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Abstract
A recent breakthrough work of Limaye, Srinivasan and Tavenas [29] proved superpolynomial lower
bounds for low-depth arithmetic circuits via a “hardness escalation” approach: they proved lower
bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits.
In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness
escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential
blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower
bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for
the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define
a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT)
formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the
superpolynomial lower bounds for regular formulas [6, 19].
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1 Introduction

Arithmetic circuits are a natural model for computing polynomials using the basic operations
of addition and multiplication. One of the most fundamental questions about arithmetic
circuits is about finding a family of explicit polynomials (if they exist) that cannot be
computed by polynomial-sized arithmetic circuits. The existence of such explicit polynomials
was conjectured by Valiant in 1979 [40] and is the famed VP vs VNP conjecture. Arithmetic
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12:2 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

circuit lower bounds are expected to be easier than Boolean circuit lower bounds. Among
many reasons, one is due to the phenomenon of depth reduction. Arithmetic circuits can be
converted into low-depth circuits preserving the output polynomial and not blowing up the
size too much [1, 10,22,39,41]. Due to this, strong enough lower bounds even for restrictive
models of computation like depth-3 circuits or homogeneous depth-4 circuits can lead to
superpolynomial arithmetic circuit lower bounds.

Arithmetic formulas are an important subclass of arithmetic circuits where the out-degree
of every gate is at most 1. For constant-depth, formulas and circuits are polynomially
related. Also, all our results deal with formulas. So we will only refer to formulas from
here on. We consider (families of) polynomials having degree at most polynomial in n,
the number of variables. One of the first results studying low-depth arithmetic formulas
was that of [32], who proved lower bounds for homogeneous depth-3 formulas. Progress on
homogeneous formula lower bound was stalled for a while, and then various lower bounds for
homogeneous depth-4 formulas were proven in a series of works [6, 9, 13, 14, 19, 25, 26]. There
was limited progress for higher-depth formulas, and lower bounds remained open even for
depth-5 formulas. In a recent breakthrough work, [29] proved superpolynomial lower bounds
for constant-depth arithmetic formulas. Their lower bounds are of the form nΩ(log(n)c∆ ) for
a constant 0 < c∆ < 1 depending on the depth ∆ of the formula. The following two open
problems naturally emerge out of their work.

▶ Open Problem 1. Prove superpolynomial lower bounds for general formulas or even
homogeneous formulas. (A formula is homogeneous if every gate computes a homogeneous
polynomial.)

▶ Open Problem 2. Prove exponential lower bounds for constant-depth arithmetic formulas.
This is interesting even for homogeneous depth-5 formulas.

Towards answering Open Problems 1.1 and 1.2, let us examine the lower bound proof in
[29] at a high level. Their proof has two main steps: First, they reduce the problem of proving
lower bounds for low-depth formulas to the problem of proving lower bounds for low-depth
set-multilinear formulas; set-multilinear formulas are special homogeneous formulas with
an underlying partition of the variables into subsets. [29] calls such reductions “hardness
escalation”. Second, they use an interesting adaptation of the rank of the partial derivatives
matrix measure [31] to prove a lower bound for low-depth set-multilinear formulas. They call
this measure relative rank (relrk). The effectiveness of the relrk measure crucially depends on
a certain “imbalance” between the sizes of the sets used to define set-multilinear polynomials.
The proof in [29] raises two natural questions:
Question 1: Can we bypass the hardness escalation, i.e., the set-multilinearization, step?
Question 2: Can we design a measure that exploits some weakness of homogeneous (but

not necessarily set-multilinear) formulas directly?

Motivations for studying Question 1. Set-multilinear circuits form a natural circuit class
as most interesting polynomial families, such as the determinant, permanent, iterated matrix
multiplication, etc., are set-multilinear. However, set-multilinearization comes with an
exponential blow up in size – a homogeneous, depth-∆ formula computing a set-multilinear
polynomial of degree d can be converted to a set-multilinear formula of depth ∆ and size
dO(d) · s (see [29]). So, an exponential lower bound for low-depth set-multilinear formulas
does not imply an exponential lower bound for low-depth homogeneous formulas since we
are restricted to work with d ≤ log n

log log n . Indeed, it is possible to strengthen and refine the
argument in [29] to get an exponential lower bound for low-depth set-multilinear formulas
(see [2]). An approach that evades the hardness escalation step, which is a critical bottleneck,
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and directly works with homogeneous formulas has the potential to avoid the dO(d) loss and
give an exponential lower bound for low-depth homogeneous formulas. For instance, the
direct arguments in [14,26] yield exponential lower bounds for homogeneous depth-4 formulas.
If we go via the hardness escalation approach, we get a quasi-polynomial lower bound for
the same model. Besides, a direct argument can also be used to prove lower bounds for
polynomials that do not have a non-trivial set-multilinear component, see the full version
of this article [2] for more details. The hardness escalation approach of [29] can not yield
such a lower bound. Furthermore, it is conceivable that a direct argument can also be used
to obtain functional lower bounds for low-depth formulas which might be useful in proof
complexity.

Motivations for studying Question 2. Typical measures used for proving lower bounds for
arithmetic circuits include the partial derivatives measure (PD) [32,38], the rank of the partial
derivatives matrix measure (a.k.a. evaluation dimension) [31, 34, 36], the shifted partials
measure (SP) and its variants [9,14,19], the affine projections of partials measure (APP) [7,15],
etc. All these measures are defined for any polynomial, which is not necessarily set-multilinear.
Whereas the relrk measure used in [29], although very effective, is defined for set-multilinear
polynomials. Measures such as PD, SP, and APP have the geometrically appealing property
that they are invariant under the application of invertible linear transformations on the
variables. Since low-depth formulas, as well as low-depth homogeneous formulas, are closed
under linear transformations, it is natural to look for measures that do not blow up much
on applying linear transformations. Another important motivation for studying Question 2
is to learn low-depth homogeneous formulas. While the “hardness escalation” paradigm of
reducing to the set-multilinear case works for proving lower bounds, it is not clear how to
exploit it to design learning algorithms for low-depth formulas. Lower bounds for arithmetic
circuits are intimately connected to learning [5, 7, 18, 42]. Hence if we have a lower bound
measure that directly exploits the weakness of low-depth homogeneous formulas, it opens up
the possibility of new learning algorithms for such models.

1.1 Our results
We answer Questions 1 and 2 by giving a direct lower bound for low-depth homogeneous
formulas via the SP measure which was used in the series of works on homogeneous depth-4
exponential lower bounds. While our proof also yields lower bounds only in the low-degree
setting, the hope is that it could potentially lead to a stronger lower bound in the future.

Consider the shifted partials measure: SPk,ℓ(f) := dim⟨xℓ · ∂k(f)⟩, where f is a poly-
nomial. That is, SPk,ℓ(f) is the dimension of the space spanned by the polynomials ob-
tained by multiplying degree ℓ monomials to partial derivatives of f of order k. Also,
for convenience, let us denote by M(n, k) :=

(
n+k−1

k

)
the number of monomials of de-

gree k in n variables. Then note that for a homogeneous polynomial f of degree d,
SPk,ℓ(f) ≤ min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

We show that for polynomials computed by low-depth homogeneous formulas, the shifted
partials measure with an appropriate setting of k and ℓ is substantially smaller than the
above upper bound. At the same time, we exhibit explicit “hard” polynomials for which the
shifted partials measure is close to the above bound, hence yielding a lower bound.

▶ Theorem 3 (Lower bound for low-depth homogeneous formulas via shifted partials). Let C be
a homogeneous formula of size s and product-depth ∆ that computes a polynomial of degree d

in n variables. Then for appropriate values of k and ℓ,

SPk,ℓ(C) ≤ s 2O(d)

nΩ(d21−∆ )
min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

ICALP 2023



12:4 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

At the same time, there are homogeneous polynomials f of degree d in n variables (e.g., an
appropriate projection of iterated matrix multiplication polynomial, Nisan-Wigderson design
polynomial, etc.) such that

SPk,ℓ(f) ≥ 2−O(d) min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

This gives a lower bound of nΩ(d21−∆
)

2O(d) on the size of homogeneous product-depth ∆ formulas
for f .

▶ Remark 4.
1. At the end of this section, we briefly remark why it is surprising that we are able to

obtain the above lower bound using shifted partials. We also show that the lower bound
can be derived using the affine projections of partials (APP) measure (Lemma 19).

2. The above lower bound is slightly better than the bound of [29]. Instead of the dO(d) loss
incurred due to converting homogeneous to set-multilinear formulas, our analysis incurs a
2O(d) loss; in fact, this loss can be brought down to 2O(k), but we ignore this distinction
as we set k = Θ(d) in the analysis. So, for example, for homogeneous product-depth 2
formulas, our superpolynomial lower bound continues to hold for a higher degree (log2(n)
vs (log(n)/ log log(n))2 in [29]). While the improvement may be insignificant, this hints
at something interesting going on with the direct approach (see Section 1.2).

Lower bounds for general-depth arithmetic formulas are expected to be easier than
arithmetic circuit lower bounds. However, despite several approaches and attempts (e.g. via
tensor rank lower bounds [35]), we still do not have superpolynomial arithmetic formula
lower bounds. There has been some success though in proving lower bounds for some natural
restricted models (apart from the depth restrictions considered above). For example, [19]
considered the model of regular arithmetic formulas. These are formulas which consist of
alternating layers of addition (+) and multiplication (×) gates such that the fanin of all gates
in any fixed layer is the same. This is a natural model and the best-known formulas for many
interesting polynomial families like determinant, permanent, iterated matrix multiplication,
etc. are all regular. [19] proved a superpolynomial lower bound on the size of regular formulas
for an explicit polynomial and later [6] proved a tight lower bound for the iterated matrix
multiplication polynomial.

We prove superpolynomial lower bounds for a more general model.1 Consider a model
of homogeneous arithmetic formulas consisting of alternating layers of addition (+) and
multiplication (×) gates such that the fanin of all addition gates can be arbitrary but fanin
of product gates in any fixed layer is the same. We call these product-regular. We prove
super-polynomial lower bounds for homogeneous product-regular formulas. Previously we
did not know of lower bounds for even a much simpler model where the fanins of all the
product gates are fixed to 2.

In fact, we prove lower bounds for an even more general model which we call Unique Parse
Tree (UPT) formulas. A parse tree of a formula is a tree where for every + gate, one picks
exactly one child and for every product gate, we pick all the children. Then we “short circuit”
all the addition gates. Parse trees capture the way monomials are generated in a formula.
We say that a formula is UPT if all its parse trees are isomorphic. A product-regular formula
is clearly UPT. In the theorem below, IMMn,log n is the iterated multiplication polynomial
of degree log n.

1 The model in [6, 19] allowed slight non-homogeneity with the formal degree upper bounded by a small
constant times the actual degree. However, we only work with homogeneous formulas.
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▶ Theorem 5. Any UPT formula computing IMMn,log(n) has size at least nΩ(log log(n)). A
similar lower bound holds for the Nisan-Wigderson design polynomial.

▶ Remark 6.
1. While homogeneous product-regular formulas are restricted to compute polynomials

with only certain degrees (e.g., higher product-depth cannot compute prime degrees),
homogeneous UPT formulas do not suffer from this restriction.

2. While this result (which is obtained using the SP and the APP measures) could possibly
also be obtained by defining a similar model in the set-multilinear world, proving a lower
bound there and then transporting it back to the homogeneous world, our framework has
fewer number of moving parts and hence makes it easier to derive such results.

Challenges to using the SP measure. Let us remark briefly why it is surprising that we
are able to prove low-depth lower bounds via shifted partials. [8, 37] showed that the PD
measure of the polynomial (x2

1 + · · · + x2
n) d

2 is the maximum possible when the order of
derivatives, k, is at most d

2 . Notice that (x2
1 + · · ·+ x2

n) d
2 can be computed by a homogeneous

depth-4 formula of size O(nd). So, it is not possible to prove super-polynomial lower bounds
for low-depth homogeneous formulas using the PD measure as it is. One may ask if the
SP measure also has a similar limitation. Some of the finer separation results in [23, 24]
indicate that the SP measure (and some of its variants) can be fairly large for homogeneous
depth-4 and depth-5 formulas for the choices of k used in prior work. Also, the exponential
lower bounds for homogeneous depth-4 circuits in [14, 26] use random restrictions along with
a variant of the SP measure. It is not clear how to leverage random restrictions for even
homogeneous depth-5 circuits – this is also pointed out in [29]. Fortunately, [23,24] do not
rule out the possibility of using SP for all choices of parameters, like, say, k ≈ d

2 , to prove
lower bounds for low-depth homogeneous formulas. But, the original intuition from algebraic
geometry that led to the development of the SP measure (see [9] Section 2.1) breaks down
completely when k is so large (see [2]). Despite these apparent hurdles, and to our surprise,
we overcome these challenges and are able to use SP with k ≈ d

2 to prove super-polynomial
lower bounds for low-depth homogeneous formulas. To the best of our knowledge, no previous
work uses SP with this high a value of k.

1.2 Techniques and proof overview

In this section, we explain the proof idea and compare it with that in [29]. A lot of lower
bounds in arithmetic complexity follow the following outline.

Step 1: Depth reduction. One first shows that if f(x) is computed by a small circuit
from some restricted subclass of circuits, then there is a corresponding subclass of depth-4
circuits such that f(x) is also computed by a relatively small circuit from this subclass2.
The resulting subclass is of the form: f(x) =

∑s
i=1
∏ti

j=1 Qi,j . Usually there are simple
restrictions on the degrees of Qi,j ’s. For example, they could be upper bounded by some
number.

2 Some major results in the area such as [29, 33] did not originally proceed via a depth reduction but
instead analysed formulas directly. These results can however be restated as first doing a depth reduction
and then applying the appropriate measure.

ICALP 2023



12:6 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

Step 2: Employing a suitable set of linear maps. Let F[x]=d be the space of homogeneous
polynomials of degree d, W be a suitable vector space, and Lin(F[x]=d, W ) be the space of
linear maps from F[x]=d to W . We choose a suitable set of linear maps L ⊆ Lin(F[x]=d, W )
that define a complexity measure µL(f) := dim(L(f)), where L(f) := ⟨{L(f) : L ∈ L}⟩.

We would like to choose L so that it identifies some weakness of the terms
∏t

j=1 Qj in
the depth-4 circuit. That is, µL

(∏t
j=1 Qj

)
should be much smaller than µL(f) for a generic

f . For e.g., if Qj ’s are all linear polynomials, we can choose L to be the partial derivatives of
order k, ∂k. Then, µL

(∏t
j=1 Qj

)
≤
(

t
k

)
≪
(

n+k−1
k

)
which is the value for a generic f (for

k ≤ t/2). This is the basis of the homogeneous depth-3 formula lower bound in [32].
For proving lower bounds for bounded bottom fan-in depth-4 circuits (i.e., when degree

of Qj ’s is upper bounded by some number), [9, 13] introduced the SP measure and used the
linear maps L = xℓ · ∂k. The main insight in their proof was that if we apply a partial
derivative of order k on

∏t
j=1 Qj and use the product rule, then at least t− k of the Qj ’s

remain untouched. This structure can then be exploited by the shifts to get a lower bound.
This intuition however completely breaks down for k ≥ t (see [2]). Due to this, progress
remain stalled for higher depth arithmetic circuit lower bounds via SP.

In a major breakthrough, [29] gets around the above obstacle by working with set-
multilinear circuits which entails working with polynomials over d sets of variables (x1, . . . , xd),
|xi| = n. Let us use the shorthand xS = (xi)i∈S . The products they deal with are of the
form

∏t
j=1 Qj(xSj

), where S1, S2, . . . , St form a partition of [d]. The set of linear maps they
use are L = Π ◦ ∂xA

for a subset A ⊆ [d]. Here, Π is a map that sets n − n0 variables in
each of the variable sets in x[d]\A to 0. They observe (for the appropriate choice of n0) that
µL

(∏t
j=1 Qj(xSj )

)
≤ n|A|

2
1
2

∑t

j=1
imbalancej

.

Here, imbalancej = ||A ∩ Sj | log(n)− |Sj\A| log(n0)|. For the appropriate choice of n0,
a generic set-multilinear f satisfies µL(f) = n|A|, so that lower bound (on the number of
summands) obtained is exponential in the total imbalance

∑t
j=1 imbalancej . [29] observe

that this quantity is somewhat large for the depth-4 circuits that they consider.
The core of the above derivatives-based argument allows us to unravel some structure in

partial derivatives of order k applied on
∏t

j=1 Qj for values of k ≫ t. We use this to derive
a structure for the partial derivative space of a product

∏t
j=1 Qj(x). Consider a partial

derivative operator of order k indexed by a multiset α of size k. Using the chain rule,

∂α

t∏
j=1

Qj =
∑

α1,...,αt:
∑t

i=1
αi=α

cα
α1,...,αt

t∏
j=1

∂αj
Qj

for appropriate constants cα
α1,...,αt

’s. In the product
∏t

j=1 ∂αj
Qj , we can try to club terms

into two groups depending on if the size of |αj | is small or large. It turns out that the right
threshold for |αj | is k deg(Qj)/d (i.e., if we divide the order of the derivatives proportional
to the degrees of the terms). Let S := {j : |αj | ≤ k deg(Qj)/d}. Define k0 :=

∑
j∈S |αj |

and ℓ0 :=
∑

j∈S(deg(Qj) − |αj |). Notice that we can write the product
∏t

j=1 ∂αj
Qj as

P
∏

j∈S ∂αj
Qj , for a degree ℓ0 polynomial P . Hence, ∂α

∏t
j=1 Qj is a sum of terms of this

form. While it is not immediate (due to the condition on αj ’s in S), with a bit more work,
one can combine the product of partials into a single partial.

What can we say about k0 and ℓ0? It turns out that the quantity that comes up in the
calculations is k0 + k

d−k ℓ0 and it satisfies k0 + k
d−k ℓ0 ≤ k. Note that k0 is between 0 and k,

and ℓ0 between 0 and d− k. So the normalization brings ℓ0 to the right “scale”.
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It turns out we can give a better bound in terms of a quantity we call residue defined as

residuek(d1, . . . , dt) := 1
2 · min

k1,...,kt∈Z

t∑
j=1

∣∣∣∣kj −
k

d
· dj

∣∣∣∣ .
and having the property that:

▶ Proposition 7. Let k0 and ℓ0 be defined as above. Then, k0 + k
d−k ℓ0 ≤ k −

residuek(d1, . . . , dt), where dj = deg(Qj).

We want to spread the derivatives equally among all terms but cannot due to integrality issues.
The residue captures this quantitatively and as described below, is what gives us our lower
bounds. While the proof in [29] also relies on an integrality issue, there it originates from an
imbalance between the sizes of the variable sets involved in a set-multilinear partition (as the
map Π sets some variables in certain sets to 0). In contrast, we show that the integrality issue
arising directly from the derivatives can be leveraged without involving set-multilinearity.
In this sense, our approach is conceptually direct and simpler. Combined with the above
discussion, we get the following structural lemma about the derivative space of

∏t
j=1 Qj .

▶ Lemma 8.

〈
∂k (Q1 · · ·Qt)

〉
⊆

∑
S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

∏
j∈S

Qj

〉 .

Now we have the choice to utilize the above structure using an additional set of linear
maps. Both shifts and projections give similar lower bounds, so let us explain shifts here.
Note that there is an intriguing possibility of getting even better lower bounds (in terms of
dependence on d) using other sets of linear maps! From the above structural result, we have

〈
xℓ · ∂k (Q1 · · ·Qt)

〉
⊆

∑
S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ+ℓ0 · ∂k0

∏
j∈S

Qj

〉 .

Thus we can upper bound,

SPk,ℓ((Q1 · · ·Qt)) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ)

≤ 2t · d2 2O(d)

nresiduek(d1,...,dt) min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)},

where the second inequality follows from elementary calculations.
Now to upper bound the shifted partial dimension of polynomials computed by low-depth

formulas, we give a decomposition for such formulas into sums of products of polynomials
(Lemma 16) where the degree sequences are carefully chosen so that that the residues can be
simultaneously lower bounded for all the terms (Lemma 17). While in a different context,
these calculations do bear similarity with related calculations in [29].

Step 3: Lower bounding dim(L(f)) for an explicit f . As a last step, one shows that
for some explicit candidate hard polynomial dim(L(f)) is large and thereby obtains a lower
bound. This is another step where bypassing set-multilinearity helps as one is not constrained

ICALP 2023



12:8 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

to pick a set-multilinear hard polynomial. Indeed, using a straightforward analysis we show
that the APP measure is high for an explicit non-set-multilinear polynomial (see Remark 23).
We also show that the measures are high for more standard polynomial families such as the
iterated matrix multiplication polynomials and the Nisan-Wigderson design polynomials.

Application to UPT formulas. We observe here that for the subclass of homogeneous
formulas that we call UPT formulas, one can do a depth-reduction to obtain a depth-4
formula in which all the summands have the same factorization pattern (i.e. the sequence
of degrees of the factors in all the summands is that same) - see Lemma 30. We further
observe (Lemma 31) that for any fixed sequence of degrees, there exists a suitable value of
the parameter k such that the residue is sufficiently large. This gives us the superpolynomial
lower bound for UPT formulas as stated in Theorem 5.

Despite the conceptual directness and simplicity of our approach, in bypassing set-
multilinearity, some of the calculations in the analysis become evidently more involved than
that in [29]. This is primarily due to the delicate choice of parameters in ratios involving
binomial coefficients; this is also the case in several prior exponential lower bound proofs
using SP and its variants [14, 16, 26]. Nevertheless, we think that by circumventing a critical
bottleneck, the analysis opens up the possibility of an exponential lower bound for low-depth
arithmetic circuits. Some of the ideas may indeed yield stronger bounds in the future.

Organization. After describing preliminaries in Section 2, we present a structural theorem
about the derivative space of a product of homogeneous polynomials in Section 3. This
result is then directly used to upper bound both the SP and APP measures of a product of
polynomials. Using this result and a decomposition result for low-depth formulas, we obtain
lower bounds for low-depth formulas in Section 4. Finally, we prove lower bounds for UPT
formulas in Section 5.

2 Preliminaries

In this section, we give the essential notations and definitions necessary to follow the article.
Let a, b, c be real numbers. Then we define the sets [a..b] := {x ∈ Z : x ∈ [a, b]} and

[a] := [1..a]. For a constant c ≥ 1 and b ≥ 0, we say a ≈c b if a ∈ [b/c, b]. We write a ≈ b

if a ≈c b for some (unspecified) constant c. All logarithms have base 2 unless specified
otherwise. We denote the fractional part of a by {a} := a− ⌊a⌋ and the nearest integer of
a by ⌊a⌉. The following quantity will be crucially used in the proofs of our lower bounds.
Here we think of d1, . . . , dt as degrees of certain homogeneous polynomials, d as the degree
of the product of those polynomials, and k is the order of partial derivatives used for the
complexity measures.

▶ Definition 9 (residue). For non-negative integers d1, . . . , dt such that d :=
t∑

i=1
di ≥ 1 and

k ∈ [0..(d− 1)], we define residuek(d1, . . . , dt) := 1
2 · min

k1,...,kt∈Z

t∑
i=1

∣∣ki − k
d · di

∣∣ .
The factor of half has been included in the definition just to make the statements of some
of the lemmas in our analysis simple. It is easy to show that residuek(d1, . . . , dt) ≤ k

2 . The
minimum is attained when for all i ∈ [t], ki =

⌊
k
d · di

⌉
. When we use residue in the analysis

of complexity measures, we would also have the following additional constraints that ki ≥ 0
and ki ≤ di, k1 + · · · + kn = k, where k shall be the order of derivatives. As the value of
residue can not decrease when we impose these constraints, we omit them.
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Let n and n0 be positive integers. Define variable sets x := {x1, . . . , xn} and
z := {z1, . . . , zn0}. For a monic monomial m and a P ∈ F[x], we define ∂mP ∈ F[x]
to be the polynomial obtained by successively taking partial derivatives with respect
to all the variables of m (counted with their multiplicities). For an integer ℓ ≥ 0,
xℓ := {x1

e1 · · ·xn
en : e1, . . . , en ∈ Z≥0 and

∑
i∈[n] ei = ℓ}. For an integer k ≥ 0 and

P ∈ F[x], ∂kP :=
{

∂mP : m ∈ xk
}

. For a P ∈ F[x], a map L : x → ⟨z⟩, and
S ⊆ F[x], πL(P ) ∈ F[z] and πL(S) ⊆ F[z] are defined as πL(P ) := P (L(x1), . . . , L(xn))
and πL(S) := {πL(P ) : P ∈ S}, respectively.

For S, T ⊆ F[x], S · T := {P ·Q : P ∈ S and Q ∈ T } and S + T := {P + Q : P ∈
S and Q ∈ T }. For a S ⊆ F[x], we define its span as ⟨S⟩ ⊆ F[x] to be the set of all
polynomials which can be expressed as F-linear combinations of elements in S. For a
S ⊆ F[x], its dimension, denoted by dimS, refers to the maximum number of linearly
independent polynomials in S. We can now define the complexity measures for polynomials
that we use to prove our lower bounds: the shifted partials (SP) measure and the affine
projections of partials (APP) measure.

▶ Definition 10 (SP and APP measures). For a polynomial P ∈ F[x], non-negative in-
tegers k, ℓ, and n0 ∈ [n], we define SPk,ℓ(P ) := dim

〈
xℓ · ∂kP

〉
and APPk,n0(P ) :=

max
L:x→⟨z⟩

dim
〈
πL

(
∂kP

)〉
.

SP and APP are sub-additive. APP is related to the skewed partials and relrk measures used
in [15] and [29], respectively. For a comparison, see [2].

Next, we define a subclass of homogeneous formulas which we call UPT formulas3.

▶ Definition 11. A homogeneous formula C is said to be a unique-parse-tree formula if all
of its parse trees are isomorphic to each other as directed graphs.

For a UPT formula C, we define its canonical parse tree to be some fixed tree among all
the parse trees (this is a binary tree without loss of generality). For a detailed definition of
(canonical) parse tree, we refer the reader to the full version of this article [2].

Iterated Matrix Multiplication. The iterated matrix multiplication, IMMn,d is a polynomial
in N = d·n2 variables defined as the (1, 1)-th entry of the matrix product of d many n× n

matrices whose entries are distinct variables. To prove a lower bound for IMM , we analyze
the SP and APP for a projection of IMM , Pw that was introduced in [29].

▶ Definition 12 (Word polynomial Pw [29]). Given a word w = (w1, . . . , wd) ∈ Zd, let x(w)
be a tuple of d pairwise disjoint sets of variables (x1(w), . . . , xd(w)) with |xi(w)| = 2|wi| for
all i ∈ [d]. xi(w) will be called negative if wi < 0 and positive otherwise. As the set sizes
are powers of 2, we can map the variables in a set xi(w) to Boolean strings of length |wi|.
Let σ : x → {0, 1}∗ be such a mapping.4 We extend the definition of σ from variables to
set-multilinear monomials as follows: Let X = x1 · · ·xr be a set-multilinear monomial where
xi ∈ xϕ(i)(w) and ϕ : [r]→ [d] be an increasing function. Then, we define a Boolean string
σ(X) := σ(x1) ◦ · · · ◦ σ(xr), where ◦ denotes the concatenation of bits. Let M+(w) and
M−(w) denote the set of all (monic) set-multilinear monomials over all the positive sets

3 Our definition for UPT formulas is more general than the model considered in a recent paper by Limaye,
Srinivasan and Tavenas [30] as we do not impose set-multilinearity.

4 Note that σ may map a variable from xi(w) and a variable from xj(w) to the same string if i ̸= j.
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and all the negative sets, respectively. For two Boolean strings a, b, we say a ∼ b if a is a
prefix of b or vice versa. For a word w, the corresponding word polynomial Pw is defined as
Pw :=

∑
m+∈M+(w), m−∈M−(w)

σ(m+) ∼ σ(m−)

m+ ·m−.

We will make use of the following lemma from [29] which shows that computing IMM

is at least as hard as computing Pw. For this, we recall the notion of unbiased-ness of
w = (w1, . . . , wd) from [29] – we say that w is h-unbiased if maxi∈[d] |w1 + · · ·+ wi| ≤ h.

▶ Lemma 13 (Lemma 7 in [29]). Let w ∈ [−h..h]d be h-unbiased. If for some n ≥ 2h,
IMMn,d has a formula C of product-depth5 ∆ and size s, then Pw has a formula C ′ of
product-depth at most ∆ and size at most s. Moreover, if C is homogeneous, then so is C ′

and if C is UPT, then so is C ′ with the same canonical parse tree.6

Nisan-Wigderson design polynomial. For a prime power q and d ∈ N, let x =
{x1,1, . . . , x1,q,

. . . , xd,1, . . . , xd,q}. For any k ∈ [d], the Nisan-Wigderson design polynomial on qd variables,
denoted by NWq,d,k or simply NW , is defined as follows:

NWq,d,k =
∑

h(z)∈Fq [z]:
deg(h)<k

∏
i∈[d]

xi,h(i).

The IMM and the NW polynomials, and their variants, have been extensively used to prove
various circuit lower bounds [3, 4, 11,14,16,19–21,23,26,27,29,32].

3 Structure of the space of partials of a product

In this section, we bound the partial derivative space of a product of homogeneous polynomials.
In the following lemma, we show that the space of k-th order partial derivatives of a product
of polynomials is contained in a sum of shifted partial spaces with shift ℓ0 and order of
derivatives k0 such that k0 + k

d−k · ℓ0 is “small”. Using this lemma, we upper bound the SP
and APP measures of a product of homogeneous polynomials. These bounds are then used
in Sections 4 and 5 for proving lower bounds for low-depth homogeneous formulas and UPT
formulas respectively. Missing proofs from this section can be found in the full version of
this article [2],

▶ Lemma 14 (Upper bounding the partials of a product). Let n and t be positive integers
and Q1, . . . , Qt be non-constant, homogeneous polynomials in F[x] with degrees d1, . . . , dt

respectively. Let d := deg(Q1 · · ·Qt) =
t∑

i=1
di and k < d be a non-negative integer. Then,

〈
∂k (Q1 · · ·Qt)

〉
⊆

∑
S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(∏
i∈S

Qi

)〉
.

We now use the above lemma to upper bound the shifted partials and affine projections of
partials measures of a product of polynomials.

5 The product-depth of a formula is the maximum number of product gates on any path from the root to
a leaf in the formula.

6 Although the lemma in [29] is stated for set-multilinear circuits, it also applies to homogeneous formulas
and UPT formulas (albeit with a mild blow-up in size) by the same argument.



P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:11

▶ Lemma 15 (Upper bounding SP and APP of a product). Let Q = Q1 · · ·Qt be a homogeneous
polynomial in F[x1, . . . , xn] of degree d = d1 + · · ·+ dt ≥ 1, where Qi is homogeneous and
di := deg(Qi) for i ∈ [t]. Then, for any non-negative integers k < d, ℓ ≥ 0, and n0 ≤ n,
1.

SPk,ℓ(Q) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ),

2.

APPk,n0(Q) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n0, ℓ0).

4 Lower bound for low-depth homogeneous formulas

In this section, we present a superpolynomial lower bound for “low-depth” homogeneous
formulas computing the IMM and NW polynomials. We begin by proving a structural
result for homogeneous formulas. Missing proofs from this section can be found in the full
version of this article [2].

4.1 Decomposition of low-depth formulas
We show that any homogeneous formula can be decomposed as a sum of products of
homogeneous polynomials of lower degrees, where the number of summands is bounded by
the number of gates in the original formula. The decomposition lemma given below bears
some resemblance to a decomposition of homogeneous formulas in [12]. In the decomposition
in [12], the degrees of the factors of every summand roughly form a geometric sequence, and
hence each summand is a product of a “large” number of factors. Here we show that each
summand has “many” low-degree factors. While the lower bound argument in [29] does not
explicitly make use of such a decomposition, their inductive argument can be formulated as a
depth-reduction or decomposition lemma (with slightly different thresholds for the degrees).

▶ Lemma 16 (Decomposition of low-depth formulas). Suppose C is a homogeneous formula
of product-depth ∆ ≥ 1 computing a homogeneous polynomial in F[x1, . . . , xn] of degree at
least d > 0. Then, there exist homogeneous polynomials {Qi,j}i,j in F[x1, . . . , xn] such that

1. C =
s∑

i=1
Qi,1 · · ·Qi,ti , for some s ≤ size(C), and

2. for all i ∈ [s], either

|{j ∈ [ti] : deg(Qi,j) = 1}| ≥ d21−∆
, or∣∣∣{j ∈ [ti] : deg(Qi,j) ≈2 d21−δ

}∣∣∣ ≥ d21−δ

− 1 , for some δ ∈ [2..∆].

4.2 Low-depth formulas have high residue
The following lemma gives us a value for the order of derivatives k with respect to which
low-depth formulas yield high residue. Its proof uses Lemma 16.
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▶ Lemma 17 (Low-depth formulas have high residue). Suppose C is a homogeneous formula
of product-depth ∆ ≥ 1 computing a polynomial in F[x1, . . . , xn] of degree d, where d21−∆ =
ω(1). Then, there exist homogeneous polynomials {Qi,j}i,j in F[x1, . . . , xn] such that C =

s∑
i=1

Qi,1 · · ·Qi,ti , for some s ≤ size(C). Fixing an arbitrary i ∈ [s], let t := ti and define

dj := deg(Qi,j) for j ∈ [t]. Then, residuek(d1, . . . , dt) ≥ Ω
(

d21−∆
)

, where k :=
⌊

α·d
1+α

⌋
,

α :=
∆−1∑
ν=0

(−1)ν

τ2ν −1 , and τ :=
⌊
d21−∆

⌋
.

4.3 High residue implies lower bounds

For a “random” homogeneous degree-d polynomial in F[x1, . . . , xn], if the shift ℓ is not
too large, we expect the SP measure to be close to the maximum number of operators
used to construct the shifted partials space, i.e., M(n, k) ·M(n, ℓ). Explicit examples of
such polynomials are given in Section 4.4. In the lemma below, we derive a lower bound
corresponding to the decompositions established above. The main step is to show that the
SP measure of a high-residue-decomposition is small.

▶ Lemma 18 (High residue implies lower bounds). Let P =
s∑

i=1
Qi,1 · · ·Qi,ti be a

homogeneous n-variate polynomial of degree d where {Qi,j}i,j are homogeneous and
SPk,ℓ(P ) ≥ 2−O(d) ·M(n, k) ·M(n, ℓ) for some 1 ≤ k < d

2 , n0 ≤ n and ℓ =
⌊

n·d
n0

⌋
such that d ≤ n0 ≈ 2(d− k)·

(
n
k

) k
d−k . If there is a γ > 0 such that for all i ∈ [s],

residuek(deg(Qi,1), . . . , deg(Qi,ti
)) ≥ γ, then s ≥ 2−O(d) (n

d

)Ω(γ).

We state an analogous lemma with APP instead of SP.

▶ Lemma 19 (High residue implies lower bounds, using APP). Let P =
s∑

i=1
Qi,1 · · ·Qi,ti

be a homogeneous n-variate polynomial of degree d where {Qi,j}i,j are homogeneous
and APPk,n0(P ) ≥ 2−O(d) · M(n, k) for some 1 ≤ k < d

2 , n0 ≤ n such that
d ≤ n0 ≈ 2(d− k).

(
n
k

) k
d−k . If there is a γ > 0 such that for all i ∈ [s],

residuek(deg(Qi,1), . . . , deg(Qi,ti)) ≥ γ, then s ≥ 2−O(d) ·
(

n
d

)Ω(γ).

▶ Remark 20. In the above lemmas, although our lower bound appears as 2−O(d) ·nΩ(γ),
similar calculations actually give a lower bound of 2−O(k) ·nΩ(γ) for any choice of k and an
appropriate choice of ℓ (or n0 in the case of APP). We do not differentiate between the
two, as for our applications (i.e., low-depth circuits and UPT formulas), the value of k we
choose is Θ(d). Moreover, we observe that the factor of 2−O(k) in our lower bounds is likely
unavoidable for any choice of k and ℓ (or n0 in the case of APP) using our current estimates
for the complexity measures. We refer the reader to the full version of this article [2] for more
details.

4.4 The hard polynomials

We shall prove our lower bound for the word polynomial Pw introduced in [29] as well as for
the Nisan-Wigderson design polynomial. In order to do this, we show that the SP and APP
measures of Pw and the SP measure of NW are large for suitable choices of k, ℓ and n0.
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▶ Lemma 21 (Pw as a hard polynomial). For integers h, d such that h > 100 and any
k ∈

[
d
30 , d

2
]
, there exists an h-unbiased word w ∈ [−h..h]d, integers n0 ≤ n, ℓ =

⌊
n·d
n0

⌋
such

that n0 ≈ 2(d−k)·
(

n
k

) k
d−k and the following bounds hold: SPk,ℓ(Pw) ≥ 2−O(d)·M(n, k)·M(n, ℓ)

and APPk,n0(Pw) ≥ 2−O(d) ·M(n, k). Here n refers to the number of variables in Pw, i.e.,
n =

∑
i∈[d] 2|wi|.

The following lemma shows that the SP measure of the Nisan-Wigderson design polynomial
is “large” for k as high as Θ(d), if ℓ is chosen suitably.

▶ Lemma 22 (NW as a hard polynomial). For n, d ∈ N such that 120 ≤ d ≤ 1
150

(
log n

log log n

)2
,

let q be the largest prime number between
⌊

n
2d

⌋
and

⌊
n
d

⌋
. For parameters k ∈

[
d
30 , d

2 −
√

d
8

]
and ℓ =

⌊
qd2

n0

⌋
, where n0 = 2(d− k)·

(
qd
k

) k
d−k ,SPk,ℓ(NWq,d,k) ≥ 2−O(d) ·M(qd, k) ·M(qd, ℓ).

▶ Remark 23. An advantage of directly analysing the complexity measures for homogeneous
formulas instead of for set-multilinear formulas is that our hard polynomial need not be set
multilinear. In the full version of this article [2], we describe an explicit non set-multilinear
polynomial P (in VNP) with a large APP measure; the construction is similar to a polynomial
in [7]. The proof that APP of P is large is considerably simpler than the proofs of the above
lemmas.

4.5 Putting everything together: the low-depth lower bound
▶ Theorem 24 (Low-depth homogeneous formula lower bound for IMM). For any d, n, ∆ such
that n = ω(d), any homogeneous formula of product-depth at most ∆ computing IMMn,d

over any field F has size at least 2−O(d) ·n
Ω
(

d21−∆
)

. In particular, when d = O(log n), we

get a lower bound of n
Ω
(

d21−∆
)

.

▶ Theorem 25 (Low-depth homogeneous formula lower bound for NW ). Let n, d, ∆ be positive
integers. If ∆ = 1, let d = n1−ϵ for any constant ϵ > 0 and k =

⌊
d−1

2
⌋
. Otherwise, let

d ≤ 1
150

(
log n

log log n

)2
, let τ =

⌊
d21−∆

⌋
, α =

∆−1∑
ν=0

(−1)ν

τ2ν −1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be

the largest prime between
⌊

n
2d

⌋
and

⌊
n
d

⌋
. Then, any homogeneous formula of product-depth at

most ∆ computing NWq,d,k over any field F has size at least 2−O(d)·n
Ω
(

d21−∆
)

. In particular,

when d = O(log n), we get a lower bound of n
Ω
(

d21−∆
)

.

▶ Remark 26. Notice that in the above theorem, as k depends on the product-depth ∆, the
polynomial NWq,d,k may be different for different values of ∆. However, much like in [19],
there is a way to “stitch” all the different NW polynomials for different values of ∆ into a
single polynomial P such that any homogeneous formula of product-depth ∆ computing P

has size at least 2−O(d)n
Ω
(

d21−∆
)

. See Theorem 34 for more details.

In [29], the authors showed how to convert a circuit of product-depth ∆ computing a
homogeneous polynomial to a homogeneous formula of product-depth 2∆ without much
increase in the size. Combining Lemma 11 from [29] with Theorems 24 and 25, we get:
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▶ Corollary 27 (Low-depth circuit lower bound for IMM). For any positive integers d, n, ∆
such that n = ω(d), any circuit of product-depth at most ∆ computing IMMn,d over any

field F with characteristic 0 or more than d has size at least 2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

▶ Corollary 28 (Low-depth circuit lower bound for NW ). Let n, d, ∆ be positive integers.
If ∆ = 1, let d = n1−ϵ for any constant ϵ > 0 and k =

⌊
d−1

2
⌋
. Otherwise, let d ≤

1
150

(
log n

log log n

)2
, let τ =

⌊
d21−∆

⌋
, α =

∆−1∑
ν=0

(−1)ν

τ2ν −1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be the

largest prime number between
⌊

n
2d

⌋
and

⌊
n
d

⌋
. Then, any circuit of product-depth at most

∆ computing NWq,d,k over any field F of characteristic 0 or more than d has size at least

2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

We note that our lower bounds quantitatively improve on the original homogeneous
formula lower bound of [29] in terms of the dependence on the degree. While [29] gives a

lower bound of dO(−d) ·n
Ω
(

d1/2∆−1
)

(as the conversion from homogeneous to set-multilinear

formulas increases the size by a factor of dO(d)), our lower bound is 2−O(d)·n
Ω
(

d21−∆
)

. Thus,
we get slight improvement both in the multiplicative factor (from dO(d) to 2O(d)) and in the
exponent of n (from d

1
2∆−1 to d

1
2(∆−1) ). We point out what these improvements mean for

smaller depths: For ∆ = 2, our lower bound for homogeneous formulas computing IMM is
superpolynomial as long as d ≤ ϵ · log2 n for a small enough positive constant ϵ, whereas the

lower bound in [29] does not work beyond d = O

((
log n

log log n

)2
)

. In particular, we obtain a

lower bound of nΩ(log n) for the size of homogeneous depth-5 formulas computing IMMn,d

when d = Θ(log2 n). Finally, for ∆ = 3 and d ≤ ϵ · log4/3 n, we get a lower bound of nΩ(d1/4),
as compared to nΩ(d1/7) from [29].

5 Lower bound for unique-parse-tree formulas

In this section, we show that UPT formulas computing IMM must have a “large” size. We
begin by giving a decomposition for such formulas. Missing proofs from this section can be
found in the full version of this article [2].

5.1 Decomposition of UPT formulas

In order to upper bound the SP (or APP) measure of a UPT formula, we need certain results
about binary trees and UPT formulas. For a given canonical parse tree T with d leaves, we
define its degree sequence (d1, . . . , dt) using the function Deg-seq described in Algorithm 1.

We prove the following lemma in the full version of this article [2]. The idea here is to
“break” the tree at various nodes so that the successive sizes of the smaller trees are far from
each other.
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Algorithm 1 Degree sequence of a right-heavy binary tree.

1: function Deg-seq(T )
2: v0 ← root node of T .
3: if v0 is a leaf then
4: return (1).
5: end if
6: d← leaves(v0), i← 0.
7: while vi is not a leaf do
8: vi+1 ← right child of vi, i← i + 1.
9: end while

10: v ← vj corresponding to the largest index j such that leaves(vj) > d
3 .

11: d1 ← d− leaves(v).
12: return (d1, Deg-seq(Tv)).
13: end function

▶ Lemma 29. For a given canonical parse tree T with d ≥ 1 leaves, let (d1, . . . , dt) :=

Deg-seq(T ), where the function Deg-seq is given in Algorithm 1. Also let ei := d−
i∑

j=1
dj

for i ∈ [t] and e0 := d. Then, for all i ∈ [t − 1], ei ∈
(

ei−1
3 , 2·ei−1

3

]
. Additionally, dt = 1,

et = 0, and log3 d + 1 ≤ t ≤ log3/2 d + 1.

As mentioned in Section 4.1, it was shown in [12] that a homogeneous formula can be
expressed as a “small” sum of products of homogeneous polynomials such that in each
summand, the degrees of the factors roughly form a geometric sequence. We observe that this
result can be strengthened for UPT formulas; in particular, we show that for UPT formulas,
the “degree sequences” of all the summands are identical.

▶ Lemma 30 (Log-product decomposition of UPT formulas). Let f ∈ F[x] be a homogeneous
polynomial of degree d ≥ 1 computed by a UPT formula C with canonical parse tree T (C). Let
(d1, . . . , dt) := Deg-seq(T (C)). Then there exist an integer s ≤ size(C) and homogeneous
polynomials {Qi,j}i,j where deg(Qi,j) = dj for i ∈ [s], j ∈ [t], such that

f =
s∑

i=1
Qi,1 · · ·Qi,t.

5.2 UPT formulas have high residue
Now we show that there exists a value of k that has high residue with respect to the degrees
of the factors given by the above log-product lemma.

▶ Lemma 31 (High residue for a degree sequence). For any given canonical parse tree T with
d ≥ 1 leaves, let (d1, . . . , dt) := Deg-seq(T ) and k := Upt-K(d1, . . . , dt) where the function
Upt-K is described in Algorithm 2. Then

residuek(d1, . . . , dt) ≥
log3 d− 10

216 .
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Algorithm 2 The value of k for a given sequence of degrees.

1: function Upt-K(d1, . . . , dt)
/* Returns k which shall be the order of derivatives for the SP and APP measures. */

2: d = d1 + · · ·+ dt.
3: for i ∈ [0..t] do

4: ei ← d−
i∑

j=1
dj .

5: end for
6: m←

⌊ log3 d−1
3

⌋
.

/* Defining a function J : [3m]→ [t− 2]. */
7: for i ∈ [3m] do
8: J (i)← min

{
j ∈ [0..t] : ej ≤ 3i

}
.

9: end for
10: (a1, . . . , am)← undefined.
11: for i ∈ [m] do
12: j ← J (3i).

13: b0 ←
(

i−1∑
p=1

ap

33p

)
· dj+1.

/* b1 defined below is not used in the algorithm but will be useful in the analysis. */

14: b1 ←
(

i−1∑
p=1

ap

33p + 1
33i

)
· dj+1.

15: if {b0} ∈
[

1
18 , 17

18

]
then

16: ai ← 0.
17: else
18: ai ← 1.
19: end if
20: end for

21: α←
m∑

p=1

ap

33p

22: k ← ⌊α · d⌋
23: return k.
24: end function

5.3 Putting everything together: the UPT formula lower bound
In this section, we state our lower bounds for UPT formulas.

▶ Theorem 32 (UPT formula lower bound for IMM). For n ∈ N and d ≤ ϵ · log n · log log n,
where ϵ > 0 is a small enough constant, any UPT formula computing IMMn,d over any field
F has size nΩ(log d).

▶ Remark 33. The above theorem can also be derived by using the complexity measure
studied in [29] along with the observation that the unbounded-depth set-multilinearization
due to [35] (which increases the size by a factor of 2O(d)) preserves parse trees.

We also get an analogous theorem for a polynomial related to the NW polynomial.

▶ Theorem 34. Let n ∈ N, d ≤ ϵ · log n · log log n, where ϵ > 0 is a small enough constant,
and q be the largest prime number between

⌊
n
2d

⌋
and

⌊
n
d

⌋
. Then, any UPT formula computing

P =
⌈d/2⌉∑

i=⌊d/30⌋
yi ·NWq,d,i (where the y variables are distinct from the x variables), over any

field F has size nΩ(log d).
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6 Conclusion

Recently, [29] made remarkable progress on arithmetic circuit lower bounds by giving the
first super-polynomial lower bound for low-depth formulas. They achieve this by a hardness
escalation approach via set-multilinearization. But, set-multilinearization is an inherently
expensive process that seems to restrict us from obtaining an exponential lower bound for even
homogeneous low-depth formulas. In this work, we take the vital first step of sidestepping
set-multilinearization and showing a super-polynomial lower bound for low-depth formulas
via a direct approach. A direct approach does not seem to incur an inherent exponential
loss. So, it might be possible to prove stronger lower bounds for low-depth homogeneous
formulas or other related models using this approach or an adaptation of it.

Problem 1. Prove exponential lower bounds for low-depth homogeneous arithmetic formulas.
Prove exponential lower bounds for low-depth, multi-r-ic formulas.
A formula is said to be multi-r-ic, if the formal degree of every gate with respect to every
variable is at most r [17, 21]. The UPT formula lower bound proved in this work is for
formulas computing polynomials of degree at most O(log n · log log n). It would be interesting
to increase the range of degrees for which our bound works. In the non-commutative setting,
exponential lower bounds are known for formulas with exponentially many parse trees [28].

Problem 2. Prove an nΩ(log d) lower bound for UPT formulas for d = nO(1). Prove a
superpolynomial lower bound for formulas with “many” parse trees.
Our work also raises the prospect of learning low-depth homogeneous formulas given black-box
access using the “learning from lower bounds” paradigm proposed in [7, 18].

Problem 3. Obtain learning algorithms for random low-depth homogeneous formulas.
To upper bound SP or APP of a homogeneous formula C, we first show in Section 3 that the
space of partial derivatives of C has some structure and then exploit this structure using
shifts or affine projections. There might be a better way to exploit this structure, say by
going modulo an appropriately chosen ideal or using random restrictions along with shifts as
done in [14,26]. Exploring this possibility is also an interesting direction for future work.
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