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Abstract
We show that the problem of deciding for a given finite relation algebra A whether the network
satisfaction problem for A can be solved by the k-consistency procedure, for some k ∈ N, is
undecidable. For the important class of finite relation algebras A with a normal representation,
however, the decidability of this problem remains open. We show that if A is symmetric and has a
flexible atom, then the question whether NSP(A) can be solved by k-consistency, for some k ∈ N, is
decidable (even in polynomial time in the number of atoms of A). This result follows from a more
general sufficient condition for the correctness of the k-consistency procedure for finite symmetric
relation algebras. In our proof we make use of a result of Alexandr Kazda about finite binary
conservative structures.
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1 Introduction

Many computational problems in qualitative temporal and spatial reasoning can be phrased
as network satisfaction problems (NSPs) for finite relation algebras. Such a network consists
of a finite set of nodes, and a labelling of pairs of nodes by elements of the relation algebra.
In applications, such a network models some partial (and potentially inconsistent) knowledge
that we have about some temporal or spatial configuration. The computational task is to
replace the labels by atoms of the relation algebra such that the resulting network has an
embedding into a representation of the relation algebra. In applications, this embedding
provides a witness that the input configuration is consistent (a formal definition of relation
algebras, representations, and the network satisfaction problem can be found in Section 2.1).
The computational complexity of the network satisfaction problem depends on the fixed
finite relation algebra, and is of central interest in the mentioned application areas. Relation
algebras have been studied since the 40’s with famous contributions of Tarski [41], Lyndon [34],
McKenzie [37, 38], and many others, with renewed interest since the 90s [7, 11, 22, 25–27,30].
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116:2 Network Satisfaction Problems Solved by k-Consistency

One of the most prominent algorithms for solving NSPs in polynomial time is the so-called
path consistency procedure. The path consistency procedure has a natural generalisation
to the k-consistency procedure, for some fixed k ≥ 3. Such consistency algorithms have a
number of advantages: e.g., they run in polynomial time, and they are one-sided correct, i.e.,
if they reject an instance, then we can be sure that the instance is unsatisfiable. Because of
these properties, consistency algorithms can be used to prune the search space in exhaustive
approaches that are used if the network consistency problem is NP-complete. The question
for what temporal and spatial reasoning problems the k-consistency procedure provides a
necessary and sufficient condition for satisfiability is among the most important research
problems in the area [9, 40]. The analogous problem for so-called constraint satisfaction
problems (CSPs) was posed by Feder and Vardi [23] and has been solved for finite-domain
CSPs by Barto and Kozik [5]. Their result also shows that for a given finite-domain template,
the question whether the corresponding CSP can be solved by the k-consistency procedure
can be decided in polynomial time.

In contrast, we show that there is no algorithm that decides for a given finite relation
algebra A whether NSP(A) can be solved by the k-consistency procedure, for some k ∈ N.
The question is also undecidable for every fixed k ≥ 3; in particular, there is no algorithm
that decides whether NSP(A) can be solved by the path consistency procedure. Our proof
relies on results of Hirsch [29] and Hirsch and Hodkinson [25]. The proof also shows that
Hirsch’s Really Big Complexity Problem (RBCP; [27]) is undecidable. The RBCP asks for a
description of those finite relation algebras A whose NSP can be solved in polynomial time.

Many of the classic examples of relation algebras that are used in temporal and spatial
reasoning, such as the point algebra, Allen’s Interval Algebra, RCC5, RCC8, have so-called
normal representations, which are representations that are particularly well-behaved from
a model theory perspective [7,9, 27]. The importance of normal representations combined
with our negative results for general finite relation algebras prompts the question whether
solvability of the NSP by the k-consistency procedure can at least be characterised for
relation algebras A with a normal representation. Our main result is a sufficient condition
that implies that NSP(A) can be solved by the k-consistency procedure (Theorem 30). The
condition can be checked algorithmically for a given A. Moreover, for symmetric relation
algebras with a flexible atom, which form a large subclass of the class of relation algebras
with a normal representation, our condition provides a necessary and sufficient criterion for
solvability by k-consistency (Theorem 39). We prove that the NSP for every symmetric
relation algebra with a flexible atom that cannot be solved by the k-consistency procedure
is already NP-complete. Finally, for symmetric relation algebras with a flexible atom our
tractability condition can even be checked in polynomial time for a given relation algebra A
(Theorem 42).

In our proof, we exploit a connection between the NSP for relation algebras A with a
normal representation and finite-domain constraint satisfaction problems. In a next step, this
allows us to use strong results for CSPs over finite domains. There are similarities between
the fact that the set of relations of a representation of A is closed under taking unions on
the one hand, and so-called conservative finite-domain CSPs [3, 16–18] on the other hand; in
a conservative CSP the set of allowed constraints in instances of the CSP contains all unary
relations. The complexity of conservative CSPs has been classified long before the solution of
the Feder-Vardi Dichotomy Conjecture [19,23,42,43]. Moreover, there are particularly elegant
descriptions of when a finite-domain conservative CSP can be solved by the k-consistency
procedure for some k ∈ N (see, e.g., Theorem 2.17 in [17]). Our approach is to turn the
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similarities into a formal correspondence so that we can use these results for finite-domain
conservative CSPs to prove that k-consistency solves NSP(A). A key ingredient here is a
contribution of Kazda [31] about conservative binary CSPs.

All the missing proofs and details can be found in an extended version of this article [13].

2 Preliminaries

A signature τ is a set of function or relation symbols each of which has an associated finite
arity k ∈ N. A τ -structure A consists of a set A together with a function fA : Ak → A for
every function symbol f ∈ τ of arity k and a relation RA ⊆ Ak for every relation symbol
R ∈ τ of arity k. The set A is called the domain of A. Let A and B be τ -structures. The
(direct) product C = A×B is the τ -structure where

A × B is the domain of C;
for every relation symbol Q of arity n ∈ N and every tuple ((a1, b1), . . . , (an, bn)) ∈
(A × B)n, we have that ((a1, b1), . . . , (an, bn)) ∈ QC if and only if (a1, . . . , an) ∈ QA and
(b1, . . . , bn) ∈ QB;
for every function symbol Q of arity n ∈ N and every tuple
((a1, b1), . . . , (an, bn)) ∈ (A × B)n, we have that

QC((a1, b1), . . . , (an, bn)) := (QA(a1, . . . , an), QB(b1, . . . , bn)).

We denote the (direct) product A×A by A2. The k-fold product A× · · · × A is defined
analogously and denoted by Ak. Structures with a signature that only contains function
symbols are called algebras and structures with purely relational signature are called relational
structures. Since we do not deal with signatures of mixed type in this article, we will use the
term structure for relational structures only.

2.1 Relation Algebras
Relation algebras are particular algebras; in this section we recall their definition and state
some of their basic properties. We introduce proper relation algebras, move on to abstract
relation algebras, and finally define representations of relation algebras. For an introduction
to relation algebras we recommend the textbook by Maddux [36]. Proper relation algebras
are algebras whose domain is a set of binary relations over a common domain, and which are
equipped with certain operations on binary relations.

▶ Definition 1. Let D be a set and R a set of binary relations over D such that
(R; ∪, ¯, 0, 1, Id, ˘, ◦) is an algebra with operations defined as follows:
1. 0 := ∅,
2. 1 :=

⋃
R,

3. Id := {(x, x) | x ∈ D},
4. a ∪ b := {(x, y) | (x, y) ∈ a ∨ (x, y) ∈ b},
5. ā := 1 \ a,
6. ă := {(x, y) | (y, x) ∈ a},
7. a ◦ b := {(x, z) | ∃y ∈ D : (x, y) ∈ a and (y, z) ∈ b},
for a, b ∈ R. Then (R; ∪, ¯, 0, 1, Id, ˘, ◦) is called a proper relation algebra.

The class of all proper relation algebras is denoted by PA. Abstract relation algebras are
a generalisation of proper relation algebras where the domain does not need to be a set of
binary relations.

ICALP 2023



116:4 Network Satisfaction Problems Solved by k-Consistency

▶ Definition 2. An (abstract) relation algebra A is an algebra with domain A and signature
{∪, ¯, 0, 1, Id, ˘, ◦} such that
1. the structure (A; ∪, ∩, ¯, 0, 1), with ∩ defined by x ∩ y := (x̄ ∪ ȳ), is a Boolean algebra,
2. ◦ is an associative binary operation on A, called composition,
3. for all a, b, c, ∈ A: (a ∪ b) ◦ c = (a ◦ c) ∪ (b ◦ c),
4. for all a ∈ A: a ◦ Id = a,
5. for all a ∈ A: ˘̆a = a,
6. for all a, b ∈ A: x̆ = ă ∪ b̆ where x := a ∪ b,
7. for all a, b ∈ A: x̆ = b̆ ◦ ă where x := a ◦ b,
8. for all a, b, c ∈ A: b̄ ∪ (ă ◦ ((a ◦ b)) = b̄.

We denote the class of all relation algebras by RA. Let A = (A; ∪, ¯, 0, 1, Id, ˘, ◦) be a
relation algebra. By definition, (A; ∪, ∩, ¯, 0, 1) is a Boolean algebra and therefore induces a
partial order ≤ on A, which is defined by x ≤ y :⇔ x ∪ y = y. Note that for proper relation
algebras this ordering coincides with the set-inclusion order. The minimal elements of this
order in A \ {0} are called atoms. The set of atoms of A is denoted by A0. Note that for
the finite Boolean algebra (A; ∪, ∩, ¯, 0, 1) each element a ∈ A can be uniquely represented
as the union ∪ (or “join”) of elements from a subset of A0. We will often use this fact and
directly denote elements of the relation algebra A by subsets of A0.

By item 3. in Definition 2 the values of the composition operation ◦ in A are completely
determined by the values of ◦ on A0. This means that for a finite relation algebra the
operation ◦ can be represented by a multiplication table for the atoms A0.

An algebra with signature τ = {∪, ¯, 0, 1, Id, ˘, ◦} with corresponding arities 2, 1, 0, 0, 0,
1, and 2 that is isomorphic to some proper relation algebra is called representable. The class
of representable relation algebras is denoted by RRA. Since every proper relation algebra
and therefore also every representable relation algebra satisfies the axioms from the previous
definition we have PA ⊆ RRA ⊆ RA. A classical result of Lyndon [34] states that there
exist finite relation algebras A ∈ RA that are not representable; so the inclusions above are
proper. If a relation algebra A is representable then the isomorphism to a proper relation
algebra is usually called the representation of A.

We will be interested in the model-theoretic behavior of sets of relations which form
the domain of a proper relation algebra, and therefore consider relational structures whose
relations are precisely the relations of a proper relation algebra. If the set of relations of
a relational structure B forms a proper relation algebra which is a representation of some
abstract relation algebra A, then it will be convenient to also call B a representation of A.

▶ Definition 3. Let A ∈ RA. A representation of A is a relational structure B such that
B is an A-structure, i.e., the elements of A are binary relation symbols of B;
The map a 7→ aB is an isomorphism between the abstract relation algebra A and the
proper relation algebra (R; ∪, ¯, 0, 1, Id, ˘, ◦) with domain R := {aB | a ∈ A}.

Recall that the set of atoms of a relation algebra A = (A; ∪, ¯, 0, 1, Id, ˘, ◦) is denoted by
A0. The following definitions are crucial for this article.

▶ Definition 4. A tuple (x, y, z) ∈ (A0)3 is called an allowed triple (of A) if z ≤ x ◦ y.
Otherwise, (x, y, z) is called a forbidden triple (of A); in this case z ∪ x ◦ y = 1. We say that
a relational A-structure B induces a forbidden triple (from A) if there exist b1, b2, b3 ∈ B

and (x, y, z) ∈ (A0)3 such that x(b1, b2), y(b2, b3) and z(b1, b3) hold in B and (x, y, z) is a
forbidden triple of A.
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Note that a representation of A by definition does not induce a forbidden triple. A relation
R ⊆ A3 is called totally symmetric if for every bijection π : {1, 2, 3} → {1, 2, 3} we have

(a1, a2, a3) ∈ R ⇒ (aπ(1), aπ(2), aπ(3)) ∈ R.

The following is an immediate consequence of the definition of allowed triples.
▶ Remark 5. The set of allowed triples of a symmetric relation algebra A is totally symmetric.

2.2 The Network Satisfaction Problem
In this section we present computational decision problems associated with relation algebras.
We first introduce the inputs to these decision problems, so-called A-networks.

▶ Definition 6. Let A be a relation algebra. An A-network (V ; f) is a finite set V together
with a partial function f : E ⊆ V 2 → A, where E is the domain of f . An A-network (V ; f)
is satisfiable in a representation B of A if there exists an assignment s : V → B such that
for all (x, y) ∈ E the following holds:

(s(x), s(y)) ∈ f(x, y)B.

An A-network (V ; f) is satisfiable if there exists a representation B of A such that (V ; f) is
satisfiable in B.

With these notions we can define the network satisfaction problem.

▶ Definition 7. The (general) network satisfaction problem for a finite relation algebra A,
denoted by NSP(A), is the problem of deciding whether a given A-network is satisfiable.

In the following we assume that for an A-network (V ; f) it holds that f(V 2) ⊆ A \ {0}.
Otherwise, (V ; f) is not satisfiable. Note that every A-network (V ; f) can be viewed as an
A-structure C on the domain V : for all x, y ∈ V in the domain of f and a ∈ A the relation
aC(x, y) holds if and only if f(x, y) = a.

It is well-known that for relation algebras A1 and A2 the direct product A1 × A2 is
also a relation algebra (see, e.g., [30]). We will see in Lemma 9 that the direct product of
representable relation algebras is also a representable relation algebra.

▶ Definition 8. Let A1 and A2 be representable relation algebras. Let B1 and B2 be
representations of A1 and A2 with disjoint domains. Then the union representation of the
direct product A1 × A2 is the (A1 × A2)-structure B1 ⊎B2 on the domain B1 ⊎ B2 with the
following definition for all (a1, a2) ∈ A1 × A2:

(a1, a2)B1 ⊎ B2 := aB1
1 ∪ aB2

2 .

The following well-known lemma establishes a connection between products of relation
algebras and union representations (see, e.g., Lemma 7 in [21] or Lemma 3.7 in [30]); it states
that union representations are indeed representations. A proof of the lemma can be found,
for example, in the extended version of this article [13].

▶ Lemma 9. Let A1 and A2 be relation algebras. Then the following holds:
1. If B1 and B2 are representations of A1 and A2 with disjoint domains, then B1 ⊎B2 is

a representation of A1 × A2.
2. If B is a representation of A1 × A2, then there exist representations B1 and B2 of A1

and A2 such that B is isomorphic to B1 ⊎B2.

ICALP 2023
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The following result uses Lemma 9 to obtain reductions between different network
satisfaction problems. A similar statement can be found in Lemma 7 from [21], however
there the assumption on representability of the relation algebras A and B is missing. Note
that without this assumption the statement is not longer true. Consider relation algebras A
and B such that NSP(A) is undecidable and B does not have a representation. Then A × B
does also not have a representation (see Lemma 9) and hence NSP(A × B) is trivial. We
observe that the undecidable problem NSP(A) cannot have a polynomial-time reduction to
the trivial problem NSP(A × B).

▶ Lemma 10. Let A, B ∈ RRA be finite. Then there exists a polynomial-time reduction
from NSP(A) to NSP(A × B).

Proof. Consider the following polynomial-time reduction from NSP(A) to NSP(A × B).
We map a given A-network (V ; f) to the (A × B)-network (V ; f ′) where f ′ is defined by
f ′(x, y) := (f(x, y), 0). This reduction can be computed in polynomial time.

▷ Claim 1. If (V ; f) is satisfiable then (V ; f ′) is also satisfiable. Let A be a representation
of A in which (V ; f) is satisfiable and let B be an arbitrary representation of B. By
Lemma 9, the structure A⊎B is a representation of A×B. Moreover, the definition of union
representations (Definition 8) yields that the (A × B)-network (V ; f ′) is satisfiable in A⊎B.

▷ Claim 2. If (V ; f ′) is satisfiable then (V ; f) is satisfiable. Assume that (V ; f ′) is satisfiable
in some representation C of A × B. By item 2 in Lemma 9 we get that C is isomorphic to
A⊎B, where A and B are representations of A and B. It again follows from the definition
of union representations that (V ; f) is satisfiable in the representation A of A.

This shows the correctness of the polynomial-time reduction from NSP(A) to NSP(A×B)
and finishes the proof. ◀

2.3 Normal Representations and Constraint Satisfaction Problems
We consider a subclass of RRA introduced by Hirsch in 1996. For relation algebras A
from this class, NSP(A) corresponds naturally to a constraint satisfaction problem. In the
following let A be in RRA. We call an A-network (V ; f) closed (transitively closed in the
work by Hirsch [28]) if f is total and for all x, y, z ∈ V it holds that

f(x, x) ≤ Id,
f(x, y) = ă for a = f(y, x),
f(x, z) ≤ f(x, y) ◦ f(y, z).

It is called atomic if the range of f only contains atoms from A.

▶ Definition 11 (from [27]). Let B be a representation of A. Then B is called
fully universal, if every atomic closed A-network is satisfiable in B;
square, if 1B = B2;
homogeneous, if for every isomorphism between finite substructures of B there exists an
automorphism of B that extends this isomorphism;
normal, if it is fully universal, square and homogeneous.

We now investigate the connection between NSP(A) for a finite relation algebra with a
normal representation B and constraint satisfaction problems. Let τ be a finite relational
signature and let B be a (finite or infinite) τ -structure. Then the constraint satisfaction
problem for B, denoted by CSP(B), is the computational problem of deciding whether a
finite input structure A has a homomorphism to B. The structure B is called the template
of CSP(B).
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◦ Id < >

Id Id < >

< < < 1
> > 1 >

Figure 1 Multiplication table of the point algebra P.

Consider the following translation which associates to each A-network (V ; f) an A-
structure C as follows: the set V is the domain of C and (x, y) ∈ C2 is in a relation aC if and
only if (x, y) is in the domain of f and f(x, y) = a holds. For the other direction let C be an
A-structure with domain C and consider the A-network (C; f) with the following definition:
for every x, y ∈ C, if (x, y) does not appear in any relation of C we leave f(x, y) undefined,
otherwise let a1(x, y), . . . , an(x, y) be all atomic formulas that hold in C. We compute in A
the element a := a1 ∩ · · · ∩ an and define f(x, y) := a.

The following theorem is based on the natural 1-to-1 correspondence between A-networks
and A-structures; it subsumes the connection between network satisfaction problems and
constraint satisfaction problems.

▶ Proposition 12 (Proposition 1.3.16 in [6], see also [7,9]). Let A ∈ RRA be finite. Then the
following holds:
1. A has a representation B such that NSP(A) and CSP(B) are the same problem up to

the translation between A-networks and A-structures.
2. If A has a normal representation B the problems NSP(A) and CSP(B) are the same up

to the translation between A-networks and A-structures.

Usually, normal representations of relation algebras are infinite relational structures. This
means that the transfer from NSPs to CSPs from Proposition 12 results in CSPs over infinite
templates, as in the following example.

▶ Example 13. Consider the point algebra P. The set of atoms of P is P0 = {Id, <, >}. The
composition operation ◦ on the atoms is given by the multiplication table in Figure 1. The
table completely determines the composition operation ◦ on all elements of P. Note that the
structure P := (Q; ∅, <, >, =, ≤, ≥, ̸=,Q2) is the normal representation of P and therefore
NSP(P) and CSP(P) are the same problems up to the translation between networks and
structures.

2.4 The Universal-Algebraic Approach
In this section we give a brief introduction to the the universal-algebraic approach to CSPs.

2.4.1 Polymorphisms
Let τ be a finite relational signature. A polymorphism of a τ -structure B is a homomorphism
f from Bk to B, for some k ∈ N called the arity of f . We write Pol(B) for the set of all
polymorphisms of B. The set of polymorphisms is closed under composition, i.e., for all
n-ary f ∈ Pol(B) and s-ary g1, . . . , gn ∈ Pol(B) it holds that f(g1, . . . , gn) ∈ Pol(B), where
f(g1, . . . , gn) is a homomorphism from Bs to B defined as follows

f(g1, . . . , gn)(x1, . . . , xs) := f(g1(x1, . . . , xs), . . . , gn(x1, . . . , xs)).

ICALP 2023
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If r1, . . . , rn ∈ Bk and f : Bn → B an n-ary operation, then we write f(r1, . . . , rn)
for the k-tuple obtained by applying f component-wise to the tuples r1, . . . , rn. We say
that f : Bn → B preserves a k-ary relation R ⊆ Bk if for all r1, . . . , rn ∈ R it holds that
f(r1, . . . , rn) ∈ R. We want to remark that the polymorphisms of B are precisely those
operations that preserve all relations from B.

A first-order τ -formula φ(x1, . . . , xn) is called primitive positive (pp) if it has the form

∃xn+1, . . . , xm(φ1 ∧ · · · ∧ φs)

where φ1, . . . , φs are atomic τ -formulas, i.e., formulas of the form R(y1, . . . , yl) for R ∈ τ

and yi ∈ {x1, . . . , xm}, of the form y = y′ for y, y′ ∈ {x1, . . . , xm}, or of the form ⊥. We say
that a relation R is primitively positively definable over A if there exists a primitive positive
τ -formula φ(x1, . . . , xn) such that R is definable over A by φ(x1, . . . , xn).

▶ Proposition 14 ([15,24]). Let B be a τ -structure with a finite domain. Then the set of
primitive positive definable relations in B is exactly the set of relations preserved by Pol(B).

2.4.2 Atom Structures
In this section we introduce for every finite A ∈ RA an associated finite structure, called the
atom structure of A. If A has a fully universal representation, then there exists a polynomial-
time reduction from NSP(A) to the finite-domain constraint satisfaction problem CSP(A0)
(Proposition 16). Hence, this reduction provides polynomial-time algorithms to solve NSPs,
whenever the CSP of the associated atom structure can be solved in polynomial-time. For a
discussion of the atom structure and related objects we recommend Section 4 in [12].

▶ Definition 15. The atom structure of A ∈ RA is the finite relational structure A0 with
domain A0 and the following relations:

for every x ∈ A the unary relation xA0 := {a ∈ A0 | a ≤ x},
the binary relation EA0 := {(a1, a2) ∈ A2

0 | ă1 = a2},
the ternary relation RA0 := {(a1, a2, a3) ∈ A3

0 | a3 ≤ a1 ◦ a2}.

Note that A0 has all subsets of A0 as unary relations and that the relation RA0 consists
of the allowed triples of A ∈ RRA. We say that an operation preserves the allowed triples if
it preserves the relation RA0 .

▶ Proposition 16 ([11,12]). Let B be a fully universal representation of a finite A ∈ RRA.
Then there is a polynomial-time reduction from CSP(B) to CSP(A0).

2.4.3 Conservative Clones
Let B be a finite τ -structure. An operation f : Bn → B is called conservative if for all
x1, . . . , xn ∈ B it holds that f(x1, . . . , xn) ∈ {x1, . . . , xn}. The operation clone Pol(B) is
conservative if every f ∈ Pol(B) is conservative. We call a relational structure B conservative
if Pol(B) is conservative.
▶ Remark 17. Let A0 be the atom structure of a finite relation algebra A. Every f ∈ Pol(A0)
preserves all subsets of A0, and is therefore conservative. Hence, Pol(A0) is conservative.
This remark justifies our interest in the computational complexity of certain CSPs where the
template has conservative polymorphisms. Their complexity can be studied via universal
algebraic methods as we will see in the following. An operation f : B3 → B is called

a majority operation if ∀x, y ∈ B.f(x, x, y) = f(x, y, x) = f(y, x, x) = x;
a minority operation if ∀x, y ∈ B.f(x, x, y) = f(x, y, x) = f(y, x, x) = y.
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An operation f : Bn → B, for n ≥ 2, is called
a cyclic operation if ∀x1, . . . , xn ∈ B.f(x1, . . . , xn) = f(xn, x1, . . . , xn−1);
a weak near-unanimity operation if

∀x, y ∈ B.f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = f(y, x, . . . , x);

a Siggers operation if n = 6 and ∀x, y ∈ B.f(x, x, y, y, z, z) = f(y, z, x, z, x, y).

The following terminology was introduced by Bulatov and has proven to be extremely
powerful, especially in the context of conservative clones.

▶ Definition 18 ([16, 17]). A pair (a, b) ∈ B2 is called a semilattice edge if there exists
f ∈ Pol(B) of arity two such that f(a, b) = b = f(b, a) = f(b, b) and f(a, a) = a. A
two-element set {a, b} ⊆ B has a semilattice edge if (a, b) or (b, a) is a semilattice edge.

A two-element subset {a, b} of B is called a majority edge if neither (a, b) nor (b, a) is a
semilattice edge and there exists an f ∈ Pol(B) of arity three whose restriction to {a, b} is a
majority operation.

A two-element subset {a, b} of B is called an affine edge if it is not a majority edge, if
neither (a, b) nor (b, a) is a semilattice edge, and there exists an f ∈ Pol(B) of arity three
whose restriction to {a, b} is a minority operation.

If S ⊆ B and (a, b) ∈ S2 is a semilattice edge then we say that (a, b) is a semilattice edge
on S. Similarly, if {a, b} ⊆ S is a majority edge (affine edge) then we say that {a, b} is a
majority edge on S (affine edge on S).

The main result about conservative finite structures and their CSPs is the following
dichotomy, first proved by Bulatov, 14 years before the proof of the Feder-Vardi conjecture.

▶ Theorem 19 ([16]; see also [3, 17,18]). Let B be a finite structure with a finite relational
signature such that Pol(B) is conservative. Then precisely one of the following holds:
1. Pol(B) contains a Siggers operation; in this case, CSP(B) is in P.
2. There exist distinct a, b ∈ B such that for every f ∈ Pol(B)(n) the restriction of f to

{a, b}n is a projection. In this case, CSP(B) is NP-complete.
Note that this means that Pol(B) contains a Siggers operation if and only if for all two
elements a, b ∈ B the set {a, b} is a majority edge, an affine edge, or there is a semilattice
edge on {a, b}.

2.5 The k-Consistency Procedure
We present in the following the k-consistency procedure. It was introduced in [2] for finite
structures and extended to infinite structures in several equivalent ways, for example in terms
of Datalog programs, existential pebble games, and finite variable logics [8]. Also see [39] for
recent results about the power of k-consistency for infinite-domain CSPs.

Let τ be a finite relational signature and let k, l ∈ N with k < l and let B be a fixed
τ -structures with finitely many orbits of l-tuples. We define B′ to be the expansion of B by
all orbits of n-tuples for every n ≤ l. We denote the extended signature of B′ by τ ′. Let A

be an arbitrary finite τ -structure. A partial l-decoration of A is a set g of atomic τ ′-formulas
such that
1. the variables of the formulas from g are a subset of A and denoted by Var(g),
2. | Var(g)| ≤ l,
3. the τ -formulas in g hold in A, where variables are interpreted as domain elements of A,
4. the conjunction over all formulas in g is satisfiable in B′.
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A partial l-decoration g of A is called maximal if there exists no partial l-decoration h of
A with Var(g) = Var(h) such that g ⊊ h. We denote the set of maximal partial l-decorations
of A by Rl

A. Note that a fixed finite set of at most l variables, there are only finitely many
partial l-decorations of A, because B has by assumption finitely many orbits of l-tuples.
Since this set is constant and can be precomputed, the set Rl

A can be computed efficiently.
Then the (k, l)-consistency procedure for B is the following algorithm.

Algorithm 1 (k, l)-consistency procedure for B.

Input : A finite τ -structure A.
1 compute H := Rl

A.
2 repeat
3 For every f ∈ H with Var(f) ≤ k and every U ⊆ A with |U | ≤ l − k, if there does

not exist g ∈ H with f ⊆ g and U ⊆ Dom(g), then remove f from H.
4 until H does not change
5 if H is empty then
6 return Reject.
7 else
8 return Accept.

Since Rl
A is of polynomial size (in the size of A) and the (k, l)-consistency procedure

removes in step 3. at least one element from Rl
A the algorithm has a polynomial run time. The

(k, k + 1)-consistency procedure is also called k-consistency procedure. The (2, 3)-consistency
procedure is called path consistency procedure.1

▶ Definition 20. Let B be a relation τ -structure as defined before. Then the (k, l)-consistency
procedure for B solves CSP(B) if the satisfiable instances of CSP(B) are precisely the accepted
instances of the (k, l)-consistency procedure.

▶ Remark 21. Let A be a relation algebra with a normal representation B. We will in the
following say that the k-consistency procedure solves NSP(A) if it solves CSP(B). This
definition is justified by the correspondence of NSPs and CSPs from Theorem 12.

▶ Theorem 22 ([33]). Let B be a finite τ -structure. Then the following are equivalent:
1. There exist k ∈ N such that the k-consistency procedure solves CSP(B).
2. B has a 3-ary weak near-unanimity polymorphism f and a 4-ary weak near-unanimity

polymorphism g such that: ∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x).

Let A0 be the atom structure of a relation algebra A with a normal representation B.
We finish this section by connecting the solvability of CSP(A0) by k-consistency (or its
characterization in terms of polymorphims from the previous proposition) with the solvability
of CSP(B) by k-consistency. By Remark 21 this gives a criterion for the solvability of
NSP(A) by the k-consistency procedure.

The following theorem is from [39] building on ideas from [14]. We present it here in a
specific formulation that already incorporates a correspondence between polymorphisms of
the atom structure and canonical operations. For more details see [11,12].

1 Some authors also call it the strong path consistency algorithm, because some forms of the definition of
the path consistency procedure are only equivalent to our definition of the path consistency procedure
if B has a transitive automorphism group.
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▶ Theorem 23 ([39]). Let B be a normal representation of a finite relation algebra A and A0
the atom structure A. If Pol(A0) contains a 3-ary weak near-unanimity polymorphism f and
a 4-ary weak near-unanimity polymorphism g such that ∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x),
then NSP(A) is solved by the (4, 6)-consistency algorithm.

3 The Undecidability of RBCP, CON, and PC

In order to view RBCP as a decision problem, we need the following definitions. Let FRA
be the set of all relation algebras A with domain P({1, . . . , n}).

▶ Definition 24 (RBCP). We define the following subsets of FRA:
RBCP denotes the set such that NSP(A) is in P.
RBCPc denotes FRA \ RBCP.
CON denotes the set such that NSP(A) is solved by k-consistency for some k ∈ N.
PC denotes the set such that NSP(A) is solved by path consistency.

The following theorem is our first result. Note that this can be seen as a negative answer
to Hirsch’s Really Big Complexity Problem [27].

▶ Theorem 25. RBCP is undecidable, CON is undecidable, and PC is undecidable.

In our undecidability proofs we reduce from the following well-known undecidable problem
for relation algebras [25].

▶ Definition 26 (Rep). Let Rep be the computational problem of deciding for a given A ∈ FRA
whether A has a representation.

In our proof we also use the fact that there exists U ∈ FRA such that NSP(U) is
undecidable [29]. Note that U ∈ Rep since the network satisfaction problem for non-
representable relation algebras is trivial and therefore decidable.

Proof of Theorem 25. We reduce the problem Rep to RBCPc. Consider the following
reduction f : FRA → FRA. For a given A ∈ FRA, we define f(A) := A × U.

▷ Claim 1. If A ∈ Rep then f(A) ∈ RBCPc. If A is representable, then A × U is
representable by the first part of Lemma 9. Then there is a polynomial-time reduction from
NSP(U) to NSP(A × U) by Lemma 10. This shows that NSP(A × U) is undecidable, and
hence f(A) is in RBCPc.

▷ Claim 2. If A ∈ FRA \ Rep then f(A) ∈ RBCP. If A is not representable, then A × U
is not representable by the second part of Lemma 9, and hence NSP(A × U) is trivial and in
P, and therefore in RBCP.

Clearly, f is computable (even in polynomial time). Since Rep is undecidable [25], this
shows that RBCPc, and hence RBCP, is undecidable as well. The proof for CON and PC is
analogous; all we need is the fact that NSP(U) /∈ CON and NSP(U) /∈ PC. ◀

4 Tractability via k-Consistency

We provide in this section a criterion that ensures solvability of NSPs by the k-consistency
procedure (Theorem 30). A relation algebra A is called symmetric if all its elements are
symmetric, i.e., ă = a for every a ∈ A. We will see in the following that the assumption on
A to be symmetric will simplify the atom structure A0 of A, which has some advantages in
the upcoming arguments.
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▶ Definition 27. Let A be a finite symmetric relation algebra with set of atoms A0. We say
that A admits a Siggers behavior if there exists an operation s : A6

0 → A0 such that
1. s preserves the allowed triples of A,
2. ∀x1, . . . , x6 ∈ A0. s(x1, . . . , x6) ∈ {x1, . . . , x6},
3. s satisfies the Siggers identity: ∀x, y, z ∈ A0. s(x, x, y, y, z, z) = s(y, z, x, z, x, y).

▶ Remark 28. We mention that if A has a normal representation B, then A admits a Siggers
behavior if and only if B has a pseudo-Siggers polymorphism which is canonical with respect
to Aut(B); see [14].

We say that a finite symmetric relation algebra A has all 1-cycles if for every a ∈ A0 the
triple (a, a, a) is allowed. Details on the notion of cycles from the relation algebra perspective
can be found in [36]. The relevance of the existence of 1-cycles for constraint satisfaction
comes from the following observation.

▶ Lemma 29. Let A be a finite symmetric relation algebra with a normal representation B

that has a binary injective polymorphism. Then A has all 1-cycles.

Proof. Let i be a binary injective polymorphism of B and let a ∈ A0 be arbitrary. Consider
x1, x2, y1, y2 ∈ B such that aB(x1, x2) and aB(y1, y2). The application of i on the tuples
(x1, x1, x2) and (y1, y2, y2) results in a substructure of B that witnesses that (a, a, a) is an
allowed triple. ◀

▶ Theorem 30. Let A be a finite symmetric relation algebra with a normal representation
B. Suppose that the following holds:
1. A has all 1-cycles.
2. A admits a Siggers behavior.

Then the NSP(A) can be solved by the (4, 6)-consistency procedure.

We will outline the proof of Theorem 30 and cite some results from the literature that we
will use. Assume that A is a finite symmetric relation algebra that satisfies the assumptions of
Theorem 30. Since A admits a Siggers behavior there exists an operation s : A6

0 → A0 that is
by 1. and 2. in Definition 27 a polymorphism of the atom structure A0 (see Paragraph 2.4.2).
By Remark 17, Pol(A0) is a conservative operation clone. Recall the notion of semilattice,
majority, and affine edges for conservative clones (cf. Definition 18). Since s is by 3. a Siggers
operation, Theorem 19 implies that every edge in A0 is semilattice, majority, or affine.

Our goal is to show that there are no affine edges in A0, since this implies that there exists
k ∈ N such that CSP(A0) can be solved by k-consistency [17]. We present this fact here via
the characterization of (k, l)-consistency in terms of weak near-unanimity polymorphisms
from Theorem 22.

▶ Proposition 31 (cf. Corollary 3.2 in [31]). Let A0 be a finite conservative relational structure
with a Siggers polymorphism and no affine edge. Then A0 has a 3-ary weak near-unanimity
polymorphism f and a 4-ary weak near-unanimity polymorphism g such that

∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x).

Note that the existence of the weak near-unanimity polymorphisms from Proposition 31
would finish the proof of Theorem 30, because Theorem 23 implies that in this case NSP(A)
can be solved by the (4, 6)-consistency procedure. We therefore want to prove that there
are no affine edges in A0. We start by analyzing the different types of edges in the atom
structure A0 and obtain results about their appearance (see Section 4.1).
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Fortunately, there is the following result by Alexandr Kazda about binary structures with
a conservative polymophism clone. A binary structure is a structure where all relations have
arity at most two.

▶ Theorem 32 (Theorem 4.5 in [31]). If A is a finite binary conservative relational structure
with a Siggers polymorphism, then A has no affine edges.

Notice that we cannot simply apply this theorem to the atom structure A0, since the
maximal arity of its relations is three. We circumvent this obstacle by defining for A0 a
closely related binary structure Ab

0 , which we call the “binarisation of A0”:

▶ Definition 33. We denote by Ab
0 the structure with domain A0 and the following relations:

a unary relation US for each subset S of A0;
for every a ∈ A0 the binary relation Ra := {(x, y) ∈ A2

0 | (a, x, y) ∈ R};
a relation for every union of relations of the form Ra.

In the next step we investigate how Pol(A0) and Pol(Ab
0) relate to each other. It follows

from these observations that Ab
0 does not have an affine edge. In other words, it only has

semilattice and majority edges. The crucial step in our proof is to transfer a witness of this
fact to A0 and conclude that also A0 has no affine edge. The detailed proofs can be found in
the extended version of the article [13] and in the PhD thesis of the second author [32].

4.1 Results about the Atom Structure
In this section we present some of our findings about the atom structure. We obtain conditions
on the atom structure (namely the ternary relation R) that imply the (non-)existence of
semilatice edges in the atom structure. As we explained in the previous section, these results
are the starting point for our proof of Theorem 30.

For the sake of notation, we make some global assumptions for this section. Let A be a
finite relation algebra that satisfies the assumptions from Theorem 30. We denote by A0 the
atom structure of A (Definition 15). Since A is a symmetric relation algebra, the relation
RA0 is totally symmetric. Furthermore, we can drop the binary relation EA0 , since it consists
only of loops and does not change the set of polymorphisms. Let s ∈ Pol(A0) be the Siggers
operation that exists by the assumptions in Theorem 30. This implies by Theorem 19 for
every a, b ∈ A0 that the set {a, b} is a majority edge or an affine edge, or that there is a
semilattice edge on {a, b}. The different types of edges are witnessed by certain operations
that we get from Proposition 3.1.in [17]: there exist a binary operation f ∈ Pol(A0) and
ternary operations g, h ∈ Pol(A0) such that for every two element subset C of A0,

f |C is a semilattice operation if C has a semilattice edge, and f |C(x, y) = x otherwise;
g|C is a majority operation if C is a majority edge, g|C(x, y, z) = x if C is affine and
g|C(x, y, z) = f |C(f |C(x, y), z) if C has a semilattice edge;
h|C is a minority operation if C is an affine edge, h|C(x, y, z) = x if C is majority and
h|B(x, y, z) = f |C(f |C(x, y), z) if C has a semilattice edge.

We will fix these operations and introduce the following terminology. A tuple (a, b) ∈ A0
is called f-sl if f(a, b) = b = f(b, a) holds. Next, we prove several important properties of
the relation R: that it must contain certain triples (Lemma 34), that it must not contain
certain other triples (Lemma 35), and that it is affected by the presence of semilattice edges
in A0 (Lemma 36 and Lemma 37).

▶ Lemma 34. The relation R of the atom structure A0 has the following properties:
for all a ∈ A0 we have (a, a, a) ∈ R.
for all a, b ∈ A0 we have (a, a, b) ∈ R or (a, b, b) ∈ R;
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Proof. The first item follows from the assumption that A has all 1-cycles.
For the second item observe that {a, Id} cannot be a majority edge. Otherwise,

g((a, a, Id), (Id, a, a), (Id, Id, Id)) = (Id, a, Id) ∈ R

is a contradiction to the properties of Id. Furthermore, (a, Id) cannot be f -sl, since

f((a, a, Id), (Id, a, a)) = (Id, a, Id) ∈ R.

This is again a contradiction. Since these observations also hold for b instead of a we have
the following case distinction.

1. (Id, a) is f -sl and (Id, b) is f -sl. It follows that f((a, a, Id), (Id, b, b)) ∈ {(a, a, b), (a, b, b)}.
Since f preserves R, (a, a, Id) ∈ R, and (Id, b, b) ∈ R we get that f((a, a, Id), (Id, b, b)) ∈ R.
This implies that (a, a, b) ∈ R or (a, b, b) ∈ R.

2. (Id, a) is f -sl and {b, Id} is affine. By the definition of f we get f((b, b, Id), (Id, a, a)) ∈
{(b, a, a), (b, b, a)}. By the same argument as in Case 1 we get that (a, a, b) ∈ R or
(a, b, b) ∈ R.

3. (Id, b) is f -sl and {a, Id} is affine. This case is analogous to Case 2.
4. {a, Id} is affine and {b, Id} is affine. Observe that

g((a, Id, a), (Id, b, b), (Id, Id, Id)) ∈ {(a, b, a), (a, b, b)},

since g(a, b, Id) ∈ {a, b, Id} and the triple (a, b, Id) is forbidden. As in the cases before it
follows that (a, a, b) ∈ R or (a, b, b) ∈ R.

This concludes the proof of the second item. ◀

▶ Lemma 35. Let a, b, c ∈ A0 be such that (a, b, c) /∈ R and |{a, b, c}| = 3. Then there are
x, y ∈ {a, b, c} such that (x, x, y) /∈ R.

Proof. We first suppose that there is a semilattice edge on {a, b, c}. Without loss of generality
we assume that (a, b) is f -sl. If f(c, a) = c then (a, a, c) /∈ R or (b, a, a) /∈ R because otherwise

f((a, a, c), (b, a, a)) = (b, a, c) ∈ R

contradicting our assumption. If f(c, a) = a then (b, c, c) /∈ R or (a, a, c) /∈ R because
otherwise

f((b, c, c), (a, a, c)) = (b, a, c) ∈ R

which is again a contradiction. Hence, in all the cases we found x, y ∈ {a, b, c} such that
(x, x, y) /∈ R and are done. In the following we therefore assume that there is no semilattice
edge on {a, b, c}.

Next we suppose that there is an affine edge on {a, b, c}. Without loss of generality we
assume that {a, b} is an affine edge. Since there are no semilattice edges on {a, b, c} we
distinguish the following two cases:
1. {a, c} is an affine edge. In this case (c, a, a) /∈ R or (a, b, a) /∈ R because otherwise

h((c, a, a), (a, a, a), (a, b, a)) = (c, b, a) ∈ R.

2. {a, c} is a majority edge. In this case (a, a, c) /∈ R or (a, b, a) /∈ R or (b, b, c) /∈ R, because
otherwise

h((a, a, c), (a, b, a), (b, b, c)) = (b, a, c) ∈ R.
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In both cases we again found x, y ∈ {a, b, c} such that (x, x, y) /∈ R and are done. We
therefore suppose in the following that there are no affine edges on {a, b, c}. Hence, all edges
on {a, b, c} are majority edges. Then (a, a, c) /∈ R or (a, b, a) /∈ R or (b, b, c) /∈ R because
otherwise

g((a, a, c), (a, b, a), (b, b, c)) = (a, b, c) ∈ R.

Thus, also in this case we found x, y ∈ {a, b, c} such that (x, x, y) /∈ R. ◀

The next lemma states that the edge type on {a, b} is predetermined whenever a triple
(a, a, b) is not in R.

▶ Lemma 36. Let a, b ∈ A0 be such that (a, a, b) /∈ R. Then (a, b) is a semilattice edge in
A0 but (b, a) is not.

Proof. By Lemma 34 we know that (a, b, b) ∈ R, (a, a, a) ∈ R, and (b, b, b) ∈ R. Assume for
contradiction that {a, b} is a majority edge. Then

g((a, a, a), (a, b, b), (b, b, a)) = (a, b, a)

which contradicts the fact that g preserves R. Assume next that {a, b} is an affine edge.
Then

h((a, b, b), (b, a, b), (b, b, b)) = (a, a, b)

which again contradicts that h preserves R. Finally, if (b, a) is a semilattice edge then

f((a, b, b), (b, a, b)) = (a, a, b)

which contradicts the assumption that f preserves R. If follows that (a, b) is the only
semilattice edge on {a, b} and therefore f(a, b) = b = f(b, a) holds. ◀

▶ Lemma 37. Let a, a′, b, c ∈ A0 be such that (a, b, c) /∈ R, (a, a, b) /∈ R, and (a′, b, c) ∈ R.
Then (a′, a) is not a semilattice edge.

Proof. Assume for contradiction (a′, a) is a semilattice edge, i.e., there exists p ∈ Pol(A0)
with p(a, a′) = a = p(a′, a). Note that by Lemma 34 it follows that (a, a, a) ∈ R and
(a, b, b) ∈ R.

▷ Claim 1. p(b, a) = a implies p(a, b) = b. This follows immediately, since otherwise
p((a, b, b), (b, a, b)) = (a, a, b) ∈ R is a contradiction.

▷ Claim 2. (a, a, c) ̸∈ R. We assume the opposite and consider the only two possible cases
for p(b, a).
1. p(b, a) = b: We get a contradiction by p((a′, b, c), (a, a, c)) = (a, b, c) ∈ R.
2. p(b, a) = a: By Claim 1 we know that p(a, b) = b follows. Then p((a, a, c), (a′, b, c)) =

(a, b, c) ∈ R contrary to our assumptions.

▷ Claim 3. p(c, a) = a implies p(a, c) = c. Lemma 34 together with Claim 2 implies
that (a, c, c) ∈ R. Now Claim 3 follows immediately, since otherwise p((a, c, c), (c, a, c)) =
(a, a, c) ∈ R, which contradicts Claim 2.

We finally make a case distinction for all possible values of p on (b, a) and (c, a).

1. p(b, a) = b and p(c, a) = c: We get a contradiction by p((a′, b, c), (a, a, a)) = (a, b, c) ∈ R.
2. p(b, a) = b and p(c, a) = a: We get a contradiction by p((a′, b, c), (a, a, a)) = (a, b, a) ∈ R.
3. p(b, a) = a and p(c, a) = c: p((a′, b, c), (a, a, a)) = (a, a, c) ∈ R contradicts Claim 2.
4. p(b, a) = a and p(c, a) = a: By Claim 1 we get p(a, b) = b and by Claim 3 we get

p(a, c) = c. This yields a contradiction by p((a, a, a), (a′, b, c)) = (a, b, c) ∈ R. ◀
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5 k-Consistency and Symmetric Flexible-Atom Algebras

We apply our result from Section 4 to the class of finite symmetric relation algebras with a
flexible atom and obtain a k-consistency versus NP-complete complexity dichotomy.

A finite relation algebra A is called integral if the element Id is an atom of A, i.e., Id ∈ A0.
We define flexible atoms for integral relation algebras only. For a discussion about integrality
and flexible atoms consider Section 3 in [12].

▶ Definition 38. Let A ∈ RA be finite and integral. An atom s ∈ A0 is called flexible if for
all a, b ∈ A \ {Id} it holds that s ≤ a ◦ b.

Relation algebras with a flexible atom have been studied intensively in the context of the
flexible atoms conjecture [1, 35]. It can be shown easily that finite relation algebras with a
flexible atom have a normal representation [11,12]. In [12] the authors obtained a P versus
NP-complete complexity dichotomy for NSPs of finite symmetric relation algebras with a
flexible atom (assuming P ̸= NP). In the following we strengthen this result and prove that
every problem in this class can be solved by k-consistency for some k ∈ N or is NP-complete
(without any complexity-theoretic assumptions).

We combine Theorem 30 with the main result of [12] to obtain the following character-
ization for NSPs of finite symmetric relation algebras with a flexible atom that are solved
by the (4, 6)-consistency procedure. Note that the difference of Theorem 39 and the related
result in [12] is the algorithm that solves the problems in P.

▶ Theorem 39. Let A be a finite symmetric integral relation algebra with a flexible atom.
Then the following are equivalent:

A admits a Siggers behavior.
NSP(A) can be solved by the (4, 6)-consistency procedure.

Proof. Every finite symmetric relation algebra A with a flexible atom has a normal repres-
entation B by Proposition 3.5 in [12].

If the first item holds it follows from Proposition 6.1. in [12] that B has a binary injective
polymorphism. By Lemma 29 the relation algebra A has all 1-cycles. We apply Theorem 30
and get that the second item in Theorem 39 holds.

We prove the converse implication by showing the contraposition. Assume that the first
item is not satisfied. Then Theorem 9.1 in [12] implies that there exists a polynomial-time
reduction from CSP(K3) to NSP(A) which preserves solvability by the (k, l)-consistency
procedure. The problem CSP(K3) is the 3-colorability problem which is known (e.g., by [4])
to be not solvable by the (k, l)-consistency procedure for every k, l ∈ N. Hence NSP(A)
cannot be solved by the (4, 6)-consistency procedure. ◀

As a consequence of Theorem 39 we obtain the following strengthening of the complexity
dichotomy NSPs of finite symmetric integral relation algebra with a flexible atom [12].

▶ Corollary 40 (Complexity Dichotomy). Let A be a finite symmetric integral relation algebra
with a flexible atom. Then NSP(A) can be solved by the (4, 6)-consistency procedure, or it is
NP-complete.

Proof. Suppose that the first condition in Theorem 39 holds. Then Theorem 39 implies that
NSP(A) can be solved by the (4, 6)-consistency procedure. If the first condition in Theorem 39
is not satisfied it follows from Theorem 9.1. in [12] that NSP(A) is NP-complete. ◀
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6 The Complexity of the Meta Problem

In this section we study the computational complexity of deciding for a given finite symmetric
relation algebra A with a flexible atom whether the k-consistency algorithm solves NSP(A).
We show that this problem is decidable in polynomial time even if A is given by the restriction
of its composition table to the atoms of A: note that this determines a symmetric relation
algebra uniquely, and that this is an (exponentially) more succinct representation of A
compared to explicitly storing the full composition table.

▶ Definition 41 (Meta Problem). We define Meta to be the following computational problem.
Input: the composition table of a finite symmetric relation algebra A restricted to A0.
Question: is there a k ∈ N such that k-consistency solves NSP(A)?

Our proof of Theorem 25 shows that Meta is undecidable as well.

▶ Theorem 42. Meta can be decided in polynomial time if the input is restricted to finite
symmetric integral relation algebras A with a flexible atom.

Proof. By Theorem 39 it suffices to test the existence of an operation f : A6
0 → A0 which

satisfies conditions 1.-3. in this theorem. The three conditions can clearly be checked in
polynomial time, so we already know that Meta is in NP.

Note that the search for f may be phrased as an instance of CSP(A0) with |A|6 variables.
Using the fact that the k-consistency procedure is one-sided correct even in the case that
CSP(A0) is NP-hard (i.e., if the procedure rejects a given instance of CSP(A0), then the
instance is always unsatisfiable), we may use a standard self-reducibility argument (see,
e.g., [20]) to obtain a polynomial-time algorithm for finding f . ◀

7 Conclusion and Open Questions

The question whether the network satisfaction problem for a given finite relation algebra
can be solved by the famous k-consistency procedure is undecidable. Our proof of this fact
heavily relies on prior work of Hirsch [29] and of Hirsch and Hodkinson [25] and shows that
almost any question about the network satisfaction problem for finite relation algebras is
undecidable.

However, if we further restrict the class of finite relation algebras, one may obtain strong
classification results. We have demonstrated this for the class of finite symmetric integral
relation algebras with a flexible atom (Theorem 40); the complexity of deciding whether the
conditions in our classification result hold drops from undecidable to P (Theorem 42). One
of the remaining open problems is a characterisation of the power of k-consistency for the
larger class of all finite relation algebras with a normal representation.

Our main result (Theorem 30) is a sufficient condition for the applicability of the k-
consistency procedure; the condition does not require the existence of a flexible atom but
applies more generally to finite symmetric relation algebras A with a normal representation.
Our condition consists of two parts: the first is the existence of all 1-cycles in A, the second is
that A admits a Siggers behavior. We conjecture that dropping the first part of the condition
leads to a necessary and sufficient condition for solvability by the k-consistency procedure.

▶ Conjecture 43. A finite symmetric relation algebra A with a normal representation admits
a Siggers behavior if and only if NSP(A) can be solved by the k-consistency procedure for
some k ∈ N.

ICALP 2023
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◦ Id E N

Id Id E N

E E Id N

N N N 1

Figure 2 Multiplication table of the relation algebra C.

Note that this conjecture generalises Theorem 39. Both directions of the conjecture are
open. However, the forward direction of the conjecture is true if A has a normal representation
with a primitive automorphism group: in this case, it is known that a Siggers behavior
implies the existence of all 1-cycles [10], and hence the claim follows from our main result
(Theorem 39). The following example shows a finite symmetric relation algebra A which
does not have all 1-cycles and an imprimitive normal representation, but still NSP(A) can
be solved by the k-consistency procedure for some k ∈ N.

▶ Example 44. Theorem 30 is a sufficient condition for the NSP of a relation algebra A
to be solved by the k-consistency procedure for some k ∈ N. However, there exists a finite
symmetric relation algebra C such that NSP(C) is solved by the 2-consistency procedure,
but we cannot prove this by the methods used to obtain Theorem 30. Consider the relation
algebra C with atoms {Id, E, N} and the multiplication table in Figure 2. This relation
algebra has a normal representation, namely the expansion of the infinite disjoint union of
the clique K2 by all first-order definable binary relations. We denote this structure by ωK2.
One can observe that CSP(ωK2) and therefore also the NSP of the relation algebra can be
solved by the (2, 3)-consistency algorithm (for details see [32]).

The relation algebra C does not have all 1-cycles and therefore does not fall into the
scope of Theorem 30. In fact, our proof of Theorem does not work for C, because the CSP
of the atom structure C0 of C cannot be solved by the k-consistency procedure for some
k ∈ N. Hence, the reduction of NSP(C) to CSP(C0) (incorporated in Theorem 23) does not
imply that NSP(C) can be solved by k-consistency procedure for some k ∈ N.

The following problems are still open and are relevant for resolving Conjecture 43.

Show Conjecture 43 if the normal representation of A has a primitive automorphism
group.

Characterise the power of the k-consistency procedure for the NSP of finite relation
algebras with a normal representation whose automorphism group is imprimitive. In
this case, there is a non-trivial definable equivalence relation. It is already known that if
this equivalence relation has finitely many classes, then the NSP is NP-complete and the
k-consistency procedure does not solve the NSP [10]. Similarly, the NSP is NP-complete
if there are equivalence classes of finite size larger than two. It therefore remains to
study the case of infinitely many two-element classes, and with infinitely many infinite
classes. In both cases we wish to reduce the classification to the situation with a primitive
automorphism group.

Finally, we ask whether it is true that if A is a finite symmetric relation algebra with a
flexible atom and NSP(A) can be solved by the k-consistency procedure for some k, then it
can also be solved by the (2, 3)-consistency procedure? In other words, can we improve (4, 6)
in Corollary 40 to (2, 3)?
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