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Abstract
Regular functions of infinite words are (partial) functions realized by deterministic two-way trans-
ducers with infinite look-ahead. Equivalently, Alur et. al. have shown that they correspond to
functions realized by deterministic Muller streaming string transducers, and to functions defined
by MSO-transductions. Regular functions are however not computable in general (for a classical
extension of Turing computability to infinite inputs), and we consider in this paper the class of de-
terministic regular functions of infinite words, realized by deterministic two-way transducers without
look-ahead. We prove that it is a well-behaved class of functions: they are computable, closed under
composition, characterized by the guarded fragment of MSO-transductions, by deterministic Büchi
streaming string transducers, by deterministic two-way transducers with finite look-ahead, and by
finite compositions of sequential functions and one fixed basic function called map-copy-reverse.
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1 Introduction

Transducers extend automata with output mechanisms, turning finite state machines from
language acceptors to computational models for functions. Inspired by a seminal work by
Engelfriet and Hoogeboom [22], the last decade has seen an increasing interest in characterizing
the class of functions defined by deterministic two-way transducers over finite words (2-dT),
now called the class of regular functions of finite words. This class admits several (effective)
characterizations: it corresponds to the functions definable by MSO-transductions [22], by
an MSO-based logic on origin graphs [15], by an extension of regular expressions called
combinator expressions [4, 5, 20], and computed by copyless streaming string transducers
(SST) (a deterministic one-way model which uses registers to store and update partial
output words [2]). Moreover, the class of regular functions over finite words is closed under
composition [11], and it has decidable equivalence problem [25].
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121:2 Deterministic Regular Functions of Infinite Words

▶ Example 1.1. Let Σ be an alphabet, the function map-copy-reverse : (Σ⊎{|})∗ → (Σ⊎{|})∗

takes any word of the form u1| . . . |un where each ui is |-free, and outputs u1|ũ1| . . . |un|ũn,
where ũi is the mirror image of ui. The function map-copy-reverse is regular.

Regular functions can also be characterized as the compositions of sequential functions
(functions computed by deterministic one-way finite transducers) and map-copy-reverse [6].

Regular functions of infinite words. The class of regular functions has been extended to
infinite words in [3], and defined as the class of functions definable by MSO-transductions
over infinite words. Equivalently, they have been shown to be the functions realized by
deterministic two-way transducers with regular look-ahead, and by streaming string trans-
ducers with a Muller selection condition (the register holding the final output word is selected
depending on the set of states seen infinitely often). As for finite words, regular functions of
infinite words are closed under composition, and have decidable equivalence problem [3].

▶ Example 1.2. Let Σ = {a, b, c} be an alphabet, and consider the function double : Σω → Σω
which behaves like the identity function except that any occurrence of a is replaced by aa if
there exists a b in the future of that occurence. For example, (ab)ω is mapped to (aab)ω and
acaab(ac)ω is mapped to aacaaaab(ac)ω. The function double is regular, as it can be realized
by a one-way transducer which, when reading an a, uses regular look-aheads to determine
whether there exists a b or not in the future, and produces either a or aa accordingly.

▶ Example 1.3. Let Σ′ = {a, b, 1, 2} and consider the function copy which maps:
u1σ1u2 . . . σnu 7→ uσ1

1 σ1 . . . u
σn
n σnu where u1u2 . . . unu ∈ {a, b}ω and σ1, . . . , σn ∈ {1, 2};

u1σ1 . . . uiσi · · · 7→ uσ1
1 σ1 . . . u

σi
i σi . . . (if there are infinitely many σi ∈ {1, 2}).

For example, copy(ab2a1bω) = abab2a1bω and copy((a2)ω) = (aa2)ω. The function copy is
regular, for instance realized by a deterministic two-way transducer which, using two-wayness,
makes one or two passes on the blocks ui, depending on whether they are followed by σi = 2.
On the first pass, it always outputs what it reads, so that if no separator in {1, 2} is ever
read again (which means it is reading the infinite suffix u), then it outputs u.

Despite the robustness of the class of regular functions of infinite words, witnessed by
its various characterizations and algorithmic properties, they suffer from a severe downside
when it comes to computability. Indeed, there are regular functions of infinite words which
are not computable. At this point, we make clear what is meant by computability, since the
input is infinite. We refer the reader to [18, 19] (and the references therein) for a formal
definition of computability, and rather give intuitions here. A function f of infinite words
is computable if there is a Turing machine with an infinite read-only tape which contains
some infinite input word u in the domain of the function, a bidirectional working tape, and a
write-only left-to-right output tape, such that by reading longer and longer input prefixes,
the machine writes longer and longer prefixes of f(u) on the output tape. Informally, it
is an algorithm which takes the input as a stream and is able to produce the output as a
stream, so that infinitely often, at least one output symbol is produced. For instance, the
function double above is not computable. On reading prefixes of the form acn for increasing
values of n, it can safely output one a symbol, but not more. Indeed, if it outputs one
more a, then it is a wrong output for continuation cω, and if it outputs a c, then it is a
wrong output for continuation bω, as double(acncω) = acω and double(acnbω) = aacnbω. Its
implementation by a two-way transducer indeed requires an infinite look-ahead to check the
absence of a b in the future. On the other hand, copy is realized by a deterministic two-way
transducer with no look-ahead, so it is computable. So, deterministic two-way transducers
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with (infinite) look-ahead, and their equivalent model Muller streaming string transducers,
cannot be considered as models of computation for infinite word functions. This was observed
in [19], where it is shown that the problem of deciding whether a given regular function
of infinite words is computable is Pspace-c. On the other hand, deterministic two-way
transducers without look-ahead are a proper model of computation for functions of infinite
words.

Deterministic regular functions of infinite words. Motivated by the latter observation,
the class of functions computed by deterministic two-way transducers without look-ahead,
coined the class of deterministic regular functions, was introduced in [9], where it is shown
that they are also equivalently computed by Büchi SST (BSST). In BSST, there is one special
designated register out in which to write the output word, which is required to be updated
with at least one new symbol infinitely often. For example, copy can be implemented by a
single-state BSST with two registers out and r, updated as follows. On reading σ ∈ {a, b}, it
performs the updates out 7→ out.σ and r 7→ r.σ, on reading 1, it does out 7→ out.1 and r 7→ ε,
and on reading 2, it does out 7→ out.r.2 and r 7→ ε.

Several important questions remain on the class of deterministic regular functions, such as
whether it is closed under composition, whether it can be logically characterized by a natural
fragment of MSO-transductions, and whether they can be obtained as finite compositions of
“simple” functions. In this paper, we provide positive answers to these questions.

Contributions. Concerning the class of deterministic regular functions, our main results
are:

its effective closure under composition;
its characterization by means of finite compositions of sequential functions and an
extension of map-copy-reverse to infinite words;
a logical characterization by a natural syntactic fragment of MSO-transductions, the
guarded fragment, called MSOTg.

An MSO-transduction is defined as an MSO-interpretation, where the predicates of the
output word structure, namely the successor and label relations, are defined by MSO formulas
with two and one free first-order variables respectively, interpreted over a fixed number of
copies of the input. The guarded fragment is defined by a classical restriction (see e.g. [24]
and references therein) on the MSO formulas composing the MSO-transduction. They have
to be prefixed by an existential quantifier ∃g, where g is a word position, and all quantifiers
of the formula are guarded by the guard x ≤ g (and ∀x ∈ X,x ≤ g for any set variable X).
So, guarded MSO formulas on infinite words, only speak about finite prefixes. Consider again
the function copy. Two copies of the input are needed to account for potential duplication of
the blocks, but the presence or not of a successor edge between two nodes of the output word
structure, only depends on local properties, which are definable by guarded MSO formulas.
E.g., such a property may be “if position x+ 1 is labeled 2, then there is a successor between
the 1st copy of x and the 2nd copy of first position of the block to which x belongs”.

In general, guarded MSO formulas can test non-local properties, which is the main source
of technical difficulties in the paper. It is illustrated by the next example.

▶ Example 1.4. The function replace : {0, a, b}ω ⇀ {a, b}ω of domain Dom(replace) =
{u ∈ {0, a, b}ω : |u|a=∞ or |u|b=∞} and mapping 0n1σ10n2σ2 · · · 7→ σ1

n1+1σ2
n2+1 · · · if

σi ∈ {a, b} and ni ∈ N, is deterministic regular. Replacing a zero at position x by a or b
depends on the next non-zero symbol in the future of x, which can be arbitrarily faraway,
but occurs in a finite prefix if u ∈ Dom(replace). This property is expressible with a guarded
MSO formula, which defines the position holding this non-zero symbol as a guard.

ICALP 2023
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Proof techniques and additional results. We now give an overview of the proof techniques
used to show the logical characterization, along with some other interesting and useful
results. We prove that deterministic two-way transducers (2-dT) are expressively equivalent
to MSOTg. The conversion of 2-dT into MSOTg is standard and follows the same line as [22].
The converse is more involved and requires new techniques. First, we convert MSOTg-
transductions into deterministic two-way transducers with finite look-ahead (2-dTFLA), which
account for non-local, but finite, properties, as illustrated before. 2-dTFLA are equipped with
regular languages of finite words on their transitions, which act as finite look-aheads in the
following sense: when the reading head is at some position i of an infinite word u, in some
state q, a transition from q with look-ahead L is enabled if there exists a position j ≥ i, called
witness, such that the infix u[i:j] starting at position i and ending at position j, belongs to
L. If no transition is enabled at state q, the computation fails. To ensure determinism, if
several transitions are enabled, only the transition with minimal (i.e. smallest) witness j is
triggered, and a disjointness requirement on the look-aheads make sure that this j is unique.
The condition to consider only the transition with minimal witness j is crucial to ensure that
2-dTFLA define only computable functions. Indeed, a 2-dTFLA can be executed as follows: all
finite look-aheads, supposed for instance to be finitely represented by DFA, are executed in
parallel. By the minimality requirement for j and the disjointness of look-aheads, as soon as
a prefix is accepted by one look-ahead DFA, the corresponding transition is triggered.

Adding look-aheads to two-way transducers in order to capture MSO-transductions is
standard on finite words [22, 14], for example because the “moves” of the MSO-transduction
depends on non-local properties. Look-aheads are then directly removed by using the closure
under composition of deterministic two-way transducers [11]. Closure under composition of
deterministic two-way transducers on infinite words is, to the best of our knowledge, unknown,
and instead we give a direct proof of finite look-ahead removal. It is our main technical result:
any 2-dTFLA is effectively equivalent to some 2-dT. To prove this result, classical techniques,
such as Hopcroft-Ullman construction [1] or the tree outline construction [16] do not apply,
as they heavily rely on the fact that words are finite. In our setting, we instead use a new
technique, based on summarizing the computations of the look-aheads into trees which we
prove to be bounded. As a side result of finite look-ahead removal, we prove that 2-dT (and
so deterministic regular functions) are closed under composition. Classically, closure under
composition of MSO-transductions is direct, by formula substitutions [14]. This technique
however does not apply here, as the guarded MSO formulas are not syntactically closed under
formula substitution, making the correspondence between MSOTg and 2-dT crucial to obtain
closure under composition of MSOg-transductions.

Structure of the paper. In Section 2, we introduce the class of deterministic regular
functions. In Section 3, we prove its closure under composition and the decomposition result.
In Section 4, we introduce guarded MSO-transductions and state the logical characterization.
Since its proof is based on a compilation into deterministic two-way transducers with finite
look-ahead, we prove in Section 5 how to remove those look-aheads. Finally, we prove the
logical characterization in Section 6. All transformations are effective in the paper. Some
proofs are only sketched or simply omitted, but the proof details can be found in [10].

2 Deterministic regular functions

In this section, we introduce the class of deterministic regular functions of infinite words and
recall that it can be described by two computation models: deterministic two-way transducers
and deterministic Büchi streaming string transducers.
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Notations. Letters Σ,Γ denote alphabets, i.e. finite sets of letters. The set Σ∗ (resp. Σ+,
Σω) denotes the set of finite words (resp. non-empty finite words, infinite words) over the
alphabet Σ. Let Σ∞ := Σ∗∪Σω. If u ∈ Σ∞, we let |u| ∈ N∪{∞} be its length, |u|σ ∈ N∪{∞}
be the number of occurrences of σ ∈ Σ and u[i] ∈ Σ be the i-th letter of u for 1 ≤ i ≤ |u|.
If 1 ≤ i ≤ j ≤ |u|, u[i:j] stands for u[i] · · ·u[j]. We write u[i:] for u[i:|u|]. If j > |u| we let
u[i:j] := u[i:|u|]. If j < i we let u[i:j] := ε. In this paper, functions are by default partial (i.e.
possibly with non-total domain). A (partial) function f from S to T is denoted f : S ⇀ T ,
and its domain is denoted Dom(f) ⊆ S. A total function from S to T is denoted f : S → T .

Two-way transducers. Let us recall the syntax of two-way transducers. We consider here
that the machines work on infinite words, and have a Büchi acceptance condition.

▶ Definition 2.1 (Two-way transducer). A deterministic two-way transducer (2-dT) denoted
T = (Σ,Γ, Q, q0, F, δ, λ) consists of:

an input alphabet Σ and an output alphabet Γ;
a finite set of states Q with an initial state q0 ∈ Q and a set of final states F ⊆ Q;
a transition function δ : Q× (Σ ⊎ {⊢}) ⇀ Q× {◁, ▷};
an output function λ : Q× (Σ ⊎ {⊢}) ⇀ Γ∗ with same domain as δ.

A configuration of T over u ∈ (Σ ∪ {⊢})∞ is a tuple (q, i) where q ∈ Q is the current
state and 1 ≤ i ≤ |u| is the current position of the reading head. The transition relation →
is defined as follows. Given a configuration (q, i), let (q′, ⋆) := δ(q, u[i]). Then (q, i) → (q′, i′)
whenever either ⋆ = ◁ and i′ = i− 1 (move left), or ⋆ = ▷ and i′ = i+ 1 (move right). A run
over u is a (finite or infinite) sequence of consecutive configurations (q1, i1) → (q2, i2) → · · · .

Now, we define the infinite output produced by T when given the infinite word u ∈ Σω as
input. First, we let u[0] := ⊢, i.e. we force the symbol ⊢ to be used to mark the beginning
of the input. An accepting run is an infinite run that starts in (q0, 0), visits infinitely often
configurations of the form (q, i) with q ∈ F and such that in → ∞ when n → ∞ (without
this last condition, the transducer may enter an infinite loop without reading its whole input).
The partial function f : Σω ⇀ Γω computed by T is defined as follows. Let u ∈ Σω be
such that there exists a (unique) accepting run (qu0 , iu0 ) → (qu1 , iu1 ) → · · · labelled by ⊢u. Let
v :=

∏∞
j=1 λ(quj , (⊢u)[iuj ]) ∈ Γ∗ ∪ Γω be the concatenation of the outputs produced along this

run. If v ∈ Γω, we define f(u) := v. Otherwise f(u) is undefined.

▶ Definition 2.2. The class of deterministic regular functions of infinite words is the class
of (partial) functions computed by deterministic two-way transducers.

We have explained in Example 1.3 how to compute the function copy using a 2-dT (without
look-aheads). Observe that the function replace from Example 1.4 can be computed in a
similar fashion. Hence both functions are deterministic regular.

▶ Example 2.3. Let us extend the function map-copy-reverse of Example 1.1 to infinite words.
Let Σ be an alphabet, we define map-copy-reverse : (Σ ⊎ {|})ω → (Σ ⊎ {|})ω as follows:

map-copy-reverse(u1|u2| · · · ) := u1|ũ1|u2|ũ2| · · · with ui ∈ Σ∗ for all i ≥ 0;
map-copy-reverse(u1| · · · |un|u) := u1|ũ1| · · · |un|ũn|u for ui ∈ Σ∗ and u ∈ Σω.

This function is deterministic regular since we can build a 2-dT that processes twice each
|-free factor (or only once for the last infinite one if it exists).

ICALP 2023



121:6 Deterministic Regular Functions of Infinite Words

Büchi Streaming String Transducers. Now, we describe a model of a one-way machine with
registers which captures deterministic regular functions of infinite words. Over finite words,
it is well-known that deterministic two-way transducers are equivalent to copyless streaming
string transducers [2]. A similar equivalence holds for the class of regular functions of infinite
words, which can equivalently be described by deterministic two-way transducers with regular
look-aheads or copyless streaming string transducers with Muller conditions [3]. However,
Muller conditions enable to check regular properties of the infinite input, and thus describe
functions which are not (Turing) computable [3]. Now, let us recall the model of Büchi
deterministic streaming string transducer (BSST), introduced by Carton and Douéneau-Tabot
in [9], that captures exactly the class of deterministic regular functions.

Formally, a Büchi deterministic streaming string transducer consists of a one-way de-
terministic automaton with a finite set R of registers that store words from Γ∗. We use a
distinguished register out to store the output produced when reading an infinite word. The
registers are modified when reading the input using substitutions, i.e. mappings R → (Γ⊎R)∗.
We denote by SΓ

R the set of these substitutions. They can be extended morphically from
(Γ ⊎ R)∗ to (Γ ⊎ R)∗ by preserving the elements of Γ.

▶ Example 2.4 (Substitutions). Let R = {r, s} and Γ = {b}. Consider τ1 := r 7→ b, s 7→ brsb

and τ2 := r 7→ rb, s 7→ rs, then τ1 ◦ τ2(r) = τ1(rb) = bb and τ1 ◦ τ2(s) = τ1(rs) = bbrsb.

▶ Definition 2.5. A Büchi deterministic streaming string transducer (BSST) denoted by
T = (Σ,Γ, Q, F, q0, δ,R, out, λ) consists of:

a finite input (resp. output) alphabet Σ (resp. Γ);
a finite set of states Q with q0 ∈ Q initial and F ⊆ Q final;
a transition function δ : Q× Σ ⇀ Q;
a finite set of registers R with a distinguished output register out ∈ R;
an update function λ : Q× Σ ⇀ SΓ

R such that for all (q, σ) ∈ Dom(λ) = Dom(δ):
λ(q, σ)(out) = out · · · ;
there is no other occurrence of out among the λ(q, σ)(r) for r ∈ R.

This machine defines a partial function f : Σω ⇀ Γω as follows. For i ≥ 0 let qui :=
δ(q0, u[1:i]) (when defined). For i ≥ 1, we let λui := λ(qui−1, u[i]) (when defined) and λu0 (r) = ε

for all r ∈ R. For i ≥ 0, let J · Kui := λu0 ◦ · · ·◦λui . By construction JoutKui is a prefix of JoutKui+1
(when defined). If JoutKui is defined for all i ≥ 0, qui is a state of F infinitely often, and
|JoutKui | → +∞, then we let f(u) :=

∨
i JoutK

u
i (the symbol ∨ is used to denote the unique

v ∈ Γω such that JoutKui is a prefix of v for all i ≥ 0). Otherwise f(u) is undefined.

▶ Example 2.6. The function replace from Example 1.4 can be computed by a BSST. For
all i ≥ 1, it crosses the block 0ni and computes 1ni and 2ni in two registers. Once it sees σi
it adds in out the register storing σini .

▶ Definition 2.7 (Copyless, bounded copy). We say that a substitution τ ∈ SBR is copyless
(resp. K-bounded) if for all r ∈ R, r occurs at most once in {τ(s) : s ∈ R} (resp. for all
r, s ∈ R, r occurs at most K times in τ(s)). We say that a BSST T = (Σ,Γ, Q, q0, δ,R, out, λ)
is copyless (resp. K-bounded) if for all u ∈ Σω and i ≤ j such that λui ◦ · · · ◦ λuj is defined,
this substitution is copyless (resp. K-bounded).

▶ Remark 2.8. The composition of two copyless substitutions is copyless, hence a BSST is
copyless as soon as λ(q, σ) is copyless for all q ∈ Q and σ ∈ Σ. However, K-boundedness is
not necessarily preserved under composition.
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Observe that the BSST described in Example 2.6 is copyless. Now, we recall the result of
Carton and Douéneau-Tabot that proves equivalence between two-way transducers, copyless,
and bounded copy Büchi deterministic streaming string transducers.

▶ Theorem 2.9 ([9, Theorem 3.7]). The following machines compute the same class of partial
functions over infinite words:
1. deterministic two-way transducers (2-dT);
2. K-bounded deterministic Büchi streaming string transducers (K-bounded BSST);
3. copyless deterministic Büchi streaming string transducers (copyless BSST).
Furthermore, all the conversions are effective.

▶ Remark 2.10. The original proof of [9] which transforms a 2-dT into a BSST only considers
machines where all states are final. Nevertheless, the proof can easily be adapted to
transducers with non-final states. Furthermore, given a BSST (possibly with non-final states)
one can build an equivalent BSST where all states are final by [9, Lemma D.1] (the Büchi
conditions are hidden in the fact that the output must be infinite). All in all, all the models
(with all states final or not) exactly capture the class of deterministic regular functions.

Finally, we recall the domains of deterministic regular functions. We say that a language
is Büchi deterministic if it is accepted by a deterministic Büchi automaton (see e.g. [26]).

▶ Proposition 2.11 ([9]). If f is deterministic regular, then Dom(f) is Büchi deterministic.

3 Composition and decomposition theorems

In this section, we show that deterministic regular functions are closed under composition,
and that conversely they can be written as the composition of some “basic” functions.

It is known since [11] (resp. [3]) that the class of regular functions of finite (resp. infinite)
words is closed under composition. We transport this result to deterministic regular functions
of infinite words in Theorem 3.1. However, its proof is not an immediate extension of the
regular case, and it illustrates the main difficulty of this paper: since look-aheads are not
allowed, it is complex for a 2-dT to check if some property happens after its current position.

▶ Theorem 3.1. Deterministic regular functions are (effectively) closed under composition.

Proof idea. The approach is to compose the two transducers directly (using a product
construction); the difficulty in the composition of two computations arises when one transducer
is moving forward and the other backward. In that case, we need to rewind the computation
of the transducer that moves backward by one computation step.

To recover the previous configuration look-ahead comes in handy. As mentioned above,
(infinite) look-aheads are not permitted, but we use a weaker form of finite look-aheads (to be
introduced in Section 5) which does not increase the expressiveness of deterministic two-way
transducers over infinite words (and can be effectively removed), see Theorem 5.2. Finite
look-aheads account for non-local but finite properties. The look-ahead we define basically
re-traces the computation that the two-way transducer has taken so far. Note that this is
indeed a finite property as only a prefix of the input has been visited by the computation of
the two-way transducer. ◀

As an easy consequence of Theorem 3.1, let us observe that deterministic regular functions
(effectively) preserve Büchi deterministic languages by inverse image. Analogue results hold
for regular functions of finite (resp. infinite) words with regular languages.

ICALP 2023
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▶ Proposition 3.2. If f : Σω ⇀ Γω is deterministic regular and L ⊆ Γω is Büchi deterministic,
then f−1(L) ⊆ Σω is (effectively) Büchi deterministic.

Proof. The function f ◦ idL (where idL : Γω ⇀ Γω is the identity function restricted to L) is
deterministic regular. Its domain f−1(L) is Büchi deterministic by Proposition 2.11. ◀

Let us now focus on the converse of Theorem 3.1, i.e. showing that any deterministic regular
function can be written as a composition of “basic” functions. As mentioned in introduction,
regular functions of finite words can be written as compositions of map-copy-reverse (see
Example 1.1) and sequential functions (computed by one-way transducers).

▶ Theorem 3.3 ([6, Theorem 13]). Over finite words, a function is regular if and only if it
can (effectively) be written as a composition of map-copy-reverse and sequential functions.

To state our similar result for deterministic regular functions of infinite words, we first
recall formally the definition of sequential functions of infinite words.

▶ Definition 3.4 (Sequential functions). A deterministic one-way transducer is a 2-dT
(Σ,Γ, Q, q0, F, δ, λ) such that for all q ∈ Q and σ ∈ (Σ ⊎ {⊢}), δ(q, σ) has shape (_, ▷)
(when defined). The class of (partial) functions over infinite words computed by one-way
deterministic transducers is called sequential functions of infinite words.

▶ Example 3.5. Any function that replaces some letter of its input by another letter is
sequential. The functions replace and map-copy-reverse of Examples 1.4 and 2.3 are not
sequential (this can be shown using a pumping argument). Observe that replace can be
written as the composition of: a sequential function that replaces each σi ∈ {1, 2} by σi|, the
function map-copy-reverse, and finally a sequential function that uses the first copy of each
block to determine the value of σi, and transforms the (mirror) second copy accordingly.

Now, we state the decomposition result, that also uses map-copy-reverse from Example 2.3.
Its proof is somehow technical and it illustrates once more the main difficulty of this paper:
deterministic regular functions are not able to check many properties about the “future”.

▶ Theorem 3.6. A function is deterministic regular if and only if it can (effectively) be
written as a composition of map-copy-reverse and sequential functions of infinite words.

Proof idea. In the case of finite words, the proofs of [7, 6] rely on Simon’s factorization forests
theorem [27]. They first build a factorization forest, and then use its structure to simulate
the runs of a transducer. Furthermore, over finite words, such forests can be computed by a
rational function, which is a composition of sequential functions and map-copy-reverse. We
follow a similar proof sketch for infinite words, but the main issue is that factorization forests
can no longer be computed by a composition of sequential functions and map-copy-reverse
(their structure may depend on regular properties of the input). Thus we use instead a
weakened version of forests, introduced by Colcombet under the name of forward Ramseyan
splits [12]. Such splits can be computed with a sequential function. Our new techniques show
how to simulate the runs of a transducer by using a forward Ramseyan split. ◀

4 Guarded MSO-transductions

In this section, we define the logic MSO over finite and infinite words, as well as MSO-
transductions, and its guarded fragment. We also state the logical characterization of
deterministic regular functions (Theorem 4.8).
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MSO on infinite words. Infinite words over Σ are seen as structures of domain N, over
the signature WΣ = {S(x, y), (σ(x))σ∈Σ} which consists of the successor predicate S(x, y),
naturally interpreted as the successor over N, and unary predicates σ(x) for all σ ∈ Σ,
interpreted as the set of positions labelled σ. Given an infinite word u ∈ Σω, we denote by
Gu the structure it induces, and just u when it is clear that u denotes the structure Gu.

Monadic second-order formulas are defined as first-order logic formulas, which can
additionally use quantifiers ∃X,∀X over sets of positions, and membership atomic formulas
of the form x ∈ X, where x is a first-order variable while X is a set variable. We denote
by MSO[Σ, S,≤] (or just MSO when the predicates are clear from the context), the set
of monadic second-order formulas over the word signature WΣ extended with the order
predicate ≤ (interpreted by the natural order on N). It is well-known that the predicate ≤ is
syntactic sugar. The semantics is defined as expected (details can be found in [28, 14] for
instance). For a formula ϕ with sets of free first-order and set variables x,X (we use the
tuple notation which implicitly assumes an order between variables), we may write it ϕ(x,X)
to explicit the free variables of ϕ. We also denote by Free(ϕ) the free (first-order and set)
variables of ϕ.Given a word w, an n-tuple of positions p of w and an m-tuple P of sets of
positions of w, we write w |= ϕ(p, P ) to mean that the structure induced by w is a model of
ϕ under assignments p and P .

▶ Example 4.1. The formula first(x) = ∀y · ¬S(y, x) is satisfied by any word and position x
such that x is the first position to the left.

Over an alphabet Σ, any closed formula ϕ ∈ MSO defines a regular language Lϕ = {u ∈
Σω | u |= ϕ}. By Büchi-Elgot-Trakhtenbrot’s theorem [29, 8, 21], it is known MSO defines
precisely the class of regular languages over alphabet Σ: for any language L over Σ, L is
regular if and only if L = Lϕ for some ϕ ∈ MSO. MSO formulas can also be interpreted
over finite word structures, whose domains are the (finite) set of word positions. It is also
well-known that a language of finite words is regular iff it is MSO-definable.

MSO-transductions of infinite words. MSO-transductions define transformations of graph
structures, and have been studied in the context of finite words by Engelfriet and Hoogeboom
in [22] (see also [14] for a more recent introduction to MSO-transductions). The main result
of [22] is a Büchi-like theorem: a function of finite words is MSO-definable if and only if it is
regular (i.e. recognizable by a deterministic two-way transducer). This result was then lifted
to functions of infinite words in [3], but deterministic two-way transducers may need infinite
look-aheads to capture the full expressive power of MSO-transductions.

In an MSO-transduction, the output word structure is defined via an MSO interpretation
over a fixed number k of copies of the input word (seen as a structure). Therefore, the nodes
of the output word are copies 1 to k of the nodes of the input word. Output nodes are pairs
(i, c) (often denoted ic), for every copy c and input node i.

The output label and successor predicates are defined by MSO formulas with one and
two free first-order variables respectively, interpreted over the input structure. For instance,
over the output alphabet Γ = {a, b}, to set all the output labels to a, one just specifies the
formulas ϕca(x) = ⊤ and ϕcb(x) = ⊥ for all copies c. The output successor predicate relates
input nodes of possibly different copies, and is therefore defined by formulas of the form
ϕc,dS (x, y), indexed by copies c, d ∈ {1, . . . , k}.

Finally, there is one distinguished copy c0 together with a formula ϕc0
fst(x), which must be

satisfied by at most one node x. Intuitively, if the output structure is a word, this formula
defines the first node of the output word. The domain of the output structure is composed of
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input

word

copy 1

copy 2

a c a b a c a c . . .S S S S S S S
1 2 3 4 5 6 7 8

a c a b a c a c . . .

a c a b a c a c . . .

ϕ1,2
S

ϕ2,1
S

ϕ1,1
S ϕ1,2

S

ϕ2,1
S

ϕ1,1
S ϕ1,1

S ϕ1,1
S ϕ1,1

S

ϕ2,1
S ϕ2,1

S ϕ2,1
S ϕ2,1

S ϕ2,1
S

(a) Input and output structures of the MSO-transduction for the function double of Example 1.2 on input
word acab(ac)ω.

input

word

copy 1

copy 2

a b 1 b a 2 b 2 . . .S S S S S S S
1 2 3 4 5 6 7 8

a b 1 b a 2 b 2 . . .

a b 1 b a 2 b 2 . . .

ϕ1,1
S ϕ1,1

S ϕ1,1
S ϕ1,1

S

ϕ1,2
S

ϕ2,2
S

ϕ2,1
S

ϕ1,1
S
ϕ1,2
S

ϕ2,1
S

ϕ2,2
S ϕ2,2

S ϕ2,2
S ϕ2,2

S

(b) Input and output structures of the MSO-transduction for the function copy of Example 1.3 on input
word ab1ba2b2 . . . .

Figure 1

all nodes that can be reached from the initial node xc0 by following multiple successor edges.
In general, the output structure of an input word u by an MSO-transduction T might not be
an infinite word structure, in which case u is not in the domain of the function defined by T .

Formally, an MSO-transduction over an input alphabet Σ and output alphabet Γ is a
tuple T = (k, (ϕcγ(x))1≤c≤k,γ∈Γ, (ϕc,dS (x, y))1≤c,d≤k, c0, ϕ

c0
fst(x)) where k ∈ N \ {0}, 1 ≤ c0 ≤ k

and for all input u ∈ Σω, there is at most one position i such that u |= ϕc0
fst(i). We may omit

c0 in the tuple above.
We now formally define the semantics of MSO-transductions. Let u ∈ Σω and N ⊆

N × {1, . . . , k}. We first define the set of output nodes that can be reached from N in zero
or more steps. We let Post0

u(N) = N and for all ℓ > 0,

Postℓu(N) = {jd | ∃ic ∈ Postℓ−1
u (N) · u |= ϕc,dS (i, j)} and Post∗

u(N) =
⋃
ℓ≥0

Postℓu(N)

Given an MSO-transduction T as above, and input word u ∈ Σω, the output structure,
denoted T (u), is the structure over signature WΓ defined by the following interpretation:

the domain is D = Post∗
u({ic0 | u |= ϕc0

fst(i)}) (note that the argument of Post∗
u is either

empty or a singleton)
a node ic ∈ D is labelled γ ∈ Γ if u |= ϕcγ(i)
a node jd is a successor of a node ic if u |= ϕc,dS (i, j).

The output structure T (u) may not be a word structure. For instance, a node might
have multiple labels, T (u) may contain cycles, or branching. So we restrict semantically the
function defined by T to word structures. Formally, the function defined by T is the function
JT K : Σω ⇀ Γω whose graph is:

{(u, v) ∈ Σω × Γω | Gv (the structure associated with v) is isomorphic to T (u)}

We denote by MSOT the set of MSO-transductions and say that a function f : Σω ⇀ Γω
is MSOT-definable if f = JT K for some T ∈ MSOT.
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▶ Example 4.2. We consider again the function double of Example 1.2, illustrated on
Figure 1a and show how to define it with an MSO-transduction. Since some a must be
duplicated, two copies are needed, so k = 2. Labels are preserved: ϕcσ(x) = σ(x) for all
c ∈ {1, 2} and σ ∈ Σ. The first copy c0 is 1, and ϕc0

fst(x) = first(x). The successor formulas
distinguish if there is a b in the future or not. First, from the 2nd to the 1st copy, there
is always a successor relation from a node to its successor in copy 1: ϕ2,1

S (x, y) = S(x, y).
There is a successor from x1 to y2 if x = y, x is labelled a and there is a b in the remaining
infinite suffix starting at x: ϕ1,2

S (x, y) = a(x) ∧ (x = y) ∧ ∃z · x ≤ z ∧ b(z). On the first copy,
it depends on the label of the input: ϕ1,1

S (x, y) = S(x, y) ∧ (a(x) → (∀z ≥ x · ¬b(z)). On the
second copy, there is never a predicate edge: ϕ2,2

S = ⊥. On Figure 1a, the interpretation of
those formulas is depicted, in bold if they are part of the output word, in light grey otherwise.
One can see that the output structure induced by all the descendants of the first node (by
the transitive closure of the successor relation) is isomorphic to the structure Gaacaab(ac)ω .

The function copy of Example 1.3, illustrated in Figure 1b, is definable by an MSOT with
two copies (k = 2). Formulas ϕc0

fst and ϕcσ are the same as for double. Then:

ϕ1,1
S (x, y) = ϕ2,2

S (x, y) = S(x, y) ∧ ¬2(y) ϕ2,1
S (x, y) = S(x, y) ∧ 2(y)

ϕ1,2
S (x, y) =∃g · y < x ≤ g ∧ 2(g) ∧ ∀z ≤ y · (S(z, y) → (1(z) ∨ 2(z)))∧

∀t · (y ≤ t ≤ x) → (a(t) ∨ b(t))

The class of regular functions of infinite words has been defined in [3] as the class of
functions recognizable by deterministic two-way transducers extended with regular (infinite)
look-ahead: to take a transition, such a transducer can query a regular oracle on the infinite
current suffix (given as a deterministic parity automaton for example). Equivalently, this
class corresponds to functions recognizable by (deterministic) SST: they work as BSST but
are not forced to output the content of a special register infinitely often. Instead, the output
of a run depends on the set of states that are seen infinitely often along that run, and can be
“computed” only once the infinite input has been processed (see [3]) for more details. The
following provides a logical characterization of the class of regular functions:

▶ Theorem 4.3 ([3]). A function f : Σω ⇀ Γω is regular if and only if it is MSOT-definable.

The definition of MSOT in [3] is slightly different, but equivalent, to the definition we
take in this paper.

Guarded MSO-transductions of infinite words. Guarded MSO formulas are a syntactical
restriction of MSO formulas. This restriction requires all the free variables and quantifiers to
be guarded by a first-order variable g, in the sense that quantifiers should only talk about
positions which are before g (i.e. smaller than g). Intuitively, the satisfiability of a guarded
formula on an infinite word only depends on the finite prefix up to position g. Formally,
given two first-order variables x and g, we let G(x, g) be the formula x ≤ g (x is guarded by
g), and for a set variable X, we let G(X, g) be the formula ∀x ∈ X,G(x, g). Then, an MSO
formula φ is guarded by some variable g if it is equal to ψ(g) ∧

∧
α∈Free(ψ) G(α, g) for some

ψ(g) such that all its quantified subformulas, i.e. subformulas of the form QX · ψ′ or Qx · ψ′

for some Q ∈ {∃,∀}, are in one of the following forms:

(1) ∀x · G(x, g) → ζ (2) ∃x · G(x, g) ∧ ζ (3) ∀X · G(X, g) → ζ (4) ∃X · G(X, g) ∧ ζ

An MSO formula is guarded if it is of the form ∃g ·φ where φ is guarded by g. We denote
by MSOg the set of guarded MSO-formulas. For conciseness, we may write ∀x : g · ζ instead
of ∀x · G(x, g) → ζ, and ∃x : g · ζ instead of ∃x · G(x, g) ∧ ζ (and similarly for set variables).
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▶ Example 4.4. All the formulas of the MSO-transduction of Example 4.2 defining the
function double are guarded, or trivially equivalent to a guarded formula. For example, the
formula first(x) is equivalent to the guarded formula ∃g · x ≤ g ∧ ∀y ≤ g · ¬S(y, x).

The order predicate x ≤ y is definable by the guarded formula ∃g · x ≤ g ∧ y ≤ g ∧ y = g.
Since ¬(x ≤ y) is equivalent to y ≤ x ∧ y ̸= x, we easily get that any MSOg-formula ϕ

is equivalent to an MSOg-formula ψ in which the order predicate is only used to guard
quantifiers, by existentially quantifying a global guard, guarding all the local guards used to
define the atomic formulas of the form z ≤ t occurring in ϕ (assumed to occur positively).

▶ Remark 4.5. MSOg formulas only talk about prefixes, in the following sense: If φ = ∃g ·ψ(g)
is a closed guarded formula and w ∈ Σω, then w |= φ if and only if there exists a finite
prefix u of w such that u |= ψ(ℓ), where ℓ is the last position of u. This allows us to get the
following immediate characterization: A language L ⊆ Σω is MSOg-definable if and only if
there exists a regular language F ⊆ Σ∗ such that L = FΣω.

▶ Definition 4.6 (Guarded MSO-transductions). A guarded MSO-transduction (MSOTg) is
an MSO-transduction all formulas of which are guarded.

▶ Example 4.7. As explained in Example 4.4, all formulas of the MSO-transduction of
Example 4.2 defining double are guarded, or trivially equivalent to a guarded formula.

We can now state the logical characterization of deterministic regular functions:

▶ Theorem 4.8 (Logical characterization). A function f : Σω ⇀ Γω is deterministic regular
if and only if it is MSOTg-definable.

The proof is given in Section 6. As an application of this result, since deterministic
regular functions are (effectively) closed under composition by Theorem 3.1, we obtain that
MSOTg are (effectively) closed under composition as well. This is a well-known result for
MSOT over finite strings [22], infinite strings [3] and more generally any structure [13],
yet with purely logic-based and direct proofs, while we use here involved automata-based
arguments (look-ahead removal). Indeed, composition closure of MSOT is obtained by
formula substitutions. To compose two MSOT T2 ◦ T1, the predicates occurring in T2 are
substituted by their definition in T1. Such a direct proof idea does not work in the guarded
fragment MSOTg, as guarded formulas are not closed under negation.

Guarded MSO-transductions with order. We conclude this section by discussing an al-
ternative definition of MSOg-transductions, denoted MSOTg[≤], where instead of defining
the output successor relation, it requires to define the total order ≤ of the output structure,
with MSOg formulas. This however allows to define uncomputable functions (in the sense
of [18], see also Section 1), as stated by the following proposition:

▶ Proposition 4.9. There exists an MSOTg[≤] which defines an uncomputable function.

To prove this proposition, we show that the following uncomputable function h is definable
with MSOTg[≤]. Let Σ = Γ = {a, b} and erb : Σ∗ → Σ∗ the (erasing) morphism defined by
erb(a) = a and erb(b) = ε. The function h : Σω ⇀ Γω is defined on inputs of the form bubω,
for u ∈ {a, b}∗, by h(bubω) = berb(u)bω. It can be shown that h is definable by a 1-copy
MSOTg[≤]. An example of output structure on input bbabaabω is given below (we depict
only the successor predicate and not the order):
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input

output

b b a b a a b b . . .
1 2 3 4 5 6 7 8

b b a b a a b b . . .

The output order formula for instance states that the b occurrences are ordered according
to their input order, while the a occurrences are ordered in reverse. Moreover, it states that
the first b occurrence is smaller than any a occurence, and that any a occurrence is smaller
that any b occurrence but the first one.

Without the guarded restriction, it is known that two definitions of MSOT, with successor
or with order, both define the class of regular functions of infinite words.

5 Two-way transducers with finite look-ahead

We extend deterministic two-way transducers with finite look-ahead. Transitions are addi-
tionally labelled by a regular language of finite words, called (finite) look-ahead. A transition
with look-ahead L can only be taken if the remainder of the input sequence has a prefix
that belongs to L. Such a finite prefix is called a look-ahead witness for L. To ensure
determinism, if several look-aheads succeed, it is required that there is a unique shortest
look-ahead witness. The transducer follows the transition which minimizes the length of the
witness. If no look-aheads succeed the computation fails.

▶ Definition 5.1 (Finite look-ahead). A deterministic two-way transducer with finite look-
ahead (2-dTFLA) is a tuple T = (Σ,Γ, Q, q0, F, δ, λ) where Σ,Γ, Q, q0, F, λ are defined as
for deterministic two-way transducers w/o look-ahead, δ is a transition function Q× (Σ ⊎
{⊢}) × R∗(Σ)) ⇀ Q× {▷, ◁} where R∗(Σ) is the set of all regular languages of finite words
over Σ. The function δ is required to have finite domain. The look-ahead for a transition
(q, σ, L) 7→ (q, d) is L. Furthermore, we require that if δ(q, σ, L) and δ(q, σ, L′) are defined,
then L ∩ L′ = ∅ for all L,L′ ∈ R∗(Σ), q ∈ Q and σ ∈ Σ. Finally, it is assumed that the
look-ahead languages are represented by deterministic finite automata.

The semantics of a deterministic two-way transducer with finite look-ahead remains
unchanged compared to the model without look-ahead. The only difference in the presence
of look-ahead is when a transition is enabled: A transition with look-ahead L can only be
taken if the remainder of the input sequence has a prefix that belongs to L. Formally, in a
configuration (q, i) over input u, a transition of the form δ(q, σ, L) where L ⊆ Σ∗ is enabled
if u[i] = σ and there exists some i < j such that u[i+1:j] ∈ L. The word u[i+1:j] is called a
witness for L. To ensure determinism, whenever the transducer is in a configuration (q, i), if
several look-aheads L1, . . . , Lk are enabled, the triggered transition is the unique (ensured
by the disjointness requirement) transition with shortest witness.

Removing finite look-ahead. We know that infinite look-ahead is strictly more expressive
than finite look-ahead. The natural question is how much expressiveness is gained by adding
finite look-ahead to deterministic two-way transducers w/o look-ahead. As already explained
in the introduction, any function defined by such a transducer is (Turing machine) computable:
A Turing machine can memorize where it is in the input, verify which look-ahead succeeds,
and continue the computation from the memorized position. A two-way transducer does not
have the ability to memorize a position arbitrarily far away in the input. Hence, verifying
(in the absence of some look-ahead “oracle”) that some finite prefix of the remainder of
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the input is a witness for some look-ahead and returning to a specific position becomes
a problem to be solved. This problem is not unique to two-way transducers over infinite
words, it also appears when some regular property of the remainder of a finite input word
must be checked and subsequently the two-way transducer must return to the position it
has been in before checking the property. On finite words, this task can be handled using
the Hopcroft-Ullman [1] or the improved tree-outline construction [16]. However, these
constructions rely on the fact that the input word is finite. We prove that this task can be
also accomplished for infinite words using different techniques.

In the following, we show that no expressiveness is gained by allowing finite look-ahead.

▶ Theorem 5.2 (Finite look-ahead removal). Given a 2-dTFLA, one can effectively construct
an equivalent 2-dT.

Proof sketch. The proof is divided into two parts. The main part is to translate a given
2-dTFLA into an equivalent BSST with bounded copy. We then use Theorem 2.9 to obtain
an equivalent 2-dT. Given a deterministic two-way transducer without look-ahead, the
standard approach to obtain an equivalent SST is to simulate the right-to-right runs of the
deterministic two-way transducer on the so-far read prefix of the infinite input, store their
outputs in registers and compose these registers in the right way (with the output of the
“main” left-to-right run) to re-create the output of the two-way transducer. Since the two-way
transducer is deterministic there is a global bound on the number of different right-to-right
runs on any prefix of the input. The constructions presented in [3, 17, 9] are all built on this
idea. In [2], equivalence between SST and two-way transducers on finite words is shown but
the work exhibits no direct translation.

Our goal is to design a similar construction for deterministic two-way transducers with
finite look-ahead. The main difficulty is that there is no global bound on the number of
different runs that can occur on a prefix, if one takes additionally into account all the runs
of the look-ahead automata that have been triggered so far. Alternatively, such a transducer
can be seen as a non-deterministic transducer, which guesses which finite look-ahead will
succeed and verifies it a posteriori, but there can be many look-ahead automata running in
parallel.

Hence, we extend the standard construction to go from a deterministic two-way transducer
to an SST by additionally taking all the possible look-ahead choices into account. This
approach results in a tree structure representation of the possible runs (similar to a standard
run-tree of a non-deterministic automaton, here the non-determinism is the look-ahead
choice). A branch in such a tree corresponds to a possible run and the nodes additionally
contain information to detect when look-ahead choices succeed or are doomed to fail. The
size of the tree representations is kept bounded by sharing information and a relevant pruning
strategy. The strategy takes care of removing branches whose look-ahead choices cannot
succeed and (prefixes of) branches where the look-ahead choices already have succeeded.
Applying this construction to a deterministic two-way transducer without look-ahead yields
the standard translation construction. ◀

6 Logic-transducer correspondence: proof of Theorem 4.8

In this section, we give an overview of the proof of the logical characterization of Theorem 4.8.
We first prove that any deterministic regular function is MSOTg-definable. The proof is
standard and uses same ideas as for regular functions of finite words [22] and infinite words [3].

▶ Lemma 6.1. If a function f : Σω ⇀ Γω is deterministic regular, then it is MSOTg-definable.
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Proof. The main idea is to define in MSOTg the runs of a 2-dT. Each copy of the MSOTg
represents a state of the 2-dT, and there is a successor edges between node xp to node yq,
where x, y are input positions and p, q are states, if and only if there exists a finite run
from configuration (p, x) to configuration (q, y) which produces output symbols only in
configuration (p, x) and (q, y). This property can be expressed by an MSOg formula. ◀

Proving the converse of Lemma 6.1 is more involved. We first go to an intermediate
model with MSO instructions, in the spirit of [22], called jumping MSOg-transducers, proved
to be equivalent to 2-dT. It is a finite-state model which can (i) test MSOg properties of the
current position (called look-around), (ii) test safety constraints defined by MSO formulas,
and (iii) jump from one position to another one with binary MSOg formulas. Formally, it has
a finite set of states (all final), and transitions are of the form p

ϕla(x)|w,ϕmv(x,y),ϕsf(x)−−−−−−−−−−−−−−−−→ q where
p, q are states, ϕla, ϕmv are MSOg formulas, ϕsf is an MSO formula, and w is a finite word.
Look-around occurring on transitions with same source state are assumed to be pairwise
disjoint (their conjunction is not satisfiable). The initial configuration is (q0, 0) where q0 is
the initial state. Whenever it is in a configuration (q, i), over an infinite word u ∈ Σω, it
enables the transitions whose look-around ϕla(i) holds on u, and select the transition with
shortest witness. Call t this transition. It triggers t only if there exists j such that ϕmv(i, j)
holds and for all k ≥ i, u[:k] |= ϕsf(i) (otherwise the computation fails). It then outputs γ
and moves to some position j such that ϕmv(i, j) holds. Note that there could be several
j, and therefore several runs on the same input in general. We thus make the following
assumption, which can be described informally as follows: for any reachable configuration
of the transducer from the initial configuration, there is always a unique j. Formally, for
all infinite sequence of configurations (q0, i0 = 0)(q1, i1)(q2, i2) . . . , for all k ≥ 0, for any
transition t triggered from configuration (qk, ik) to (qk+1, ik+1), if ϕmv(x, y) is the jumping
formula of t, then ik+1 is the unique position such that ϕmv(ik, ik+1) holds. As for two-way
transducers, a sequence of configurations (q0, i0 = 0)(q1, i1) . . . is accepting if limk→∞ ik = ∞
and it produces an infinite word.

We show that this model defines deterministic regular functions:

▶ Lemma 6.2. Any jumping MSOg-transducer defines a deterministic regular function.

Sketch of proof. The proof goes in two steps. First, it is shown that jumping MSOg-
transducers are equivalent to walking MSOg-transducers, i.e. MSOg-transducers which moves
(backward or forward) between successive positions. This step is standard (it appears e.g.
in [22] in the non-guarded setting). Then, walking MSOg-transducers are shown to be
equivalent to an extension of 2-dT with finite look-around and safety constraints, then proved
to be equivalent to 2-dT by transforming look-arounds into look-aheads, and then removing
look-aheads (based on the techniques of Section 5) and safety constraints. ◀

▶ Lemma 6.3. Any MSOg-transduction is equivalent to a jumping MSOg-transducer.

Proof. Let T = (k, (ϕcγ)c∈[k],γ∈Γ, (ϕc,dS )c,d∈[k], ϕ
c0
fst(x)) be an MSOTg defining f . We construct

a jumping MSOg-transducer T ′ equivalent to T . The set of states of T ′ is {0, 1 . . . , k}. In
state 0, T ′ first jumps to the initial position, i.e. the position y which satisfies ϕc0

fst(y) and
moves to state c0. This is done by a transition going from state 0 to state c0, with the trivial
look-around and safety constraint ⊤, and the move ϕmv(x, y): = first(x) ∧ ϕc0

fst(y). Then, it
follows the successor relation of T , and uses the label formulas to determine which label
to output. Using safety constraints, T ′ also makes sure that the output graph structure is
a word structure. In particular, they express that for any reachable node, there is exactly
one label and at most one successor. There is no need to check that there is at least one
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successor, because if there is none, then the run of T ′ stops and the input is not accepted,
which is consistent with the semantics of T (the input is also rejected by T in that case).
There is also no need to check that there is no cycle, because if there is some, then T ′

will never visit all input positions, and hence the input will be rejected, which is again
consistent with the semantics of T . Formally, for all copies c, d ∈ {1, . . . , k} and output label
γ, since ϕc,dS (x, y) and ϕγ(x) are guarded, there are of the form ϕc,dS (x, y) = ∃g · ψS(x, y, g)
and ϕγ(x) = ∃g · ψγ(x, g). Then we add the following transition to T ′, from c to d:

c
ϕla(x):=∃g∃z≤g·ψc,d

S
(x,z,g)∧ψc

γ (x,g)∧disjc,d,γ (x,g)|γ,ϕmv(x,y):=ϕc,d
S

(x,y),ϕsf(x)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ d

in which disjc,d,γ(x, g) = ∀g′ ≤ g ·
∧
γ′ ̸=γ ¬ψcγ′(x, g′) ∧

∧
d′ ̸=d ∀z′ ≤ g′ · ¬ψc,d

′

S (x, z′, g′) ensures
disjointness of the look-around, and ϕsf(x) equals

(
∧
d′ ̸=d ∀y · ¬ϕc,d

′

S (x, y))∧ no successor of x in any copy d′ ̸= d

(∀y∀y′ · (ϕc,cS (x, y) ∧ ϕc,cS (x, y′)) → y = y′)∧ at most one successor of x in copy c
(
∧
γ′ ̸=γ ¬ϕcγ′(x) no other label for x

At this point, we remind the reader that safety constraints are not required to be defined by
guarded formulas, as they are regular properties of finite words. However, the look-around
and jumping formulas must be guarded, and it is indeed the case in the transition above.

Finally, note that T ′ satisfies the requirement that on infinite sequences of configurations
(q0, i0) . . . , for all k ≥ 0, ik+1 is the unique successor of ik by the jumping formula. Indeed, if
a sequence of configurations of T ′ is infinite, it implies that all safety constraints are satisfied,
and they precisely make sure that there is no branching. ◀

As a corollary of Lemmas 6.3 and 6.2, we obtain the converse direction of Theorem 4.8:

▶ Corollary 6.4. Any MSOTg-definable function f is deterministic regular.

7 Conclusion

In this paper, we have shown that the class of deterministic regular functions is characterized
by computational models such as deterministic two-way transducers, deterministic two-way
transducers with finite (regular) look-aheads, Büchi SST, by the logical formalism of guarded
MSO-transductions, and by finite compositions of sequential functions and map-copy-reverse.
The transformations between those models are effective. We have also shown that it is
closed under composition, by extending to infinite words the known composition closure of
deterministic two-way transducers, yet with new proof techniques. It is also conjectured that
the class of deterministic regular functions is equal to the class of continuous regular functions
(for the Cantor topology). It is already known that it includes the continuous letter-to-letter
rational functions [23] and the strictly larger class of continuous rational functions [9]. All
this, together with the fact that deterministic regular functions are computable, unlike regular
functions, shows the robustness of this class.
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