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Abstract
This paper studies two-player zero-sum games played on graphs and makes contributions toward
the following question: given an objective, how much memory is required to play optimally for that
objective? We study regular objectives, where the goal of one of the two players is that eventually
the sequence of colors along the play belongs to some regular language of finite words. We obtain
different characterizations of the chromatic memory requirements for such objectives for both players,
from which we derive complexity-theoretic statements: deciding whether there exist small memory
structures sufficient to play optimally is NP-complete for both players. Some of our characterization
results apply to a more general class of objectives: topologically closed and topologically open sets.
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1 Introduction

Games on graphs is a fundamental model in theoretical computer science for modeling systems
involving competing agents. Its applications include model-checking, program verification
and synthesis, control theory, and reactive synthesis: in all cases, the system specification is
turned into a winning objective for a player and the goal is to construct a winning strategy.
Some central results in the field state that for some objectives, there exist memoryless optimal
strategies, meaning not requiring any memory. For instance, the celebrated memoryless
determinacy result for (infinite) parity games is a key ingredient in the modern proof of
decidability of monadic second-order logic over infinite trees by Gurevich and Harrington [16].
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Memory requirements. However for many objectives, some memory is required; a central
question is therefore, stated informally:

Given an objective, how much memory is required to play optimally for this objective?

The first answers to this question, at the dawn of the study of games, were memory
requirements for concrete objectives, such as Rabin objectives [22]. The work of Dziembowski,
Jurdziński, and Walukiewicz [13] gave a computable characterization of memory requirements
for the whole class of Muller objectives. This triggered the following long-term research goal:
characterizing the memory requirements for ω-regular objectives.

Regular objectives. Many results have been obtained toward this research goal; we refer to
the related works section in Section 3 for further details. The most pressing open question in
that direction is regular objectives, meaning the special case of ω-regular objectives concerned
with finite duration: in this setting, the objective is induced by a regular language over
finite words and the goal of one of the players is that eventually the sequence of colors
along the play belongs to this language. We call these regular reachability objectives. The
opponent’s objective is then to ensure that the sequence of colors never belongs to the
language, describing regular safety objectives.

A first observation is that for such a regular (reachability or safety) objective, a deter-
ministic finite automaton recognizing the regular language provides an upper bound on the
memory requirements of both players. Indeed, playing with the extra information from the
automaton reduces the game to a standard reachability or safety game, for which no further
memory is required to make optimal decisions. Yet, as we will see, structures smaller than
the minimal automaton recognizing the language may suffice for the players.

Chromatic memory. One of the many contributions of Kopczyński [18] in the study of
memory for games on graphs is the notion of chromatic memory. In this model, the memory
states are updated only using the sequence of colors seen along a play, and in particular do
not depend on the graph itself (as opposed to chaotic memory, which may use information
from the graph in its updates). Kopczyński conjectured [18] that for ω-regular objectives,
chromatic and chaotic memory requirements coincide; unfortunately, this does not hold, as
recently proved by Casares [8] (i.e., there are objectives for which the number of memory
states required to play optimally in all arenas differs depending on the memory model). In
our study, we will see another counterexample using regular objectives.

Contributions. We study the chromatic memory requirements of both regular reachability
and regular safety objectives. For both cases, we give a combinatorial characterization of
the memory structures sufficient to play optimally in all arenas (of any cardinality). As a
by-product of the characterization we obtain complexity-theoretic statements: given as input
a deterministic finite automaton representing the objective,

deciding whether a memory structure suffices to play optimally in all arenas can be done
in polynomial time;
deciding the existence of a sufficient memory structure with a given number of states is
NP-complete.

From our characterizations it also follows that for both regular reachability and safety
objectives, chromatic and chaotic memory requirements do not coincide.

We also discuss when relevant the extension of our results to the more general class of
topologically open and topologically closed objectives (called respectively general reachability
objectives and general safety objectives for consistency in what follows), which include the
regular reachability and regular safety objectives.
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Implementation. In order to test ideas and conjectures, we have implemented algorithms
that automatically build a memory structure with a minimal number of states, both for regular
reachability and regular safety objectives. These algorithms are based on the theoretical
analysis from this paper. Our implementation1 uses SAT solvers provided by the Python
package PySAT [17].

Structure of the paper. All required definitions are provided in Section 2. Section 3 includes
an in-depth discussion of related works and a technical overview of the results and proofs:
Section 3.1 for safety objectives, Section 3.2 for reachability objectives, and Section 3.3 for
computational complexity results. Due to length constraints, only proof sketches are provided
in this version of the article; complete proofs are available in the full version [4]. In particular,
proofs for safety objectives are available in [4, Section 4], for reachability objectives in [4,
Section 5], and for complexity-theoretic statements in [4, Section 6].

2 Preliminaries

Let C be a non-empty alphabet of colors.

Arenas. We study zero-sum turn-based games on graphs with two players, called P1 and
P2. Players play on arenas, which are tuples A = (V, V1, V2, E) where V is a non-empty set
of vertices such that V = V1 ⊎ V2 (disjoint union) and E ⊆ V × C × V is a set of colored
edges. If e = (v1, c, v2) ∈ E, we write in(e) = v1, col(e) = c, and out(e) = v2. Vertices in
V1 are controlled by P1 and vertices in V2 are controlled by P2. An arena is finite if it has
finitely many vertices and edges, and is finitely branching if for all v ∈ V , there are finitely
many edges e ∈ E such that in(e) = v. Unless otherwise specified, we consider arenas of any
cardinality. An arena A = (V, V1, V2, E) is a one-player arena of P1 (resp. of P2) if V2 = ∅
(resp. V1 = ∅).

A history on arena A = (V, V1, V2, E) is a finite sequence γ = e1 . . . en ∈ E∗ such that for
i, 1 ≤ i ≤ n − 1, we have out(ei) = in(ei+1). We write out(γ) for out(en). For convenience,
we assume that for all v ∈ V , there is a distinct empty history λv such that out(λv) = v. For
i ∈ {1, 2}, we write Histsi(A) for the set of histories γ on A such that out(γ) ∈ Vi. A play
on arena A is an infinite sequence π = e1e2 . . . ∈ Eω such that for i ≥ 1, out(ei) = in(ei+1);
play π is from v if in(e1) = v. If π = e1e2 . . . ∈ Eω is a play (resp. γ = e1 . . . en ∈ E∗ is
a history), we write colω(π) (resp. col∗(γ)) for the infinite sequence col(e1)col(e2) . . . ∈ Cω

(resp. the finite sequence col(e1) . . . col(en) ∈ C∗).

Objectives. Objectives are subsets W ⊆ Cω. Given an objective W , we write W = Cω \ W

for its complement. We focus on two types of objectives, both derived from a set A ⊆ C∗:
the general reachability objective derived from A, denoted Reach(A), is the objective⋃

w∈A wCω of infinite words that have (at least) one finite prefix in A.
the general safety objective derived from A, denoted Safe(A), is the objective

⋃
w∈A wCω

of infinite words that have no finite prefix in A. We have Safe(A) = Reach(A).

General reachability and safety objectives are respectively the topologically open and
topologically closed sets, at the first level of the Borel hierarchy. When A is a regular language,
we call Reach(A) a regular reachability objective and Safe(A) a regular safety objective. We

1 Our implementation is available at https://github.com/pvdhove/regularMemoryRequirements.
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call an objective regular if it is a regular reachability or a regular safety objective. Our
characterizations apply to regular reachability and safety objectives, but we sometimes
discuss when we may generalize our results to the general case. For computational complexity
questions, we restrict our focus to regular reachability and safety objectives so that an
objective can be finitely represented as an automaton. The objectives that we consider
are therefore very simple both in terms of their algebraic representation (using automata
representing languages of finite words) and in terms of their topology (they are at the first
level of the Borel hierarchy).

A game is a tuple G = (A, W ) where A is an arena and W is an objective.

Automata. A deterministic automaton is a tuple D = (Q, C, qinit, δ, F ) where Q is a possibly
infinite set of states, C is a non-empty alphabet (usually the set of colors), qinit ∈ Q is an
initial state, δ : Q × C → Q is a (complete, deterministic) update function, and F ⊆ Q is a
set of final states. All automata in this work are deterministic, so we sometimes omit the
word deterministic. Automaton D is finite if Q is finite. We write δ∗ : M × C∗ → M for the
natural extension of δ to sequences of colors. The language recognized by D, denoted L(D),
is the set of finite words w ∈ C∗ such that δ∗(qinit, w) ∈ F . For q1, q2 ∈ Q, we write ΠD

q1,q2

for the language of words w ∈ C∗ such that δ∗(q1, w) = q2. We drop the superscript D if the
automaton considered is clear in the context. We denote the empty word by ε.

Continuations. For an objective W ⊆ Cω and w ∈ C∗, we define the winning continuations
of w as the set w−1W = {w′ ∈ Cω | ww′ ∈ W} (this set is sometimes called a left quotient
of W in the literature). Given an objective W ⊆ Cω, its prefix preorder ⪯W ⊆ C∗ × C∗ is
defined as w1 ⪯W w2 if w−1

1 W ⊆ w−1
2 W . Its prefix equivalence ∼W ⊆ C∗ × C∗ is defined as

w1 ∼W w2 if w−1
1 W = w−1

2 W . We denote ≺W = ⪯W \ ∼W . We drop the subscript W when
there is no ambiguity on the objective. The prefix preorder is a relation that is preserved by
reading colors.

▶ Lemma 1. Let W ⊆ Cω be an objective. If w1 ⪯ w2, then for all w ∈ C∗, w1w ⪯ w2w.

Starting from a general reachability or safety objective W ⊆ Cω derived from a set A ∈ C∗,
we can associate with W its minimal automaton DW that “classifies” the equivalence classes
of ∼. Formally, DW = (Q, C, qinit, δ, F ) where Q = {[w]∼ | w ∈ C∗} is the set of equivalence
classes of ∼, qinit = [ε]∼, δ([w]∼, c) = [wc]∼, and F = {qfin} where qfin = [w]∼ for some w ∈ A

(the choice of w does not matter). The transition function δ is well-defined: w1 ∼ w2 implies
w1c ∼ w2c for all c ∈ C. Notice that the final state of such an automaton is always absorbing,
i.e., for all c ∈ C, δ(qfin, c) = qfin. This matches the intuition that once a word of A is seen
and the reachability (resp. safety) game is won (resp. lost), it stays that way for the rest of
the game.

We have that a general reachability (resp. safety) objective W is equal to Reach(L(DW ))
(resp. to Safe(L(DW ))) – in examples, we will sometimes start from an automaton to generate
an objective. Using the well-known Myhill-Nerode theorem [20], we obtain that a general
reachability or safety objective W is regular if and only if ∼ has finitely many equivalence
classes if and only if DW is finite.

When considering a minimal automaton DW = (Q, C, qinit, δ, F ), for q ∈ Q, we abusively
write q−1W for the set w−1W , where w is any finite word such that δ∗(qinit, w) = q (the
choice of w does not matter). We extend ⪯ to automaton states (q1 ⪯ q2 if q−1

1 W ⊆ q−1
2 W ).

Preorders. Let ⪯ be a preorder on some set B. We say that two elements b1, b2 ∈ B are
comparable for ⪯ if b1 ⪯ b2 or b2 ⪯ b1. A set Γ ⊆ B is a chain for ⪯ (resp. antichain for
⪯) if for all b1, b2 ∈ Γ, b1 and b2 are (resp. are not) comparable for ⪯. A preorder ⪯ is
well-founded if every chain for ⪯ contains a minimal element for ⪯.
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Memory structures. A (chromatic) memory structure is a tuple M = (M, minit, αupd) where
M is a possibly infinite set of states, minit ∈ M is an initial state, and αupd : M × C → M is a
(deterministic, complete) update function. It is syntactically almost the same as a deterministic
automaton, except that we do not specify final states. We recover notations α∗

upd and Πm1,m2

(for m1, m2 ∈ M) from automata. We let Mtriv = ({minit}, minit, (minit, c) 7→ minit) denote
the only memory structure with a single state. The size of a memory structure is its number
of states.

Strategies. Let A = (V, V1, V2, E) be an arena and i ∈ {1, 2}. A strategy of Pi on A is
a function σi : Histsi(A) → E such that for all γ ∈ Histsi(A), out(γ) = in(σi(γ)). Given a
strategy σi of Pi, we say that a play π = e1e2 . . . is consistent with σi if for all finite prefixes
γ = e1 . . . ej of π such that out(γ) ∈ Vi, σi(γ) = ej+1. For v ∈ V , we denote by Plays(A, v, σi)
the set of plays on A from v that are consistent with σi.

For M = (M, minit, αupd) a memory structure, a strategy σi of Pi on arena A is
based on (memory) M if there exists a function αnxt : Vi × M → E such that for all
v ∈ Vi, σi(λv) = αnxt(v, minit), and for all non-empty histories γ ∈ Histsi(A), σi(γ) =
αnxt(out(γ), α∗

upd(minit, col∗(γ))). A strategy is memoryless if it is based on Mtriv. For con-
ciseness, we sometimes abusively assume that a strategy of Pi based on M is a function
Vi × M → E.
▶ Remark 2. This chromatic memory model only observes the sequence of colors seen, and not
the precise edges that are taken during a play (i.e., the current memory state is determined
by the word in C∗ seen, not by the history in E∗). A memory structure observing the edges
is sometimes called a chaotic memory [18] and, as was recently shown, may allow to play
optimally with fewer memory states for some objectives [8]. However, this comes at the cost of
needing to specialize the transition function of the memory structure for every arena – it does
not provide an arena-independent memory structure [5]. The chaotic memory requirements
of general safety objectives are characterized in [10] while, as far as we know, the chaotic
memory requirements of general and regular reachability objectives are unknown. ⌟

Optimality. Let G = (A = (V, V1, V2, E), W ) be a game, and v ∈ V . We say that a strategy
σ1 of P1 on A is winning from v for W if for all π ∈ Plays(A, v, σ1), colω(π) ∈ W .

A strategy of P1 is optimal for P1 in (A, W ) if it is winning from all the vertices of A
from which P1 has a winning strategy. We often write optimal for P1 in A if the objective
W is clear from the context.
▶ Remark 3. We stress that this notion of optimality requires a single strategy to be
winning from all the winning vertices (a property sometimes called uniformity). Asking for
uniformity may require strategies that are more complex to implement than just requiring
winning strategies from individual vertices. Still, uniformity is a common requirement (see,
e.g., [14, 21]) that comes at no extra cost in many well-studied situations [13, 12]. We discuss
uniformity again in Remark 6.

Note also that there is no requirement on the behavior of an optimal strategy from vertices
from which no strategy is winning, as we assume that the opponent plays rationally. In
particular, even if winning becomes possible due to a mistake of the opponent after starting
from a non-winning vertex, an optimal strategy needs not win. ⌟

Let M be a memory structure and W ⊆ Cω be an objective. We say that M suffices (to
play optimally) for W (resp. in finite, finitely branching, one-player arenas) if for all (resp.
finite, finitely branching, one-player) arenas A, P1 has an optimal strategy based on M in
game (A, W ).

ICALP 2023
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3 Technical overview

In this section, we start with a more in-depth discussion of the related literature. We
then present our main contributions (characterization of the memory requirements of safety
objectives, of reachability objectives, and the computational complexity of the related decision
problems) while describing and illustrating the main concepts used in our results. Complete
proofs for the three kinds of contributions are available in the full version [4].

Related works. To classify the existing literature on memory for games, we identify two
axes. The first is whether they concern chaotic memory or chromatic memory. The second
is how the class of objectives is defined: either in automata-theoretic terms, typically as a
subclass of ω-regular languages, or in topological terms, referring to the natural topology
over the set of infinite words.

The result of Dziembowski, Jurdziński, and Walukiewicz [13] applies to the whole class
of Muller objectives, which specify the set of colors which appears infinitely many times.
It shows that Zielonka trees [23] can be used to compute chaotic memory requirements
in polynomial time. Recently, Casares [8] has shown that this characterization does not
extend to chromatic memory: deciding whether there is a memory structure of size k

becomes NP-complete and equivalent to minimizing transition-based Rabin automata. In
this direction, Casares, Colcombet and Lehtinen [9] showed that computing chaotic memory
requirements for Muller objectives is equivalent to minimizing good-for-games automata.
A result by Bouyer, Randour, and Vandenhove [7] provides a link between the chromatic
memory requirements of all ω-regular objectives (not only Muller conditions) and their
representation as transition-based parity automata, but with less tight bounds on the minimal
memory structures.

Article [6] establishes the existence of finite-memory optimal strategies from topological
properties of objectives. Although general reachability and safety objectives fit into their
framework, there are major differences with our work: their framework is different (they
study concurrent games that are not played on graphs), and their aim is to establish the
existence of finite-memory optimal strategies for many objectives, but not to understand
precisely the memory requirements of some class of objectives.

Regular objectives are also mentioned in [19], where the existence of finite-memory optimal
strategies is shown for Boolean combinations of objectives involving regular objectives.

In another line of works, Gimbert and Zielonka [14] gave a characterization of all
payoff functions (extending objectives to a quantitative setting) for which both players
have memoryless optimal strategies, implying an important lifting result: the sufficiency of
memoryless strategies in finite two-player arenas is implied by the existence of memoryless
optimal strategies in both players’ finite one-player arenas. Bouyer et al. [5] extended this to
chromatic finite memory.

The work most related to the present paper is by Colcombet, Fijalkow, and Horn [10, 11],
which gives a characterization of chaotic memory requirements for general safety objectives.
Their constructions strongly rely on the model of chaotic memory; indeed, as a corollary
of our results, we will see that already for regular safety objectives, chromatic and chaotic
memory requirements do not coincide. Our first step is to obtain a characterization of
chromatic memory requirements for (general and regular) safety objectives.
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3.1 Monotony and safety objectives
Let us fix an objective W ⊆ Cω. In order to play optimally for W , a memory structure M
needs to be able to distinguish between histories that are not comparable for ⪯W : indeed, if
two finite words w1, w2 ∈ C∗ are not comparable, we can construct an arena in which the
opponent chooses between playing w1 and playing w2, and then the correct choice has to
be made between a continuation only winning after w1, and a continuation only winning
after w2. This motivates the following definition, which we call M-strong-monotony.

▶ Definition 4 (M-strong-monotony). Let W ⊆ Cω be an objective and M = (M, minit, αupd)
be a memory structure. We say that W is M-strongly-monotone if for all w1, w2 ∈ C∗,
α∗

upd(minit, w1) = α∗
upd(minit, w2) implies that w1 and w2 are comparable for ⪯W .

Notice also that W is M-strongly-monotone if and only if W is M-strongly-monotone
(as being comparable for ⪯W is equivalent to being comparable for ⪯W = ⪰W ). Although
stated differently, a property called strong monotony was introduced in [1] and coincides
with our definition of Mtriv-strong-monotony. We can therefore see our definition as a
reformulation and a generalization to handle arbitrary memory structures, rather than only
the “memoryless memory structure” Mtriv.

The discussion above implies that for a memory M, M-strong-monotony is necessary
for M to be sufficient to play optimally. Depending on the type of objective (regular or
general), we specify a class of arenas in which M-strong-monotony can already be shown to
be necessary. Intuitively, regularity allows to distinguish distinct objectives with ultimately
periodic words, which can be encoded into a finite arena.

▶ Lemma 5 (Necessity of M-strong-monotony). Let W be an objective and M a memory
structure.
1. If W is regular and M suffices to play optimally for W in all finite one-player arenas,

then W is M-strongly-monotone.
2. In the general case, if M suffices to play optimally for W in all finitely branching

one-player arenas, then W is M-strongly-monotone.

Complete proofs for this section can be found in [4, Section 4].
▶ Remark 6. This is the only result relying on the “uniformity” assumption (see Remark 3).
This assumption is crucial to obtain this lemma with a hypothesis about one-player arenas.
We provide additional details about the (small) cost of requiring uniformity w.r.t. memory
requirements in two-player games in [4, Section 4]. ⌟

In the case of general reachability or safety objectives, it is useful to reformulate the
notion of M-strongly-monotone objectives using chains. Given a general reachability or
safety objective W , its minimal automaton DW = (Q, C, qinit, δ, F ), and a memory structure
M = (M, minit, αupd), we can associate with each state m ∈ M the set ΓW

m ⊆ Q of states of
DW that can be reached “simultaneously”. Formally, for m ∈ M ,

ΓW
m = {δ∗(qinit, w) ∈ Q | w ∈ C∗, α∗

upd(minit, w) = m}.

We drop the superscript W if there is no ambiguity. The following property follows from the
definitions.

▶ Lemma 7. Let W be a general reachability or safety objective and M = (M, minit, αupd) be
a memory structure. Objective W is M-strongly-monotone if and only if for all m ∈ M , the
set Γm is a chain for ⪯W .

ICALP 2023
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Our initial definition of M-strong-monotony required that any two finite words reaching the
same state of M must be comparable; in this reformulation, we focus instead on the minimal
automaton of W and require that states of the automaton that can be reached along with
the same state of M are comparable.

Our first characterization states that for general safety objectives, M-strong-monotony
also implies that M suffices to play optimally. We state two variants of the results: in the
first one, we assume that the preorder ⪯ induced by the objective is well-founded (which
includes the regular case), and the result holds for all arenas; in the second one, we make no
such assumption, but the result holds only for finitely branching arenas. We will discuss why
we do not have the result with none of these hypotheses in Remark 10.

▶ Theorem 8 (Characterization for safety). Let W be a general safety objective, and M be a
memory structure.
1. If ⪯W is well-founded (in particular, if W is regular), then M suffices to play optimally

for W if and only if W is M-strongly-monotone.
2. In the general case, M suffices to play optimally for W in all finitely branching arenas if

and only if W is M-strongly-monotone.

Proof sketch. We provide an overview of the proof of Theorem 8 (complete proof in [4,
Section 4]). We discuss here the sufficiency of M-strong-monotony (the necessity is easier
and was stated in Lemma 5).

Let M = (M, minit, αupd) and let DW = (Q, C, qinit, δ, F ) be the minimal automaton of W .
We assume that W is M-strongly-monotone. Let A = (V, V1, V2, E) be an arena. As per the
hypotheses, we require that ⪯ is well-founded or that A is finitely branching.

We want to build a strategy σ optimal for P1 in A such that σ : V1 × M → E is based
on M. The key to the proof is to understand the following sets of states of DW in order to
know what to play in each pair (v, m) ∈ V1 × M . For v ∈ V , m ∈ M , we define

Qv,m = {q ∈ Γm | P1 has a winning strategy for objective q−1W from v}.

States in Qv,m are states of DW that could be reached while the memory state is m, by
definition of Γm. Moreover, M-strong-monotony tells us that each Γm is a chain for ⪯
(Lemma 7), so each Qv,m is too.

For given v ∈ V1 and m ∈ M , we distinguish three possibilities.
If Qv,m is empty, then this means that there is no state of Γm for which P1 can win from
v (i.e., for all q ∈ Γm, P1 has no winning strategy for q−1W from v). In this case, we can
define σ(v, m) arbitrarily, as there is no hope to win.
If Qv,m has a minimum qv,m for ⪯, then this minimum represents the worst (for ⪯) state
of Γm for which P1 still has a winning strategy. We define σ(v, m) as the edge played
by such a winning strategy. Intuitively, this is the most robust way to play as it is a
winning move for the worst possible state of Γm for which winning is possible. Notice
that a non-empty Qv,m always has a minimum when ⪯ is well-founded.
In case Qv,m is non-empty and has no minimum, then ⪯ is not well-founded, so we
work under the hypothesis that A is finitely branching. We can then consider, for each
q ∈ Qv,m, the set of edges Eq that can be taken from v to win for q−1W . Each Eq

is finite and non-empty, and they are ordered for inclusion. We can then show that
their intersection is non-empty, so there is an edge that can be taken in v to win for all
q ∈ Qv,m. We define σ(v, m) as such an edge.

We have now defined a strategy σ based on M that makes local choices that are played
by winning strategies for as many states of Γm (where m is the current memory state) as
possible. Using the fact that W is a general safety condition, one can prove that this strategy
is in fact optimal. ◀
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A corollary of this characterization, by comparing to the characterization for chaotic
memory in [10], is that chromatic and chaotic memory requirements differ already for regular
safety objectives. We provide an instructive example below. Note that this provides a new
simple kind of counterexample to Kopczyński’s conjecture [18], which Casares [8] had already
falsified with a Muller objective.

▶ Example 9. Let C = {a, b, c, d}. We consider the regular language recognized by the finite
automaton D depicted in Figure 1 (left). It accepts the finite words that first see both a and
b (in any order, possibly interspersed with c’s and d’s), and then see both c and d (in any
order, possibly interspersed with a’s and b’s). This language can be described by the regular
expression C∗(aC∗b | bC∗a)C∗(cC∗d | dC∗c)C∗. We write W for the induced regular safety
objective: W = Safe(L(D)).

The main claim is that the chaotic memory requirements for W are two states, which is
easily obtained from the existing characterization [10] (this is the size of a maximal antichain
for ⪯), while the chromatic requirements for W are three states. We depict a memory
structure M with three states which makes W M-strongly-monotone in Figure 1 (right). To
check that W is indeed M-strongly-monotone, we have to check that there is no pair of words
w1, w2 ∈ C∗ such that w1 and w2 reach the same state of M, but reach non-comparable
states in D. The only two pairs of non-comparable states in D are qa and qb, and qc and
qd (besides these, states are ordered for ⪯ from right to left). We can check that for this
choice of M, Γm1 = {qinit, qa}, Γm2 = {qb, qab, qd, qcd}, Γm3 = {qb, qab, qc, qcd}. As these are
all chains for ⪯, we have that W is M-strongly-monotone.

It is not possible to find a chromatic memory structure M with two states which makes
W M-strongly-monotone (this can be checked by trying to assign transitions to two states
while distinguishing non-comparable states, and observing that all cases fail). ⌟

qinit

qa

qb

qab

a

b

b

a

c, d

a, c, d

b, c, d

qc

qd

qcd

c

d

d

c

a, b

a, b, c

a, b, d

a, b, c, dΓm1

Γm2

Γm3

m1 m2 m3
b

a, c, d a, b, d

c

a, b, c

d

Figure 1 Example 9: automaton D (left) and a minimal memory structure M (right) such that
Reach(L(D)) and Safe(L(D)) are M-strongly-monotone. In figures, diamonds are used to depict
automaton states and memory states, and accepting states are depicted with a double border.

To conclude this section, we discuss why, with neither the well-foundedness hypothesis nor
the finitely branching hypothesis from Theorem 8, we cannot expect such a characterization.

▶ Remark 10. If the prefix preorder of an objective W is not well-founded, then there is an
infinite decreasing sequence of finite words w1 ≻ w2 ≻ . . . in C∗. This means that for all
i ≥ 1, there is w′

i ∈ Cω such that wiw
′
i ∈ W , but for j > i, wjw′

i /∈ W . We can then build
the infinitely branching arena depicted in Figure 2 in which P2 first chooses a word wj , and
P1 can win by playing a word w′

i with i ≥ j. This requires infinite memory, even if W is
Mtriv-strongly-monotone. ⌟
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. . .

...
. . .

...

w1

...
wn
...

w′
1

w′
n

Figure 2 Infinite branching arena in which P1 needs memory beyond the M-strong-monotony
property in Remark 10. In figures, circles (resp. squares) represent arena vertices controlled by P1

(resp. P2), i.e., in V1 (resp. V2). Squiggly arrows indicate a sequence of edges.

3.2 Capturing progress and reachability objectives
To play optimally for general and regular reachability objectives with a memory M, M-
strong-monotony is necessary (Lemma 5) but not enough: the following example shows that
the memory structure must keep track of progress.

▶ Example 11. Let C = {a, b}. We consider the regular language b∗a+bC∗ of words that
have to see at least one a, followed by at least one b. This language is recognized by the finite
automaton D in Figure 3 (left). We write W for the induced regular reachability objective:
W = Reach(L(D)).

In the arena in Figure 3 (center), P1 may win by starting a play with ab, but not
without memory. The intuition is that playing a first makes some progress (it reaches an
automaton state with more winning continuations), but is not sufficient to win, even if
repeated. Therefore, in our memory structures, if a word makes some progress but without
guaranteeing the win when repeated, we want the memory state to change upon reading that
word. The memory structure in Figure 3 (right) is sufficient for W ; in particular, seeing the
first a, which makes progress from qinit to qa, changes the memory state. ⌟

a bqabqaqinit
a b

b a a, b

m1 m2
a

b a, b

Figure 3 Example 11: automaton D (left), an arena requiring memory for Reach(L(D)) (center),
and a minimal sufficient memory structure (right).

We formalize this intuition in the following definition, which is a generalization of the
progress-consistency property [3]. Notation Πm1,m2 , representing the finite words read from
memory state m1 to memory state m2, was defined in Section 2.

▶ Definition 12 (M-progress-consistency). Let W be an objective and M = (M, minit, αupd)
be a memory structure. We say that W is M-progress-consistent if for all m ∈ M , for all
w1 ∈ Πminit,m, for all w2 ∈ Πm,m,

w1 ≺ w1w2 =⇒ w1(w2)ω ∈ W.

Intuitively, this says that if it is possible to come back to the same memory state while
reading a “word that makes progress” (i.e., that improves our situation by putting us in a
position with more winning continuations), then repeating this word infinitely often from
that point onward must be winning. The notion of Mtriv-progress-consistency corresponds
to the previous definition of progress-consistency [3].
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The discussion above shows that M-progress-consistency is necessary for a memory
structure M to be sufficient to play optimally. As for M-strong-monotony, we distinguish
the regular case from the general case.

▶ Lemma 13 (Necessity of M-progress-consistency). Let W be an objective and M a memory
structure.
1. If W is regular and M suffices to play optimally for W in all finite one-player arenas,

then W is M-progress-consistent.
2. In the general case, if M suffices to play optimally for W in all finitely branching

one-player arenas, then W is M-progress-consistent.

Complete proofs for this section can be found in [4, Section 5]. The following example
should help the reader form the right intuition about M-progress-consistency.

▶ Example 14. Let C = {a, b}. We consider the regular language of words containing
ababa as a (non-necessarily contiguous) subword, recognized by the finite automaton D in
Figure 4 (left). We consider the memory structure M remembering whether a or b was last
seen, depicted in Figure 4 (right). The regular reachability objective W = Reach(L(D)) is
M-progress-consistent. Indeed, let us first consider m = mb in the definition of M-progress-
consistency. A finite word w1 reaching mb in M necessarily reaches qinit, qab, or qabab in Q

(excluding the final state from the reasoning, as no progress is possible from it). After w1,
words w2 that both (i) make progress (w1 ≺ w1w2) and (ii) are a cycle on mb necessarily
see both a and b. Therefore, w1(w2)ω is always a winning word. The same reasoning holds
for m = ma. Notice that the memory states from the memory structure do not carry enough
information to ascertain when a word of the language has been seen (i.e., when the game is
won).

The upcoming Theorem 16 implies that M suffices to play optimally for P1. ⌟

qinit qa qab qaba qabab qfin
a b a b a

b a b a b a, b

mb ma

a

b

b a

Figure 4 Example 14: automaton D (left) and memory structure M (right).

This need to capture progress was not necessary to understand the memory requirements
of safety objectives, which may be explained by the following reasoning.
▶ Remark 15. Unlike general reachability objectives, all general safety objectives are Mtriv-
progress-consistent. Here is a proof of this statement. Let W ⊆ Cω be a general safety
objective. Let w1, w2 ∈ ΠMtriv

minit,minit
= C∗ be such that w1 ≺ w1w2. This implies that w1w2,

and therefore w1, have a non-empty set of winning continuations. Assume by contradiction
that w1(w2)ω /∈ W . As W is a general safety objective, there is a smallest n ≥ 1 such
that w1(w2)n has no winning continuation. Hence, w1(w2)n−1 still has some winning
continuations, so w1(w2)n ≺ w1(w2)n−1. This is a contradiction, as w1 ≺ w1w2 implies that
w1(w2)n−1 ⪯ w1w2(w2)n−1 = w1(w2)n by Lemma 1. This property is, at least intuitively,
a reason hinting that the memory requirements of safety objectives are lower and easier to
understand than those for their complement reachability objective. ⌟

We have now discussed two necessary properties for a memory M to be sufficient to play
optimally for an objective. For regular reachability objectives, it appears that the conjunction
of these two properties is also sufficient.
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▶ Theorem 16 (Characterization for reachability). Let W be a regular reachability objective
and M be a finite memory structure. Memory M suffices to play optimally for W if and
only if W is M-strongly-monotone and M-progress-consistent.

Proof sketch. We provide an overview of the proof of Theorem 16 (complete proof in [4, Sec-
tion 5]). We discuss here the sufficiency of M-strong-monotony and M-progress-consistency
(their necessity is easier and was stated in Lemmas 5 and 13).

Let DW = (Q, C, qinit, δ, F ) be the minimal automaton of W (which is finite as W is
regular), and M = (M, minit, αupd). We assume that W is M-strongly-monotone and M-
progress-consistent. Let A = (V, V1, V2, E) be a (possibly infinite) arena. We construct
an optimal strategy based on memory M, using the same idea as in the proof for safety
objectives (Theorem 8): we once again consider a strategy based on M making choices that
are “locally optimal”. We then show, thanks to our hypotheses (M-strong-monotony and
M-progress-consistency), that this strategy must be optimal.

For v ∈ V1, m ∈ M , we define

qv,m = min
⪯

{q ∈ Γm | P1 has a winning strategy for objective q−1W from v}.

Every set Γm is a chain using M-strong-monotony (Lemma 7) and is finite since DW is finite.
Hence, the minimum qv,m exists (except when the set is empty, but that means that the
game cannot be won anymore – we ignore this case). Let σv,m be a strategy winning for
q−1

v,mW from v.
Now, just like for the proof for safety, we want to define σ(v, m) as the first edge taken

by qv,m from v – we play locally reasonable edges played by good strategies and hope that
this creates a “globally” optimal strategy. However, this does not work in general, as any
choice for the strategies σv,m may not be good: indeed, such strategies may be winning, but
may make unnecessary moves delaying the achievement of the objective. For instance, in the
arena of Figure 3, a strategy playing babω is winning for q−1

initW , but not as fast as possible
(it takes three moves to create a word in L(D), while it is possible to do it in two moves). If,
by imitating the first move of this strategy, we define σ(v, m1) = (v, b, v), we then get stuck
and σ plays the losing word bω.

A way to remedy this is by formally defining the “time” taken by a strategy to guarantee
a win, and choosing strategies σv,m that win in the least time. When considering infinite
two-player arenas, this time has to be defined using ordinals. If we do this, it is possible
(though still quite involved) to show that σ defined as above is indeed optimal, thanks to
M-progress-consistency. ◀

▶ Remark 17. Unlike safety objectives, our characterization is only shown to hold for regular
reachability objectives. We discuss in [4, Section 5] why our proof technique does not apply
to general reachability objectives (even with ⪯ well-founded and finite branching of the
arenas). ⌟

For objectives beyond reachability and safety, M-strong-monotony and M-progress-
consistency may not imply the sufficiency of M to play optimally. For instance, with
C = {a, b}, let us consider the objective

W = {w ∈ Cω | a and b are both seen infinitely often},

which is ω-regular (it can be recognized by a deterministic Büchi automaton with two states),
but is not a general reachability nor safety objective. Objective W is Mtriv-strongly-monotone
and Mtriv-progress-consistent, but Mtriv does not suffice to play optimally.
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Lift for regular objectives. As a by-product of our results, we observe that for regular
objectives, our characterizations deal with arbitrary arenas of any cardinality, but the
properties used in the characterizations are already necessary in finite one-player arenas.
This means that strategy-wise, to accomplish a regular objective, all the complexity already
appears in finite graphs with no opponent. For the specific class of regular objectives that
we study, this strengthens so-called one-to-two-player lifts from the literature [14, 5].

▶ Theorem 18 (Finite-to-infinite, one-to-two-player lift). Let W be a regular (reachability or
safety) objective and M be a finite memory structure. Memory M suffices to play optimally
for W (in all arenas) if and only if M suffices to play optimally for W in finite one-player
arenas.

Proof. The implication from left-to-right holds as this is the same property quantified over
fewer arenas. We argue the other implication for each case.

For regular safety objectives W , we showed that if M suffices in finite one-player arenas,
then W is M-strongly-monotone (by Lemma 5 as W is regular), which implies that M
suffices in all arenas (by Theorem 8 as W is a safety condition with a well-founded preorder).

For regular reachability objectives W , we showed that if M suffices in finite one-player
arenas, then W is M-strongly-monotone and M-progress-consistent (by Lemmas 5 and 13 as
W is regular), which implies that M suffices in all arenas (by Theorem 16 as W is a regular
reachability objective). ◀

3.3 The complexity of finding small memory structures
We finally discuss the computational complexity of finding small memory structures for
regular objectives. We formalize the question as two decision problems: given a regular
reachability or safety objective, how much memory is required to play optimally for this
objective?

Memory-Safe
Input: A finite automaton D inducing the regular safety objective W = Safe(L(D)) and

an integer k ∈ N.
Question: Does there exist a memory structure M of size at most k which suffices to play

optimally for W ?

Memory-Reach
Input: A finite automaton D inducing the regular reachability objective W =

Reach(L(D)) and an integer k ∈ N.
Question: Does there exist a memory structure M of size at most k which suffices to play

optimally for W ?

It follows from our characterizations (Theorems 8 and 16) that Memory-Safe is equivalent
to asking whether there is a memory structure M of size at most k such that Safe(L(D)) is
M-strongly-monotone, and Memory-Reach whether there is a memory structure M of
size at most k such that Reach(L(D)) is M-strongly-monotone and M-progress-consistent.

▶ Remark 19. The way k is encoded (in binary or in unary) has no impact on the complexity.
Indeed, the input consists of the number k together with a (deterministic) automaton
describing the objective. Since the automaton is an upper bound on the memory requirements
(for both Memory-Safe and Memory-Reach), the problem is non-trivial only when k is
smaller than the size of the automaton. Therefore, the size of the input is dominated by the
size of the automaton in the non-trivial cases. ⌟
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▶ Theorem 20 (Complexity of Memory-Safe and Memory-Reach). Both Memory-Safe
and Memory-Reach are NP-complete.

For NP-hardness, we construct a reduction from the Hamiltonian cycle problem which
works for both Memory-Safe and Memory-Reach. Complete proofs for this section can
be found in [4, Section 6].

Our main insight is to reformulate the notion of M-strong-monotony (NP-membership of
Memory-Safe follows from this reformulation). Let W = Safe(L(D)) be a regular objective
and M = (M, minit, αupd) be a memory structure. In Example 9, we have seen how to go
from a memory structure M such that W is M-strongly-monotone to a covering of the states
of D by chains of states. We formulate exactly the requirements for such coverings in order
to have a point of view equivalent to M-strong-monotony. For Γ ⊆ Q a set of automaton
states and c ∈ C a color, we define δ(Γ, c) = {δ(q, c) | q ∈ Γ}.

▶ Definition 21 (Monotone decomposition). Let D = (Q, C, qinit, δ, F ) be an automaton. We
say that the sets Γ1, . . . , Γk ⊆ Q form a monotone decomposition of D if
(a) Q =

⋃k
i=1 Γi,

(b) for all c ∈ C, for all i ∈ {1, . . . , k}, there is j ∈ {1, . . . , k} such that δ(Γi, c) ⊆ Γj, and
(c) for all i ∈ {1, . . . , k}, Γi is a chain for ⪯.

Note that the sets Γi do not have to be disjoint (as was illustrated in Example 9). If
we only consider requirements (a) and (b) of this definition, we recover the definition of
an admissible decomposition, which can be used to quotient an automaton [15]. Here, we
add the additional requirement (c) that each set of states is a chain for ⪯. Note that
there always exists an admissible decomposition with just one set (by taking Γ1 = Q), but
finding a small monotone decomposition may not be so easy. This point of view in terms of
monotone decompositions turns out to be equivalent to our initial point of view in terms of
M-strong-monotony in the following sense.

▶ Lemma 22. Let D be an automaton and W be equal to Safe(L(D)) or Reach(L(D)).
Automaton D admits a monotone decomposition with k sets if and only if W is M-strongly-
monotone for some memory structure M of size k.

It is instructive to reformulate the characterization of chaotic memory requirements
from [10]: the original phrasing was that the number of memory states necessary and
sufficient to play optimally for the safety objective W is the size of the largest antichain
of ⪯W . Using our terminology and Dilworth’s theorem, it is equivalent to the smallest
number of chains required to cover all states; that is, decompositions satisfying (a) and (c)
in Definition 21, but not necessarily (b). Hence, it is smaller in general.

We finish this section with an overview of the proof of Theorem 20 (complete proofs in [4,
Section 6]).

Proof sketch of Theorem 20. We first discuss membership in NP, and then NP-hardness.

Membership in NP. Problem Memory-Safe with inputs D and k was shown in Theorem 8
to be equivalent to the existence of a memory structure M of size k such that W is M-
strongly-monotone. This second problem is itself equivalent by Lemma 22 to the existence of
a monotone decomposition of D with k sets. A monotone decomposition is a polynomial-
size witness, and checking whether k sets of states form a monotone decomposition is
done in polynomial time by checking the three conditions in the definition. This shows
NP-membership of Memory-Safe.
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For Memory-Reach, we use memory structures as polynomial-size witnesses. Let D
be a finite automaton and k ∈ N. Given a memory structure M of size k, we want to
decide in polynomial time whether objective Reach(L(D)) is M-strongly-monotone and M-
progress-consistent. We have discussed how to check M-strong-monotony in polynomial time
through monotone decompositions. Checking M-progress-consistency in polynomial time is
slightly more involved and is described in [4, Section 6]: we reduce M-progress-consistency
to checking a polynomial number of emptiness queries of intersections of regular languages
recognized by deterministic finite automata.

NP-hardness. As mentioned above, we prove NP-hardness of Memory-Safe using a
reduction from the Hamiltonian cycle problem. The proof also applies to Memory-Reach,
but we move this discussion to [4, Section 6]. In the following, a (directed) graph is a tuple
G = (V, E) with E ⊆ V × V . A Hamiltonian cycle of G is a sequence (u1, . . . , un) in which
each state of V appears exactly once, (ui, ui+1) ∈ E for all i, 1 ≤ i < n, and (un, u1) ∈ E.

We start from a directed graph G = (V, E) and we intend to build an automaton DG such
that G has a Hamiltonian cycle if and only if DG has a monotone decomposition with k sets,
for a well-chosen k. We write |V | = n and |E| = m. We assume m ≥ n, otherwise G cannot
have a Hamiltonian cycle. We define Automaton(G) as the automaton (Q, Σ, δ, qinit, F ) with
Q = V ⊎ E, Σ = {in, out}, and transitions such that for v ∈ V , δ(v, in) = δ(v, out) = v, and
for e = (v1, v2) ∈ E, δ(e, in) = v1 and δ(e, out) = v2. We ignore qinit and F at the moment.
This definition is inspired from a reduction in [2] (although the rest of the proof is different).

We also consider the cycle graph with n vertices Cn = (VC , EC), with VC = {vC
1 , . . . , vC

n }
and EC = {eC

1 , . . . , eC
n } such that eC

i = (vC
i , vC

i+1) for 1 ≤ i < n and en = (vC
n , vC

1 ). We now
consider an automaton DG = (Q, Σ, δ, qinit, F ) based on the disjoint union Automaton(Cn) ⊎
Automaton(G) along with three extra states qinit, ⊥, and ⊤. We illustrate this part of the
construction in Figure 5.

v1

v2

v4

v3

G

vC
1

vC
2

vC
4

vC
3

DG

Automaton(Cn)

in

out

in out

in

out

inout

in, out

v1

v2

v4

v3

Automaton(G)

in

out

in out

in

out

inout

in

out

in, out
qinit

⊥ ⊤ ΣΣ

Figure 5 Illustration of automaton DG starting from a graph G with four vertices. This is only a
part of the full construction in [4, Section 6] to give an overview of the proof.

What is now missing is a way to induce an interesting ordering ⪯ – intuitively, we want ⊥
to be the smallest state, ⊤ to be the largest, and all automaton states corresponding to vertices
(resp. edges) of Automaton(Cn) to be smaller than all automaton states corresponding to
vertices (resp. edges) of Automaton(G), while making all other pairs of states non-comparable.
We can get this ordering by adding a letter to Σ for each state of DG and defining the right
transitions from qinit and to ⊥ and ⊤.

ICALP 2023



118:16 How to Play Optimally for Regular Objectives?

In this way, we have that chains of DG for ⪯ have at most 4 states, and chains with
four states contain either ⊥, ⊤, a vertex of Cn and a vertex of G, or ⊥, ⊤, an edge of Cn

and an edge of G. Moreover, the largest antichain of DG for ⪯ has n + m + 1 elements
and is achieved by V ∪ E ∪ {qinit}. By a counting argument, it is then possible to cover all
states with n + m + 1 chains if only if every vertex (resp. edge) of Cn is in a chain with one
vertex (resp. edge) of G. A covering with n + m + 1 chains therefore induces a bijection
between VC and V and an injection from EC to E. To form a monotone decomposition, these
chains still have to satisfy condition b from Definition 21. If it is possible to find n + m + 1
such chains, we can show by reading in and out from chains containing edges that the cycle
on Cn transfers to a Hamiltonian cycle on G. Reciprocally, if G has a Hamiltonian cycle,
then we can find a natural correspondence between vertices (resp. edges) of Cn and vertices
(resp. edges) of G that allows to define a monotone decomposition with n + m + 1 sets. We
have that G has a Hamiltonian cycle if and only if DG has a monotone decomposition in
k = n + m + 1 sets. ◀

4 Conclusion

We have characterized the minimal memory structures sufficient to play optimally for regular
reachability and safety objectives. In doing so, we were able to prove that related decision
problems about regular objectives were NP-complete. Our characterizations were encoded
into a SAT solver that automatically generates a minimal memory structure given a finite
automaton as an input (link in Section 1).

This article can be seen as one step toward understanding more generally the (chromatic
or chaotic) memory requirements of all ω-regular objectives, as well as synthesizing minimal
memory structures for them. The chaotic memory requirements of regular reachability
objectives are still unknown, as well as the chromatic memory requirements of larger classes
of ω-regular objectives (such as, e.g., the objectives recognized by deterministic Büchi
automata).

References

1 Alessandro Bianco, Marco Faella, Fabio Mogavero, and Aniello Murano. Exploring the
boundary of half-positionality. Annals of Mathematics and Artificial Intelligence, 62(1-2):55–
77, 2011. doi:10.1007/s10472-011-9250-1.

2 Kellogg S. Booth. Isomorphism testing for graphs, semigroups, and finite automata are
polynomially equivalent problems. SIAM Journal on Computing, 7(3):273–279, 1978. doi:
10.1137/0207023.

3 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional
objectives recognized by deterministic Büchi automata. In Bartek Klin, Sławomir Lasota, and
Anca Muscholl, editors, Proceedings of the 33rd International Conference on Concurrency
Theory, CONCUR 2022, Warsaw, Poland, September 12–16, 2022, volume 243 of LIPIcs,
pages 20:1–20:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.CONCUR.2022.20.

4 Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove. How to play
optimally for regular objectives? CoRR, abs/2210.09703, 2022. doi:10.48550/arXiv.2210.
09703.

5 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Van-
denhove. Games where you can play optimally with arena-independent finite memory. Logical
Methods in Computer Science, 18(1), 2022. doi:10.46298/lmcs-18(1:11)2022.

https://doi.org/10.1007/s10472-011-9250-1
https://doi.org/10.1137/0207023
https://doi.org/10.1137/0207023
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.48550/arXiv.2210.09703
https://doi.org/10.48550/arXiv.2210.09703
https://doi.org/10.46298/lmcs-18(1:11)2022


P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:17

6 Patricia Bouyer, Stéphane Le Roux, and Nathan Thomasset. Finite-memory strategies in
two-player infinite games. In Florin Manea and Alex Simpson, editors, Proceedings of the
30th EACSL Annual Conference on Computer Science Logic, CSL 2022, Göttingen, Germany,
February 14–19, 2022, volume 216 of LIPIcs, pages 8:1–8:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.8.

7 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. TheoretiCS, 2:1–48, 2023.
doi:10.46298/theoretics.23.1.

8 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In Florin Manea and Alex Simpson, editors,
Proceedings of the 30th EACSL Annual Conference on Computer Science Logic, CSL 2022,
Göttingen, Germany, February 14–19, 2022, volume 216 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.12.

9 Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in Muller games. In Mikołaj Bojańczyk,
Emanuela Merelli, and David P. Woodruff, editors, Proceedings of the 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, Paris, France, July
4–8, 2022, volume 229 of LIPIcs, pages 117:1–117:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

10 Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe. In Venkatesh
Raman and S. P. Suresh, editors, Proceedings of the 34th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2014, New
Delhi, India, December 15–17, 2014, volume 29 of LIPIcs, pages 379–390. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.379.

11 Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe, ten years later.
CoRR, abs/2212.12024, 2022. doi:10.48550/arXiv.2212.12024.

12 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled games.
Theoretical Computer Science, 352(1-3):190–196, 2006. doi:10.1016/j.tcs.2005.10.046.

13 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, LICS 1997, Warsaw, Poland, June 29 – July 2, 1997, pages 99–110. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614939.

14 Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any
memory. In Martín Abadi and Luca de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory, CONCUR 2005, San Francisco, CA, USA, August 23–26,
2005, volume 3653 of Lecture Notes in Computer Science, pages 428–442. Springer, 2005.
doi:10.1007/11539452_33.

15 Abraham Ginzburg and Michael Yoeli. Products of automata and the problem of covering.
Transactions of the American Mathematical Society, 116:253–266, 1965. URL: http://www.
jstor.org/stable/1994117.

16 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B.
Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, STOC 1982, San Francisco, CA, USA,
May 5–7, 1982, pages 60–65. ACM, 1982. doi:10.1145/800070.802177.

17 Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT: A Python toolkit
for prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger,
editors, Proceedings of the 21st International Conference on the Theory and Applications
of Satisfiability Testing, SAT 2018, Held as Part of FloC 2018, Oxford, UK, July 9–12,
2018, volume 10929 of Lecture Notes in Computer Science, pages 428–437. Springer, 2018.
doi:10.1007/978-3-319-94144-8_26.

18 Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw
University, 2008.

ICALP 2023

https://doi.org/10.4230/LIPIcs.CSL.2022.8
https://doi.org/10.46298/theoretics.23.1
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.379
https://doi.org/10.48550/arXiv.2212.12024
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/11539452_33
http://www.jstor.org/stable/1994117
http://www.jstor.org/stable/1994117
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/978-3-319-94144-8_26


118:18 How to Play Optimally for Regular Objectives?

19 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by
Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya, editors,
Proceedings of the 38th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2018, Ahmedabad, India, December 11–13, 2018,
volume 122 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.FSTTCS.2018.38.

20 Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958. doi:10.2307/2033204.

21 Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.
TheoretiCS, 2, 2023. doi:10.46298/theoretics.23.3.

22 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. doi:10.2307/1995086.

23 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.2307/2033204
https://doi.org/10.46298/theoretics.23.3
https://doi.org/10.2307/1995086
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	2 Preliminaries
	3 Technical overview
	3.1 Monotony and safety objectives
	3.2 Capturing progress and reachability objectives
	3.3 The complexity of finding small memory structures

	4 Conclusion

