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Abstract
We prove that for any monotone class of finite relational structures, the first-order theory of the
class is NIP in the sense of stability theory if, and only if, the collection of Gaifman graphs of
structures in this class is nowhere dense. This generalises results previously known for graphs to
relational structures and answers an open question posed by Adler and Adler (2014). The result
is established by the application of Ramsey-theoretic techniques and shows that the property of
being NIP is highly robust for monotone classes. We also show that the model-checking problem for
first-order logic is intractable on any monotone class of structures that is not (monadically) NIP.
This is a contribution towards the conjecture that the hereditary classes of structures admitting
fixed-parameter tractable model-checking are precisely those that are monadically NIP.
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1 Introduction

The development of stability theory in classical model theory, originating with Shelah’s
classification programme fifty years ago [19, 2], has sought to distinguish tame first-order
theories from wild ones. A key discovery is that combinatorial configurations serve as dividing
lines in this classification.

Separately, in the development of finite model theory, there has been in interest in
investigating tame classes of finite structures. Here tameness can refer to algorithmic
tameness, meaning that algorithmic problems that are intractable in general may be tractable
on a tame class; or it can refer to model-theoretic tameness, meaning that the class enjoys
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119:2 Monadic NIP in Monotone Classes of Relational Structures

some desirable model-theoretic properties that are absent in the class of all finite structures.
See [6] for an exposition of these notions of tameness. The tame classes that arise in this
context are often based on notions taken from the study of sparse graphs [15] and usually
extended to classes of relational structures beyond graphs by applying them to the Gaifman
graphs of such structures.

In the context of algorithmic tameness of sparse classes, this line of work culminated
in the major result of Grohe et al. [10] showing that the problem of model checking first-
order sentences is fixed-parameter tractable (FPT) on any class of graphs that is nowhere
dense. This generalized a sequence of earlier results showing the tractability of the model
checking problem on classes of graphs satisfying other notions of sparsity. Moreover, it is
also known [13] that this is the limit of tractability for monotone classes of graphs. That is
to say that (under reasonable assumptions) any monotone class of graphs in which first-order
model checking is FPT is necessarily nowhere dense. These results underline the centrality of
the notion of nowhere denseness in the study of sparse graph classes.

A significant line of recent research has sought to generalize the methods and results
on tame sparse classes of graphs to more general classes that are not necessarily sparse.
Interestingly, this has tied together notions of tameness arising in finite model theory and
those in classical model theory. Notions arising from stability theory play an increasingly
important role in these considerations (see [16, 8], for example). Central to this connection
is the realisation that for well-studied notions of sparseness in graphs, the first-order theory
of a sparse class C is stable. Thus, stability-theoretic notions of tameness, applied to the
theory of a class of finite structures, generalize the notions of tameness emerging from the
theory of sparsity.

A key result connecting the two directions is that a monotone class of finite graphs is
stable if, and only if, it is nowhere dense. This connection between stability and combinatorial
sparsity was established in the context of infinite graphs by Podewski and Ziegler [17] and
extended to classes of finite graphs by Adler and Adler [1]. Indeed, for monotone classes of
graphs, stability is a rather robust concept as the theory of such a class is stable if, and only
if, it is NIP (that is, it does not have the independence property) and these conditions on
monotone classes are in turn equivalent to it being monadically stable and monadically NIP
(these notions are formally defined in Section 2 below).

A question posed by Adler and Adler is whether their result can be extended from graphs
to structures in any finite relational language. We settle this question in the present paper
by establishing Theorem 1 below. In the following Gaif(C) (respectively Inc(C)) denotes the
collection of Gaifman graphs (resp. incidence graphs) of structures in the class C. Note
that the extension from graphs to relational structures requires considerable combinatorial
machinery in the form of Ramsey-theoretic results, which we detail in later sections. We also
relate the characterization to the tractability of the classes. In summary, our key results are
stated in the following theorem. See Section 2 for all the relevant definitions.
▶ Theorem 1. Let C be a monotone class of finite structures in a finite relational language.
Then, the following are equivalent:
1. C is NIP;
2. C is monadically NIP;
3. C is stable;
4. C is monadically stable;
5. Gaif(C) is nowhere dense;
6. Inc(C) is nowhere dense; and
7. (assuming AW[∗] ̸= FPT) C admits fixed-parameter tractable model checking.
Moreover, the equivalence of the first six notions also holds for classes containing infinite
structures.
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Thus, for monotone classes of relational structures, the picture is clear. Beyond monotone
classes, not every NIP class is stable or monadically NIP. However, it has been conjectured [22,
9] that for any hereditary class C of structures, the model checking problem on C is fixed-
parameter tractable if, and only if, C is NIP. This has previously been established for
monotone classes of graphs (by the results of Adler and Adler, combined with those of Grohe
et al.) and for hereditary classes of ordered graphs by results of Bonnet et al.[3]. Our results
also extend the classes for which this conjecture is verified to all monotone classes of relational
structures.

We establish some necessary definitions and notation in Sections 2 and 3. The proof of
Theorem 1 occupies the next two sections. The equivalence of the first four notions for any
monotone class C is due to Braunfeld and Laskowski [4]. The equivalence of the fifth and
sixth notions follows by results in sparsity theory (see [15]) which we recall in Section 6. We,
therefore, establish the equivalence of the first with the fifth and the seventh. In Section 4 we
show that if Gaif(C) is not nowhere dense, then C admits a formula with the independence
property. That nowhere density of Gaif(C) implies tractability is implicit in [10]. We establish
the converse of this statement in Section 5. Finally, we give an argument that Gaif(C) being
nowhere dense implies monadic stability in Section 6.

2 Preliminaries

We assume familiarity with first-order logic and the basic concepts of model theory. We
have tried to make this paper as self-contained as possible, but refer the reader to [11] for
background and undefined notation. Throughout this paper, L denotes a finite, first-order,
relational language. We write ar(R) for the arity of each relation symbol R ∈ L. Tuples
of elements or variables are denoted by overlined letters and given a tuple ā and k ≤ |ā|,
we write ā(k) to denote the k-th element of ā. Often we abuse notation and treat tuples as
unordered sets; whether we refer to the ordered tuple or the unordered set should be clear
from the context. For n ∈ N, we write [n] for the set {1, . . . , n}.

We adopt the convention of allowing finitely many constant symbols (i.e. parameters)
in L-formulas. Syntactically, these are to be understood as additional free variables, while
semantically these have a fixed interpretation in every L-structure. This is purely a notational
convenience and has no effect on the applicability of our results. By a further abuse of
notation, we do not distinguish between a parameter p and its interpretation pM in an
L-structure, M .

2.1 Graphs and relational structures
An L-structure is denoted by (M,RM )R∈L, where M is its underlying set and RM ⊆ Mar(R)

is the interpretation of the relation symbol R ∈ L in M . We write C(L) for the class of
all L-structures. By abusing notation, often we do not distinguish between an L-structure
and its underlying set. For an L-structure M and a subset A ⊆ M we denote by M [A] the
substructure of M induced by A, i.e. the structure on domain A with RA = RM ∩A for all
R ∈ L. A pointed L-structure is a pair (M, m̄) where m̄ is a tuple of |m̄| labelled points of
M . By the equality type of a tuple m̄ from an L-structure M , we mean the set ∆=(m̄) of
atomic formulas η(x̄) using only the equality symbol such that M |= η(m̄).

A homomorphism from an L-structure M to an L-structure N is a map f : M → N

satisfying such that for all relation symbols R ∈ L and tuples m̄ ∈ Mar(R), if m̄ ∈ RM then
f(m̄) ∈ RN . A homomorphism of pointed structures f : (M, m̄) → (N, n̄) is understood as a
homomorphism f : M → N of the underlying L-structures such that f(m̄) = n̄.

ICALP 2023



119:4 Monadic NIP in Monotone Classes of Relational Structures

By a graph G we mean an {E}-structure such that EG ⊆ G2 is a symmetric, irreflexive
binary relation. We write E(G) rather than EG for the edge set of a graph. Given a graph
G and r ∈ N, we write G(r) for the r-subdivision of G, i.e. the graph obtained by replacing
every edge of G by a path of length r+ 1. We denote by Kn the complete graph on n vertices
and by Kt,t the complete bipartite graph with parts of size t. We write G = (U, V ;E) for a
bipartite graph with parts U and V and edge set E ⊆ U × V , and write B for the class of
all bipartite graphs.

We recall two ways of constructing a graph from a given relational structure M . First,
the Gaifman graph of M which is the graph on vertex set M , whose edges are precisely the
pairs (u, v) such that u and v appear together in a relation of M . Second, the Incidence
graph of M which is the the bipartite graph with elements of M in one part, all tuples in
all relations in the other part, and edges denoting membership of an element u in a tuple v̄.
More formally:

▶ Definition 2 (Gaifman/Incidence graph). Given an L-structure (M,RM )M∈L we define the
Gaifman graph of M , denoted Gaif(M), to be the graph on vertex set M with edges:

E := {(x, y) : ∃R ∈ L∃v1, . . . , var(R)−2∃σ ∈ Sar(R)(σ(x, y, v1, . . . , var(i)−2) ∈ RM )},

where Sn the symmetric group on n elements. Moreover, we define the Incidence graph of
M , denoted Inc(M), to be the bipartite graph (M,

⊔
R∈L M

R, E′), where

E′ := {(x, z̄) : x ∈ z̄}

For a class of relational structures C, all in the same language, we define the Gaifman class
of C to be Gaif(C) := {Gaif(M) : M ∈ C}. Likewise, we define Inc(C) := {Inc(M) : M ∈ C}.

2.2 Sparsity and stability
Throughout this paper, C refers to a class of L-structures or graphs. We write Th(C) for
the common theory of the class, i.e. the set of all first-order L-sentences that hold in all
structures in C. We say that a class C is:

hereditary, if C is closed under induced substructures, i.e. if (M,RM )R∈L ∈ C then
(M ′, RM ∩M ′)R∈L ∈ C for any M ′ ⊆ M .
monotone, if C is closed under weak substructures, i.e. if (M,RM )R∈L ∈ C then
(M ′, RM ′)R∈L ∈ C for any M ′ ⊆ M and RM ′ ⊆ RM .

▶ Definition 3. Let C be a class of graphs. We say that C is nowhere dense if for every
r ∈ N there is some n ∈ N such that for all G ∈ C we have that K(r)

n is not a subgraph of G.

Nowhere density was introduced by Nešetřil and Ossona de Mendez [14], as a structural
property of classes of finite graphs that generalises numerous well-behaved classes, including
graphs of bounded degree, planar graphs, graphs excluding a fixed minor and graphs of
bounded expansion. Nowhere dense classes play an important role in algorithmic graph
theory, as several computationally hard problems become tractable when restricted to such
classes.

Let us now recall some core notions of tameness from classification theory, adapted from
the context of infinite structures to that of classes of (not necessarily infinite) structures.

▶ Definition 4 (Order/Independence Property). Let C be a class of L-structures. We say that
an L-formula ϕ(x̄, ȳ) has:
1. The Order Property in C if for all n ∈ N there is some Mn ∈ C and sequences (āi)i∈[n]

and (b̄j)j∈[n] of tuples from Mn such that:

Mn ⊨ ϕ(āi, b̄j) if, and only if, i < j.
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2. The Independence Property in C if for all bipartite graphs G = (U, V ;E) ∈ B there is
some MG ∈ C and sequences of tuples (āi)i∈U and (b̄j)j∈V such that:

MG ⊨ ϕ(āi, b̄j) if, and only if, (i, j) ∈ E.

We say that C is stable if no formula has the order property in C. We say that C is NIP (No
Independence Property) if no formula has the independence property in C.

An easy application of compactness reveals that a class C is stable (resp. NIP) if, and
only if, all completions of Th(C) are stable (resp. NIP) in the standard model-theoretic sense
(see for instance [20] for the standard model-theoretic definitions).

Given a class C of L-structures and an expansion L′ = L∪{Pi : i ∈ I} by unary predicates,
we say that a class C′ of L′-structures is a monadic expansion of C if C = {M ′ ↾L: M ′ ∈ C′},
where for an L′-structure M ′ we write M ′ ↾L for the L-reduct of M ′, i.e. the L-structure
obtained from M ′ by simply forgetting each relation symbol not in L. In other words, C′ is
a monadic expansion of C if, for each structure M ∈ C, C′ contains at least one copy of M
expanded with unary predicates which are interpreted freely, and no other structures.

▶ Definition 5 (Monadic Stability/NIP). Let C be a class of L-structures. We say that C
is monadically stable (resp. monadically NIP) if all monadic expansions C′ of C are stable
(resp. NIP).

The relationship between sparsity and stability is captured by the following theorem,
which was established by Podewski and Ziegler [17], in the context of infinite graphs, and
much later translated to the context of graph classes by Adler and Adler [1].

▶ Theorem 6 (Adler, Adler [1]; Podewski, Ziegler [17]). Let C be a nowhere dense class of
graphs. Then C is monadically stable. Moreover, the following are equivalent when C is
monotone:
1. C is NIP;
2. C is monadically NIP;
3. C is stable;
4. C is monadically stable;
5. C is nowhere dense.

Furthermore, Adler and Adler asked if Theorem 6 can be generalised to arbitrary relational
structures with finite signature. Recently, Braunfeld and Laskowski established a collapsing
phenomeon akin to Theorem 6 for relational structures.

▶ Theorem 7 (Braunfeld, Laskowski, [4]). Let C be a hereditary class of structures. Then C is
monadically NIP (resp. monadically stable) if, and only if, C is NIP (resp. stable). Moreover,
if C is monotone then C is NIP if, and only if, it is stable.

In light of the above, Theorem 1 answers the question of Adler and Adler affirmatively
by connecting the picture arising in Theorem 7 with the sparsity-theoretic properties of the
Gaifman class.

2.3 Model-checking
By model-checking on a class C we refer to the following parametrised decision problem:

Given: A FO-sentence ϕ and a structure M ∈ C.
Parameter: |ϕ|.

Decide: Whether or not M satisfies ϕ.

ICALP 2023
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▶ Definition 8. We say that C is tractable, or that the model-checking problem on a class C
is fixed-parameter tractable, if there is an algorithm that decides on input (M,ϕ) whether
G |= ϕ, in time f(|ϕ|) · |M |O(1) for some computable function f .

Model-checking on the class of all graphs is complete with respect to the complexity class
AW[∗], which is conjectured to strictly contain the class FPT. We shall assume throughout
that AW[∗] ̸= FPT.

All hereditary classes of graphs and relational structures that are known to admit tractable
model-checking are NIP. Moreover, the robustness of NIP in hereditary classes hints at its
potential necessity for tractability. This is the basis of the following conjecture:

▶ Conjecture 9 ([22, 9, 3]). Let C be a hereditary class of relational structures. Then C is
tractable if, and only if, C is NIP.

There is good evidence for a positive answer to this conjecture. Indeed, it is known to
hold for:

Monotone classes of graphs, where NIP coincides with nowhere density [10];
Hereditary classes of ordered graphs, where NIP coincides with bounded twin-width [21, 3].

Although it is not explicitly stated in this form, a careful examination of the argument
of [10] reveals that the following holds.

▶ Theorem 10 (Grohe, Kreutzer, Siebertz, [10]). Let C be a class of relational structures such
that Gaif(C) is nowhere dense. Then C admits fixed-parameter tractable model-checking.

2.4 Interpretations
Interpretations in classical model theory allow us to find structures in some language in a
definable way inside a definable quotient of structures in some other language, mimicking,
for instance, the way one can find the rational numbers inside the integers.

In our case, we focus on a restricted version of interpretations, which we call simple
interpretations (possibly with parameters). Intuitively, a class of L′-structures D can be
interpreted in a class of L-structures C if there is a uniform way of defining every structure
in D, in some (Cartesian power of some) structure from C. More formally:

▶ Definition 11 (Simple interpretation). Let L,L′ be two finite relational languages. A simple
interpretation with parameters I : C(L) → C(L′) consists of the following data:

A domain formula δ(x̄, v̄) ∈ L and, a function d which to each M ∈ C(L) associates a
tuple d̄(M) from M |v̄|.
For each k-ary relation symbol R(y1, . . . , yk) ∈ L′ an interpreting formula
ϕR(x1, . . . , xk, v̄R) ∈ L, where |x̄i| = |x̄|, for each i ∈ [k], and a function cR which
to each M ∈ C(L) associates a tuple c̄R(M) from M |v̄R|.

In order to make our discussion of interpretations easier, we adopt the following notation.
Given M ∈ C(L) we write I(M) for the L′ structure on the set δ(M) := {a ∈ M : M ⊨
δ(a, d̄(M))} with:

I(M) ⊨ R(a1, . . . , ak) if, and only if, M ⊨ ϕR(a1, . . . , ak, c̄R(M)),

for each k-ary relation symbol R ∈ L′ and a1, . . . , ak ∈ δ(M, d̄(M)). This dually gives a
map Î : L′ → L mapping L′-formulas to L-formulas with parameters, such that for any
L′-sentence ϕ we have that:

M |= Î(ϕ) if, and only if, I(M) |= ϕ.
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In order to be able to reduce the problem of FO model-checking from one class of structures
to another, possibly in a different language, we are interested in interpretations that can be
computed in polynomial time. More precisely we define the following notion:

▶ Definition 12 (Polynomial interpretation). Given classes of structures C ⊆ C(L) and
D ⊆ C(L′) we say that D is polynomially interpreted in C, with parameters, if there are:
1. A simple interpretation with parameters, I : C(L) → C(L′), as in Definition 11, such that

the functions d and (cR)R∈L′ are computable in polynomial time; and
2. a polynomial-time computable map f : D → C such that for all D ∈ D we have that

D = I(f(D)).
In this case, we write D ≤P C.

The next lemma justifies why polynomial interpretations are particularly useful.

▶ Lemma 13. The relations ≤P is a quasi-order on the collection of classes of structures
in finite relational languages. Moreover ≤P preserves tractability, i.e. if C is tractable and
D ⪯P C, then D is tractable.

Proof. The first part of the lemma is immediate, so let us only discuss the second part. We
reduce the problem of model checking in D to model checking in C. Given an L′-sentence
ϕ and an L′-structure M ∈ C(L′), we can compute, by assumption, in polynomial time
an L-structure f(D) ∈ C such that M = I(f(D)). By assumption, we can also compute
I(f(D)) in polynomial time, since the parameters in the domain and interpreting formulas
are computable from M in polynomial time. Then, we have that:

f(D) |= Î(ϕ) if, and only if, I(f(D)) = M |= ϕ,

where Î(ϕ) is obtained, essentially, as in the discussion after Definition 11, which can clearly
be done in polynomial time, from ϕ. Since C is tractable, it follows that D is tractable. ◀

2.5 Ramsey Theory
A core technique that is used repeatedly in our arguments is that if a finite structure is
large enough, then patterns in it are inevitable. This is the main idea of Ramsey theory, the
relevant tools from which we recall here. The notation we use is standard, given a set S and
k ∈ N we write [S](k) for the collection of all k-element subsets of S.

▶ Theorem 14 (Ramsey’s Theorem, [18]). There is a computable function R : N3 → N such
that for all m, k, r ∈ N and for every colouring χ : [R(m, k, r)](k) → [r] there exists some
S ⊆ [R(m, k, r)] of size m which is monochromatic.

Another standard theorem from Ramsey theory that we make use of is the following
well-known variant of Theorem 14:

▶ Theorem 15 (Bipartite Ramsey Theorem). There is a computable function P : N2 → N such
that for all m, r ∈ N and all edge colourings of the complete bipartite graph KP(m,r),P(m,r)
with r colours, there are subsets A,B of the two parts, both of size m, which induce a
monochromatic copy of Km,m.

We also need to make use of the following Ramsey-theoretic result, where the number
of colours is allowed to be possibly infinite. Of course, in this case, we cannot expect to
find monochromatic subsets. Nonetheless, we can ensure that the behaviour of the colouring
falls into one of few “canonical” cases on a large enough set. The original canonical Ramsey
theorem is due to Erdős and Rado [7], but for the purposes of this paper, we are only
interested in the bipartite version in its effective form.

ICALP 2023
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▶ Theorem 16 (Bipartite Canonical Ramsey Theorem, [12]). There is a computable function
K : N → N such that for every n ∈ N and every edge-colouring of the complete bipartite
graph KK(n),K(n) there exist subsets X,Y of the two parts, both of size n, such that one of
the following occurs for all x, x′ ∈ X and y, y′ ∈ Y :
1. χ(x, y) = χ(x′, y′);
2. χ(x, y) = χ(x′, y′) if, and only if, x = x′;
3. χ(x, y) = χ(x′, y′) if, and only if, y = y′;
4. χ(x, y) = χ(x′, y′) if, and only if, x = x′ and y = y′.

(1) :

  

  

  

(2) :

  

  

  

(3) :

  

  

  

(4) :

  

  

  

Henceforth, we shall say that an edge colouring of a complete bipartite graph is canonical
of type 1 (resp. 2, 3, 4) if it satisfies condition 1 (resp. 2, 3, 4) from Theorem 16 for all edges.
More generally, we say that such a colouring is canonical whenever it is canonical of any
type.

3 Path formulas

Recall that a formula ϕ(x̄) is called primitive positive if it has the form ∃ȳψ(x̄, ȳ), where ψ is
a conjunction of atomic formulas. Primitive positive formulas are also known as conjunctive
queries in the database theory literature. The following association of a canonical structure
with a primitive positive formula and conversely a canonical such formula with a finite
structure goes back to Chandra and Merlin [5].

▶ Definition 17 (Canonical structures). Given a primitive positive formula ϕ(x̄) = ∃ȳψ(x̄, ȳ)
we define a pointed L-structure (Mϕ, x̄) whose domain is the set {v1, . . . , vr} of variables of
ϕ, and where each R ∈ L is interpreted as follows:

Mϕ ⊨ R(v1, . . . , vn) if, and only if, R(v1, . . . , vn) appears as a conjunct in ψ(x̄, ȳ).

The pointed elements x̄ precisely correspond to the free variables of ϕ. This structure is
unique, up to isomorphism, and we call it the canonical structure of ϕ.

Similarly, for every pointed L-structure (A, x̄) we may associate a primitive positive
formula ϕA(x̄) so that (MϕA

, x̄) = (A, x̄). We call this formula the canonical formula of
(A, x̄). Let ϕ(x̄) be a primitive positive formula and (Mϕ, x̄) its canonical structure. It is
easy to see that for any L-structure A and ā ∈ A we have that A |= ϕ(ā) if, and only if, there
exists a homomorphism (of pointed structures) h : (Mϕ, x̄) → (A, ā).

In our analysis, we argue that whenever a monotone class of relational structures has
the independence property then this is witnessed by a certain kind of primitive positive
formula. In the case of graphs, it is implicit in the work of Adler and Adler that the canonical
structure of this primitive positive formula is a path in the standard graph-theoretic sense,
i.e. a tuple (x1, . . . , xn) of pairwise distinct elements such that E(xi, xi+1) for all i ∈ [n− 1].

In this section, we introduce the analogue of (graph) paths that witnesses the independence
property in general relational structures. We start with the following rather technical
definition.
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▶ Definition 18 (Path). By a path of length n, we mean an L-structure P consisting of a
sequence of pairwise disjoint tuples each consisting of pairwise different elements ē1, . . . , ēn

such that:
P =

⋃
i∈[n] ēi;

|ēi ∩ ēi+1| = 1, for all i < n;
ēi ̸⊆ ēi+1 and ēi+1 ̸⊆ ēi, for all i < n;
ēi ∩ ēj = ∅, for all j ∈ [n] \ {i− 1, i, i+ 1};
Ri(ēi), for exactly one relation symbol Ri ∈ L;
R(ā) =⇒ ā = ēi for some i ∈ [n], for all relation symbols R ∈ L and all tuples ā ∈ P.

We write S(P) = ē1\ē2 and call these the starting vertices, while we write F (P) = ēn\ēn−1
and call these the finishing vertices. We refer to the tuples ēi as the steps of the path, and to
the singletons in ēi ∩ ēi+1 as the joints of the path.

Given a primitive positive formula ϕ(x̄, ȳ, z̄) (where z̄ is possibly empty), we say that ϕ
is a path formula if there are x0 ∈ x̄ and y0 ∈ ȳ such that Mϕ is a path with x0 ∈ S(Mϕ)
and y0 ∈ F (Mϕ). Similarly, we call ϕ a simple path formula if x̄ ⊆ S(Mϕ) and ȳ ⊆ F (Mϕ).

Note that technically, no graph G can be a path under the above definition. Indeed,
the last condition ensures that E(G) cannot be symmetric as no permutation of a tuple
appearing in a relation R can appear in any other relation from L. To avoid confusion, we
always refer to paths in the standard graph-theoretic sense as graph paths.

Intuitively, a path formula ϕ(x̄, ȳ) plays the role of a higher arity graph path from x̄ to ȳ.
However, under enough symmetry, it is possible that we cannot definably tell the direction
of ϕ, i.e. x̄ and ȳ look the same within ϕ. This is formalised in the following definition, and
is important in the proof of Theorem 27.

▶ Definition 19 (Symmetric path). A symmetric path is a path P of length n, such that
Ri = Rn+1−i for all i ∈ [n]. A symmetric path formula ϕ(x̄, ȳ, z̄) is a simple path formula with
|x̄| = |ȳ| = m such that Mϕ is a symmetric path and there is an automorphism f of Mϕ which
maps x̄ = (x1, . . . , xm) 7→ (yσ(1), . . . , yσ(m)) and ȳ = (y1, . . . , ym) 7→ (xσ−1(1), . . . , xσ−1(m)),
for some σ ∈ Sm which is not the identity permutation. Moreover, if ϕ contains parameters
then these must be fixed by f .

Given an L-structure and a graph path in Gaif(M), we may produce a path formula that
describes a “type” for this path. This idea is captured by the following definition which is
relevant for the proof of Lemma 21.

▶ Definition 20 (Path type). Let M be an L-structure, and S = (u1, . . . , un) a graph path
in Gaif(M). For every i ∈ [n − 1] we may associate a relation symbol Ri ∈ L, elements
vi,1, . . . , vi,ar(Ri), and a permutation σi ∈ Sar(Ri) such that σi(ui, ui+1, v̄i) ∈ RM

i . Then we
call the formula

ϕ(x,y, z2, . . . , zn−1) =
∃v̄i . . . v̄n−1(R1(σ1(x, z2, v̄1)) ∧R2(σ2(z2, z3, v̄2)) ∧ · · · ∧Rn−1(σn−1(zn−1, y, v̄n−1)))

a path type for the graph path u1, . . . , un.

It is easy to see that whenever S = (u1, . . . , un) is a graph path in Gaif(M), then there
is a path type ϕ for S such that M |= ϕ(u1, un, u2, . . . , un1). Clearly, this is not uniquely
determined by S, as for the same graph path u1, . . . , un in Gaif(M) we can possibly obtain
different sequences of relations Ri, . . . Ri−1 and permutations σ1, . . . , σi−1 as in Definition 20.
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4 From somewhere density to IP

The main result in this section is Theorem 23, where we prove that for any monotone class C
of relational structures whose Gaifman class is somewhere dense, there is a path formula (in
the sense of Definition 18) which codes the edge relation of all bipartite graphs uniformly
over C.

We work towards this theorem via two preparatory lemmas, which have the benefit of
applying to classes that are not necessarily monotone. Intuitively, Lemma 21 tells us that if
C is a monotone class of relational structure whose Gaifman class is somewhere dense, then
we can find a path formula that codes the edge relation of all finite complete bipartite graphs
in C.

▶ Lemma 21. Let C be a class of L-structures such that Gaif(C) is somewhere dense. Then
there is a path formula ϕ(x, y, z̄) = ∃w̄ψ(x, y, z̄, w̄) of length ≥ 2 whose joints are precisely
the variables in z̄, and for each n ∈ N there is some Mn ∈ C and pairwise distinct elements
(ai)i∈[n], (bj)j∈[n], (c̄i,j)(i,j)∈[n]2 from Mn such that

Mn |= ϕ(ai, bj , c̄i,j), for all i, j ∈ [n].

Proof. If Gaif(C) is somewhere dense, then there exists r ∈ N such that for all n ∈ N there
is some Mn ∈ Gaif(C) with K

(r)
n ≤ Gaif(Mn). Without loss of generality, we may assume

that r ≥ 1. Indeed, if r = 0 then K1
n ≤ Kn2 ≤ Gaif(Mn2) so we may pass to a subsequence

of (Mn)n∈N and relabel the indices appropriately.
For every i < j from [n] let Sn

i,j be the graph path in Gaif(Mn) corresponding to the
r-subdivision of the edge (i, j) from Kn, directed from i to j. Let q ∈ N be the maximum
arity of a relation symbol R ∈ L. Observe that there are at most p = (|L| × q!)r+1 path types
for each graph path Sn

i,j . By Ramsey’s theorem we may find for each n some Σn ⊆ [R(n, 2, q)]
of size n such that SR(n,2,q)

i,j have the same path type for all i < j from Σn. By passing to a
subsequence of (Mn)n∈N and relabelling indices, we may therefore assume that all the Sn

i,j

have the same path type. Let this be ϕn. Since there are only finitely many possible path
types for every n, we may prune the sequence (Mn)n∈N once again to ensure that the same
path type ϕ(x, y, z̄) is obtained for all n ∈ N. By definition, the joints of Mϕ are precisely
the variables in z̄, while Mϕ has length ≥ 2 since r ≥ 1.

 

  

   

=⇒

 

  

   

=⇒

   

  

   

Work in M2n and let (ai)i∈[n] be the elements corresponding to 1, . . . , n from K
(r)
2n , and

(bj)j∈[n] be those corresponding to n+ 1, . . . , 2n. Moreover, let c̄i,j be the tuples obtained
by removing ai and bj from the beginning and end respectively of the graph path S2n

i,n+j . It
is clear that the elements (ai)i∈[n], (bj)j∈[n], (c̄i,j)i,j∈[n] are pairwise distinct. Since the path
type of S2n

i,n+j is equal to ϕ for all i, j ∈ [n], it follows that

M2n |= ϕ(ai, bj , c̄i,j), for all i, j ∈ [n].

We finally pass to the subsequence (M2n)n∈N and relabel. ◀

Having established that we may encode the edge relation of any complete bipartite graph,
we want to use monotonicity in order to encode the edge relation of arbitrary bipartite
graphs, and consequently, to witness the independence property. To achieve this, we must
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ensure that the tuples used in the encoding are “sufficiently disjoint” so that the removal of
the desired relations does in fact translate to the removal of an encoded edge. The following
lemma is a step toward this.

▶ Lemma 22. Let C be a class of L-structures such that Gaif(C) is somewhere dense. Then
there is a path formula ϕ(x̄, ȳ, z̄) = ∃w̄ψ(x̄, ȳ, z̄, w̄) of length ≥ 2 with parameters p̄ whose
joints are precisely the elements of z̄, and for every n ∈ N there is some Mn ∈ C and tuples
(āi)i∈[n], (b̄j)j∈[n], (c̄i,j)(i,j)∈[n]2 , (d̄i,j)i,j∈[n]2 from Mn such that the following hold for all
i, i′, j, j′ ∈ [n]:
1. Mn |= ψ(āi, b̄j , c̄i,j , d̄i,j);
2. āi(k) ̸= āi′(k), for i ̸= i′ and all k ∈ [|x̄|];
3. b̄j(k) ̸= b̄j′(k), for j ̸= j′ and all k ∈ [|ȳ|];
4. c̄i,j(k) ̸= c̄i′,j′(k) and c̄i,j(k) ̸= c̄i,j(l), for (i, j) ̸= (i′, j′) and all k ̸= l from [|z̄|];
5. d̄i,j(k) ̸= d̄i′,j′(k), for (i, j) ̸= (i′, j′) and all k ∈ [|w̄|].

Proof. Let ϕ(x, y, z̄) = ∃w̄ψ(x, y, z̄, w̄) and (Mn)n∈N be as in Lemma 21. For clarity, we write
(an

i )i∈[n], (bn
j )j∈[n], (c̄n

i,j)(i,j)∈[n]2 to denote the elements of Mn from the same lemma. For each
n ∈ N, and for each pair (i, j) ∈ [n]2, pick a tuple d̄n

i,j of elements from Mn consisting of some
arbitrarily fixed existential witnesses to Mn |= ϕ(an

i , b
n
j , c̄

n
i,j), i.e. Mn |= ψ(an

i , b
n
j , c̄

n
i,j , d̄

n
i,j)

for all i, j ∈ [n].
Let m = |d̄i,j |. By m applications of Theorem 16, we may assume that whether d̄n

i,j(k) =
d̄n

i′,j′(k) depends on one of the four canonical cases from that theorem, and not on n. Indeed,
for every n ∈ N and each k ∈ [m], define colourings χn,k(i, j) = d̄n

i,j(k) of the edges of Kn,n.
Let K : N → N be the computable function guaranteed by Theorem 16 and write Km for
the composition of K with itself m times. It follows that the complete bipartite graph with
parts of size Km(n) contains subsets An, Bn of the two parts of size n, which induce a copy
of Kn,n on which χKm(n),k is canonical for all k ∈ [m]. We may thus restrict the argument
on the subsequence (MKm(n))n∈N and the elements aKm(n)

i , b
Km(n)
j , c̄

Km(n)
i,j , d̄

Km(n)
i,j for i ∈ An

and j ∈ Bn and relabel appropriately. For every n ∈ N, after the relabelling, we have thus
obtained a tuple t̄n ∈ [4]m such that χn,k is canonical of type t̄n(k). Since there are only
finitely many such t̄n, by the pigeonhole principle we may consider a subsequence of (Mn)n∈N
for which t̄n is constant and equal to some t̄ ∈ [4]m, and relabel once more.

We now proceed to sequentially remove elements from the tuples d̄n
i,j , and to either name

them by a parameter, or to append them to one of an
i or bn

j . Since t̄ is constant for all n,
exactly the same process is carried out to all tuples d̄i,j , and so we may concurrently move
the corresponding variables from ϕ. So, if we fall into Case 1 for some k, i.e. if t̄(k) = 1,
then d̄i,j(k) is the same for all i, j, and so we may name it by a parameter and remove it
from every h̄i,j . If we fall into Case 2, then d̄i,j(k) = d̄i′,j′(k) if, and only if, i = i′. Then, for
every i ∈ [n] we may remove the common element d̄i,j(k) from each d̄i,j and append it to
ai, turning it into a tuple āi. We then adjust ϕ accordingly by shifting the corresponding
variable vk from v̄ to x, which also becomes a tuple x̄. Case 3 is symmetric to Case 2, only
now we append d̄i,j(k) to b̄j and shift the variable vk to ȳ. We may therefore assume that
we fall into Case 4 for all the remaining k ∈ [m].

We argue that the resulting formula and tuples satisfy the requirements of the lemma.
Clearly, Mn |= ϕ(āi, b̄j , c̄i,j , d̄i,j) for all n ∈ N and i, j ∈ [n]. Condition 2 is also satisfied,
since the original singletons (ai)i∈[n] were pairwise disjoint, while for every i ≠ i′ and k ∈ [m]
the elements d̄i,j(k) and d̄i′,j(k), appended to ai and ai′ respectively, come from an instance
of Case 2, and are therefore pairwise distinct. Likewise, condition 3 is satisfied. Since we have
not interfered with the tuples c̄i,j in the above process and these contain pairwise distinct
elements by Lemma 21, Condition 4 is also satisfied. Finally, Condition 5 is trivially satisfied
since the elements remaining in d̄i,j fall into Case 4. ◀
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▶ Theorem 23. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a path formula ϕ(x̄, ȳ) = ∃w̄ψ(x̄, ȳ, w̄) with parameters p̄ and for each
bipartite graph G = (U, V ;E) ∈ B there is some MG ∈ C and sequences of tuples (āu)u∈U

(b̄v)v∈V , (h̄u,v)(u,v)∈E from MG such that:
1. MG |= ϕ(āu, b̄v) if, and only if, (u, v) ∈ E (so, in particular C is not NIP);
2. If (u, v) ∈ E then MG |= ψ(āu, b̄v, h̄u,v);
3. The equality type of p̄u,v = ā⌢

u b̄
⌢
v h̄u,v is constant for all (u, v) ∈ E(G);

4. Any two tuples in {āu, b̄v, h̄u,v : u ∈ U, v ∈ V } are disjoint and do not intersect the
parameters p̄.

Proof. Let ϕ(x, y, z̄) = ∃w̄ψ(x, y, z̄, w̄), with parameters p̄, and (Mn)n∈N be as in Lemma 22.
For clarity, we again write (an

i )i∈[n], (bn
j )j∈[n], (c̄n

i,j)(i,j)∈[n]2 to denote the elements from that
lemma coming from Mn. Consider the tuples p̄n

i,j = ān
i

⌢b̄n
j

⌢c̄n
i,j

⌢d̄n
i,j , and let q = |p̄n

i,j |.
Observe that for every n ∈ N, at most q · |p̄| many tuples p̄n

i,j intersect the parameters p̄
because of the conditions in Lemma 22. By working with suitably large n and avoiding these
tuples, we may relabel so that no p̄n

i,j intersects p̄.
For i, j, k, l ∈ [n], we say that the tuples p̄n

i,j and p̄n
k,l intersect trivially whenever

p̄i,j ∩ p̄k,l =


p̄i,j , if i = k ∧ j = l

āi, if i = k ∧ j ̸= l

b̄j , if i ̸= k ∧ j = l

∅, otherwise.

Letting f(n) = q · (n − 1)2 + n, we claim that for all n ∈ N and all m ≥ f(n) we may
find a set An ⊆ [f(n)] of size n so that p̄m

i,j and p̄m
k,l intersect trivially for all i, j, k, l ∈ An.

We show this by induction. Indeed, for n = 1 this is trivially true as A1 = [1] works for all
m ≥ 1. Suppose that the claim holds for n− 1 and fix m ≥ f(n). Since f(n) ≥ f(n− 1), by
the induction hypothesis there is some An−1 ⊆ [f(n− 1)] ⊆ [f(n)] of size n− 1 so that p̄m

i,j

and p̄m
k,l intersect trivially for all i, j, k, l ∈ An−1. Notice, that because of Lemma 22, for every

fixed p̄i,j , there are at most q tuples p̄k,l that do not intersect trivially with it. Hence, there
are at most q · (n− 1)2 elements l ∈ [f(n)] such that p̄m

i,j and p̄m
k,l do not intersect trivially

for all i, j, k ∈ An−1. Since [f(n)] contains an additional n elements, we are guaranteed to
find some l ∈ [f(n)], which is not one of the n− 1 elements of An−1, such that p̄m

i,j and p̄m
k,l

intersect trivially for all i, j, k ∈ An−1. We may therefore let An = An−1 ∪ {l}.
Hence, we may consider the subsequence (Mf(n))n∈N and relabel the tuples appropriately,

so that all tuples p̄n
i,j , p̄

n
k,l intersect trivially for all n ∈ N and i, j, k, l ∈ [n]. Furthermore, by an

application of Theorem 15, we may assume that the tuples p̄n
i,j have the same equality type for

all i, j ∈ [n] and all n ∈ N. More precisely, for every pair (i, j) ∈ [n]2 let ∆n(i, j) := ∆=(p̄n
i,j).

Letting q = |p̄i,j |, it is easy to see that there are at most p = 2q2 sets ∆n(i, j). It follows
by Theorem 15, that there are subsets A,B of [P(n, 2, p)] of size n such that ∆P(n,2,p)(i, j)
is constant for all i ∈ A, j ∈ B. Hence, we may relabel appropriately so that ∆n(i, j) is
constant for all i, j ∈ [n]. Since there are only finitely many such sets, the pigeonhole principle
implies that we may prune the sequence (Mn)n∈N so that ∆n(i, j) is uniformly constant for
all n ∈ N.

It follows that no tuple ān
i can intersect a tuple b̄n

j . Indeed, since the equality types are
constant, and in particular ∆n(i, j) = ∆n(i, j′), if ān

i and b̄n
j had an element in common

then b̄n
j (k) = b̄n

j′(k) for some k and all j′ ̸= j, contradicting the assumptions of Lemma
22. Likewise, no tuple h̄n

i,j = c̄n
i,j

⌢d̄n
i,j can intersect the tuples āi or b̄j . Since the tuples

p̄n
i,j intersect trivially, this implies that any two tuples {ān

i , b̄
n
j , h̄

n
i,j : i, j ∈ An} are pairwise

disjoint, and furthermore do not intersect the parameters p̄.
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For every n ∈ N, consider the weak substructure M ′
n ≤ Mn consisting of the elements

in p̄n
i,j and the parameters p̄, and containing solely the relations necessary to witness

Mn |= ψ(ān
i , b̄

n
j , h̄

n
i,j). By monotonicity, M ′

n ∈ C. Notice that every tuple appearing in a
relation of M ′

n contains at least one element of c̄n
i,j for some i, j ∈ [n]. Indeed, the elements

of c̄i,j correspond precisely to the joints of the paths ϕ(āi, b̄j), and since Mϕ has length ≥ 2
every path has at least one joint.

Finally, given G = (U, V ;E) with U = V = [n], let MG ∈ C be the induced substructure
of M ′

n obtained by removing h̄n
i,j for all (i, j) ̸∈ E. Since the tuples in {ān

i , b̄
n
j , h̄

n
i,j : i, j ∈ [n]}

are pairwise disjoint, it follows that h̄n
i,j ∈ MG for (i, j) ∈ E(G). Hence, letting ϕ′(x̄, ȳ) =

∃z̄ϕ(x̄, ȳ, z̄), we see that MG |= ϕ′(ān
i , b̄

n
j ) for all (i, j) ∈ E(G). Moreover, MG |= ¬ϕ(āi, b̄j)

for (i, j) /∈ E(G). Indeed, since the elements of c̄n
i,j are not in MG for (i, j) /∈ E(G), the

above observation implies that MG |= ¬ϕ(āi, b̄j). ◀

Note that all of the above can be proved by working with an appropriate infinite model
of Th(C) obtained by compactness, and applying the infinite versions of the different Ramsey
theorems. We have chosen to give a finitistic proof, which is admittedly more involved, so
that everything is carried out effectively. Therefore, if we assume that the VC-dimension
of formulas in the class is computable, we may compute given r the maximum size of an
r-subdivided clique occurring in the Gaifman graph of a structure in C.

▶ Definition 24. We say that a class C of structures is effectively NIP if there is a computable
function f : N → N such that for all formulas ϕ(x̄, ȳ) and all structures M ∈ C there is no
n > f(|ϕ|) and (āi)i∈[n], (b̄J)J⊆[n] with

M |= ϕ(āi, b̄J) ⇐⇒ i ∈ J.

Recall that a class of graphs C is called effectively nowhere dense whenever there is a
computable function f : N → N such that for all r ∈ N and for all G ∈ C we have that K(r)

f(r)
is not a subgraph of G.

▶ Corollary 25. Let C be a monotone and (monadically) NIP class of L-structures in a finite
relational language. Then Gaif(C) is nowhere dense. Moreover, if C is effectively NIP then
Gaif(C) is effectively nowhere dense.

5 Intractability

In this section, we prove that any monotone class of relational structures whose Gaifman
class is somewhere dense polynomially interprets the class of all bipartite graphs, and is
therefore intractable. Towards this, we first strengthen Theorem 23 to obtain a simple path
formula ϕ as well as a computable function Φ : B → C such that ϕ codes the edge relation of
G in Φ(G).

▶ Lemma 26. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a simple path formula ϕ(x̄, ȳ) with parameters p̄ and a polynomial time
computable function Φ : B → C, such that for each bipartite graph G = (U, V ;E) ∈ B there
are tuples (āu)u∈U (b̄v)v∈V , (h̄u,v)(u,v)∈E from Φ(G) satisfying:

Φ(G) |= ϕ(āu, b̄v) if, and only if, (u, v) ∈ E.

Given ϕ, the interpretation of the parameters p̄ in Φ(G) can be computed in constant time
from G ∈ B.
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Proof. Let ϕ and (MG)G∈B be as in Theorem 23. Consider the path Mϕ. Observe that
either there is a step ēi such that both ēi ∩ x̄ = x̄′ ̸= ∅ and ēi ∩ ȳ = ȳ′ ≠ ∅, or there are i < j

and steps ēi, ēj such that ēi ∩ ȳ = ∅, ēj ∩ x̄ = ∅ and ēi ∩ x̄ = x̄′ ̸= ∅, ēj ∩ ȳ = ȳ′ ̸= ∅ and for
all k ∈ {i+ 1, . . . , j− 1} we have that ēk ∩ x̄ = ēk ∩ ȳ = ∅. Consider the induced substructure
M′ of Mϕ consisting solely of the step ēi in the first case or the steps ēi, . . . , ēj in the second,
and let ϕ′(x̄′, ȳ′) = ∃w̄′ψ′(x̄′, ȳ′, w̄′) be the canonical formula of (M′, x̄′, ȳ′). Clearly, ϕ′ is
a simple path formula, and it follows by construction that for each G ∈ B we may pick
minimal subtuples ā′

u ⊆ āu, b̄
′
v ⊆ b̄v, c̄

′
u,v ⊆ c̄u,vh̄

′
u,v ⊆ h̄u,v ∈ MG for all u ∈ U, v ∈ V such

that :
MG |= ϕ′(ā′

u, b̄
′
v) if, and only if (u, v) ∈ E, and

(u, v) ∈ E implies MG |= ϕ′(ā′
u, b̄

′
v, c̄

′
u,v, h̄

′
u,v).

Clearly, these new subtuples are mutually disjoint and do not intersect any of the parameters
p̄′ ⊆ p̄ that appear in ϕ′. We finally let M ′

G be the induced substructure of MG consisting
solely of these subtuples. Since the equality type of all tuples p̄′

u,v = ā⌢
u b̄

⌢
v h̄u,v is uniformly

constant by Theorem 23, it follows that MG may be computed from G = (U, V ;E) by
adding disjoint tuples (āG

u )u∈U , (b̄G
v )v∈V , (h̄G

u,v)(u,v)∈E(G), p̄
G of appropriate equality types to

represent vertices and existential witnesses, and the relations specified by ϕ′ to represent the
edges. Clearly, the tuple p̄G which interprets the parameters of ϕ′ is obtained in constant
time from G. ◀

With this, we proceed to show intractability for monotone classes with somewhere Gaifman
class. Our proof is essentially based on the proof of [13, Theorem 6.1], which covers the
case of graphs. There, monotonicity and somewhere density imply that for some r ∈ N
we may find an r-subdivided copy of any finite graph G in our class. The aim is then to
definably distinguish the native points of G from the subdivision points. Assuming this, G
can be simply interpreted, defining an edge between two native points if there is a path of
length r between them. The idea is to distinguish points by their degrees; however, while
all subdivision points have degree two, other points in G may as well have degree two. To
address this, we first pre-process G to obtain a graph G′ by adding two pendant vertices
to each non-isolated vertex. Then, G may be definably recovered from G′, and moreover,
given an r-subdivision of G′, we can definably distinguish the subdivision points and the
remaining points by their degrees. Our construction is essentially the same, although the
degree of a subdivision point is bounded by the length of paths in the subdivision, rather
than by two. Moreover, we ought to ensure that the formula coding paths is not symmetric,
so as to avoid accidentally creating two disjoint copies of the graph we wish to interpret.

▶ Theorem 27. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense, and assume that AW[∗] ̸= FPT. Then FO model-checking on C is not fixed-parameter
tractable.

Proof. Let C satisfy the above, and assume that AW[∗] ̸= FPT. We argue that we may
polynomially interpret the class of all bipartite graphs in C.

Let ϕ(x̄, ȳ) be the simple path formula from Lemma 26. Without loss of generality, we
may assume that ϕ is not symmetric (in the sense of Definition 19). Indeed, if ϕ is symmetric
let σ ∈ Sn be the non-identity permutation from Definition 19, and consider the formula
ϕ′(x̄, ȳ) = ϕ(x̄, σ−1(ȳ)), where σ−1 is applied to the indices of ȳ. Clearly, ϕ′ is no longer
symmetric, while the tuples (āu)u∈U (σ(b̄v))v∈V , (h̄u,v)(u,v)∈E still satisfy the conditions in
Lemma 26.
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Now, let k the length of the path Mϕ and define the auxiliary map:

f : B → B

G = (U, V ;E) 7→ (U ′, V ′;E′),

where U ′ := U ⊔ {u̇v,1, . . . , u̇v,k+1 : v ∈ V }, V ′ := V ⊔ {v̇u,1, . . . , v̇u,k+1 : u ∈ U}, and
E′ := E ⊔ {(u, v̇u,i) : u ∈ U, i ∈ [k + 1]} ⊔ {(v, u̇v,i) : v ∈ V, i ∈ [k + 1]}.

This is clearly computable in polynomial time. Given G = (U, V ;E) ∈ B, consider
Φ ◦ f(G) ∈ C given from Theorem 23, and let:

θU (x̄) := ∃>kȳϕ(x̄, ȳ) ∧ x̄ ̸= p̄ and θV (ȳ) := ∃>kx̄ϕ(x̄, ȳ) ∧ ȳ ̸= p̄,

where p̄ are the parameters of ϕ. Without loss of generality, we may assume that |x̄| = |ȳ|,
for if m = |ȳ| < |x̄| = n, then we may take θV (ȳ, ym+1, . . . , yn) to be θV (ȳ)∧

∧n−1
i=m(yi = yi+1),

and similarly if |x̄| < |ȳ|. So, let θ(x̄) = θV (x̄) ∨ θU (x̄).
Observe that G is an induced subgraph of f(G), so we may view Φ(G) as an induced

substructure of Φ ◦ f(G). Letting p̄u,v = ā⌢
u b̄

⌢
v h̄u,v, it holds that p̄u,v ∩ p̄ = ∅ and

p̄u,v ∩ p̄u′,v′ =


āu if u = u′;
b̄v if v = v′;
∅ otherwise.

whenever (u, v) ̸= (u′, v′). Hence, the only non-parameter elements that appear more
than k times within a path are those in the tuples āu and b̄v for u ∈ U and v ∈ V , i.e.
those tuples corresponding to the elements of G. Since ϕ is not symmetric, it follows that
θ(Φ ◦ f(G)) = {āu, b̄v : u ∈ U, v ∈ V }, and so the pair I = (θ(x̄), ϕ(x̄, ȳ)) is an interpretation
with computable parameters such that I(Φ ◦ f(G)) = G for all G ∈ B. It follows that
B ≤P C, and therefore C is not tractable. ◀

6 From nowhere density to monadic stability

Here we establish that a class of structures with nowhere dense Gaifman graphs is monadically
stable. This argument relies on the extension of Theorem 6 to coloured digraphs, and the
equivalence of nowhere density for the classes of Gaifman graphs and incidence graphs.

▶ Lemma 28 ([15, Proposition 5.7]). Let C be a class of structures in a finite relational
language. Then Gaif(C) is nowhere dense if, and only if, Inc(C) is nowhere dense.

We enrich the definition of incidence graphs by colouring the edges to distinguish between
the various relations in the original language, and to indicate that a point in the domain
corresponds to the ith point of an incident tuple. We also direct the edges from points in the
original domain to incident tuples. This will allow us to easily recover the original structure
via a simple interpretation.

▶ Definition 29 (Coloured incidence graphs). Let M be an L-structure in a finite relational
language. Write n for the maximum arity of a relation symbol in L, and let EL be the
language containing binary relation symbols {Ri : i ∈ [n], R ∈ L}. We define the coloured
incidence graph of M to be the EL-structure Incc(M) on domain M ⊔

⊔
R∈L R

M such that
for all R ∈ L and i ∈ [n]

(u, v̄) ∈ R
Incc(M)
i if, and only if, v̄ ∈ RM and v̄(i) = u.

For a class C of L-structures we write Inc(C) for the class {Inc(M) : M ∈ C}.

ICALP 2023
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▶ Theorem 30. Let C be a class of structures in a finite relational language. If Gaif(C) is
nowhere dense, then C is monadically stable.

Proof. By Lemma 28, Gaif(C) being nowhere dense implies that Inc(C) is nowhere dense.
In turn, this implies that Incc(C) is monadically stable by the generalisation of Theorem 6
to coloured directed graphs, mentioned in both [1] and [17]. It is easily observed that
C is simply interpreted in Incc(C) by the formulas δ(x) = ¬∃y

∨
R∈L

∨
i∈[n] Ri(y, x) and

ϕR(x1, . . . , xar(R)) = ∃z
∧

i∈[ar(R)] Ri(xi, z) for R ∈ L. Since interpretations preserve monadic
stability, C is monadically stable as well. ◀

An alternative proof of the theorem above is indicated in [1], which does not pass through
incidence graphs but instead explicitly codes the relations into a graph via gadgets.

The hypothesis in the following corollary is weaker than demanding that Gaif(C) be
nowhere dense, as witnessed by the class of finite cliques with countably many edge colours
and no two edges receiving the same colour.

▶ Corollary 31. Let C be a class of structures in an infinite relational language. If for every
reduct to a finite language, Gaif(C−) is nowhere dense, then C is monadically stable.

Proof. The failure of monadic stability is witnessed by a single formula in some unary
expansion, which only uses finitely many relations. ◀

▶ Corollary 32. Let M be a relational structure such that for every reduct M− to a finite
language, for every r ∈ N there is some n ∈ N with K(r)

n ̸≤ Gaif(M−). Then M is monadically
stable.

Proof. Let C be the class of finite substructures of M . Given the assumption, the previous
lemma implies C is monadically stable. By [4], this implies M is monadically stable. ◀

7 Conclusion

Our paper settles the question of Adler and Adler, showing that tameness for a monotone
class of relational structures can be completely recovered from the structural sparsity of its
Gaifman class. We believe that many results from the theory of sparse graphs will generalise
to relational structures by working with the Gaifman class, and we plan to exhibit such
generalisations in future work.

Although this has not been addressed thus far, monotonicity as defined for classes of
relational structures does not fully correspond to monotonicity in the standard graph-theoretic
sense. Indeed, in the graph-theoretic sense, a monotone class of graphs is one closed under
removal of undirected edges, that is, simultaneous removal of pairs of relations E(u, v), E(v, u).
However, a monotone class of {E}-structures is one where we can remove any E relation
(so possibly we can turn an undirected edge into a directed one). In future work, we aim to
address this subtle difference by introducing symmetrically monotone classes, so that our
results can extend to broader classes of relational structures, such as classes of undirected
hypergraphs closed under removal of hyperedges.

Finally, our paper makes a significant contribution towards Conjecture 9, settling it for
the case of monotone classes of structures. While the machinery used in this paper will
certainly assist in tackling the full conjecture, we believe that new techniques are required
for this task. Here, it is important to understand the role of linear orders in the collapse
of monadic NIP and bounded twin-width for hereditary classes of ordered graphs, and to
identify which model-theoretic conditions generalise this phenomenon to arbitrary hereditary
graph classes.
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