
Population Protocols with Unordered Data
Michael Blondin #

Department of Computer Science, Université de Sherbrooke, Canada

François Ladouceur #

Department of Computer Science, Université de Sherbrooke, Canada

Abstract
Population protocols form a well-established model of computation of passively mobile anonymous
agents with constant-size memory. It is well known that population protocols compute Presburger-
definable predicates, such as absolute majority and counting predicates. In this work, we initiate
the study of population protocols operating over arbitrarily large data domains. More precisely, we
introduce population protocols with unordered data as a formalism to reason about anonymous crowd
computing over unordered sequences of data. We first show that it is possible to determine whether
an unordered sequence from an infinite data domain has a datum with absolute majority. We then
establish the expressive power of the “immediate observation” restriction of our model, namely
where, in each interaction, an agent observes another agent who is unaware of the interaction.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Automata over infinite objects

Keywords and phrases Population protocols, unordered data, colored Petri nets

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.115

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.00872

Funding Michael Blondin: Supported by a Discovery Grant from the Natural Sciences and Engin-
eering Research Council of Canada (NSERC), and by the Fonds de recherche du Québec – Nature
et technologies (FRQNT).
François Ladouceur : Supported by a scholarship from the Natural Sciences and Engineering Research
Council of Canada (NSERC), and by the Fondation J.A. De Sève.

Acknowledgements We thank Manuel Lafond for his ideas and feedback in the early phase of our
research. We further thank the anonymous reviewers for their comments and insightful suggestions.

1 Introduction

Context. Population protocols form a well-established model of computation of passively
mobile anonymous agents with constant-size memory [1]. Population protocols allow, e.g.,
for the formal analysis of chemical reaction networks and networks of mobile sensors (see [23]
for a review article on population protocols and more generally on dynamic networks).

In a population protocol, anonymous agents hold a mutable state from a finite set. They
collectively seek to evaluate a predicate on the initial global state of the population. At each
discrete moment, a scheduler picks two agents who jointly update their respective states
according to their current states. Such a scheduler is assumed to be “fair” (or, equivalently,
to pick pairs of agents uniformly at random). Let us illustrate the model with a classical
protocol for the aboslute majority predicate. Consider a population of ℓ (anonymous) agents,
each initialized with either Y or N , that seek to compute whether the number of Y exceeds
the number of N , i.e., to collectively evaluate the predicate φ(#Y,#N) := (#Y > #N). For
example, a population of ℓ = 5 agents may be initialized to {{Y,N, Y, Y,N}}. An update of
two agents occurs according to these four rules:

EA
T
C
S

© Michael Blondin and François Ladouceur;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 115; pp. 115:1–115:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.blondin@usherbrooke.ca
https://orcid.org/0000-0003-2914-2734
mailto:francois.ladouceur@usherbrooke.ca
https://orcid.org/0009-0000-7651-6685
https://doi.org/10.4230/LIPIcs.ICALP.2023.115
https://arxiv.org/abs/2305.00872
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

115:2 Population Protocols with Unordered Data

strong to weak propagation of winning side tiebreaker

{{Y, N}} → {{n, n}}
{{Y, n}} → {{Y, y}}

{{y, n}} → {{n, n}}
{{N, y}} → {{N, n}}

A possible execution from the aforementioned population is {{Y,N, Y, Y,N}} −→ {{Y,N, Y, n, n}}
−→ {{Y, n, n, n, n}} −→ {{Y, y, n, n, n}} −→ · · · −→ {{Y, y, y, y, y}}.

Agents in states {Y, y} believe that the output of φ should be true, while agents in {N,n}
believe that it should be false. Thus, in the above execution, a lasting true-consensus has
been reached by the population (although no agent is locally certain of it).

It is well known that population protocols compute precisely the predicates definable in
Presburger arithmetic, namely first-order logic over the naturals with addition and order.
This was first shown through convex geometry [2], and reproven using the theory of vector
addition systems [15]. For example, this means that, given voting options {1, . . . , k}, there is
a population protocol that determines whether some option i has an absolute majority, i.e.,
whether more than ℓ/2 of the ℓ agents initially hold a common i ∈ {1, . . . , k}.

Since k must be stored in the state-space, such a majority protocol can only handle a fixed
number of voting options. As rules also depend on k, this means that a whole population
would need to be reconfigured in order to handle a larger k, e.g. if new voting options are
made available. This is conceptually impractical in the context of flocks of anonymous mobile
agents. Instead, we propose that the input of an agent can be modeled elegantly as drawn
from an infinite set D, with rules independent from D.

Contribution. In this work, we initiate the study of population protocols operating over
arbitrarily large domains. More precisely, we propose a more general model where each agent
carries a read-only datum from an infinite domain D together with a mutable state from
a finite set. In this setting, a population can, e.g., seek to determine whether there is an
absolute majority datum. For example, if D := {1, 2, 3, . . .}, then the population initialized
with {{(1, x), (1, x), (2, x), (3, x), (1, x)}} should reach a lasting true-consensus, while it should
reach a lasting false-consensus from {{(1, x), (1, x), (2, x), (3, x), (2, x)}}.

As in the standard model, a fair scheduler picks a pair of agents. An interaction occurs
according to a rule of the form {{p, q}} d∼e−−→ {{p′, q′}}, where d, e ∈ D are the data values of the
two agents, and where ∼ ∈ {=, ̸=} compares them. As for states, we assume that arbitrarily
many agents may be initialized with the same datum; and that agents can only compare
data through (in)equality. So, D is not a set of (unique) identifiers and hence agents remain
anonymous as in the standard model.

To illustrate our proposed model of computation, we first show that it can compute the
absolute majority predicate. This means that a single protocol can handle any number of
options in an absolute majority vote. From the perspective of distributed computing, this
provides a framework to reason about anonymous crowd computing over unordered sequences
of data. From the standpoint of computer-aided verification, this opens the possibility of
formally analyzing single protocols (e.g. modeled as colored Petri nets) rather than resorting
to parameterized verification, which is particularly difficult in the context of counter systems.

As a stepping stone towards pinpointing the expressive power of population protocols
with unordered data, we then characterize immediate observation protocols. In this well-
studied restriction, rules have the form {{p, q}} d∼e−−→ {{p, q′}}, i.e. an agent updates its state
by observing another agent (who is unaware of it). In standard population protocols, this
class is known to compute exactly predicates from COUNT∗ [2]. The latter is the Boolean

M. Blondin and F. Ladouceur 115:3

closure of predicates of the form #q ≥ c, where #q counts the number of agents in state q,
and c ∈ N is a constant. In our case, we show that immediate observation protocols compute
exactly interval predicates, which are Boolean combinations of such simple interval predicates:

∃ pairwise distinct d1, d2, . . . , dn ∈ D :
n∧

i=1

m∧
j=1

#(di, qj) ∈ T (i, j), (1)

where #(di, qj) counts agents in state qj with datum di, and each T (i, j) ⊆ N is an interval.
In order to show that immediate observation protocols do not compute more than interval

predicates, we exploit the fact that (finitely supported) data vectors are well-quasi-ordered.
While our approach is inspired by [2], it is trickier to simultaneously deal with the several
sources of unboundedness: number of data values, number of agents with a given datum, and
number of agents with a given state. As a byproduct, we show that the absolute majority
predicate cannot be computed by immediate observation protocols.

To show the other direction, i.e. that interval predicates are computable by immediate
observation protocols, we describe a protocol for simple interval predicates. In contrast
with the standard setting, we need to implement existential quantification. This is achieved
by a data leader election and a global leader election. We call the latter elected agent the
“controller”. Its purpose is to handle the bookkeeping of data leaders choosing their role
in (1). A correction mechanism is carefully implemented so that the population only reaches
a true-consensus upon locking a correct assignment to the existential quantification.

Related work. It has been observed by the verification and concurrency communities that
population protocols can be recast as Petri nets. In particular, this has enabled the automatic
formal analysis of population protocols [15, 7] and the discovery of bounds on their state
complexity [12, 6]. Our inspiration comes from the other direction: we introduce protocols
with data by drawing from the recent attention to colored Petri nets [17, 19, 18]. Our model
corresponds to unordered data Petri nets where the color and number of tokens is invariant.

Population protocols for computing majority and plurality have been extensively studied
(e.g., see [14, 4, 5, 3] for recent results). To the best of our knowledge, the closest work is [16],
where the authors propose space-efficient families of deterministic protocols for variants of
the majority problem including plurality consensus. They consider the k voting options as
“colors” specified by ⌈log k⌉ bits stored within the agents.

Other incomparable models of distributed systems with some sort of data include broadcast
networks of register automata [13], distributed register automata [9], and distributed memory
automata [10]. Such formalisms, inspired by register automata [20], allow identities, control
structures and alternative communication mechanisms; none allowed in population protocols.

Paper organization. Section 2 provides basic definitions and introduces our model. In
Section 3, we present a protocol that computes the absolute majority predicate. Section 4
establishes the expressive power of immediate observation protocols. We conclude in Section 5.
Note that most proofs appear in the appendix of the full version.

2 Preliminaries

We write N and [a..b] to respectively denote sets {0, 1, 2, . . .} and {a, a + 1, . . . , b}. The
support of a multiset m over E is act(m) := {e ∈ E : m(e) > 0} (We use the notation
act(m) rather than supp(m) as we will later refer to “active states”.) We write NE to denote
the set of multisets over E with finite support. The empty multiset, denoted 0, is such that

ICALP 2023

115:4 Population Protocols with Unordered Data

0(e) = 0 for all e ∈ E. Let m,m′ ∈ NE . We write m ≤ m′ iff m(e) ≤ m′(e) for all e ∈ E.
We define m + m′ as the multiset such that (m + m′)(e) := m(e) + m′(e) for all e ∈ E.
The difference, denoted m − m′, is defined similarly provided that m ≥ m′.

2.1 Population protocols with unordered data

A population protocol with unordered data, over an infinite domain D equipped with equality,
is a tuple (Q, δ, I, O) where

Q is a finite set of elements called states,
δ ⊆ Q2 × {=, ̸=} ×Q2 is the set of transitions,
I ⊆ Q is the set of initial states, and
O : Q → {false, true} is the output function.

We refer to an element of D as a datum or as a color. We will implicitly assume throughout
the paper that δ contains ((p, q),∼, (p, q)) for all p, q ∈ Q and ∼ ∈ {=, ̸=}.

A form f is an element from NQ. We denote the set of all forms by F. Given Q′ ⊆ Q, let
f(Q′) :=

∑
q∈Q′ f(q). A configuration is a mapping C from D to F such that supp(C) :=

{d ∈ D : C(d) ̸= 0} is finite, and
∑

d∈D,q∈Q C(d)(q) ≥ 2. We often write C(d)(q) as C(d, q).
Informally, the latter denotes the number of agents with datum d in state q. We extend this
notation to subsets of states: C(d,Q′) := C(d)(Q′). We naturally extend +, − and ≤ to
D → F, e.g. C + C′ is such that (C + C′)(d) := C(d) + C′(d) for all d ∈ D.

Let C be a configuration. We define the active states as the set act(C) := {q ∈ Q :
C(d, q) > 0 for some d ∈ D}. We say that C is initial if act(C) ⊆ I. Given Q′ ⊆ Q, let
|C|Q′ :=

∑
d∈D C(d,Q′) and |C| := |C|Q. The output of C is defined by O(C) := b if O(q) = b

for every q ∈ act(C); and by O(C) = ⊥ otherwise. Informally, O(C) indicates whether all
agents agree on some output b.

▶ Example 1. Let D := { , , , . . .} and Q := {p, q}. Let f := {{p, p, q}} and f ′ := {{q}}.
Let C := { 7→ f , 7→ f ′, 7→ 0, . . .}. We have C(, p) = 2, C(, q) = C(, q) = 1,
C(, p) = C(, p) = C(, q) = 0 and |C|{q} = 2. Configuration C represents a population of
four agents carrying an immutable datum and a mutable state: {{(, p), (, p), (, q), (, q)}}. ◀

For the sake of brevity, given a form f , let fd : D → F be defined by fd(d) := f and
fd(d′) := 0 for every d′ ̸= d. Furthermore, given a state q, let qd : D → F be defined by
qd(d)(q) := 1 and qd(d′)(q′) := 0 for every (d′, q′) ̸= (d, q).

Let C be a configuration and let t = ((p, q),∼, (p′, q′)) ∈ δ. We say that transition t is
enabled in C if there exist d, e ∈ D such that d ∼ e, C ≥ pd + qe. If the latter holds, then t

can be used to obtain the configuration C′ := C − (pd + qe) + (p′
d + q′

e), which we denote
C t−→ C′. We write C −→ C′ to denote that C t−→ C′ holds for some t ∈ δ. We further define
∗−→ as the reflexive-transitive closure of −→.

▶ Example 2. Let O(p) := false, O(q) := true and t := ((p, q),=, (q, q)). Using the notation
of Example 1 to represent configurations, we have:

{{(, p), (, p), (, q), (, q)}} t−→ {{(, p), (, q), (, q), (, q)}} t−→ {{(, q), (, q), (, q), (, q)}}.

Let C, C′ and C′′ denote the three configurations above. We have O(C) = O(C′) = ⊥
and O(C′′) = true. Moreover, transition t is not enabled in C′′ as no datum d ∈ D satisfies
C′′(d, p) ≥ 1 and C′′(d, q) ≥ 1. So, the agents have “converged to a true-consensus”. ◀

M. Blondin and F. Ladouceur 115:5

An execution is an infinite sequence of configurations C0C1 · · · such that C0 −→ C1 −→ · · · .
We say that such an execution converges to output b ∈ {false, true} if there exists τ ∈ N such
that O(Cτ) = O(Cτ+1) = · · · = b. An execution C0C1 · · · is fair if, for every configuration
C′, it is the case that |{i ∈ N : Ci

∗−→ C′}| = ∞ implies |{i ∈ N : Ci = C′}| = ∞. In words,
fairness states that if C′ is reachable infinitely often, then it appears infinitely often along
the execution. Informally, this means that some “progress” cannot be avoided forever.

Let Σ be a nonempty finite set. An input is some M ∈ ND×Σ with
∑

d∈D,σ∈Σ M(d, σ) ≥ 2.
An input M is translated, via a bijective input mapping ι : Σ → I, into the initial configuration
ι(M) :=

∑
d∈D,σ∈Σ

∑M(d,σ)
j=1 ι(σ)d. We say that a protocol computes a predicate φ if, for

every input M, every fair execution starting in ι(M) converges to output φ(M). By abuse of
notation, we sometimes write φ(C0) for φ(ι−1(C0)).

▶ Example 3. Let D := { , , , . . .}, Σ := {x1, . . . , x4}, I := {q1, . . . , q4} and ι(xi) := qi.
The input M := {{(, x1), (, x1), (, x2), (, x2), (, x2), (, x4), (, x1), (, x3)}} yields the initial
configuration ι(M) = { 7→ {{q1, q1, q2, q2, q2, q4}}, 7→ {{q1, q3}}, 7→ 0, . . .}.

Observe that, as for standard protocols, the set of predicates computed by population
protocols with unordered data is closed under Boolean operations. Given a protocol that
computes φ, we obtain a protocol that computes ¬φ by changing the value of O(q) to ¬O(q)
for all q ∈ Q. Given predicates ψ1 and ψ2, respectively computed by protocols (Q1, δ1, I1, O1)
and (Q2, δ2, I2, O2), it is easy to obtain a protocol computing ψ = ψ1 ∧ ψ2 by having both
protocols run in parallel. This is achieved by defining (Q := Q1 ×Q2, δ, I := I1 × I2, O) where

δ contains (((p1, p2), (q1, q2)),∼, ((p′
1, p2), (q′

1, q2))) for every ((p1, q1),∼, (p′
1, q

′
1)) ∈ δ1;

δ contains (((p1, p2), (q1, q2)),∼, ((p1, p
′
2), (q1, q

′
2))) for every ((p2, q2),∼, (p′

2, q
′
2)) ∈ δ2;

O(q1, q2) = O1(q1) ∧O2(q2).

3 A protocol for the majority predicate

Let Σ := {x}. In this section, we present a protocol for the absolute majority predicate
defined as φmaj(M) := ∃d ∈ D : M(d, x) >

∑
d′ ̸=d M(d′, x). Since each input pair has the

form (d, x) with d ∈ D, we omit the “dummy element” x in the informal presentation of the
protocol. Note that for the sake of brevity, we use the term majority instead of absolute
majority for the remainder of this paper.

Our protocol is not unlike the classical (sequential) Boyer–Moore algorithm [11]: we seek
to elect a color as the majority candidate, and then check whether it indeed has the majority.
It is intended to work in stages. In the pairing stage, each unpaired agent seeks to form
a pair with an unpaired agent of a distinct color. For example, if the initial population is
{{ , , , , , , }}, then we (non-deterministically) end up with either of these two pairings:

paired agents agents left unpaired

{{ – , – , – }} {{ }}
{{ – , – }} {{ , , }}

The agents left unpaired must all have the same color d, e.g. “ ” in the above example.
Moreover, if the population has a majority color, then it must be d.

Since the agents are anonymous and have a finite memory, they cannot actually remember
with whom they have been paired. Thus, once a candidate color has been elected, e.g. “ ” in
the above example, there is a grouping stage. In the latter, unpaired agents indicate to agents
of their color that they are part of the candidate majority group. This is done by internally
storing the value “Y ”, which stands for “Yes”. Similarly, unpaired agents indicate to agents
of a distinct color that they are part of the candidate minority group using “N”. Once this
is over, the majority stage takes place using the classical protocol from the introduction.

ICALP 2023

115:6 Population Protocols with Unordered Data

Two issues arise from this idealized description. First, the protocol is intended to work in
stages, but they may occur concurrently due to their distributed nature. For this reason, we
add a correction mechanism:

If an unpaired agent of the candidate majority color d finds a paired agent of color d
(resp. d′ ̸= d) with “N” (resp. “Y ”), then it flips it to “Y ” (resp. “N”);
If an unpaired agent of the candidate majority color d finds a paired agent of color d
(resp. d′ ̸= d) with either “n” or “y”, then it flips it to “Y ” (resp. “N”).

The intermediate value Y (resp. N) must be reverted to Y (resp. N) by finding an agent
that has initially played role Y (resp. N) and is then reset to its original value.

The second issue has to do with the fact that, in even-size populations, all agents may
get paired. In that case, no unpaired agent is left to group the agents. To address this, each
agent carries an “even bit” to indicate its belief on whether some unpaired agent remains.

3.1 States
The set of states is defined as Q := {false, true}3 × {Y,N, Y ,N, y, n}. To ease the reader’s
understanding, we manipulate states with four “macros”. Each macro has a set of possible
values; each state is a combination of values for the different macros.

name values for q ∈ Q value for q ∈ I

pair(q) {false, true} false
grp(q) {false, true} true

name values for q ∈ Q value for q ∈ I

even(q) {false, true} false
maj(q) {Y, N, Y , N, y, n} Y

The input mapping is defined by ι(x) := qI , where qI is the unique state of I. In-
formally, pair(q) indicates whether the agent has been paired; grp(q) indicates whether the
agent belongs to the candidate majority group; maj(q) is the current value of the majority
computation; and even(q) is the even bit.

3.2 Transitions and stages
We describe the protocol by introducing rules corresponding to each stage. Note that a rule
is a structure on which transitions can be based; therefore, a single rule can yield multiple
transitions of the same nature. For convenience, some lemmas are stated before they can
actually be proven, as they require the full set of transitions to be defined first. Proofs in the
appendix take into account the complete list of transitions.

As the set of transitions for the protocol is lengthy, we present it using a “precondition-
update” notation where for any two agents in state p, q ∈ Q, respectively with colors
d1, d2 ∈ D, a single transition whose preconditions on p, q and d1, d2 are met is used. The
result of such an interaction is the agent initially in state p updating its state to p′, where p′

is identical to p except for the specified macros; and likewise for q. To help the readability,
the precondition and update of states p and q are on distinct lines in the forthcoming tables.

3.2.1 Pairing stage
The first rule is used for the pairing stage whose main goal is to match as many agents as
possible with agents of a different color:

rule state precondition color precondition state update

(1) ¬pair(p)
d1 ̸= d2

pair(p′) ∧ even(p′)
¬pair(q) pair(q′) ∧ even(q′)

M. Blondin and F. Ladouceur 115:7

This rule gives rise to the following lemmas concerning the end of the pairing stage and the
nature of unpaired agents, if they exist. For the remainder of the section, let us fix a fair
execution C0C1 · · · where C0 is initial. Moreover, let P := {q ∈ Q : pair(q)} and U := Q \P .

▶ Lemma 4. There exists τ ∈ N such that |Cτ |U = |Cτ+1|U = · · · . Furthermore, for every
i ≥ τ , all unpaired agents of Ci share the same color, i.e. the set {d ∈ D : Ci(d, U) > 0} is
either empty or a singleton.

Let α denote the minimal threshold τ given by Lemma 4, which is informally the “end of
the pairing stage”.

▶ Lemma 5. Let i ∈ N. If φmaj(C0) and d is the majority color, then Ci(d, U) > 0.

3.2.2 Grouping stage
The next set of transitions seeks to correctly set each agent’s group, representing its status
in the computation of the majority. An agent is either part of the candidate majority group
(true), or part of the candidate minority group (false). Note that this group (and its related
majority computing value) are irrelevant if there are no unpaired agents in Cα; this special
case is handled using the even bit, which is ignored for now.

rule state precondition color precondition state update

(2) ¬pair(p)
d1 ̸= d2

none
pair(q) ∧ grp(q) ∧ maj(q) = Y ¬grp(q′) ∧ maj(q′) = N

(3) ¬pair(p)
d1 = d2

none
pair(q) ∧ ¬grp(q) ∧ maj(q) = N grp(q′) ∧ maj(q′) = Y

(4) ¬pair(p)
d1 ̸= d2

none
pair(q) ∧ grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = N

(5) ¬pair(p)
d1 = d2

none
pair(q) ∧ ¬grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = Y

The forthcoming rules below are part of a two-rule combination whose aim is to rectify an
error in grouping assignments. It allows agents who engaged in the computation within the
candidate minority group (resp. majority group) who encountered a currently valid majority
candidate of their color (resp. a different color) to reset their value to Y (resp. N) and their
group to true (resp. false) by finding another agent, also engaged, to do the same. This,
along with the rules described in the next subsection, ensures that the invariant below holds.

Let Qa := {q ∈ Q : maj(q) = a}, QM := {q ∈ Q : grp(q)} and Qm := Q \QM .

▶ Lemma 6. For every i ∈ N, it is the case that |Ci|QY
− |Ci|QN

= |Ci|QM
− |Ci|Qm

.

rule state precondition color precondition state update

(6) grp(p) ∧ maj(p) = N none ¬grp(p′) ∧ maj(p′) = N

¬grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = N

(7) ¬grp(p) ∧ maj(p) = Y none grp(p′) ∧ maj(p′) = Y

grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = Y

(8) grp(p) ∧ maj(p) = N none ¬grp(p′) ∧ maj(p′) = n

¬grp(q) ∧ maj(q) = Y grp(q′) ∧ maj(q′) = n

ICALP 2023

115:8 Population Protocols with Unordered Data

We give the following example to help illustrate the necessity of the intermediate states
Y ,N in the context of the suggested protocol.

▶ Example 7. Let us first consider a possible execution from the initial population
{{ , , , , }}, for which there is no majority datum. Observe that since the number of
agents is odd, in any execution, there will be a datum with an unpaired agent after the
pairing stage. Assume, for the sake of our demonstration, that this datum is blue ().
Entering the grouping stage, this blue agent will eventually let the other agents know that
they are not part of the majority candidate group and, at some point, rule (11) will occur,
leading to all agents permanently with maj(q) ∈ {N,n}. This is summarized in these three
snapshots (where the even bit is omitted for the sake of clarity):

input pair grp maj

p ✓ Y

p ✓ Y

p ✓ Y

p ✓ Y

p ✓ Y

∗−→

input pair grp maj

✓ p N

✓ p N

✓ p N

✓ p N

p ✓ Y

−→

input pair grp maj

✓ p N

✓ p n

✓ p N

✓ p N

p ✓ n

Now, consider a population where a majority datum does indeed exist: {{ , , , , , , }}.
Note that this population is strictly greater than the previous population. Therefore, we can
promptly obtain a configuration similar to the one described above, where two more agents
of datum red () have yet to participate in the computation. Since the computation must
output true, the consensus on {N,n} initiated by the blue agent has to be reverted.

In this case, after the final pairing is done via an interaction between the blue agent ()
and one of the newly introduced red agents (), the error handling first works through rule (4)
or (5): the unpaired red agent () notifies the blue agent () that its group is incorrect
by setting its computation value to N and similarly, it notifies all red agents () who had
previously participated in the (now incorrect) majority stage to switch their computation
value to Y . This is summarized in these three snapshots:

· · ·

input pair grp maj

✓ p N

✓ p n

✓ p N

✓ p N

✓ ✓ n

✓ ✓ Y

p ✓ Y

∗−→

input pair grp maj

✓ ✓ Y

✓ p Y

✓ p N

✓ p N

✓ ✓ N

✓ ✓ Y

p ✓ Y

−→

input pair grp maj

✓ ✓ Y

✓ ✓ n

✓ p N

✓ p N

✓ p n

✓ ✓ Y

p ✓ Y

This inevitably leads each incorrectly grouped agent to rectify its group bit as well as its
computation value, accordingly, through rules (6), (7) or (8). We then have a configuration
for which the grouping stage is over and where either the majority stage is not yet initiated,
or it has been correctly initiated with the right majority candidate. ◀

The following lemmas show that the grouping stage eventually ends if there are unpaired
agents in Cα. Moreover, they show that the majority candidate color d eventually propagates
the majority group to agents of color d, and the minority group to agents of color d′ ̸= d.

M. Blondin and F. Ladouceur 115:9

▶ Lemma 8. Let E be the set of states engaged in the majority computation, i.e. E := {q ∈
Q : maj(q) ∈ {y, n, Y ,N}}. Let EM := E ∩ QM and Em := E ∩ Qm. For every i ∈ N, the
following holds: |Ci|EM

= |Ci|Em
.

▶ Lemma 9. Let d ∈ D. If Cα(d, U) > 0, then there exists some τ ≥ α such that, for all
i ≥ τ , d′ ∈ D and q ∈ act(Ci(d′)), the following holds: grp(q) = (d′ = d).

3.2.3 Majority stage

The last set of transitions emulates a standard population protocol for the majority predicate.
Populations of even size without a majority give rise to a case requiring careful handling.
Indeed, for such a population the pairing stage may leave no unmatched agent. Therefore,
we give the following rules to fix this specific issue.

rule state precondition color precondition state update

(9) ¬pair(p) none none
even(q) ¬even(q′)

(10) pair(p) ∧ even(p) none none
pair(q) ∧ ¬even(q) even(q′)

▶ Lemma 10. There exists τ ≥ α such that for every i ≥ τ and q ∈ act(Ci), it is the case
that even(q) holds iff |Ci|U = 0.

For other populations, a unique candidate color for the majority exists following the
pairing stage. For the predicate to be true, this candidate must have more agents than all of
the other colors combined. This is validated (or invalidated) through the following rules.

rule state pre. col. pre. state update

(11) maj(p) = Y none maj(p′) = n

maj(q) = N maj(q′) = n

(12) maj(p) = Y none none
maj(q) = n maj(q′) = y

rule state pre. col. pre. state update

(13) maj(p) = N none none
maj(q) = y maj(q′) = n

(14) maj(p) = n none none
maj(q) = y maj(q′) = n

▶ Lemma 11. If φmaj(C0) holds, then there exists τ ≥ α such that for every i ≥ τ and
q ∈ act(Ci), it is the case that maj(q) ∈ {Y, y} and ¬even(q) hold.

▶ Lemma 12. If ¬φmaj(C0) holds, then there exists τ ≥ α such that either:
even(q) holds for every i ≥ τ and q ∈ act(Ci); or
maj(q) ∈ {N,n} holds for every i ≥ τ and q ∈ act(Ci).

We define the output of a given state q ∈ Q as O(q) := (maj(q) ∈ {Y, y} ∧ ¬even(q)). The
correctness of the protocol follows immediately from Lemmas 11 and 12:

▶ Corollary 13. There exists τ ∈ N such that O(Cτ) = O(Cτ+1) = · · · = φmaj(C0).

ICALP 2023

115:10 Population Protocols with Unordered Data

4 Immediate observation protocols

We say that a population protocol is immediate observation (IO) if each of its transitions has
the form ((p, q),∼, (p, q′)), i.e. only one agent can update its state by “observing” the other
agent. There is no restriction on ∼, but one can also imagine the datum to be observed.

In this section, we characterize the expressive power of immediate observation protocols.
First, we establish properties of IO protocols regarding truncations, thereby allowing us to
prove that the majority predicate is not computable. Then, we show that IO protocols do
not compute more than interval predicates. Finally, we show that every interval predicate
can be computed by an IO protocol. Before proceeding, let us define interval predicates.

Let ∃̇d1, d2, . . . , dn denote a disjoint existential quantification, i.e. it indicates that di ≠ dj

for all i, j ∈ [1..n] such that i ̸= j. A simple interval predicate, interpreted over inputs from
ND×Σ, where Σ = {x1, . . . , xm}, is a predicate of the form

ψ(M) = ∃̇d1, d2, . . . , dn ∈ D :
n∧

i=1

m∧
j=1

M(di, xj) ∈ T (i, j), (2)

where m,n ∈ N>0, each T (i, j) ⊆ N is a nonempty interval, and for every i ∈ [1..n], there
exists j ∈ [1..m] such that 0 /∈ T (i, j). An interval predicate is a Boolean combination of
simple interval predicates.

4.1 State and form truncations
Given configurations C,C′, we write C ⊑ C′ if there exists an injection ρ : D → D such that
C(d) ≤ C′(ρ(d)) for every d ∈ D. We write C ≡ C′ if C ⊑ C′ and C′ ⊑ C. We say that a
subset of configurations X is upward closed if C ∈ X and C ⊑ C′ implies C′ ∈ X. We say
that a set B is a basis of an upward closed set X if X = {C′ : C ⊑ C′ for some C ∈ B}.

A configuration C is said unstable if either O(C) = ⊥ or there exists C′ such that
C ∗−→ C′ with O(C) ̸= O(C′). Let U denote the set of unstable configurations, and let
Sb := {C : C ̸∈ U , O(C) = b} denote the set of stable configurations with output b. As in
the case of standard protocols (without data) [1], it is simple to see that U is upward closed.
Moreover, since ⊑ is a well-quasi-order, it follows that U has a finite basis.

This allows us to extend the notion of truncations from [1]. A state truncation to k ≥ 1 of
some form f , denoted by τk(f), is the form such that τk(f)(q) := min(f(q), k) for all q ∈ Q.
The concept of state truncations is also extended to configurations: τk(C) is the configuration
such that τk(C)(d) := τk(C(d)) for all d ∈ D. From a sufficiently large threshold, the stability
and output of a configuration remain unchanged under state truncations:

▶ Lemma 14. Let ψ be a predicate computed by a population protocol with unordered data.
Let Sb be the set of stable configurations with output b of the protocol. There exists k ≥ 1
such that, for all b ∈ {0, 1}, we have C ∈ Sb iff τk(C) ∈ Sb.

Given a configuration C and a form f , let #f (C) := |{d ∈ D : C(d) = f}|. Due to the
nature of immediate observation protocols, it is always possible to take a form f of color d
present in an configuration C, duplicate f with a fresh color d′, and have the latter mimic
the behaviour of the former.

▶ Lemma 15. Let C and C′ be configurations such that C ∗−→ C′. For every d ∈ supp(C)
and d′ ∈ D \ supp(C), it is the case that C + (C(d))d′

∗−→ C′ + (C′(d))d′ .
Combined with the fact that U has a finite basis, this allows to show that from some

threshold, duplicating forms with fresh colors does not change the output of the population.

M. Blondin and F. Ladouceur 115:11

▶ Lemma 16. Let ψ be a predicate computed by a population protocol with unordered data.
Let f be a form with act(f) ⊆ I. There exists h(f) ∈ N such that, for all initial configuration
C0 and d ∈ D \ supp(C0) with #f (C0) ≥ h(f), it is the case that ψ(C0 + fd) = ψ(C0).

The form truncation of a configuration C, denoted σ(C), is an (arbitrary) configuration
such that σ(C) ⊑ C and #f (σ(C)) = min(#f (C), h(f)) for every form f , where h(f) is
given by Lemma 16. By Lemma 16, ψ(C0) holds iff ψ(σ(C0)) holds. Moreover, Lemma 16
allows us to show that IO protocols are less expressive than the general model.

▶ Proposition 17. No IO population protocol computes the majority predicate φmaj.

Proof. For the sake of contradiction, suppose that some IO protocol computes φmaj. Let qI

be the unique initial state and let f := {{qI}}. Let h(f) be given by Lemma 16. Let C0 be
an initial configuration such that

C0(d) =
∑h(f)+1

i=1 f holds for a unique datum d ∈ D, and
C0(d′) = f holds for exactly h(f) other data d′ ∈ {d1, d2, . . . , dh(f)}.

We have φmaj(C0) = true, since d has h(f)+1 agents in a population of 2 ·h(f)+1 agents.
Let C′

0 be the initial configuration obtained from C0 by adding a datum d∗ /∈ supp(C0) such
that C′

0(d∗) = f . By Lemma 16, φmaj(C′
0) = φmaj(C0) = true. However, datum d no longer

has a majority in C′
0, which is a contradiction. ◀

4.2 Predicates computed by IO protocols are interval predicates
▶ Theorem 18. Let (Q, δ, I, O) be an immediate observation protocol with unordered data
that computes a predicate ψ. The predicate ψ can be expressed as an interval predicate.

Proof. We will express ψ as a finite Boolean combination of simple interval predicates.
Let h be the mapping given by Lemma 16. Let T := {C : ψ(C) = true} and T1 := {C ∈

T : C(d, q) ≤ k for all d ∈ D, q ∈ Q}. From Lemma 14, we learn that state truncations do
not change the stability of a configuration. So, ψ(C) holds iff

∨
C′∈T1

τk(C) = C′ holds. Let
T2 := {C ∈ T1 : #f (C) ≤ h(f) for all f ∈ F}. It follows from Lemma 16 that ψ(C) holds
iff

∨
C′∈T2

σ(τk(C)) = C′ holds.
The latter is an infinite disjunction. Let us make it finite. Observe that if C ∗−→ C′ and

C ≡ C hold, then there exists C′ ≡ C′ such that C ∗−→ C′. Moreover, note that equivalent
configurations have the same output as they share the same active states. Indeed, C ≡ C iff∧

f∈F #f (C) = #f (C). Hence, for every initial configuration C ≡ C, we have ψ(C) = ψ(C).
Let T2/≡ be the set of all equivalence classes of ≡ on T2, and let T3 be a set that contains
one representative configuration per equivalence class of T2/≡. It is readily seen that ψ(C)
holds iff

∨
C′∈T3

σ(τk(C)) ≡ C′ holds.
Let us argue that T3 is finite. Let Fk := {f ̸= 0 : f(q) ≤ k for all q ∈ Q}. For every

configuration C ∈ T1, each form f with #f (C) > 0 belongs to Fk. As T2 ⊆ T1, this also
holds for configurations of T2. Given C ∈ T2, we have #f (C) ≤ h(f) for all f ∈ Fk, and
#f (C) = 0 for all f /∈ Fk. Thus, as Fk is finite, we conclude that T3 is finite.

Let us now exploit our observations to express ψ as an interval predicate. Let us fix some
C′ ∈ T3. It suffices to explain how to express “σ(τk(C)) ≡ C′”. Indeed, as T3 is finite, we
can conclude by taking the finite disjunction

∨
C′∈T3

σ(τk(C)) ≡ C′.
For every form f ∈ Fk, let lt(f) := {q ∈ Q : f(q) < k}, eq(f) := {q ∈ Q : f(q) = k} and

φf ,d(C) :=
∧

q∈lt(f)

(C(d, q) = f(q)) ∧
∧

q∈eq(f)

(C(d, q) ≥ f(q)).

Observe that φf ,d(C) holds iff τk(C)(d) = f .

ICALP 2023

115:12 Population Protocols with Unordered Data

For every f ∈ Fk such that #f (C′) < h(f), we define this formula, where n := #f (C′):

ψf (C) := ∃̇d1, d2, . . . , dn ∈ D :
n∧

i=1
φf ,di

(C) ∧ ¬∃̇d1, d2, . . . , dn+1 ∈ D :
n+1∧
i=1

φf ,di
(C).

For every f ∈ Fk such that #f (C′) = h(f), we define this formula, where n := #f (C′):

ψf (C) := ∃̇d1, d2, . . . , dn ∈ D :
n∧

i=1
φf ,di

(C).

Observe that ψf is either a simple interval predicate or a Boolean combination of two simple
interval predicates. Note that ψf (C) holds iff #f (σ(τk(C))) = #f (C′) holds. This means
that

∧
f∈Fk

ψf (C) holds iff σ(τk(C)) ≡ C′ holds, and hence we are done. ◀

4.3 An IO protocol for simple interval predicates
As Boolean combinations can be implemented (see end of Section 2.1), it suffices to describe
a protocol for a simple interval predicate of the form (2). We refer to each i ∈ [1..n] as a role.
In the forthcoming set of states Q, we associate to each q ∈ Q an element elem(q) ∈ [1..m].
Each agent’s element is set through the input; e.g. an agent mapped from symbol (, x1) is
initially in a state q such that elem(q) = 1. Let Qj := {q ∈ Q : elem(q) = j}. For any two
configurations Ca and Cb of an execution, any datum d ∈ D and any element j ∈ [1..m], the
invariant Ca(d,Qj) = Cb(d,Qj) holds. We say that d ∈ D matches role i in configuration C
if C(d,Qj) ∈ T (i, j) holds for all j ∈ [1..m]. Let r := max(r1, . . . , rn) + 1, where

ri := max({minT (i, j) : j ∈ [1..m]} ∪ {max T (i, j) : j ∈ [1..m], supT (i, j) < ∞}).

Agents will not need to count beyond value r to decide whether a role is matched.
As for the majority protocol, our simple interval protocol works in stages, each one being

necessary to ensure properties and invariants for the subsequent stages. In the election stage,
a unique controller for the population and a single leader per datum of the support are
selected; the former seeks to distribute a set of roles to the latter.

All agents contribute to the tallying of their immutable element j through the counting
stage. This is done using the “tower method” described in [2], whereby two agents of the
same datum, element and value meet and allow one of the two agents to increment its value.
The maximal value computed in that manner is subsequently communicated to the (unique)
datum leader.

Once the leaders carry correct counts for each element of their respective datum, they
undertake roles that they match in the distribution stage. These roles can be swapped for
other roles (as long as requirements are met) through a process of interrogating the controller.
The controller is constantly notified of selected roles and updates its list of tasks accordingly.

If a fully assigned task list is obtained by the controller, it spreads a true-output throughout
the population in what we call the output propagation stage. If that is not possible, leaders
are in a consistent state of trial-and-error for their role assignments, ultimately failing to
completely fill the task list, leaving the controller free to propagate its false-output.

▶ Example 19. Consider n = m = 2 with T (1, 1) := [2..∞), T (1, 2) := [0..4], T (2, 1) := N,
T (2, 2) := [1..∞). Let M := {{(, x1), (, x1), (, x1), (, x2), (, x1), (, x2)}}. Note that r = 5.
Datum “ ” could match roles 1 and 2, “ ” cannot match any role, and “ ” could match role 2.

M. Blondin and F. Ladouceur 115:13

After executing the protocol for a while, we may end up with the configuration illustrated
in the table below. The third, fourth, fifth and sixth agents contain the correct value for their
datum and element: M(, x1) = 3 and M(, x2) = M(, x1) = M(, x2) = 1. The second
agent has been elected controller. The last three agents have been elected their respective
datum’s leader and have collected the correct counts for each element. Either the -leader or
the -leader (possibly both) has notified the controller that they play role 2.

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, ✓]
(, x1) 3
(, x2) 1 ✓ 2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

The -leader may change its mind and decide to play role 1 after noticing the controller
does not have its task 1 assigned. This switches its role to −2. Once the -leader notifies the
controller, its role is set to 0 and (in doubt) the controller considers that role 2 is not assigned
anymore. The -leader then changes its role to 1. Eventually the -leader and -leader notify
the controller that roles 1 and 2 are taken. This is summarized in these three snapshots:

input · · · role · · · task

(, x1)
(, x1) [p, p]
(, x1)
(, x2) −2
(, x1)
(, x2) 2

· · · role · · · task

[p, p]

0

2

· · · role · · · task

[✓, ✓]

1

2
◀

Note that while we rely on stages to describe our protocol, the distributed nature of the
model implies that some stages may interfere with others. Therefore, we present here a list
of potential problems and the way our protocol fixes them.

While leader election is straightforward, role assignment for leaders can happen at any
time before the actual leader is elected. This could lead to the controller being notified of
a role assignment for which no current leader is assigned. Thus, when an agent loses its
leadership status, it reverts its role to a negative value, meaning it will have to inform
the controller of the change before returning to a passive value.
A leader may take a role before having the correct counts. We provide a reset mechanism
through which the leader falls into a “negative role”. This forces it to then contact the
controller and rectify the situation.
A leader may have previously taken a role before realizing it does not actually meet the
requirements. The leader is then forced to convey its mistake to the controller. But the
controller it notifies may not ultimately be the population’s controller. Therefore, after
losing the controller status, an agent has to go to a negative controller state, meaning it
must reset the controller’s tasks before reverting to a passive value.
There may be many leaders with the same role. To prevent deadlocks, we allow a leader
to self-reassign to a new role if it notices the controller does not have the task filled.

ICALP 2023

115:14 Population Protocols with Unordered Data

4.3.1 States
The set of states is defined as Q := {false, true}n+2 × [1..m] × [1..r]m+1 × [−n..n] × {−1, 0, 1}.
For the sake of readability, we specify and manipulate states with these macros:

name values for q ∈ Q values for q ∈ I

elem(q) [1..m] j ∈ [1..m]
val(q) [1..r] 1
out(q) {false, true} false

lead(q) {false, true} true
role(q) [−n..n] 0

countℓ(q) [1..r] 1 if ℓ = j, 0 otherwise

ctrl(q) {−1, 0, 1} 1
taski(q) {false, true} false

The input mapping is defined by ι(xj) := pj , where pj is the unique state of I with
elem(pj) = j. Informally, elem(q) = j indicates that the agent holds the j-th element;
val(q) is the current tally of element elem(q) for the datum of the agent; lead(q) and ctrl(q)
respectively indicate whether an agent is a datum leader or a controller; role(q) indicates the
role for a leader; countj(q) allows a datum leader to maintain the highest count currently
witnessed for element j; taski(q) allows the controller to maintain a list of the currently
matched roles; and out(q) is the current belief of an agent on the output of the protocol.

Note that the rules presented in this section are used to succinctly describe transitions. A
single rule may induce several transitions. Furthermore, for the sake of brevity, we mark rules
allowing mirror transitions with an asterisk (∗) next to the rule number. Mirror transitions
are transitions in which an agent may observe its own state and react accordingly. Thus,
a ∗-rule generating transitions whose precondition formula is A(p) ∧B(q) also generates a
transition whose precondition is A(q) ∧ B(q), effectively making state p the state of any
“dummy agent”. Note that q is still the only state to be updated to q′.

4.3.2 Leader and controller election
The first two rules are meant to elect a unique leader per datum present in the population,
and a unique global controller for the whole population. For the remainder of the section, let
us fix a fair execution C0C1 · · · where C0 is initial.

rule state precondition color precondition state update

(1) lead(p)
d1 = d2

role(q′) = −|role(q)|
lead(q) ¬lead(q′)

(2) ctrl(p) = 1 none
ctrl(q) = 1 ctrl(q′) = −1

Note that rule (1) guarantees that the agent losing leadership has its role set to a non-
positive value. Similarly, rule (2) pushes the non-controller into a temporary intermediate state
for its controller value, i.e. −1. Let QL := {q ∈ Q : lead(q)} and QC := {q ∈ Q : ctrl(q) = 1}.
The following lemma identifies the end of both elections.

▶ Lemma 20. There exists τ ∈ N such that |Cτ |QC
= |Cτ+1|QC

= · · · = 1, and |Cτ (d)|QL
=

|Cτ+1(d)|QL
= · · · = 1 for every d ∈ D.

M. Blondin and F. Ladouceur 115:15

Let α denote the minimal value τ given by Lemma 20, which we refer to as the end of
the election stage.

4.3.3 Element count by datum
The next rules allow to count how many agents with a common datum hold the same element.
This count is ultimately communicated to the datum leader. Given d ∈ D and τ ∈ N, we say
that a state q ∈ Q is (d, j)-valid if elem(q) = j and val(q) = min(Cτ (d,Qj), r).

rule state precondition color precondition state update

(3) elem(p) = elem(q)
d1 = d2val(q) = val(p) < r val(q′) = val(q) + 1

(4)*
countelem(p)(q) < val(p)

d1 = d2

countelem(p)(q′) = val(p)
lead(q) if (role(q) > 0 ∧

val(p) /∈ T (role(q), elem(p))):
role(q′) = −role(q)

Observe another correction mechanism; rule (4) guarantees that a leader with an assigned
role i > 0 verifies that it can still assume role i after updating its count. The following
lemmas explain that the correct counts are eventually provided to each datum leader.

▶ Lemma 21. There exists τ ∈ N such that, for every τ ′ ≥ τ , d ∈ supp(Cτ ′) and j ∈ [1..m],
if C0(d,Qj) > 0, then Cτ ′(d, q) > 0 holds for some (d, j)-valid state q.

▶ Lemma 22. There exists τ ≥ α such that, for every τ ′ ≥ τ , d ∈ supp(Cτ ′), j ∈ [1..m] and
q ∈ act(Cτ ′(d)) ∩QL, it is the case that countj(q) = min(Cτ ′(d,Qj), r).

Let τ ′ and τ ′′ denote the minimal values τ given by Lemmas 21 and 22. From now on,
let β := max(τ ′, τ ′′).

4.3.4 Role distribution and task tracking
The following rules assign roles to leaders and allow leaders to reset their roles when possible,
therefore preventing deadlocks. In rule (5), variable i can take any value from [1..n].

rule state precondition color precondition state update

(5)
lead(q)

nonerole(q) = 0 role(q′) = i∧
j∈[1..m] countj(q) ∈ T (i, j)

(6)*

ctrl(p)

none
lead(q)

role(q) = i > 0 role(q′) = −i∨
i′∈[1..n]\{i}

(
¬taski′ (p)∧∧

j∈[1..m] countj(q) ∈ T (i′, j)
)

This induces the following result, informally meaning that if a leader has taken a role,
then it currently believes it can fill this role.

▶ Lemma 23. For every τ ∈ N, j ∈ [1..m] and q ∈ act(Cτ) ∩QL such that role(q) > 0, it is
the case that countj(q) ∈ T (role(q), j).

ICALP 2023

115:16 Population Protocols with Unordered Data

These rules allow to update the controller’s task list and reset roles when needed:

rule state precondition color precondition state update

(7)* role(p) ̸= 0 none task|role(p)|(q′) = (role(p) > 0)
ctrl(q) = 1

(8)*
ctrl(p) = 1

nonerole(q) < 0 role(q′) = 0
¬task|role(q)|(p)

To illustrate how rules (5) through (8) operate, we give the following example.

▶ Example 24. Recall Example 19, introduced earlier. Consider the configuration of its first
snapshot. While we initially gave intuitions on how role reassignment might happen from
this specific configuration, we give here a deeper analysis of the important configurations
involved in this process.

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, ✓]
(, x1) 3
(, x2) 1 ✓ 2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

In the above, the -leader currently believes (rightly so) that it can fill roles 1 and 2.
Observe that the controller has task 2 assigned. However, its task 1 is still unassigned.
Therefore, rule (6) allows the -leader to initiate its reassignment by setting its role to −2
through an interaction with the controller. This leads to the following configuration:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, ✓]
(, x1) 3
(, x2) 1 ✓ −2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

Since its role is set to −2, the -leader now seeks to inform the controller that it should
unassign role 2 from its task list. This is achieved on their next meeting through rule (7).
We then have this next configuration:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, p]
(, x1) 3
(, x2) 1 ✓ −2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

M. Blondin and F. Ladouceur 115:17

Note that this does not mean that no leader currently has its role set to 2; indeed, the
-leader still has its role set to 2. Let us now assume that, immediately after reaching this

configuration, the -leader and the controller meet again. Since the -leader observes that
the controller no longer has its task 2 assigned, it can assume that either it unassigned it,
some other leader did, or it was never assigned. In any case, it can safely reset its role to 0
through rule (8), giving us the following configuration:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, p]
(, x1) 3
(, x2) 1 ✓ 0 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

Observe that the -leader could have met the controller before the -leader, thereby
reassigning role 2 in the controller’s task list and undoing the -leader’s work. This would
only delay the -leader’s role resetting; through fairness, it would not endlessly prevent it.

From this last configuration, since the -leader’s role is set to 0, it is now free to take any
role it can fill through rule (5). Let us assume, for the sake of brevity, that it takes on role 1:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, p]
(, x1) 3
(, x2) 1 ✓ 1 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

Suppose the -leader meets the controller before the -leader. Then, rule (7) assigns task 2
in the controller’s task list. The -leader can no longer reset its role through rule (6) because
the controller has task 2 already assigned. Therefore, when the -leader eventually meets the
controller again, it finally assigns task 1 to its task list via rule (7).

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [✓, ✓]
(, x1) 3
(, x2) 1 ✓ 1 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

◀

The following lemmas show that at some point in the execution, a configuration is reached
where agents who are neither leaders nor controllers no longer interact with other agents.

▶ Lemma 25. There exists some τ ∈ N such that for every τ ′ ≥ τ and q ∈ act(Cτ ′) \QL, it
is the case that role(q) = 0.

ICALP 2023

115:18 Population Protocols with Unordered Data

rule state precondition color precondition state update

(9) ctrl(p) = −1 none
ctrl(q) = 1

∧
i∈[1..m] ¬taski(q′)

(10)
ctrl(p) = 1

nonectrl(q) = −1 ctrl(q′) = 0∧
i∈[1..m] ¬taski(p)

▶ Lemma 26. There exists τ ≥ α such that for every τ ′ ≥ τ and q ∈ act(Cτ ′), it is the case
that ctrl(q) ∈ {0, 1}.

Let τ ′ and τ ′′ denote the minimal values τ given by Lemmas 25 and 26. From now on, let
γ := max(β, τ ′, τ ′′). Informally, this delimits the configuration where there are no negative
controllers, therefore preventing recurring resets of the controller’s tasks through rule (9).
Finally, the following lemma argues that past Cγ , a controller can only have a task set to true
if some leader is currently assuming the corresponding role (whether positive or negative).

▶ Lemma 27. For every τ ≥ γ, i ∈ [1..n] and q ∈ act(Cτ) ∩ QC such that taski(q) holds,
there exists q′ ∈ act(Cτ) such that |role(q′)| = i.

4.3.5 Output propagation
The last rule allows the controller to communicate to the other agents whether it currently
has its task list completely assigned or not. Note that the output of a state q is precisely the
value of out(q), i.e. O(q) := out(q).

rule state precondition color precondition state update

(11)* ctrl(p) none out(q′) =
∧n

i=1 taski(p)

▶ Lemma 28. It is the case that ψ(C0) holds iff there exists some τ ≥ γ such that for every
τ ′ ≥ τ , there exists q ∈ act(Cτ ′) ∩QC such that

∧
i∈[1..n] taski(q) holds.

▶ Corollary 29. There exists τ ∈ N such that O(Cτ) = O(Cτ+1) = · · · = ψ(C0).

5 Conclusion

In this article, we introduced population protocols with unordered data; we presented such
a protocol that computes majority over an infinite data domain; and we established the
expressive power of immediate observation protocols: they compute interval predicates.

This work initiates the study of population protocols operating over arbitrarily large
domains. Hence, this opens the door to numerous exciting questions, e.g. on space-efficient
and time-efficient protocols. In particular, the expressive power of our model remains open.

There exist results on logics over data multisets (e.g., see [22, 24]). In particular, the
author of [22] provides a decidable logic reminiscent of Presburger arithmetic. It appears
plausible that population protocols with unordered data compute (perhaps precisely) this
logic. While we are fairly confident that remainder and threshold predicates with respect to
the data counts can be computed in our model, the existential quantification, arising in the
(non-ambiguous) solved forms of [22], seems more challenging to implement than the one of
simple interval predicates.

M. Blondin and F. Ladouceur 115:19

Our model further relates to logic and automata on data words: inputs of a protocol
with data can be seen as data words where Q is the alphabet and D is the data domain.
Importantly, these data words are commutative, i.e., permutations do not change acceptance.
For example, the logic FO2(+1,∼, <) of [8] allows to specify non-commutative properties
such as “there is a block of a’s followed by a block of b’s”. In this respect, this logic is too
“strong”. It is also too “weak” as it cannot express “for each datum, the number of a’s is
even”. For this same reason, EMSO2(+1,∼), and equivalently weak data automata [21], is
too “weak”. The logic EMSO2

#(+1,∼), and equivalently commutative data automata [25],
can express the latter, but, again, the successor relation allows to express non-commutative
properties on letters. Thus, while models related to data words have been studied and could
influence research on the complete characterization of the expressive power of our model, we
have yet to directly connect them to our model.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006. doi:10.1007/s00446-005-0138-3.

2 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

3 Gregor Bankhamer, Petra Berenbrink, Felix Biermeier, Robert Elsässer, Hamed Hosseinpour,
Dominik Kaaser, and Peter Kling. Population protocols for exact plurality consensus: How a
small chance of failure helps to eliminate insignificant opinions. In Proc. 41st ACM Symposium
on Principles of Distributed Computing (PODC), pages 224–234, 2022. doi:10.1145/3519270.
3538447.

4 Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser. Loosely-stabilizing
phase clocks and the adaptive majority problem. In Proc. 1st Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), pages 7:1–7:17, 2022.

5 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. A population protocol for exact majority with O(log5/3 n) stabilization time and
Θ(log n) states. In Proc. 32nd International Symposium on Distributed Computing (DISC),
pages 10:1–10:18, 2018. doi:10.4230/LIPIcs.DISC.2018.10.

6 Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax. Succinct
population protocols for Presburger arithmetic. In Proc. 37th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages 40:1–40:15, 2020. doi:10.4230/
LIPIcs.STACS.2020.40.

7 Michael Blondin, Javier Esparza, Stefan Jaax, and Philipp J. Meyer. Towards efficient
verification of population protocols. Formal Methods in System Design (FMSD), 57(3):305–
342, 2021. doi:10.1007/s10703-021-00367-3.

8 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL),
12(4):27:1–27:26, 2011. doi:10.1145/1970398.1970403.

9 Benedikt Bollig, Patricia Bouyer, and Fabian Reiter. Identifiers in registers – describing
network algorithms with logic. In Proc. 22nd International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS), pages 115–132, 2019. doi:
10.1007/978-3-030-17127-8_7.

10 Benedikt Bollig, Fedor Ryabinin, and Arnaud Sangnier. Reachability in distributed memory
automata. In Proc. 29th EACSL Annual Conference on Computer Science Logic (CSL), pages
13:1–13:16, 2021. doi:10.4230/LIPIcs.CSL.2021.13.

11 Robert S. Boyer and J. Strother Moore. Mjrty: A fast majority vote algorithm. In Automated
Reasoning: Essays in Honor of Woody Bledsoe, 1991.

ICALP 2023

https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1145/3519270.3538447
https://doi.org/10.1145/3519270.3538447
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.4230/LIPIcs.STACS.2020.40
https://doi.org/10.4230/LIPIcs.STACS.2020.40
https://doi.org/10.1007/s10703-021-00367-3
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1007/978-3-030-17127-8_7
https://doi.org/10.1007/978-3-030-17127-8_7
https://doi.org/10.4230/LIPIcs.CSL.2021.13

115:20 Population Protocols with Unordered Data

12 Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza. Fast and succinct
population protocols for Presburger arithmetic. In Proc. 1st Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), pages 11:1–11:17, 2022. doi:10.4230/LIPIcs.
SAND.2022.11.

13 Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Adding data registers to
parameterized networks with broadcast. Fundamenta Informaticae, 143(3-4):287–316, 2016.
doi:10.3233/FI-2016-1315.

14 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Przemyslaw Uznanski,
and Grzegorz Stachowiak. A time and space optimal stable population protocol solving
exact majority. In Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 1044–1055, 2021. doi:10.1109/FOCS52979.2021.00104.

15 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Informatica, 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

16 Leszek Gasieniec, David D. Hamilton, Russell Martin, Paul G. Spirakis, and Grzegorz Stachow-
iak. Deterministic population protocols for exact majority and plurality. In Proc. 20th

International Conference on Principles of Distributed Systems (OPODIS), pages 14:1–14:14,
2016. doi:10.4230/LIPIcs.OPODIS.2016.14.

17 Utkarsh Gupta, Preey Shah, S. Akshay, and Piotr Hofman. Continuous reachability for
unordered data Petri nets is in PTime. In Proc. 22nd International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS), pages 260–276, 2019. doi:
10.1007/978-3-030-17127-8_15.

18 Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for Petri nets with unordered data. In Proc. 19th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS), pages
445–461, 2016. doi:10.1007/978-3-662-49630-5_26.

19 Piotr Hofman, Jérôme Leroux, and Patrick Totzke. Linear combinations of unordered data
vectors. In Proc. 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–11, 2017. doi:10.1109/LICS.2017.8005065.

20 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

21 Ahmet Kara, Thomas Schwentick, and Tony Tan. Feasible automata for two-variable logic
with successor on data words. In Proc. 6th International Conference on Language and
Automata Theory and Applications (LATA), volume 7183, pages 351–362, 2012. doi:10.1007/
978-3-642-28332-1_30.

22 Denis Lugiez. Multitree automata that count. Theoretical Computer Science, 333(1-2):225–263,
2005. doi:10.1016/j.tcs.2004.10.023.

23 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-
nications of the ACM, 61(2):72, 2018. doi:10.1145/3156693.

24 Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with cardinality con-
straints. In Proc. 9th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 218–232, 2008. doi:10.1007/978-3-540-78163-9_20.

25 Zhilin Wu. Commutative data automata. In Proc. 26th International Workshop/21st Annual
Conference of the EACSL on Computer Science Logic (CSL), volume 16, pages 528–542, 2012.
doi:10.4230/LIPIcs.CSL.2012.528.

https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.3233/FI-2016-1315
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.4230/LIPIcs.OPODIS.2016.14
https://doi.org/10.1007/978-3-030-17127-8_15
https://doi.org/10.1007/978-3-030-17127-8_15
https://doi.org/10.1007/978-3-662-49630-5_26
https://doi.org/10.1109/LICS.2017.8005065
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-642-28332-1_30
https://doi.org/10.1007/978-3-642-28332-1_30
https://doi.org/10.1016/j.tcs.2004.10.023
https://doi.org/10.1145/3156693
https://doi.org/10.1007/978-3-540-78163-9_20
https://doi.org/10.4230/LIPIcs.CSL.2012.528

	1 Introduction
	2 Preliminaries
	2.1 Population protocols with unordered data

	3 A protocol for the majority predicate
	3.1 States
	3.2 Transitions and stages
	3.2.1 Pairing stage
	3.2.2 Grouping stage
	3.2.3 Majority stage

	4 Immediate observation protocols
	4.1 State and form truncations
	4.2 Predicates computed by IO protocols are interval predicates
	4.3 An IO protocol for simple interval predicates
	4.3.1 States
	4.3.2 Leader and controller election
	4.3.3 Element count by datum
	4.3.4 Role distribution and task tracking
	4.3.5 Output propagation

	5 Conclusion

