
The Complexity of Presburger Arithmetic
with Power or Powers
Michael Benedikt #

Department of Computer Science, University of Oxford, UK

Dmitry Chistikov #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Alessio Mansutti #

IMDEA Software Institute, Madrid, Spain

Abstract
We investigate expansions of Presburger arithmetic (Pa), i.e., the theory of the integers with addition
and order, with additional structure related to exponentiation: either a function that takes a number
to the power of 2, or a predicate 2N for the powers of 2. The latter theory, denoted Pa(2N(·)),
was introduced by Büchi as a first attempt at characterizing the sets of tuples of numbers that
can be expressed using finite automata; Büchi’s method does not give an elementary upper bound,
and the complexity of this theory has been open. The former theory, denoted as Pa(λx.2|x|), was
shown decidable by Semenov; while the decision procedure for this theory differs radically from the
automata-based method proposed by Büchi, Semenov’s method is also non-elementary. And in fact,
the theory with the power function has a non-elementary lower bound. In this paper, we show that
while Semenov’s and Büchi’s approaches yield non-elementary blow-ups for Pa(2N(·)), the theory is in
fact decidable in triply exponential time, similarly to the best known quantifier-elimination algorithm
for Pa. We also provide a NExpTime upper bound for the existential fragment of Pa(λx.2|x|),
a step towards a finer-grained analysis of its complexity. Both these results are established by
analyzing a single parameterized satisfiability algorithm for Pa(λx.2|x|), which can be specialized
to either the setting of Pa(2N(·)) or the existential theory of Pa(λx.2|x|). Besides the new upper
bounds for the existential theory of Pa(λx.2|x|) and Pa(2N(·)), we believe our algorithm provides
new intuition for the decidability of these theories, and for the features that lead to non-elementary
blow-ups.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases arithmetic theories, exponentiation, decision procedures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.112

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Extended Version: https://arxiv.org/abs/2305.03037

Funding Michael Benedikt: funded in part by EPSRC grant EP/T022124/1.
Dmitry Chistikov: acknowledges the support of IMDEA Software Institute.
Alessio Mansutti: funded in part by ERC grant No. 852769 (ARiAT).

1 Introduction

This paper concerns decision problems involving first-order logic sentences over the integers.
We are given a sentence in the logic, and want to know if it holds in a certain infinite structure
over the integers – we refer to these as “satisfaction problems” below. If the sentence can
mention “full arithmetic” – both addition and multiplication on the integers – then it is
well-known that the satisfaction problem is undecidable [3]. On the other hand, if the sentence
mentions only addition, inequality, and integer constants – Presburger arithmetic (Pa) –

EA
T

C
S

© Michael Benedikt, Dmitry Chistikov, and Alessio Mansutti;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 112; pp. 112:1–112:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.benedikt@cs.ox.ac.uk
https://orcid.org/0000-0003-2964-0880
mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
mailto:alessio.mansutti@imdea.org
https://orcid.org/0000-0002-1104-7299
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://arxiv.org/abs/2305.03037
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


112:2 The Complexity of Presburger Arithmetic with Power or Powers

then the satisfaction problem is decidable [20]. Presburger arithmetic is by no means the
maximal decidable arithmetic theory. For instance, adding a “bit predicate” to Presburger
arithmetic – a binary predicate holding on (m,n) if m is the largest power of 2 dividing n –
does not undermine decidability. This extension is known as Büchi arithmetic. A decision
procedure for the satisfaction problem of this theory is based on translating each formula
into a finite automaton over strings, representing the binary expansions of possible solutions
to the formula [2]. Although both are decidable, there is a big difference between Presburger
arithmetic and Büchi arithmetic: the satisfaction problem of the former can be decided in
triply exponential time [17] and even in doubly exponential space [8], whereas the latter
is known to have no elementary bound. See [1] and [25] for a finer-grained analysis of the
complexity of Presburger arithmetic, in terms of alternating Turing machines.

Sitting in between Presburger arithmetic and Büchi arithmetic is the extension of Pa

with a predicate for the powers of 2: we refer to this set of numbers as 2N and to the theory
as Pa(2N(·)). This predicate is clearly definable in Büchi arithmetic, so the first-order theory
of Pa(2N(·)) is again decidable with automata. An alternative decision procedure, avoiding
automata, was developed by Semenov in [23]. It proceeds by eliminating quantifiers, arriving
at a quantifier-free formula in an enhanced signature – including, for example, a predicate
for the highest power of 2 below a given integer. Semenov’s procedure applies more broadly
to extensions of Presburger arithmetic by a unary predicate satisfying a condition “effective
sparseness”: thus it isolates combinatorial properties of 2N that underlie decidability, rather
than automata-theoretic constructions. Semenov’s procedure has been refined and extended
by Point; see, e.g., [19]. The complexity of the procedure and the complexity of Pa(2N(·))
has, to our knowledge, received no attention.

Instead of adding a unary predicate, one can add to Pa the function taking a number n
to 2n: the power function for short, rather than the powers predicate above. The theory,
which we denote Pa(λx.2|x|), subsumes Pa(2N(·)). Semenov proved decidability of this
theory as well [24]. But in this case a non-elementary lower bound follows from [6], see [4].
We are not aware of any finer-grained analysis of the complexity of the theory. Note that
Pa(λx.2|x|) is incomparable to Büchi arithmetic in expressiveness: in fact the union of the
two is undecidable [4].

In this paper we show that the complexity of Pa(2N(·)) is elementary, and is in fact
contained in 3ExpTime. In this sense Pa(2N(·)) is quite similar to Presburger arithmetic
in complexity. We also show that the existential fragment of the theory Pa(λx.2|x|) has
elementary complexity: its satisfaction problem is in NExpTime.

We show our results on extending Pa with powers or the power function using a single
parameterized algorithm. The algorithm can be applied to decide satisfaction of a Pa(λx.2|x|)
sentence φ in time tower of |φ|, matching the prior non-elementary complexity. But it can be
specialized to the context of either a Pa(2N(·)) sentence or an existential Pa(λx.2|x|) sentence,
giving in each case an elementary bound. The algorithm is based on eliminating quantifiers:
it makes heavy use both of existing Presburger quantifier elimination algorithms [25] and
the core of the method of Semenov, which involves removing “problematic occurrences” of
a variable within a formula. Intuitively, an occurrence of a variable in an atomic formula
is unproblematic if it occurs only outside of power functions, or if the atomic formula is
just a comparison between two power terms. In the latter case, the exponentiation of the
variable can be eliminated by taking logarithms. We factor this core Semenovian idea out
into a self-contained subroutine. We give a short top-level procedure that interleaves calls
to this subroutine with calls to a variant of Presburger quantifier elimination. The latter
enables us to remove quantified variables completely. A meticulous complexity analysis that
tracks several parameters of the input formula shows that the procedure achieves the desired



M. Benedikt, D. Chistikov, and A. Mansutti 112:3

bounds in the special cases of Pa(2N(·)) and existential Pa(λx.2|x|).
Our work brings the following ideas:
For Pa(2N(·)), we rewrite the formula by processing quantifier blocks inside out but do
not eliminate quantifier alternation. The resulting formula is put in a nontrivial fragment
of Pa: integer octagon arithmetic (Oct), which we observe to be decidable in PSpace.
In eliminating problematic variables from formulae, our algorithm exploits a new substi-
tution strategy: it tailors substitutions to individual inequalities, rather than applying
them in the entire formula globally or in an individual disjunct in the DNF (à la Reddy
and Loveland [22]). For both Pa(2N(·)) and ∃Pa(λx.2|x|), this will be key to obtaining
strong bounds on the number of homogeneous terms produced during the transformation,
and bounds on these terms will give us bounds on the running times of the algorithms.

We believe that our procedure, in addition to providing the desired bounds, gives a good
intuition for the decidability of Pa(λx.2|x|) and the sources of non-elementary blow-up
within it. Note that in this work we deal for simplicity with powers of 2, but the same
complexity results apply to any other base k ∈ N, k > 2. Expansion with two bases is
undecidable [12].

2 Preliminaries

The symbols Z, N and N+ denote the set of integers, natural numbers (including zero), and
positive integers, respectively. We write #A for the cardinality of a finite set A. Given
n,m ∈ Z, we define [n,m] := {n, n+ 1, . . . ,m} and, if n ∈ N+, [n] := [0, n− 1]. For two sets
D and C, [D → C] stands for the set of all functions from D to C. We write ⌊·⌋ and ⌈.⌉ to
denote the floor and ceiling functions, respectively, | · | to denote the absolute value function,
and log(·) to denote the binary logarithm function. All these functions take as input a real
number. Note that n ∈ N can be represented in binary using ⌈log(n+ 1)⌉ many bits.

We sometimes apply standard set operations and predicates, such as for instance ∈, ⊆
and \, to vectors v = (v1, . . . , vd). In these cases, there is an implicit conversion of v into the
set V = {v1, . . . , vd}. As an example, v ∈ v and v \A stand for v ∈ V and V \A, respectively,
where A is a set (or another vector).

Presburger arithmetic with a power function. We consider the structure Pa(λx.2|x|) :=
⟨Z, 1,+, (a · x)a∈Z, 2|x|, (q | x)q∈N+ , <⟩, in which the classical signature of Presburger arith-
metic (Pa) is enriched with the unary power of the absolute value function x 7→ 2|x|. As
usual, 1 is the constant (interpreted as) 1 ∈ Z, + and < stand for addition and strict ordering
over Z, respectively, x 7→ a · x is the unary function multiplying its input by the constant
a ∈ Z, and x 7→ q | x is the unary relation that is true for integers divisible by q ∈ N+.

The first-order formulae Φ,Ψ, φ, ψ, . . . of Pa(λx.2|x|) are generated from the grammar

Φ,Ψ := α | ⊤ | ⊥ | ¬Φ | Φ ∧Ψ | ∃xΦ | ∀xΦ α := t1 < t2 | (q | t1),

where x is a first-order variable from an infinite countable set V. The elements of α are the
atomic formulae of the logic, i.e., they are linear inequalities t1 < t2 between terms t1 and
t2, or divisibility constraints q | t1, where q ∈ N+. Instead of allowing arbitrary terms of
the signature, we will deal with a simpler language where terms are expressions of the form∑

i∈I ai · 2|xi| +
∑

j∈J bj · xj + c where c ∈ Z is the constant of the term, ai, bj ∈ Z \ {0} are
the coefficients of the power terms (2|xi|)i∈I and of the linear variables (xj)j∈J , and I, J

are finite sets of indices (which might overlap). We also restrict to terms where no variable
occurs linearly twice, or occurs exponentiated twice. It is easy to see that formulae of the
full language can be converted to use this restricted term language, and our algorithms will

ICALP 2023



112:4 The Complexity of Presburger Arithmetic with Power or Powers

not take us out of this fragment. When we talk about equality of terms, we mean modulo
associativity and commutativity of +. A term is said to be homogeneous if its constant is 0.

The Boolean connectives ∨, → and ↔, and the standard (in)equalities between terms
≤, =, ≥ and > are defined from ∧, ¬ and <, as usual. We use the absolute value of
variables occurring linearly as a shortcut: e.g., a · |x| < t is equivalent to the formula
(x ≥ 0→ a · x < t) ∧ (x < 0→ −a · x < t). We write Φ(x1, . . . , xd) or Φ(x) to highlight the
fact that all free variables of the formula Φ are in x. A formula without free variables is said
to be a sentence. We write Φ⇔ Ψ whenever Φ and Ψ are equivalent. A finite set of formulae
S := {Φi : i ∈ I} is said to be a cover for (or to cover) a formula Ψ whenever Ψ⇔

∨
i∈I Φi.

The satisfaction problem asks whether a given sentence is true.

Term and formula normalization. To simplify the exposition, we often bring terms and
formulae to convenient (normal) form, without mentioning this explicitly every time. This
normalization does not change our bounds on the asymptotic running time of the algorithms,
nor their correctness.

We assume inequalities have the form t < 0, where t is a term. Thus, we convert
inequalities of the form t1 < t2 into t1 − t2 < 0. The construction of t1 − t2 follows
the convention on terms described above. We will still sometimes refer to more general
inequalities t1 < t2 for brevity, but these should be taken as abbreviations for inequalities
of the above form.
We rearrange terms following associativity and commutativity of +. We also evaluate
arithmetic expressions, including, e.g., 2|a| and |a|, where a ∈ Z.
In divisibility constraints of the form q |

∑
i∈I ai · 2|xi| +

∑
j∈J bj · xj + c, we always

assume ai, bj , c ∈ [q].
Inequalities a < b and divisibility constraints q | a on integers a, b ∈ Z and q ∈ N+ are
evaluated to ⊤ or ⊥. So are divisibility constraints 1 | t or q | 0, where q ∈ N+ and t is a
term (these are ⊤).
Inequalities of the form a · x < b with a, b ∈ Z and |a| ≥ 2 are rewritten into x ≤ ⌊ b−1

a ⌋
if a > 0, and to x ≥ ⌈ b−1

a ⌉ if a < 0. This normalization is required in the context of
the quantifier elimination (q.e.) procedure for Presburger arithmetic applied to octagons
(see integer octagon arithmetic below).
Trivial inequalities involving power terms, where just the fact that 2|c| is always positive
suffices to evaluate the atomic formula, are also rewritten as ⊤ or ⊥. For instance,
a · 2|x| < c when a and c have different signs or when c = 0; or a · 2|x| < b · 2|y| where a
and b have different signs.

Beyond normalization, we need the following operations and notation for terms. We write
t(x) if all variables appearing in the term t are in x. Let α1 be a formula (resp., a term of the
form x or 2|x|). Given a second formula (resp., term) α2, Φ[α2 / α1] stands for the formula
obtained from Φ by replacing every occurrence of α1 by α2. Additionally, when α1 and α2
are two terms t1 and t2, and given n ∈ N+, we write Φ[ t2

n / t1] for the formula obtained from
Φ by replacing each inequality a · t1 + t′ < t′′ by a · t2 + n · t′ < n · t′′ and each divisibility
constraint q | a · t1 + t′ by n · q | a · t2 + n · t′. This operation can be seen as scaling by n the
atomic formulae where t1 occurs linearly, relying on the equivalences s1 < s2 ⇔ n · s1 < n · s2
and q | s⇔ n · q | n · s, followed by the substitution of each n · t1 by t2. We will restrict the
use of term substitutions to the following cases: Φ[t / x] and Φ[ t

n / x], where x is a variable
only occurring linearly in Φ; and Φ[t / 2|x|] and Φ[ t

n / 2|x|]. Note that in the last two cases, all
linear occurrences of the variable x are left untouched. We extend the notion of substitution
to multiple terms or formulae: Φ[βi / αi : i ∈ [1, k]] := (. . . (Φ[β1 / α1])[β2 / α2] . . . )[βk / αk].



M. Benedikt, D. Chistikov, and A. Mansutti 112:5

Parameters of formulae. As often done for Pa, the complexity analysis of our procedure re-
quires the introduction of several parameters for a formula. We define functions lin(·), hom(·),
heft(·), mod(·), B(·), and alt(·), to track various features of a formula Φ from Pa(λx.2|x|):

lin(Φ) is the set containing the terms 0 and 2 as well as all the terms t that appear in
linear inequalities t < 0 of Φ (implicitly converting t1 < t2 into t1 − t2 < 0);
hom(Φ) is the set of homogeneous linear terms obtained from the linear terms in lin(Φ)
by eliminating their constant term c (alternatively, updating c to 0);
heft(Φ) is the maximum number of variables in a term of Φ;
mod(Φ) is the least common multiple of all q ∈ N+ appearing in constraints q | t of Φ (if
the formula Φ has no divisibility constraints, then we postulate mod(Φ) = 1);
B(Φ) denotes the number of occurrences of negations ¬ and conjunctions ∧ in Φ (note
that the syntax permits binary conjunction only);
alt(Φ) is the quantifier alternation rank (number of quantifier blocks) of a formula Φ in
prenex normal form.

Throughout the paper, we assume an encoding of terms where constants and coefficients
are given in binary representation. By len(Φ) we denote the length of the formula Φ: the
number of bits required to write it down. For simplicity, we assume it is always at least 2.
We extend the notion of infinity norm to terms. The infinity norm ||t|| of a linear term t is
the maximum absolute value of a coefficient or constant appearing in t. For a finite set of
terms T , we define ||T || := max{||t|| : t ∈ T}. The 1-norm of t, denoted ||t||1, is the sum of
absolute values of all its coefficients and of its constant; this is always non-negative.

3 Summary of main results

This paper focuses on two fragments of Pa(λx.2|x|):
The first-order theory of Pa(2N(·)) := ⟨Z, 1,+, (a · x)a∈Z, 2N(x), (q | x)q∈N+ , <⟩, that is,
the structure which enriches Presburger arithmetic with the unary relation x 7→ 2N(x)
that is true for the powers of 2, i.e., 2N(x) = ⊤ iff x ∈ {1, 2, 4, . . .}. Note that the relation
2N(x) can be expressed in Pa(λx.2|x|), with the formula ∃y. x = 2|y|.
The existential fragment of Pa(λx.2|x|), denoted by ∃Pa(λx.2|x|). Formulae of this
fragment are of the form ∃x.Φ, where Φ is quantifier-free (q.f., in short).

The main results of this paper are summarized below:

▶ Theorem 1. The satisfaction problem for ∃Pa(λx.2|x|) is in NExpTime.

▶ Theorem 2. The satisfaction problem for Pa(2N(·)) is in 3ExpTime.

Theorems 1 and 2 are based on a common core procedure for Pa(λx.2|x|) that we introduce
in Section 4. The procedure manipulates the subformulae of an input formula so that they
(eventually) enter the following fragments of Pa(λx.2|x|):

The power comparisons fragment, denoted by PowCmp. In this fragment, inequalities
are restricted to the form a · 2|x| < b · 2|y| or a · 2|x| < b, where a, b ∈ Z, and divisibility
constraints are of the form q | 2|x| − r, where q ∈ N+ and r ∈ [q].
Integer octagon arithmetic, denoted by Oct (see e.g. [13, 16]), that is, the fragment of Pa

in which inequalities are restricted to the forms ±x ± y < c and ±x < c, where c ∈ Z,
and divisibility constraints are of the form q | x− r, where q ∈ N+ and r ∈ [q].
The fragment Sem (short for Semenov, as this fragment is related to the one used in [23]).
In formulae Φ of this fragment, each variable appears either always linearly or always
in a power, and every bound variable x appears only in atomic formulae from PowCmp

ICALP 2023



112:6 The Complexity of Presburger Arithmetic with Power or Powers

(hence, x is always in a power). Moreover, divisibility constraints in Φ are simple, i.e.,
they are of the form q | 2|x| − r or of the form q | x− r, where q ∈ N+ and r ∈ [q]. Notice
that a sentence in this fragment must be in PowCmp.
The quantifier-free fragment of Pa(λx.2|x|), denoted QF, consisting of all q.f. formulae.

4 The core procedure

Overall organization. Our final decision procedures, which will be presented in Section 5,
rely on a core procedure (Algorithm 1) that interleaves calls to what are essentially quantifier
elimination subroutines à la Presburger [20] and Semenov [23], respectively, to be explained
further below. The input of Algorithm 1 is a formula Φ of Pa(λx.2|x|) in prenex normal
form. The procedure can be run in two modes, taking an additional parameter F accordingly.
This parameter specifies the “target” fragment of the logic:

For Φ obtained as a translation of a Pa(2N(·)) formula into Pa(λx.2|x|), set F = Sem.
For general formulae of Pa(λx.2|x|), and for the handling of existential Pa(λx.2|x|) in
non-deterministic exponential time, set F = QF.

The output of the algorithm is a simplified formula: more specifically, it is a formula of the
form ∃x.φ or ¬∃x.φ, where φ is in F: “alternation-free modulo F” below. If the input is a
sentence, then the output has no leading quantifiers and is thus a sentence of F.

The procedure processes blocks of quantifiers at a time, eliminating them one by one.
Each block corresponds to one iteration of the outer while loop. In line 2 we split the
quantifier prefix at the innermost existential block that takes us out of the fragment F.
There may be a choice as to whether ¬ appears at the beginning of Π, but this introduces
no ambiguity to the choice of u, because ∀v.Ψ is in F iff ∃v.Ψ is in F. This follows because
both fragments F = Sem and F = QF are closed under negation.

The organization of the procedure maintains a DNF-like structure. The set Q acts as
a worklist containing the formulae; intuitively, they are the conjunctions (although not
necessarily of atomic formulae). The PresQE and SemCover subroutines embed Reddy and
Loveland’s optimization for Pa [22]: whenever a pair (x, φ1 ∨ φ2) could be produced, it is
split into two pairs (x, φ1) and (x, φ2) evolving independently for as long as possible. Thus,
the DNF-like structure is maintained within each iteration of the outer while loop of the
Master procedure:

Φ⇔ Π.Π′.

 ∨
(x,φ)∈Q

∃x.φ

 ∨ ∨
φ∈D

φ

 .
For each φ ∈ D ∪ {φ : (x, φ) ∈ Q for some x}, we have φ ∈ F. Pairs from Q are processed
in the inner while loop one at a time. Formulae from D are “done” and will only be picked
up again after leaving the current block: the algorithm will no longer process them within
the current block. Thanks to the DNF-like structure, our analysis of the parameter growth
for an individual pair (x, φ) can ignore the complexity of the big disjunction (i.e., other pairs
in Q and D).

Above we have presented Algorithm 1 deterministically: any deterministic choice can
be made in line 5 when popping an element from Q, and in lines 7–9 when choosing an
appropriate x ∈ x. This implementation will be employed to obtain the claimed triply-
exponential bound for Pa(2N(·)), but not the NExpTime bound for the existential fragment
of Pa(λx.2|x|). In the latter case, we will only perform the outer loop once. The prefix
Π will always be empty, and thus the formula we are processing can always be considered



M. Benedikt, D. Chistikov, and A. Mansutti 112:7

Algorithm 1 Master procedure.

Input: fragment F ∈ {QF,Sem};
formula Φ(y) in Pa(λx.2|x|) in prenex normal form with quantifier-free part from F

in which all divisibility constraints are simple
Output: an equivalent formula Φ′(y), alternation-free modulo F;

if Φ is a sentence, Φ′ is a sentence of F

1: while true do
2: Π ← the shortest quantifier prefix of Φ, possibly with ¬ in front,

such that Φ = Π.∃u.Ψ where Ψ is in F (if necessary, rewrite ∀u as ¬∃u.¬)
3: Q ← {(u,Ψ)}; D ← ∅
4: Π′ ← empty string of quantifiers ▷ Π′ is a global variable
5: while (x, φ) ← pop(Q) do
6: if x is empty then add φ to D
7: else if some x ∈ x does not appear in φ then add pair (x \ {x}, φ) to Q
8: else if ∃x.φ is in F for some x ∈ x then add pair (x \ {x},∃x.φ) to Q
9: else if some x ∈ x appears only linearly in φ then add PresQE(x,x, φ) to Q

10: else add Linearize(SemCover(x, φ)) to Q
11: Φ← Π.Π′.

∨
φ∈D

φ

12: if Π contains no quantifiers then return Φ

Algorithm 2 Function Linearize.

Input: a set S of pairs (x, θ), with x a vector of variables and θ a formula
Output: if F = QF: for each (x, θ), a pair (x, θ′) where θ ⇔ θ′ and, for every x ∈ x,

if 2|x| only occurs in constraints from PowCmp in θ, then x only occurs linearly in θ′

1: if F = Sem then return S ▷ do nothing unless F = QF

2: for (x, θ) ∈ S do
3: x′ ← vector of all x ∈ x s.t. 2|x| only occurs in constraints from PowCmp in θ

4: for x ∈ x′ do
5: update θ by applying all of the following replacements:

6: a · 2|x| < b 7→

{
|x| < ⌈log2(b/a)⌉ if a > 0 and b > 0
|x| > ⌊log2(b/a)⌋ if a < 0 and b < 0

7: a · 2|x| < b · 2|y| 7→

{
|x| < |y|+ ⌈log2(b/a)⌉ if a > 0 and b > 0
|x| > |y|+ ⌊log2(b/a)⌋ if a < 0 and b < 0

8: q | 2|x| − r 7→



q′ | |x| − r′ if r′ = min{s ≥ 0 : q | 2s − r},
q′ = min{t > 0 : q | r · (2t − 1)}

|x| = r′ if r′ = min{s ≥ 0 : q | 2s − r},
{t > 0 : q | r · (2s − 1)} = ∅

⊥ otherwise, i.e., {s ≥ 0 : q | 2s − r} = ∅

▷ in the replacements in line 8, search for s, t ≤ q − 1 only
9: return S

ICALP 2023



112:8 The Complexity of Presburger Arithmetic with Power or Powers

Algorithm 3 Function PresQE.

Input: variable x; vector of variables x, where x ∈ x;
formula φ(x,y) of F where x \ {x} ⊆ y and x appears only linearly in atomic formulae

Output: a set of pairs (x, ψ(y)) where ψ ∈ F and the set of all ψ is a cover for ∃x.φ

1: T ← {(a,−t(y)) : a > 0, a · x+ t ∈ hom(φ)} ∪ {(−a, t(y)) : a < 0, a · x+ t ∈ hom(φ)}
2: g ← Π{a : (a, t) ∈ T for some t} ▷ product of all elements of non-empty set
3: Γ← {φ[ t+k

a /x]∧(a | t+k) : (a, t) ∈ T, k ∈ [−r, r] where r := a·(2·||lin(φ)||+g ·mod(φ))}
4: return {(x, ψ) : ψ ∈ SimplifyDiv(γ), γ ∈ Γ}

Algorithm 4 Function SemCover.

Input: vector x of variables; formula φ(x, z) of F, containing 2|x| for each x ∈ x

Output: a set of pairs (x, ψ(x, z)), where ψ ∈ F and the set of all Π′.∃x.ψ covers Π′.∃x.φ;
in every ψ some 2|x| (x ∈ x) only occurs in constraints from PowCmp

Side effect: update global variable Π′ (string of quantifiers)

1: for x ∈ x do
2: I ← set of inequalities in φ outside PowCmp in which x appears as a power
3: H ← {(η, σ) : η(x) + σ(z) + c < 0 in I; η and σ homogeneous}
4: Γx ← {φ}
5: for (η, σ) ∈ H do
6: A ← subset of I with these η and σ (only c varies)
7: 2g ← 27 ·

(
λ(||η||1 + max{|c| : (η + σ + c < 0) ∈ A})

)2

▷ factors up to 2g are considered “small”
8: a ← coefficient at 2|x| in η

9: V ← variables in η except x
10: β ← 2|x| > 2g ∧ (

∧
u∈V

2|x| > 2g · 2|u|)

11: Γx ←
{

2|x| = 2j ∧ γ[α[2j / 2|x|] / α : α ∈ A] ,
12: 2|x| > 2g ∧ 2|x| = 2j · 2|v| ∧ γ[α[2j · 2|v| / 2|x|] / α : α ∈ A] ,
13: β ∧ λ(a) · 2|x| < λ(σ) ∧ σ < 0 ∧ γ[⊤ / α : α ∈ A] ,
14: β ∧ λ(a) · 2|x| < λ(σ) ∧ σ ≥ 0 ∧ γ[⊥ / α : α ∈ A] ,
15: β ∧ λ(a) · 2|x| = λ(σ) ∧ γ[α[ λ(σ)

λ(a) / 2|x|] / α : α ∈ A] ,
16: β ∧ λ(a) · 2|x| = 2 · λ(σ) ∧ γ[α[ 2·λ(σ)

λ(a) / 2|x|] / α : α ∈ A] ,
17: β ∧ λ(a) · 2|x| > 2 · λ(σ) ∧ a < 0 ∧ γ[⊤ / α : α ∈ A] ,
18: β ∧ λ(a) · 2|x| > 2 · λ(σ) ∧ a > 0 ∧ γ[⊥ / α : α ∈ A]
19: : γ ∈ Γx, 0 ≤ j ≤ g, v ∈ V

}
20: Γ←

⋃
x∈x
{(

∧
y∈x

2|x| ≥ 2|y|) ∧ γ : γ ∈ Γx} ▷ we next remove all occurrences of λ

21: Σ← {σ : λ(σ) is a subterm of some γ ∈ Γ} \ {0}
22: for σ ∈ Σ do
23: if ∀wσ is not in Π′ then
24: wσ ← fresh variable; add ∀wσ to Π′ ▷ update global Π′

25: Θ ← {(σ ̸= 0 ∧ ¬(2|wσ| ≤ |σ| < 2 · 2|wσ|)) : σ ∈ Σ}
26: for each Σ′ ⊆ Σ and each γ ∈ Γ do
27: add to Θ the following formula:
28: (

∧
σ∈Σ′

2|wσ| ≤ |σ| < 2 ·2|wσ|)∧ (
∧

σ∈Σ\Σ′
σ = 0)∧γ[2|wσ| /λ(σ) : σ ∈ Σ′][0/λ(σ) : σ ∈ Σ\Σ′]

29: return {(x, θ) : θ ∈ Θ}



M. Benedikt, D. Chistikov, and A. Mansutti 112:9

Algorithm 5 Function SimplifyDiv.

Input: formula φ almost in F: may contain non-simple divisibility constraints
Output: a cover for φ of formulae from F, in which all divisibility constraints are simple

1: G ← set of non-simple divisibilities in φ

2: d ← least common multiple of all divisors in G

3: t ← all variables x and powers 2|y| appearing in G

4: Γ ← ∅
5: for r ∈ [t→ [d]] do
6: add

(
(
∧

t∈t d | t− r(t)) ∧ φ[r(α) / α : α ∈ G]
)

to Γ
7: where r(q |

∑n
i=1 ai · ti + c) := q |

∑n
i=1 ai · r(ti) + c ▷ simplifies to ⊤ or ⊥

8: return Γ

an existentially quantified DNF, or equivalently a disjunction of existentials. It suffices to
guess one disjunct, corresponding to one element of Q that is satisfiable. Thus, we will
replace a deterministic inner loop that maintains a set of pairs in Q with a non-deterministic
algorithm that maintains a single pair from Q. In the deterministic interpretation, calls to
the subroutines in lines 9 and 10 replace a single element of Q with a set of pairs. In the
non-deterministic interpretation, we guess one pair in the output of the subroutine as the
new element of Q.

Subroutines. We turn from the Master procedure to its subroutines. The core of the
subroutine PresQE (Algorithm 3) corresponds to Weispfenning’s quantifier elimination for
Pa [25], while Linearize given in Algorithm 2 is a simple procedure taking PowCmp atomic
formulae like 2|x| < 2|y| and transforming them to Presburger formulae x < y by “taking logs”.
We remark that all three types of divisibility replacements in line 8 of Linearize are possible:
e.g., (7 | 2|x| − 4) 7→ (3 | |x| − 2), and (20 | 2|x| − 2) 7→ (|x| = 1), and (6 | 2|x| − 3) 7→ ⊥.

The SemCover subroutine (Algorithm 4) is a variation of procedures dating back to
Semenov’s [23]. This will be less familiar to most readers, and so we discuss it in detail here.

The purpose of subroutine SemCover is to ensure that, in each of the pairs (x, ψ) in its
output, for some variable x ∈ x every occurrence is either linear or in an atomic formula from
PowCmp. Across all outputs, the identity of the variable x may differ. Thus, the subroutine
is essentially “PowCmp-ifying” the formula. The significance of converting atomic formulae
to PowCmp is that powers can then be eliminated by just “taking logarithms”, i.e., by
invoking Linearize. And once a quantified variable is so heavily processed that it occurs
only linearly (outside powers), then by applying standard Presburger arithmetic quantifier
elimination, we can eliminate the variable completely using PresQE.

To be more precise about how SemCover assists the Master procedure, consider what
happens when (x, ψ) from the output of SemCover gets popped from Q in the Master
procedure. Our actions depend on the chosen fragment (unless x is eliminated from ψ

entirely, in which case line 7 takes care of it).
If F = Sem: for some x ∈ x, we can move ∃x into ψ while still staying in the fragment,

since x occurs only in power comparisons (line 8).
If F = QF: all occurrences of x became linear after the execution of Linearize on the output

of SemCover, so the variable x can be eliminated by PresQE (line 9).

ICALP 2023



112:10 The Complexity of Presburger Arithmetic with Power or Powers

A look inside subroutine SemCover. Intuitively, the overall workflow of the Master pro-
cedure is repeated processing of atomic formulae lying within the scope of a particular block
of quantifiers. The constraints we process will be those containing “problematic quantified
variables”: those that appear in atomic formulae involving powers, but are outside the
fragment PowCmp. We exhibit the idea using the following subformula:

∃x.∃y. 3 · 2|x| − 5 · 2|y| − z < 0. (1)

Here both x and y are problematic within the sole atomic subformula of the quantified
formula. A major component of all prior procedures is to replace such a formula with a
quantified DNF corresponding to a case analysis on the relative values of the problematic
variables. These cases correspond to lines 11 to 19 of Algorithm 4 and are a cover for the
formula under analysis, hence the name “Semenov cover” given to the algorithm. Each case
is defined by a PowCmp “guard” and, under the assumption specified in a given case, we will
be able to eliminate one problematic variable within a constraint, without introducing new
problematic existentially-quantified variables. Thus, by applying the procedure repeatedly,
we can expunge all problematic quantified variables.

The case analysis includes a guess as to which existentially quantified variable is the
largest. In the example, one such guess is that 2|x| is the largest. In all the subcases for this
guess, we will make x unproblematic. The Semenov cover breaks up this guess into several
subcases. One subcase is where 2|x| is not much bigger than one of the other power terms,
say 2|x| = 4 · 2|y|. In such cases we can substitute 2|x| by a constant multiple of the other
term, where the constant is itself a power of 2. Returning to the subcase mentioned just
above, where 2|x| = 4 · 2|y|, we can replace 2|x| by 4 · 2|y|. The remaining case is where 2|x| is
significantly bigger than all other power terms like 2|y|; the threshold for “significantly” is
set by line 7 of Algorithm 4. In this case we further analyze the most significant digit of the
binary expansion for each term.

▶ Definition. For any integer N , let λ(N) denote the highest power of 2 below |N | 1; we
have λ(0) = 0 and λ(N) ≤ |N | < 2λ(N).

Algorithm 4 will make use of intermediate terms that contain λ’s – for example, λ(σ) for σ
an ordinary Pa(λx.2|x|) term. The semantics of such terms is the obvious one, which could
be formalized by translation into Pa(λx.2|x|), where the function λ is definable.

Returning to the example, our “significantly bigger” hypothesis implies that

λ(3 · 2|x| − 5 · 2|y|) = λ(3 · 2|x|) = 2x+1.

This equality in turn implies that, when λ(3 · 2|x|) is strictly below λ(z), the corresponding
inequality in Equation (1) is true: λ(3 · 2|x| − 5 · 2|y|) is strictly below λ(z), and while each
term can differ from the corresponding λ, the difference cannot be large enough to make
the inequality go the other way. By a similar argument, in the subcase where λ(3 · 2|x|) is
at least four times greater than λ(z), the inequality must be false. Here we reason that if
λ(3 · 2|x| − 5 · 2|y|) is at least four times greater than λ(z), then the offset of each term from
its λ value cannot change the inequality from true to false.

This leaves some subcases where λ(3 · 2|x|) is close to λ(z), and in these cases we can
substitute away 2|x| as well. For example, in the subcase where λ(3 · 2|x|) = λ(z), we note
that λ(3 · 2|x|) = 2 · 2|x|, and thus we could replace 2|x| with λ(z)/2. By multiplying through
the inequality by 2, we can eliminate the division by 2.

1 We will be mostly concerned with this function on positive integers, but using absolute values gives us
the convenience of avoiding partial functions.



M. Benedikt, D. Chistikov, and A. Mansutti 112:11

Using the output of SemCover. The procedure above removed x, but there are several
caveats. Firstly, each case was associated with a condition, where the problematic variable x
still appears! However, these conditions are in PowCmp, and therefore all occurrences of x
are now unproblematic. Secondly, in some of our substitutions to eliminate x, we introduced
λ terms, which appear both in the condition describing the case and in the formula obtained
by substituting (assuming the condition). One solution to this problem, applied in earlier
procedures such as Point’s [19], is to extend the signature with several functions such as
λ, and declare that such conditions are acceptable. In this way one can obtain quantifier
elimination in the extended signature. In our SemCover subroutine, we proceed slightly
differently, eliminating λ terms in favor of new variables that are bound by definitional
quantifiers. That is, the new variables are associated with additional conditions which define
them from the free variables. For example, λ(z) can be replaced by 2w, with additional
conditions 2w ≤ |z| < 2 · 2w. There is a unique such w for a given z, so the quantification
over w can be thought of simultaneously as an existential conjoined with this condition and
as a universal relativized to this condition. Such quantifications take us out of PowCmp.
But when considered as leading universal quantifiers, they will not increase the quantifier
alternation of the global formula – they will add on variables to the next quantified block
considered in the Master procedure. And since Algorithm 1 will process from inner quantifier
blocks outward, the fattening of outer quantifier blocks does not jeopardize termination of our
procedure. Note that at the end of processing quantifier blocks outward with Algorithm 1,
we will have only an outermost block of definitional quantifiers; if there are no free variables
in the top-level input formula Φ, the quantified variables will depend only on constants, and
thus can be replaced by numbers, leading to a quantifier-free sentence.

Analysis of the core procedure. We analyze the procedure, showing in particular that each
of Algorithms 1–5 correctly implements its specification. In the sequel we will also need the
following facts.

▶ Lemma 3. All divisibility constraints in D ∪ {φ : (x, φ) ∈ Q for some x} are simple.

▶ Lemma 4. The Master procedure always terminates and, on a formula Φ(y), returns an
equivalent formula Φ′(y) such that:

Φ′(y) is equal to either ∃w.φ′(w,y) or ¬∃w.φ′(w,y), where φ′ ∈ F,
if Φ is a sentence, then Φ′ ∈ F (in other words, if y is empty, then w is empty).
In fact, Φ′ starts with ¬ iff the outermost quantifier block of Φ is existential.

▶ Lemma 5. Consider a prenex formula Π.Φ, with Φ from F, in which all variables from the
quantifier prefix Π appear only linearly. When running the Master procedure on Φ, SemCover
is never invoked. Moreover, if no variable in Φ occurs in a power term (i.e., it is a formula
from Pa), then the quantifier-free formula returned by the procedure is in Pa.

5 Decision procedures and their complexity

In this section, we provide our top-level decision procedures, which make use of the algorithms
presented in Section 4. We then provide a complexity analysis that establishes Theorems 1
and 2. To simplify the exposition, the growth of the formulae returned by the procedure is
described with the help of “parameter tables” having the following shape:

ICALP 2023



112:12 The Complexity of Presburger Arithmetic with Power or Powers

p1(·) p2(·) · · · pn(·)

φ a1 a2 · · · an

ψ1 f1,1(a1, . . . , an) f1,2(a1, . . . , an) · · · f1,n(a1, . . . , an)
· · · · · · · · · · · · · · ·
ψm fm,1(a1, . . . , an) fm,2(a1, . . . , an) · · · fm,n(a1, . . . , an)

In this table, φ,ψ1,. . . ,ψm are formulae, p1(·),. . . ,pn(·) are parameter functions from formulae
to N, a1, . . . , an ∈ N+, and all fj,k are functions from Nn to N. The table states that

if pi(φ) ≤ ai for all i ∈ [1, n], then pk(ψj) ≤ fj,k(a1, . . . , an) for all j ∈ [1,m] and k ∈ [1, n].

We sometimes assume lower bounds on the values a1, . . . , an (e.g., h ≥ 2 and a ≥ 2 in the
table of Lemma 6) in order to simplify the definition of the functions fj,k. Note that this
does not change the semantics of the table. We sometimes write the ditto mark ” inside a
cell of the table. In that case, the ditto mark represents the value of the cell directly above
it (e.g., the rightmost ” appearing in the table of Lemma 6 is short for b+ 2 · v + 1).

Theorem 1: NExpTime upper bound for existential Pa(λx.2|x|)

Before arguing for a NExpTime decision procedure for ∃Pa(λx.2|x|), we analyze the growth
of formulae resulting from calls to PresQE, SemCover and Linearize.

Our analysis of PresQE simply merges the analysis of Weispfenning’s quantifier elimination
for Presburger arithmetic from [25] (implemented in lines 1 to 3 of PresQE) with an analysis
of SimplifyDiv. Here are the resulting bounds:

▶ Lemma 6. On input (x,x, φ(x, z)) where x only occurs linearly in φ, PresQE returns a
set {(x, ψ1), . . . , (x, ψk)} whose formulae satisfy the parameter table below (i ∈ [1, k]):

#hom heft ||hom(·)|| ||lin(·)|| mod B

φ h ≥ 2 v a ≥ 2 c m b

ψi h 2 · v 2 · a2 ah+2(c+m) a ·m b+ 2 · v + 1∨k
j=1 ψj h2 ” ” ” ahm k(” + 1)

and k ≤ h · c ·m2v+1 · a2v+h+4. The running time is in (len(φ) · c ·m)poly(h,v).

A simple analysis of SemCover yields the following bounds.

▶ Lemma 7. Let Θ = {(x, θ1), . . . , (x, θk)} be the output of SemCover(x, φ(x, z)), where
x = (x1, . . . , xn) with n ≥ 1. Then, the following parameter table holds, where i ∈ [1, k]:

#hom heft ||lin(·)|| mod B

φ h v ≥ 2 c ≥ 2 m b

θi h · (v + 10) + n v 211 · v2 · c4 m b+ h · (v + 11) + n∨k
j=1 θj h · 28 · v3 log(c) + n2 ” ” ” k · (” + 1)

where k ≤ (v + 1)8h · log(c)h · n. Moreover, (i) at most h universal quantifiers are added
to the global variable Π′; (ii) the running time is in (len(φ) · n)poly(h); and (iii) for every
i ∈ [1, k] there are at most h terms t ∈ hom(θi) that contain some variable from x and satisfy
(t+ c′ < 0) ∈ lin(θi) with t+ c′ < 0 not in PowCmp, for some c′ ∈ Z.



M. Benedikt, D. Chistikov, and A. Mansutti 112:13

Note that an estimate of ||hom(θi)|| is missing from Lemma 7. For SemCover, this
parameter grows similarly to ||lin(θi)||, which by definition always bounds ||hom(θi)||. We
also note that Lemma 7 gives an upper bound on the number of global variables added to
Π′. This bound is later required to analyze Pa(2N(·)), but is not needed in the context of
deciding sentences from ∃Pa(λx.2|x|). Indeed, from Lemma 4, in this latter case Π′ is empty.

In computing the upper bounds on ||hom(θi)|| and ||hom(
∨k

j=1 θj)|| keep in mind that in
lines 11 to 18 of SemCover we perform “tailored substitutions”: we only replace 2|x| in linear
terms α ∈ A with either a constant, a unique (given α) expression λ(σ), or a multiple of a
power 2|y|, where y appears in α. Our analysis tracks the impact of iterating these types of
replacements on the number of homogeneous terms.

We continue by analyzing Linearize. Here the bounds are quite simple, but one observation
is in order: line 8 might require iterating through the q − 1 residue classes of q in order to
find suitable q′ and r′. Since q is encoded in binary, this yields an exponential running time
for Linearize (see m below), as shown in the following lemma.

▶ Lemma 8. Consider a set S = {(x, θ1), . . . , (x, θk)} where x = (x1, . . . , xn), and let r be
the maximum number of variables appearing in some θi. On input S, Linearize returns a set
{(x, θ′

1), . . . , (x, θ′
k)} with bounds as in the following table, for all j ∈ [1, k]:

#hom heft ||hom(·)|| ||lin(·)|| mod B

θj h v a c ≥ 2 m ≥ 2 b

θ′
j h+ (6 · r + 2) · n v a c m2 22 · b

The running time is in poly(maxk
i=1 len(θi),m, n,#S).

We now complete the description of the non-deterministic algorithm deciding ∃Pa(λx.2|x|)
in NExpTime, completing the informal comments in Section 4. As a preliminary step, the
algorithm runs SimplifyDiv on the matrix of the input existential sentence Φ, guessing a
residue class for each variable and power, and obtaining an existential sentence where all
the divisibilities are simple. The algorithm puts that sentence in prenex form. Afterwards,
the algorithm follows Algorithm 1 (with F = QF), but replaces pop(Q) in line 5, as well
as other forms of iteration inside PresQE and SemCover, with non-deterministic guesses.
More precisely, when SemCover is called, it guesses a variable x ∈ x in line 1, iterates
(deterministically) over every (η, σ) ∈ H in line 5, and guesses only one of the cases in
lines 11 to 18. As a result, in the non-deterministic version of SemCover, the variable Γ in
line 20 contains a single formula γ. Since Φ is an existential sentence, the various terms σ
considered by SemCover are always 0. Hence, λ(σ) is 0 and lines 21 to 28 have no effect on
the subroutine, which simply returns a singleton set containing the pair (x, γ). For PresQE,
non-deterministic guesses replace the iterations done in line 3, as well as the ones performed
in line 5 of SimplifyDiv (as done in the aforementioned preliminary step of the algorithm).

The non-deterministic versions of PresQE and SemCover described above always return
singleton sets containing a pair of the form (x, θ). Then, by the correctness of PresQE
and SemCover, we conclude that on an input sentence Φ containing n quantified variables,
the non-deterministic version of Algorithm 1 never calls each of the subroutines PresQE,
SemCover and Linearize more than n times. By looking at the bounds on ψi, θi and θ′

j

from Lemmas 6–8 we conclude that these 3n subroutine calls (non-deterministically) return
a formula that never requires more than exponential space to be represented. Since Φ is a
sentence and F = QF, the non-deterministic algorithm will eventually obtain a formula Ψ
with no variables, only constants, which can be evaluated in exponential time. As usual, the
algorithm returns true if one such (non-deterministically derived) formula Ψ is valid.

ICALP 2023



112:14 The Complexity of Presburger Arithmetic with Power or Powers

Theorem 2: 3ExpTime upper bound for Pa(2N(·))

We now move to Pa(2N(·)). Let Φ be obtained by translating a sentence of Pa(2N(·)) into
a prenex sentence of Pa(λx.2|x|) without divisibility constraints (i.e., replace each 2N(x)
with ∃y. x = 2|y|, each q | t with ∃z. t = q · z, and bring the resulting sentence in prenex
form). Note that this translation is in polynomial time, and that each variable in Φ appears
either always linearly or always in a power. The algorithm to decide Φ is described below:

1: Ψ1 ← run Algorithm 1 with F = Sem, on Φ ▷ as Φ is a sentence, Ψ1 ∈ PowCmp.
2: Π.Ψ2(x) ← prenex form of Ψ1 ▷ Ψ2 q.f.; x are the variables appearing in Π
3: {(x,Ψ3)} ← Linearize({(x,Ψ2)}) ▷ Ψ3(x) belongs to Oct

4: Ω ← run Algorithm 1 with F = QF, on Π.Ψ3 ▷ Ω does not contain variables
5: evaluate truth of Ω

Above we highlight the fact that, after the first invocation to Algorithm 1, we obtain a
formula from PowCmp which is then manipulated by Linearize into a formula from integer
octagon arithmetic (Oct). Then, in order to estimate the running time of this algorithm, we
need to study the running time of Algorithm 1 on inputs that either come from Pa(2N(·)) or
are from Oct. Let us discuss the latter case first.

Since Oct is a fragment of Presburger arithmetic, line 4 above fundamentally runs
Weispfenning’s quantifier elimination procedure for Presburger arithmetic (see Lemma 5),
plus calls to SimplifyDiv. It turns out that on formulae from Oct, this procedure only runs
in exponential time, as summarized in the following proposition.

▶ Proposition 9. Let F = QF. Consider a formula Φ(z) from integer octagon arithmetic
(Oct) in prenex form and having alt(φ) = ℓ ≥ 1 quantifier blocks, each with n ≥ 1 many
variables. On input Φ, Algorithm 1 returns a formula Ψ with bounds:

#hom heft ||hom(·)|| ||lin(·)|| mod B

Φ h ≥ 2 2 1 c ≥ 2 m ≥ 2 b

Ψ 4 ·#z2 2 1 4ℓ·n(c+ 2 ·m) m k(b+ ℓ · n+ 1)

and k ≤ 225ℓ2n2(#z2 ·c ·m)ℓ·n. The running time of the procedure is in (len(Φ) · c ·m)poly(ℓ,n).

The proof of this proposition is by induction on alt(φ), and essentially follows the standard
arguments to bound the running time of the quantifier elimination procedure for Presburger
arithmetic. The key ingredient that leads to the bounds above is that, for Oct, the natural
numbers a in line 3 and g in line 2 of PresQE are always 1. This has two effects. Firstly, it
shows that Oct admits quantifier elimination, i.e., while running the procedure no atomic
formulae outside Oct can arise. This is best witnessed by looking at line 3 in PresQE. There,
the divisibility constraints a | t+ k are trivially satisfied, and we are replacing x with a term
of the form ±y + c for some c ∈ Z. From these substitutions, only constraints from Oct or
constraints of the form ±2 · y < b can arise, and the latter are normalized to y ≤ ⌊ b−1

2 ⌋ or
y ≥ ⌈ 1−b

2 ⌉ as explained in Section 2. The second effect is on the growth of the constants. The
variable r in line 3 only depends on mod(Φ), which now does not grow during the procedure,
and on ||lin(Φ)||, which grows only exponentially in the number of variables in Φ.

We now move to the running time of Algorithm 1 on inputs that come from Pa(2N(·)).
The properties of this procedure are summarized in the next proposition.



M. Benedikt, D. Chistikov, and A. Mansutti 112:15

▶ Proposition 10. Let F = Sem. Let Φ(y) be a formula from Pa(λx.2|x|) in prenex normal
form, with no divisibility constraints, and in which each quantified variable appears either
only linearly or only in powers. Suppose Φ has alt(Φ) = B quantifier blocks, each with at most
L ≥ 1 variables occurring linearly and each block having at most E ≥ 1 variables occurring in
powers. On input Φ, Algorithm 1 returns a formula Ψ with bounds as in the following table:

#hom heft ||lin(·)|| mod B

Φ h ≥ 2 v ≥ 2 c ≥ 4 m ≥ 4 b

Ψ H := (E · h · log(c ·m))(2·v)25·L·B3

2B·Lv 2H 2H b · 2H

and the number of quantifiers added to Π′ is at most H. The running time of the procedure
is in len(Φ) ↑ (E · h · log(c ·m)) ↑ v ↑ poly(L,B).

In the above proposition, a ↑ b := ab is the exponentiation function and, following Knuth’s
up-arrow notation, it is right-associative. In view of our bounds for one iteration of SemCover
given in Lemma 7, the bound on #hom(Ψ) should seem somewhat surprising. We know from
the correctness of SemCover that, after a call to SemCover, one of the variables appearing
in powers will only occur in constraints from PowCmp. Since all these variables need to
have this property before moving to the next quantifier block, SemCover must be chained at
least E times within a block, E being the number of variables occurring in powers in the
block. Then, from the bound #hom(θj) ≤ h · (v + 10) + n in Lemma 7, one might expect
#hom(Ψ) to be roughly h · vE , thus exponential in E even for a single block of quantifiers.
Proposition 10, however, proves otherwise: #hom(Ψ) is only polynomial in E. For this, we
need to sharpen the correctness statement for SemCover.

We already know that in each output formula some variable x is made unproblematic,
and no new problematic occurrences of variables are created. We prove a stronger statement:
namely, that every rewriting of a homogeneous term (by a substitution in lines 11–18)
makes the number of problematic variables in that term decrease. This is possible thanks to
the tailoring of these substitutions to individual inequalities, which allows us to track the
evolution of each term independently of the rest of the formula. As a result:

a formula that is placed into D at the end of processing a single quantifier block can be a
result of E chained calls to SemCover, but
the number of calls to SemCover that rewrite an individual term during its evolution is
bounded by the heft.

Therefore, we can iterate the above-mentioned bound #hom(θj) ≤ h · (v + 10) + n just 2L · v
times instead of E times. Thus #hom(Ψ) in Proposition 10 is found to be exponential in v

and only polynomial in E. We remark that if #hom(Ψ) were instead found to be exponential
in E, then the algorithm would not have any hope of running in elementary time. This is
because, after a block of quantifiers is considered, E increases by the number of variables
introduced in SemCover, which from Lemma 7 is roughly the number of homogeneous terms.

To prove Theorem 2 it suffices to chain the bounds and running times of Proposition 10,
Lemma 8 and Proposition 9, according to the algorithm given at the beginning of the section.

Avoiding quadruply exponential numbers. It may not be immediately evident from the
bounds in the various tables why we do not perform quantifier elimination eagerly and instead
run Algorithm 1 without fully eliminating quantifiers first (in mode Sem), then call Linearize,
and only afterwards eliminate the remaining quantifiers by running Algorithm 1 again (now
in mode QF). In fact, this sequence is fundamental for obtaining a 3ExpTime procedure.

ICALP 2023



112:16 The Complexity of Presburger Arithmetic with Power or Powers

Consider the formula Ψ := q | 2|x| − r ∧ y ≥ 2|x|. For specific values of q and r, the smallest
|x| satisfying Ψ might be q − 1. If Ψ is a subformula obtained during quantifier elimination,
then, according to Proposition 10, q might have a triply exponential magnitude relative to the
input size. This means that the smallest y satisfying Ψ might have a quadruply exponential
magnitude. Eliminating x and y in this case would lead to a quadruply exponential blow-up
in the number of disjuncts to be considered during quantifier elimination. Our strategy
avoids this problem by delaying (if necessary) the elimination of x and y until we obtain a
formula in PowCmp. Calling Linearize reduces the reasoning to the exponents, which are
triply exponential at worst.

An observation on Oct. The bounds for integer octagon arithmetic presented in Propos-
ition 9 reveal not only that this logic admits an exponential-time quantifier elimination
procedure, but also that the satisfaction problem for this theory can be solved in PSpace.
Indeed, observe that the bound on ||lin(Ψ)|| given in Proposition 9 implies that all constants
and coefficients appearing in the output formula Ψ have polynomial bit-length. Then, one
can apply the standard quantifier relativization algorithm from Pa to obtain a PSpace
procedure for Oct. Briefly, the quantifier relativization procedure for Pa first replaces every
quantifier ∃x.φ in the input formula with a bounded quantifier ∃x ∈ [−f(φ), f(φ)]. φ, where
f : Pa → N, and then iterates through all (finitely many) values the quantified variable
can take, searching for a solution to the formula. The bound on ||lin(Ψ)|| obtained for Oct

implies that f(Ψ) has bit-length that is at most polynomial in len(Ψ). See [22] for more
information on quantifier relativization.

On the non-elementary bound for Pa(λx.2|x|). To conclude, we provide some insights
on why our procedure runs in non-elementary time on formulae from the Tower-complete
logic Pa(λx.2|x|). One of the ingredients that guarantee that our procedure for Pa(2N(·))
runs in 3ExpTime is that we are able to postpone calls to Linearize to after Algorithm 1.
In Pa(λx.2|x|) this is not possible: since each variable can appear both linearly and in
powers, Linearize must be invoked after each call to SemCover, in order to “linearize” a
variable, and then eliminate it with PresQE. However, SemCover adds, in the worst case,
a number of additional variables that is roughly the number h of homogeneous terms in
the formula (see Lemma 7). When the next quantifier block is considered, these variables
must all be linearized and eliminated with PresQE. As indicated in the table of Lemma 6
(leftmost column of the last row), in doing this, the number of homogeneous terms of the
resulting formula becomes exponential in h. This “hh” dependency makes the algorithm run
in non-elementary time (in fact Tower).

6 Conclusion

We have proven new elementary upper bounds for Pa(2N(·)), and for the existential fragment
of Pa(λx.2|x|). We believe this is a step towards understanding which decidable arithmetic
theories have elementary bounds, and moreover that our method extends to provide element-
ary bounds for any prefix class of Pa(λx.2|x|), but we leave this for future work. Our results
open several research directions, which we now summarize.

Tighter bounds for Pa(2N(·)). It is well-known that, using the bounds on the formulae
returned by quantifier elimination procedures for Pa, one can derive a 2AExpTime(poly)
quantifier relativization procedure for Pa [25]. Here 2AExpTime(poly) is the class of



M. Benedikt, D. Chistikov, and A. Mansutti 112:17

all problems that can be decided with an alternating Turing machine running in doubly
exponential time and performing a polynomial number of alternations. In fact, Pa is complete
for this class under polynomial-time reductions [1]. Our 3ExpTime procedure for Pa(2N(·))
shows that, in terms of deterministic time complexity, this theory is not harder to decide
than Pa. However, at this stage obtaining a 2AExpTime(poly) quantifier relativization
algorithm from the bounds of our procedure seems not easy.

Automata-based decision procedures. As Pa(2N(·)) is a fragment of Büchi arithmetic, it
also admits a representation by finite automata. It appears plausible that the automata-based
procedure for Pa [14, 7] could be adapted to Pa(2N(·)). However, having the procedure run
in 3ExpTime might be very challenging. This is due to the fact that, as observed above,
Pa(2N(·)) formulae may require numbers of quadruply exponential magnitude; instead of
triply exponential as in the case of Pa.

Geometric decision procedures. A class of regular expressions corresponding to Pa(2N(·))
was already defined by Semenov [23, Theorem 5]. These expressions can be seen as an
extension of semilinear sets [18, 9], so it is conceivable that there is an elementary decision
procedure for Pa(2N(·)) which is based on geometry and manipulates these objects dir-
ectly. However, similarly to the automata-based approach, making such a procedure run in
3ExpTime, as the recent one for Pa [5] does, appears challenging.

Tighter bounds for ∃Pa(λx.2|x|). An obvious question is whether our upper bound for
the existential fragment can be improved. For comparison, the existential fragment of Büchi
arithmetic is known to be in NP [11]. While the same may be true for ∃Pa(λx.2|x|), it
would be very surprising if such a result were to be proved with a technique similar to the
one in our paper. In our NExpTime algorithm for ∃Pa(λx.2|x|), the main source of blow-up
is the use of Weispfenning’s quantifier elimination procedure to eliminate linearly occurring
variables. Quantifier elimination is known to be often non-optimal when it comes to deciding
existential fragments of logics, and this is the case for ∃Pa, the existential fragment of
Presburger arithmetic. A possible avenue to improve the NExpTime upper bound would be
to look at geometric procedures, which in the context of ∃Pa perform much better.

Improving the NP lower bound is also challenging. There are several extensions of ∃Pa

that currently fall between NP and NExpTime. These include ∃Pa with pre-quadratic
constraints [10, 21] and ∃Pa with divisibility constraints [15]. One idea is to exploit the
ability of ∃Pa(λx.2|x|) to express a pairing function, that is, an injection from N× N to N,
with, e.g., the formula z = 2|2x| + 2|2y+1| [6, p. 55]. Pairing functions are known to lead to
non-elementary lower bounds in the presence of quantifier alternation, and an interesting
direction would be to study their effect on existential theories.

References
1 Leonard Berman. The complexity of logical theories. Theor. Comput. Sci., 11(1):71–77, 1980.
2 Alexis Bès. A survey of arithmetic definability. Soc. Math. Belgique, pages 1–54, 2002.
3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer,

1997.
4 Gregory Cherlin and Françoise Point. On extensions of Presburger arithmetic. In 4th Easter

Conference on Model Theory, volume 86 of Humboldt-Univ. Berlin Seminarberichte, pages
17–34, 1986. URL: https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_
point86.pdf.

ICALP 2023

https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf
https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf


112:18 The Complexity of Presburger Arithmetic with Power or Powers

5 Dmitry Chistikov, Christoph Haase, and Alessio Mansutti. Geometric decision procedures
and the VC dimension of linear arithmetic theories. In LICS, 2022.

6 Kevin J. Compton and C. Ward Henson. A uniform method for proving lower bounds on the
computational complexity of logical theories. APAL, 48(1):1–79, 1990.

7 Antoine Durand-Gasselin and Peter Habermehl. On the use of non-deterministic automata for
Presburger arithmetic. In CONCUR, 2010.

8 Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of real
addition with order. SIAM J. Comput., 4(1):69–76, 1975.

9 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

10 Robert Givan, David McAllester, Carl Witty, and Dexter Kozen. Tarskian set constraints.
Information and Computation, 174(2):105–131, 2002.

11 Florent Guépin, Christoph Haase, and James Worrell. On the existential theories of Büchi
arithmetic and linear p-adic fields. In LICS, 2019.

12 Philipp Hieronymi and Christian Schulz. A strong version of Cobham’s theorem. In STOC,
2022.

13 Deepak Kapur, Zhihai Zhang, Matthias Horbach, Hengjun Zhao, Qi Lu, and ThanhVu Nguyen.
Geometric quantifier elimination heuristics for automatically generating octagonal and max-
plus invariants. In Automated Reasoning and Mathematics - Essays in Memory of William W.
McCune, volume 7788 of LNCS, pages 189–228. Springer, 2013.

14 Felix Klaedtke. Bounds on the automata size for Presburger arithmetic. ACM Trans. Comput.
Log., 9(2):11:1–11:34, 2008.

15 Antonia Lechner, Joël Ouaknine, and James Worrell. On the complexity of linear arithmetic
with divisibility. In LICS, 2015.

16 Antoine Miné. The octagon abstract domain. High. Order Symb. Comput., 19(1):31–100, 2006.
17 Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger arithmetic. JCSS,
16(3):323–332, 1978.

18 Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
19 Françoise Point. On decidable extensions of Presburger arithmetic: from A. Bertrand numera-

tion systems to Pisot numbers. JSL, 65(3):1347–1374, 2000.
20 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt, 1929. In Comptes Rendus
du I Congrès des Mathématiciens des Pays Slaves, pages 92–101.

21 Rodrigo Raya, Jad Hamza, and Viktor Kunčak. On the complexity of convex and reverse
convex prequadratic constraints. In LPAR, 2023.

22 C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier alternation.
In STOC, 1978.

23 Aleksei L. Semenov. On certain extensions of the arithmetic of addition of natural numbers.
Math. USSR Izv., 15(2):401–418, 1980.

24 Aleksei L. Semenov. Logical theories of one-place functions on the set of natural numbers.
Math. USSR Izv., 22(3):587–618, 1984.

25 Volker Weispfenning. The Complexity of Almost Linear Diophantine Problems. J. Symb.
Comput., 10(5):395–404, 1990.


	1 Introduction
	2 Preliminaries
	3 Summary of main results
	4 The core procedure
	5 Decision procedures and their complexity
	6 Conclusion

