeume and Frederik Harwath. Order-invariance of two-variable logic is decidable. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July
5-8, 2016, pages 807–816. ACM, 2016. doi:10.1145/2933575.2933594.

ICALP 2023

https://doi.org/10.1145/2858784
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.1145/2933575.2933594

	1 Introduction
	2 Preliminaries
	3 Primitive generators of words
	4 Upper bounds for {AF} {} and {AF^{k}}
	5 The Guarded Subfragment
	6 Conclusions

