
Approximate Model Counting: Is SAT Oracle More
Powerful Than NP Oracle?
Diptarka Chakraborty #

National University of Singapore, Singapore

Sourav Chakraborty #

Indian Statistical Institute, Kolkata, India

Gunjan Kumar #

National University of Singapore, Singapore

Kuldeep S. Meel #

National University of Singapore, Singapore

Abstract
Given a Boolean formula ϕ over n variables, the problem of model counting is to compute the number
of solutions of ϕ. Model counting is a fundamental problem in computer science with wide-ranging
applications in domains such as quantified information leakage, probabilistic reasoning, network
reliability, neural network verification, and more. Owing to the #P-hardness of the problems,
Stockmeyer initiated the study of the complexity of approximate counting. Stockmeyer showed
that log n calls to an NP oracle are necessary and sufficient to achieve (ε, δ) guarantees. The
hashing-based framework proposed by Stockmeyer has been very influential in designing practical
counters over the past decade, wherein the SAT solver substitutes the NP oracle calls in practice. It
is well known that an NP oracle does not fully capture the behavior of SAT solvers, as SAT solvers
are also designed to provide satisfying assignments when a formula is satisfiable, without additional
overhead. Accordingly, the notion of SAT oracle has been proposed to capture the behavior of SAT
solver wherein given a Boolean formula, an SAT oracle returns a satisfying assignment if the formula
is satisfiable or returns unsatisfiable otherwise. Since the practical state-of-the-art approximate
counting techniques use SAT solvers, a natural question is whether an SAT oracle is more powerful
than an NP oracle in the context of approximate model counting.

The primary contribution of this work is to study the relative power of the NP oracle and SAT
oracle in the context of approximate model counting. The previous techniques proposed in the
context of an NP oracle are weak to provide strong bounds in the context of SAT oracle since, in
contrast to an NP oracle that provides only one bit of information, a SAT oracle can provide n bits
of information. We therefore develop a new methodology to achieve the main result: a SAT oracle is
no more powerful than an NP oracle in the context of approximate model counting.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases Model counting, Approximation, Satisfiability, NP oracle, SAT oracle

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.123

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Diptarka Chakraborty: Supported in part by an MoE AcRF Tier 2 grant (MOE-T2EP20221-
0009) and Google South & South-East Asia Research Award.
Gunjan Kumar : Supported in part by National Research Foundation Singapore under its NRF
Fellowship Programme[NRF-NRFFAI1-2019-0004].
Kuldeep S. Meel: Supported in part by National Research Foundation Singapore under its NRF Fellow-
ship Programme[NRF-NRFFAI1-2019-0004] and Campus for Research Excellence and Technological
Enterprise (CREATE) programme, Ministry of Education Singapore Tier 2 grant MOE-T2EP20121-
0011, and Ministry of Education Singapore Tier 1 Grant [R-252-000-B59-114].

EA
T
C
S

© Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, and Kuldeep S. Meel;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 123; pp. 123:1–123:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:sourav@isical.ac.in
mailto:dcsgunj@nus.edu.sg
mailto:meel@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.ICALP.2023.123
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

123:2 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

1 Introduction

Let ϕ be a Boolean formula over n propositional variables. An assignment s ∈ {T, F}n is
called a satisfying assignment if it makes ϕ evaluate to true. Let sol(ϕ) denote the set of all
satisfying assignments. The model counting problem is to compute |sol(ϕ)| for a given ϕ. It
is a fundamental problem in computer science and has numerous applications across different
fields such as quantified information leakage, probabilistic reasoning, network reliability,
neural network verification, and the like [12, 13, 17, 9, 8, 1]. The seminal work of Valiant [17]
showed that the problem of model counting is #P-complete, and consequently, one is often
interested in approximate variants of the problem. In this paper, we consider the following
problem:

Approximate Model Counting

Input A formula ϕ, tolerance parameter ε > 0, and confidence parameter δ ∈ (0, 1).
Output Compute an estimate Est such that

Pr
[
|sol(ϕ)|
1 + ϵ

≤ Est ≤ (1 + ϵ)|sol(ϕ)|
]
≥ 1− δ.

Stockmeyer [16] initiated the study of the complexity of approximate model counting.
Stockmeyer’s seminal paper made two foundational contributions: the first contribution was
to define the query model that could capture possible natural algorithms yet amenable enough
to theoretical tools to allow non-trivial insight. To this end, Stockmeyer proposed the query
model wherein one can construct an arbitrary set S and query an NP oracle to determine if
|sol(ϕ)∩S| ≥ 1. Stockmeyer showed that under the above-mentioned query model, logn calls
to an NP oracle are necessary and sufficient (for a fixed ε and δ). Furthermore, Stockmeyer
introduced a hashing-based algorithmic procedure to achieve the desired upper bound that
makes O(logn) calls to NP-oracle. The lack of availability of powerful reasoning systems for
problems in NP dissuaded the development of algorithmic frameworks based on Stockmeyer’s
hashing-based framework until the early 2000s [10].

Motivated by the availability of powerful SAT solvers, there has been a renaissance in
the development of hashing-based algorithmic frameworks for model counting, wherein a
call to an NP oracle is handled by an SAT solver in practice. The current state-of-the-art
approximate model counter, ApproxMC [4], relies on the hashing-based framework and is able
to routinely handle problems involving hundreds of thousands of variables. The past decade
has witnessed a sustained interest in further enhancing the scalability of these approximate
model counters. It is perhaps worth highlighting that Stockmeyer’s query model captures
queries by ApproxMC.

While the current state-of-the-art approximate model counters rely on the hashing-based
framework, they differ significantly from Stockmeyer’s algorithm for approximate model
counting. The departures from Stockmeyer’s algorithm have been deliberate and have
often been crucial to attaining scalability. In particular, ApproxMC crucially exploits the
underlying SAT solver’s ability to return a satisfying assignment to attain scalability. In this
context, it is worth highlighting that, unlike an NP oracle that only returns the answer Yes
or No for a given Boolean formula, all the known SAT solvers are capable of returning a
satisfying assignment if the formula is satisfiable without incurring any additional overhead.
Observe that one would need n calls to an NP oracle to determine a satisfying assignment.
From this viewpoint, an NP oracle does not fully capture the behavior of an SAT solver, and
one needs a different notion to model the behavior of SAT solver.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:3

Delannoy and Meel [7] sought to bridge the gap between theory and practice by proposing
the notion of a SAT oracle. Formally, a SAT oracle takes in a Boolean formula ϕ as input
and returns a satisfying assignment s ∈ sol(ϕ) if ϕ is satisfiable and ⊥, otherwise. It is worth
highlighting that we may need n calls to an NP oracle to simulate a query to a SAT oracle,
and therefore, it is conceivable for an algorithm to make O(logn) calls to a SAT oracle but
O(n logn) calls to an NP oracle. Delannoy and Meel showcased precisely such behavior
in the context of almost-uniform generation. Their proposed algorithm, UniSamp makes
O(logn) calls to a SAT oracle and would require O(n logn) calls to an NP oracle if one were
to replace a SAT oracle with an NP oracle. At the same time, it is not necessary that there
would be a gap of n calls for every algorithm: simply consider the problem of determining
whether a formula is satisfiable or not. Only one call to an NP oracle (and similarly to a
SAT oracle) suffices.

Furthermore, the notion of the SAT oracle has the potential to be a powerful tool to
explain the behavior of algorithms, as highlighted by Delannoy and Meel. Given access to an
NP oracle, the sampling algorithm due to Jerrum, Valiant, and Vazirani [11] (referred to as
JVV algorithm) makes O(n2 logn) calls to an NP oracle as well as a SAT oracle, i.e., there are
no savings from the availability of a SAT oracle. On the other hand, the algorithm, UniSamp
makes O(logn) and O(n logn) calls to SAT and an NP oracle respectively. Therefore, the
NP oracle model would indicate that one should expect the performance gap between JVV
and UniSamp to be linear, while the SAT oracle model indicates an exponential gap. The
practical implementations of JVV and UniSamp indeed indicate the performance gap between
them to be exponential rather than linear. Therefore, analyzing problems under the SAT
oracle model has the promise to have wide-ranging consequences.

In this paper, we analyze the complexity of the problem of approximate model counting
given access to a SAT oracle. Our study is motivated by two observations:

O1 The modern state-of-the-art hashing-based techniques differ significantly from Stock-
meyer’s algorithmic procedure and, in particular, exploit the availability of SAT solvers.
Yet, they make O(logn) calls to a SAT oracle, which coincides with the number of NP
oracle calls in Stockmeyer’s algorithmic procedure.

O2 Stockmeyer provided a matching lower bound of Ω(logn) on the number of NP calls,
which follows from the simple observation that for a fixed ε, there are Θ(n) possible
outputs that an algorithm can return. Since every NP call returns an answer, Yes or No,
the trace of an algorithm can be viewed as a binary tree such that every leaf represents
a possible output value. Therefore, the height of the tree (i.e., the number of NP calls)
must be Ω(logn). Since a SAT oracle returns a satisfying assignment (i.e., provides n
bits of information), the trace of the algorithm is no longer a binary tree, and therefore,
Stockmeyer’s analysis does not extend to the case of SAT oracles for approximate model
counting.

To summarize, the best-known upper bound for SAT oracle calls for approximate model
counting is O(logn), which matches the upper bound for NP oracle calls. However, the
technique developed in the context of achieving a lower bound for NP oracle calls does not
apply to the case of SAT oracle. Therefore, one wonders whether there exist algorithms with
a lower number of SAT oracle calls. In other words, are SAT oracles more powerful than NP
oracles for the problem of approximate model counting?

The primary contribution of this work is to resolve the above challenge. In contrast to
the problem of uniform sampling, we reach a starkly different conclusion: SAT oracles are no
more powerful than NP oracles in the context of approximate model counting. Formally, we
prove the following theorem:

ICALP 2023

123:4 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

▶ Theorem 1.1. For any ϵ, δ ∈ (0, 1), given a formula ϕ, computation of (ε, δ)-approximation
of |sol(ϕ)| requires Ω̃(logn)1 queries to a SAT oracle.

The establishment of the above theorem turned out to be highly challenging as the
existing approaches in the context of NP oracles are not applicable to the SAT oracles. We
provide an overview of our approach below.

1.1 Technical Overview
In order to provide the lower bound on the number of queries required by the SAT oracle,
we work with a stronger SAT oracle model. In particular, an answer from a (standard)
SAT oracle does not provide any extra guarantee/information other than that the returned
assignment is a satisfying assignment of the queried formula. Our lower bound works even
if we consider that the returned satisfying assignment is chosen randomly from the set of
satisfying assignments. More specifically, we consider a stronger model, namely SAT-Sample
oracle, which returns a uniformly chosen solution of a queried formula ϕ whenever the formula
is satisfiable. It is worth remarking that while a SAT oracle can be simulated by only n

queries to an NP oracle, the best-known technique to simulate SAT-Sample makes O(n2 logn)
queries to an NP oracle [2, 7]. We prove the following theorem which implies Theorem 1.1.

▶ Theorem 1.2. For any ϵ < 1/2 and any δ ≤ 1/6, given a formula ϕ, computation of
(ε, δ)-approximation of |sol(ϕ)| requires Ω̃(logn) queries to a SAT-Sample oracle.

Although we consider ϵ < 1/2 and δ ≤ 1/6 in the above theorem and provide the proof
accordingly, our proof works even for any constant ϵ, δ ∈ (0, 1). Another thing to remark is
that in our proof, we allow even exponential (in the size of the original formula) size formula
to be queried in the SAT-Sample oracle, making our result stronger than what is claimed in
the above theorem.

Let us assume that Alg is an algorithm that (ϵ, δ)-approximates |sol(ϕ)| for any given
input ϕ (on n variables) by making q queries to a SAT-Sample oracle. We will refer to such
an algorithm as a SAT-Sample counter. We would like to prove a lower bound on q.

The main technical difficulty in proving our lower bound results comes from the enormous
power of a SAT-Sample oracle compared to an NP oracle. An NP oracle can only provide a
YES or NO answer, restricting the number of possible answers (from the NP oracle) to 2q for
a q-query counter with an NP oracle. On the other hand, since a SAT-Sample oracle returns
a (random) satisfying assignment (if a satisfying assignment exists), the number of possible
answers can be 2nq. Further, any counter can be adaptive – it can choose the next query
adaptively based on the previous queries made and their corresponding answers. In general,
proving a non-trivial (tight) lower bound for any adaptive algorithm turns out to be one
of the notorious challenges, and the difficulty in proving such a lower bound arises in other
domains like data structure lower bound, property testing, etc. One of the natural ways to
prove any lower bound is to use the information-theoretic technique. However, one of the
main challenges in applying such techniques in the adaptive setting is that conditional mutual
information terms often involve complicated conditional distributions that are difficult to
analyze.

To start with, we argue that we can assume that the SAT-Sample counter is “semi-
oblivious” in nature. The number of satisfying assignments of a formula does not change
by any permutation of the elements in {T, F}n, and the SAT-Sample counter can only get

1 The tilde hides a factor of log log n.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:5

elements of sol(ϕ) by querying the SAT-Sample oracle. So we argue that the only useful
information of the ith query set (that is, the set of satisfying assignments of the formula
that is given to the SAT-Sample oracle) is the size of its intersection with the previous (i− 1)
query sets and their corresponding answers. We formalize it in Section 3.1.

We next use Yao’s minimax principle to prove a lower bound on the number of queries
to a SAT-Sample oracle made by a deterministic “Semi-oblivious counter” when the input
formula ϕ is drawn from a “hard” distribution.

For the hard distribution, we construct O(n3/4) formulas ϕℓ for each value of ℓ in
the set {⌊n1/4⌋, ⌊n1/4⌋ + 1, . . . , ⌈n3/4⌉}. The formulas ϕℓ are chosen in such a way that
|sol(ϕℓ)| ≈ 2|sol(ϕℓ+1)| thereby approximately counting the number of satisfying assignments
(upto a multiplicative (1+ϵ)-factor for small constant ϵ) reduces to the problem of determining
the value of ℓ. The hard distribution is obtained by picking an ℓ uniformly at random from
the set {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} and using the corresponding formula ϕℓ.

Finally, we show the lower bound using information theory. At a high level, we show
that the information gained about ℓ by the knowledge of obtained samples is small unless
we make Ω̃(logn) oracle calls (Lemma 9). Then we turn to Fano’s Inequality (Theorem 3)
which links the error probability of a counter to the total information gain. Showing that the
information gained by samples is small boils down to showing that the KL-divergence of the
conditional distribution over the samples is small for all formulas ϕℓ (shown in the proof of
the third part of Lemma 9). The difficulty in showing the above bound comes from the fact
that the samples are adaptive and may not always be concentrated around the expectation.
To overcome the above challenge, we first define an indicator random variable Yi to denote
whether, at the ith query, the concentration holds (see the definition in Equation 10). Then
we split it into cases: In the first case, we argue for the situation when concentration may
not hold at some step of the algorithm (if Yi = 1 for some i ∈ [q]). The second case is when
concentration holds (if Yi = 0 for all i ∈ [q]). We believe that the technique developed in this
paper can be a general tool to show sampling lower bounds in a number of other settings.

2 Notations and Preliminaries

For any integer m, let [m] denote the set of integers {1, 2, . . . ,m}. For a formula ϕ over
variable set vars(ϕ) = {v1, . . . , vn}, we denote by sol(ϕ) the set of satisfying assignments of ϕ.
If ϕ is not satisfiable then sol(ϕ) = ∅. We can interpret sol(ϕ) as a subset of {T, F}n. On the
other hand, for any subset A ⊂ {T, F}n we denote by ψA the formula whose set of satisfying
assignments is exactly A; that is, sol(ψA) = A.

Oracles and query model

In our context of Boolean formulas, an NP oracle takes in a Boolean formula ϕ as input
and returns Yes if ϕ is satisfiable (i.e., sol(ϕ) ̸= ∅), and No, otherwise. Modern SAT solvers,
besides determining whether a given formula is satisfiable or not, also return a satisfying
assignment (arbitrarily) if the formula is satisfiable. This naturally motivates us to consider
an oracle, namely SAT-Sample oracle, that takes in a Boolean formula ϕ as input and, if ϕ is
satisfiable, returns a satisfying assignment uniformly at random from the set sol(ϕ), and ⊥,
otherwise.

We rely on the query model introduced by Stockmeyer [16]: For a given ϕ whose model
count we are interested in estimating, one can query the corresponding (NP/SAT) oracle
with formulas of the form ϕ ∧ ψA, where, as stated earlier, ψA is an (arbitrary) formula
whose set of solutions is A. We will use ϕA as a shorthand to represent ϕ ∧ ψA. Throughout

ICALP 2023

123:6 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

this paper, we consider the above query model with query access to the SAT-Sample oracle.
One call to the SAT-Sample oracle will be called a SAT-Sample query. By abuse of notation,
we sometimes say “A is queried” to refer to the formula ϕA.

k-wise independent hash functions

Let n,m, k be positive integers and let H(n,m, k) denote the family of k-wise independent
hash functions from {T, F}n to {T, F}m. For any α ∈ {T, F}m, and h ∈ H(n,m, k), let
h−1(α) denote the set {s ∈ {T, F}n | h(s) = α}.

It is well-known (e.g., see [5]) that for any integer n,m, k, one can generate an explicit
family of k-wise independent hash functions in time and space poly(n,m, k). Moreover, for
any α ∈ {T, F}m, h−1(α) (where h ∈ H(n,m, k)) can be specified by a Boolean formula of
size poly(n,m, k).

Concentration inequalities for limited independence

▶ Lemma 1 ([15]). If X is a sum of k-wise independent random variables, each of which is
confined to [0, 1] with µ = E[X] then
1. For any γ ≤ 1 and k ≥ γ2µ, Pr[|X − µ| ≥ γµ] ≤ exp(−γ2µ/3).
2. For any γ ≥ 1 and k ≥ γµ, Pr[|X − µ| ≥ γµ] ≤ exp(−γµ/3).

Basics of information theory

Let X and Y be two random variables over the space X ×Y . The mutual information I(X;Y)
between random variables X and Y is the reduction in the entropy of X given Y and hence

I(X;Y) = H(X)−H(X|Y) ≤ H(X) (1)

where H(X) = −
∑

x∈X Pr[X = x] log Pr[X = x] is the Shannon entropy of X and H(X|Y)
is the conditional entropy of X given Y .

The Kullback–Leibler divergence or simply KL divergence (also called relative entropy)
between two discrete probability distributions P and Q defined on same probability space X
is given by :

KL(P ||Q) :=
∑
x∈X

p(x) log p(x)
q(x)

where p and q are probability mass functions of P and Q respectively.
If the joint distribution of X and Y is QX,Y and marginal distributions QX and QY

respectively, then the mutual information I(X;Y) can also be equivalently defined as:

I(X;Y) := KL(QX,Y ||QX ×QY).

For three random variables X,Y, Z, the conditional mutual information I(X;Y |Z) is
defined as

I(X;Y |Z) := EZ [KL(Q(X,Y)|Z ||QX|Z ×QY |Z)].

For any three random variables X,Y, Z, the chain rule for mutual information says that

I(X; (Y,Z)) = I(X;Y) + I(X;Z|Y).

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:7

If Z is a discrete random variable taking values in Z then we have

EZ [KL(Q(X,Y)|Z ||QX|Z ×QY |Z)] =
∑
z∈Z

QZ(z) ·KL(Q(X,Y)|Z=z||QX|Z=z ×QY |Z=z)

=
∑
z∈Z

QZ(z) · I(X;Y |Z = z).

▶ Lemma 2 ([14]). Let PX , PZ , PZ|X be the marginal distributions corresponding to a pair
(X,Z), where X is discrete. For any auxiliary distribution QZ , we have

I(X,Z) =
∑

x

PX(x)KL(PZ|X(·|x)||PZ) ≤ max
x

KL(PZ|X(·|x)||QZ).

▶ Theorem 3 (Fano’s inequality). Consider discrete random variables X and X̂ both taking
values in V. Then

Pr[X̂ ̸= X] ≥ 1− I(X; X̂) + log 2
log |V| .

Consider the random variables X,Z, X̂. If the random variable X̂ depends only on Z

and is conditionally independent on X, then we have

I(X; X̂) ≤ I(X;Z). (2)

This inequality is known as the data processing inequality. For the further exposition, readers
may refer to any standard textbook on information theory (e.g., [6]).

MiniMax theorem

Yao’s minimax principle [18] is a standard tool to show lower bounds on the worst-case
performance of randomized algorithms. Roughly speaking, it says that to show a lower bound
on the performance of a randomized algorithm R, it is sufficient to show a lower bound on
any deterministic algorithm when the instance is randomly drawn from some distribution.

Consider a problem over a set of inputs X . Let Γ be some probability distribution over
X and let X ∈ X be an input chosen as per Γ. Any randomized algorithm R is essentially a
probability distribution over the set of deterministic algorithms, say T . By Yao’s minimax
principle,

max
X∈X

Pr[R gives wrong answer onX] ≥ min
T ∈T

Pr
X∼Γ

[T gives wrong answer onX].

3 Lower Bound on the number of queries to SAT-Sample oracle

In this section, we will prove Theorem 1.2, which implies Theorem 1.1. Let Alg be an adaptive
randomized algorithm that given as input ϕ over n variables vars = {v1, . . . , vn} and output
Est that is an (ϵ, δ)-approximation of sol(ϕ). The only way Alg accesses the input ϕ is by
making queries to the SAT-Sample oracle, that is, obtaining random satisfying assignments
from sol(ϕA), where ϕA = ϕ∧ ψA. We will prove that Alg has to make at least Ω̃(logn) such
queries to the SAT-Sample oracle.

We will start by arguing that we can assume that the adaptive algorithm Alg has some
more structure. In particular, in Section 3.1 we will argue (in the same lines as in [3]) that
we can assume Alg is a semi-oblivious counter (Definition 4).

ICALP 2023

123:8 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

We use Yao’s Min-max technique to argue that obtaining a lower bound on a (randomized)
semi-oblivious counter is the same as obtaining a lower bound on a (deterministic) semi-
oblivious counter when the input is drawn from the worst possible distribution over the set
of formulas on n variables. In Section 3.2 we present the “hard” distribution that would help
us prove the lower bound against any deterministic semi-oblivious counter. In Section 3.2.1
we present some properties of the hard instance that would be used for the final lower bound
proof.

Finally in Section 3.3 we will use an information-theoretic argument to give a lower
bound on the query complexity of any deterministic semi-oblivious counter and hence prove
Theorem 1.2.

A note on the use of auxiliary variables in the queries to the SAT-Sample oracle

One thing we observe is that our lower bound proof does not assume that in the input
formula ϕ all the variables are influential. In other words, we can assume that ϕ is on n

variables, the actual number of variables in ϕ may be significantly less. All we need for our
lower bound proofs to go through is that the queries to the SAT-Sample oracle made by the
algorithm are to ϕ ∧ ψA where the ψ is a formula over n variables. And the lower bound on
the query complexity that we prove (Theorem 1.2) is Õ(logn). Hence, as long as the number
of variables used in the queries to the SAT-Sample oracle is at most polynomial in the actual
number of variables in the input formula ϕ, our lower bound holds.

3.1 Semi-oblivious counter

Suppose given a formula ϕ over n variables, a counter Alg makes q calls to the SAT-Sample
oracle with queried formulas ϕA1 , · · · , ϕAq

respectively, where each Ai ⊆ {T, F}n. (Recall,
ϕAi = ϕ ∧ ψAi , where ψAi denote the formula having sol(ψAi) = Ai.) Note, the i-th
SAT-Sample oracle call by the counter Alg is specified by the set Ai. During the i-th call (for
1 ≤ i ≤ q), suppose the counter Alg receives a sample si ∈ Ai ∪ {⊥}. Note that the oracle
calls made by Alg can be adaptive, i.e., the sets A1, · · · , Aq are not fixed in advance – the
counter Alg fixes Ai only after seeing the samples s1, · · · , si−1 (outcomes of all the previous
oracle calls).

We now define a special type of randomized SAT-Sample counter, referred to as semi-
oblivious counter, which at any point of time queries the SAT-Sample oracle only by looking
into the configuration of the previous step. We will later argue that to prove a query lower
bound for general SAT-Sample counters, it suffices to consider semi-oblivious counters. In
other words, semi-oblivious counters are as “powerful” as general SAT-Sample counters.

We first provide intuition for semi-oblivious counter. Note that permuting the variables
of any formula ϕ permutes the set of satisfying assignments sol(ϕ) but |sol(ϕ)| is unchanged.
Since a SAT-Sample counter needs to determine |sol(ϕ)| only (not sol(ϕ)), the final output by
the SAT-Sample counter, in some sense, should be based only on the relations between the
samples and the query sets (not on their actual values). Before providing a formal definition,
let us first introduce some terminology.

Given a family of setsA = {A1, · · · , Ai}, (where Ai ⊆ {T, F}n), the atoms generated byA,
denoted by At(A), are (at most) 2i distinct sets of the form ∩i

j=1Cj where Cj ∈ {Aj , {T, F}n\
Aj}. For example, if i = 2, then At(A1, A2) = {A1 ∩A2, A1 \A2, A2 \A1, (A1 ∪A2)c}.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:9

▶ Definition 4 (Semi-oblivious counter). A semi-oblivious counter is a randomized algorithm
T that, given any formula ϕ, at any step i, works in the following three phases:

Semi-oblivious choice: Let Ai−1 = {A1, · · · , Ai−1}, Si−1 = {s1, · · · , si−1}, Ci−1 =
{c1, · · · , ci−1} be the set of first i− 1 query sets, the set of first i− 1 samples obtained,
the set of first i− 1 configurations, respectively. Only based on Ci−1 (without knowing the
set Si−1), T does the following:

For each A ∈ At(Ai−1), it generates an integer kA
i between 0 and |A \ Si−1|. (kA

i

indicates how many unseen elements from the atom A of the previous query sets are to
be included in the next query set.)
It chooses a set of indices Ki ⊆ {1, · · · , i− 1}. (Ki specifies the index set of previous
samples that are to be included in the next query set.)

Query set generation: In this phase, it decides the query set Ai as follows:
Let us define the candidate unseen set family as

Ui := {U ⊆ {T, F}n \ Si−1 | ∀A ∈ At(Ai−1), |Ui ∩A| = kA
i }.

The algorithm T chooses a set Ui uniformly at random from the candidate unseen set
family Ui−1.
Let us denote Oi := {sj | j ∈ Ki}. The algorithm T decides the query set to be
Ai = Ui ∪Oi.

Oracle call: It places a query to the SAT-Sample oracle with the formula ϕAi
. Let the

i-th configuration ci specify whether si = ⊥, or for which j ∈ Ki, si = sj, or for which
A ∈ At(Ai−1), si ∈ A ∩ Ui.

In the end (after placing q = q(n) SAT-Sample oracle calls), depending on the set of all the
configurations Cq, T outputs an estimate on the |sol(ϕ)|.

From now on, for brevity, we use At(Ui) to denote the set {Ui ∩ A | A ∈ At(Ai−1)}.
Next, we show that if there exists a general SAT-Sample counter, then there also exists a
semi-oblivious counter. The proof is inspired by the argument used in [3] and is given in
Appendix A.

▶ Lemma 5. If there is an algorithm that, given any input ϕ on n variables, outputs an
(ϵ, δ)-approximation of |sol(ϕ)| while placing at most q = q(n) SAT-Sample oracle calls,
then there also exists a (randomized) semi-oblivious counter that, given input ϕ, outputs an
(ϵ, δ)-approximation of |sol(ϕ)| while also placing at most q SAT-Sample oracle calls.

Suppose all the internal randomness of a semi-oblivious counter is fixed. (Since in the
proof of Theorem 1.1, we will first apply Yao’s minimax principle, it suffices to only consider
deterministic decision trees.) Then, a semi-oblivious counter T can be fully described by a
decision tree R where the path from the root to any node v at depth i (more precisely, the
edges of this path) corresponds to the configuration of the first i − 1 samples. Note that
fixing the configurations of the samples till i− 1 queries (and the internal randomness) fixes
the size of an atom A ∈ At(A1, · · · , Ai) (and hence of each Aj for j ≤ i). Formally,

(i) A path (from root) to any node v at depth i is associated with a sequence of query sets
Ai−1 = (A1, · · · , Ai−1) such that the sizes of all atoms A ∈ At(Ai−1) are fixed.

(ii) The node v is labeled by a vector kv = (kA
i)A∈At(Ai−1) and a set Kv ⊆ [i− 1] which are

used to determine the next query set Ai = Oi ∪Ui. (Again, |Ui| =
∑

A∈At(Ai−1) k
A
i and

the set Ui is fixed.) Ai is used to place the next SAT-Sample oracle call.
(iii) For every possible value of the configuration at step i, there is a corresponding child of

the node v, with the corresponding edge labeled by the value of the configuration.

ICALP 2023

123:10 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

For any node v, we use Av = Ov ∪ Uv to denote the (random) query set (corresponding
to the node v) determined by the kv and Kv. Note that |Uv| =

∑
A∈At(Ai−1) k

A
i . Further,

we use Av := (A1, · · · , Av) for the sequence of query sets corresponding to a path to v

and node v. Observe the number of possible outcomes of the counter T at any step i is
at most i+ 2i + 1 ≤ 2q+1 (since i ≤ q). So the total number of nodes in the decision tree
corresponding to the semi-oblivious counter T is at most 2O(q2).

3.2 Hard instance
We will provide a set of inputs X (which, in our case, will be a set of formulas) and a
distribution Γ over X . Then we will show that any deterministic semi-oblivious counter D
(note that D knows X and Γ) which receives as input a formula ϕ ∈ X randomly drawn as
per distribution Γ and returns an (ϵ, δ)-approximation of sol(ϕ), must make Ω̃(logn) queries
to the SAT -oracle.

Let k = (logn)9. Let X be the set of all formulas (with n variables). We now define the
hard distribution Γ over X as follows by describing the procedure of picking a formula in X
according to Γ.
1. Pick ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} uniformly at random.
2. Draw a hash function hℓ ← H(n, ℓ, k) uniformly at random.
3. Let ϕℓ be the formula whose set of satisfying assignments is h−1

ℓ (F ℓ). (Recall, hℓ :
{T, F}n → {T, F}ℓ.)

4. The formula ϕℓ is the picked formula.

3.2.1 Properties of the hard instance
Let fℓ := E[|sol(ϕℓ)|] = E[|h−1

ℓ (F ℓ)|] for ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋ + 1, . . . , ⌈n3/4⌉}. Observe, it
follows from the construction of ϕℓ and the properties of hash functions that fℓ = 2n

2ℓ .

▶ Lemma 6. With probability at least 1− n2−n/20, we have

for all ℓ, ||sol(ϕℓ])| − fℓ| ≤ 2−n/10fℓ. (3)

Proof. It is straightforward to see that the variance of |sol(ϕℓ)| is V ar[|sol(ϕℓ)|] ≤ fℓ. So by
Chebyshev’s inequality,

Pr
[
||sol(ϕℓ)| − fℓ| ≥ 2−n/5fℓ

]
≤ 2n/5

fℓ
≤ 2n/5 · 2ℓ

2n
≤ 2−n/20.

The lemma now follows from a union bound over all ℓ. ◀

▶ Definition 7. Once ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} has been picked in Step 1 of the
construction of the hard instance (Section 3.2), let for any S ⊆ {T, F}n

Nℓ(S) = E [|sol(ϕℓ) ∩ S|] ,

where the expectation is over the choice of the hash function is Step 2 of the construction of
the hard instance.

Note that for any S ⊆ {T, F}n the value of Nℓ(S) is |S|/2ℓ.

▶ Lemma 8. With probability at least 1− 2O(q2)

n(log n)4 , the following holds:
For any node v in the decision tree R and any atom A ∈ At(Uv),

1. If Nℓ(Uv) < 1
n(log n)4 then |Uv ∩ sol(ϕℓ)| = 0. Similarly, if Nℓ(A) < 1

n(log n)4 for any atom
A ∈ At(Uv) then |A ∩ sol(ϕℓ)| = 0

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:11

2. If Nℓ(Uv) ≥ (logn)5 then 1
2Nℓ(Uv) ≤ |Uv ∩ sol(ϕℓ)| ≤ 3

2Nℓ(Uv). Similarly, if Nℓ(A) ≥
(logn)5 then 1

2 Nℓ(A) ≤ |A ∩ sol(ϕℓ)| ≤ 3
2 Nℓ(A)

3. If Nℓ(Uv) ≤ (logn)5 then |Uv ∩ sol(ϕℓ)| ≤ 2(logn)5. Similarly, if Nℓ(A) ≤ (logn)5 then
|A ∩ sol(ϕℓ)| ≤ 2(logn)5.

Proof. From Markov’s inequality, we have

Pr[|Uv ∩ sol(ϕℓ)| ≥ 1] ≤ Pr
[
|Uv ∩ sol(ϕℓ)| ≥

(
1

Nℓ(Uv) − 1
)

Nℓ(Uv)
]
≤ 2Nℓ(Uv)

Taking a union bound over all nodes v with Nℓ(Uv) < 1
n(log n)4 and all possible values of ℓ

(which can take O(n3/4) values), we get the first part.
From the first part of the Lemma 1, by setting γ = 1/2, we have

Pr[|Uv ∩ sol(ϕℓ)| ≥ Nℓ(Uv)] ≤ exp
(
−Nℓ(Uv)

12

)
for all nodes v in R such that Nℓ(Uv) ≥ (logn)5 (note that we have k = (logn)9 > γ2Nℓ(Uv)).
Taking a union bound over all such nodes v and all possible values of ℓ, we get the second
bound.

Let γv = (log n)5

Nℓ(Uv) . Since k = (logn)9 > γvNℓ(Uv), from the second part of Lemma 1, we
have

Pr[|Uv ∩ sol(ϕℓ)| ≥ γvNℓ(Uv)] ≤ exp
(
−γv

Nℓ(Uv)
3

)
≤ O

(
1

n(log n)4

)
.

for all nodes v such that Nℓ(Uv) ≤ (logn)5. Taking a union bound over all such nodes v and
all possible values of ℓ, we get the third part. ◀

3.3 Proof of Theorem 1.2
Proof of Theorem 1.2. By Lemma 5 and Yao’s minmax theorem we can assume that our
SAT-Sample counter Alg is a (deterministic) semi-oblivious counter whose input is a randomly
chosen formula ϕ ∈ ϕn, as per distribution Γ and Alg returns Est which is an (ϵ, 2/3)-
approximation of |sol(ϕ)|. We will prove that Alg must make q = Ω̃(logn) many SAT -oracle
calls.

Recall the distribution Γ (Section 3.2) over the set of all formulas. We can assume that the
input to Alg is ϕℓ, where ℓ is uniformly drawn from the set {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉}.

Consider the path taken by the semi-oblivious counter Alg in the decision tree. Let the
ith query made by Alg (that is at vertex vi) be Ai = Ui ∪ Oi (as in Definition 4). Let Zi

be the configuration (denoted as ci in Definition 4) of the sample from Ai. Note that the
domain of Zi is Ωi := Oi ∪ At(Ui) ∪ ⊥.

Let Good be the event that the condition in Equation 3 (in Lemma 6) and the condition
in Lemma 8 holds. Note that by Lemma 6 and Lemma 8 if q ≤ logn then

Pr[Good] = 1− o(1). (4)

Let X be the random variable that takes values in {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} uni-
formly at random (in Step 1 of the construction of hard instance). Note that by the triangle
inequality

|Est− |sol(ϕℓ)|| ≥
∣∣∣∣Est− 2n

2ℓ

∣∣∣∣− ∣∣∣∣2n

2ℓ
− |sol(ϕℓ)|

∣∣∣∣ . (5)

ICALP 2023

123:12 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

By Lemma 6 we know that with probability at least (1 − 1/6), we have | 2
n

2ℓ − |sol(ϕℓ)|| ≤
1

2n/10 · 2n

2ℓ . On the other hand, since Alg outputs an (ϵ, δ)-approximation of |sol(ϕ)| (with
ϵ < 1/2 and δ < 1/6), Equation 5 implies that with probability at least (1− 1

6 − δ) ≥
2
3 we

have∣∣∣∣Est− 2n

2ℓ

∣∣∣∣ ≤ (
ϵ+ 1

2n/10

)
2n

2ℓ
≤ 1

2 ·
2n

2ℓ
, (6)

where the last inequality follows from the fact that ϵ ≤ 1/3. Since | 2
n

2ℓ − 2n

2ℓ′ | > 1
2 ·

2n

2ℓ for
any integer ℓ′ ̸= ℓ, so Equation 6 is satisfied only when X̂ is same as the picked ℓ (that is
X̂ = X) where,

X̂ = arg min
ℓ∈{⌊n1/4⌋,⌊n1/4⌋+1,...,⌈n3/4⌉}

∣∣∣∣2n

2ℓ
− Est

∣∣∣∣ .
Hence, assuming Good

1
3 ≥ Pr[X̂ ̸= X]. (7)

By Fano’s Inequality (Theorem 3)

Pr[X̂ ̸= X] ≥ 1− I(X; X̂)
O(logn) (8)

Since the final outcome of the algorithm is determined by the outcome at each step, i.e.,
Z = (Z1, . . . , Zq), so by the data processing inequality (Equation 2), we have

I(X; X̂) ≤ I(X;Z1, . . . , zq). (9)

Let Yi be the random variable that defined as

Yi =
{

1 if 1
n(log n)4 ≤ Nℓ(Ui) ≤ n(log n)4

0 otherwise
(10)

Again by the data-processing inequality (Equation 2), we have

I(X;Z1, . . . , Zq) ≤ I(X;Y1, Z1, . . . , Yq, Zq). (11)

By the chain rule of mutual information, we have

I(X;Y1, Z1, . . . , Yq, Zq) =
∑
i∈[q]

I(X;Yi, Zi|Y1, Z1, . . . , Yi−1, Zi−1) (12)

Finally, we will show, in the following lemma, that conditioned on the fact Good happens
we can upper bound I(X;Y1, Z1, . . . , Yq, Zq) by O(log logn).

▶ Lemma 9. I(X; (Y1, Z1, . . . , Yq, Zq)) ≤ q(O(log logn) +O(log q) + 22qpoly(log n)
n(log n)3).

We defer the proof of Lemma 9 and complete the proof of Theorem 1.2 assuming Lemma 9.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:13

From the Equations 7, 8, 9, 11 and Lemma 9, we have that assuming Good happens
1
3 ≥Pr[X̂ ̸= X] [From Equation 7]

≥1− I(X; X̂)
O(logn) [From Equation 8]

≥1− I(X;Z1, . . . , zq)
O(logn) [From Equation 9]

≥1− I(X;Y1, Z1, . . . , Yq, Zq)
O(logn) [From Equation 11]

≥1− I(X;Y1, Z1, . . . , Yq, Zq)
O(logn) [From Equation 12]

≥1− q log logn
logn [From Lemma 9]

Thus, from Equation 4, if q ≤ logn

1− q log logn
logn ≤ 1

3 + Pr[Good] ≤ 1
3 +O(1)

which implies

q = Ω
(

logn
log logn

)
. ◀

3.3.1 Proof of Lemma 9
▶ Lemma 10. The following holds:
1. Conditioned on event that Yj = 1 for some j ≤ i,

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log logn),

2. I(X,Yi|Y1, Z1, . . . , Yi−1, Zi−1) ≤ 1,
3. Conditioned on the event that Y1 = 0, . . . , Yi−1 = 0,

I(X,Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log q) + 22qpoly(logn)
n(log n)3 .

Proof. We will prove Part 1, 2, and 3 one by one.
Proof of Part 1. We will prove that conditioned on event that Yj = 1 for some j ≤ i,

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log logn).

From (1), we have

I(X,Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ H(X|Y1, Z1, . . . , Yi−1, Zi−1, Yi).

Note that if Yj = 1 then by definition of Yj we have 1
n(log n)4 ≤ |Uj |

2ℓ ≤ n(log n)4 , that is,

|Uj |
n(log n)4 ≤ 2ℓ ≤ |Uj |n(log n)4

.

Note that by definition of the semi-oblivious counter the sets |U1|, . . . , |Ui| are deterministically
determined by Z1, . . . , Zi . Thus, there are O(log(n(log n)4)) = O((logn)5) possible values of
ℓ and hence

H(X|Y1, Z1, . . . , Yi−1, Zi−1) ≤ O(log logn).

This proves the first part.

ICALP 2023

123:14 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

Proof of Part 2. Since Yi can take only binary values, we have

I(X,Yi|Y1, Z1, . . . , Yi−1, Zi−1) ≤ 1.

This proves Part 2.
Proof of Part 3. We will now prove the upper bound on I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)
for each i ∈ [q], conditioned on Yj = 0 for all j ∈ [i].

Note that Z1, . . . , Zi−1 fixes the size of Oi and each atoms in At(Ui). Note that the
domain of Zi, i.e., Ωi is ⊥ ∪Oi ∪ At(Ui). Let r = |Oi|+ 2 ≤ q + 2.

We define an auxiliary distribution Q(Yi,Zi) as follows:

Q(Yi,Zi)(yi, zi) := QYi
(yi)QZi|Yi

(zi|yi)

where, QYi(0) = QYi(1) = 1/2 and

QZi|Yi
(zi|yi) =

{
1
r , zi ∈ Oi ∪ ⊥
1
r ·

|zi|
|Ui| , zi ∈ At(Ui)

Let PX , PZ , PZ|X be the marginal distributions corresponding to a pair (X,Z). Con-
ditioned on Yj = 0 for all j ∈ [i] and Zj = zj for all j ∈ [i − 1] for any (z1, . . . , zi−1) ∈
Ω1×· · ·×Ωi−1, we have for any ℓ ∈ X (note that, for brevity, we have ignored the conditioning
on Y1, Z1, . . . , Yi−1, Zi−1, in the expression below)

KL(PZi|X(·|X = ℓ)||QZi
) =

∑
zi∈Ωi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

(13)

Note that if zi ∈ ⊥ ∪Oi then QZi
(zi) = 1

r ≥
1

q+2 . Hence,

PZi|X(zi|X = ℓ)
QZi

(zi)
≤ q + 2 ≤ 2q.

Now we consider the case when zi ∈ At(Ui).
If Nℓ(zi) ≥ (logn)5 then from Lemma 8 we have

PZi|X(zi|X = ℓ) = |zi ∩ sol(ϕℓ)|
|Ui ∩ sol(ϕℓ)|

≤ 3Nℓ(zi)/Nℓ(Ui).

Note that

QZi
(zi) = 1

r
· |zi|
|Ui|
≥ 2qNℓ(zi)/Nℓ(Ui).

Therefore, we have

PZi|X(zi|X = ℓ)
QZi(zi)

≤ O(q).

For the case when Nℓ(zi) < 1
n(log n)4 , we have |zi ∩ sol(ϕℓ)| = 0. Hence the sum

∑
zi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi(zi)

when, zi ∈ ⊥ ∪Oi or zi ∈ At(Ui) such that Nℓ(zi) ≥ (logn)5 or Nℓ(zi) < 1
n(log n)4 , is at most

O(log q).

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:15

Now we bound the sum∑
zi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

when zi ∈ At(Ui) such that

1
n(log n)4 < Nℓ(zi) < (logn)5.

If Nℓ(zi) ≤ (logn)5 then we have

|zi ∩ sol(ϕℓ)| ≤ 2(logn)5

and thus

PZi|X(zi|X = ℓ) ≤ 4(logn)5

Nℓ(Ui)
.

Note that

QZi(zi) = 1
r
· |zi|
|Ui|
≥ 1

2qNℓ(zi)/Nℓ(Ui).

Hence,

PZ|X(zi|X = ℓ)
QZi

(zi)
≤ O(q(logn)5/Nℓ(zi)).

Therefore, we have

∑
zi: 1

n(log n)4 <Nℓ(zi)≤(log n)5

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

<
∑

zi: 1
n(log n)4 <Nℓ(zi)≤(log n)5

4(logn)5

Nℓ(Ui)
log(2q(logn)5/Nℓ(zi))

≤ 2q 8(logn)5

n(log n)4 log(2q(logn)5n(log n)4
)

≤ 22qpoly(logn)
n(log n)4 .

The second last inequality follows because there are at most 2q possible values of such zi,
Nℓ(Ui) ≥ n(log n)3

/2 and Nℓ(zi) ≥ 1
n(log n)3 .

Now by Lemma 2 conditioned on the event that Yj = 0 for all j ≤ i we have

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ KL(PZi|X(·|X = ℓ)||QZi
)

≤ O(log q) + 22qpoly(logn)
n(log n)3 . ◀

Proof of Lemma 9. We will first prove that for any i

I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1) ≤ O(log logn) +O(log q) + 22qpoly(logn)
n(log n)3 .

ICALP 2023

123:16 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

By the chain rule of mutual information,

I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)
=I(X;Yi|Y1, Z1, . . . , Yi−1, Zi−1) + I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi)

≤O(log logn) +O(log q) + 22qpoly(logn)
n(log n)3 ,

where the last inequality follows from Lemma 10.
Again by the chain rule of mutual information, we have

I(X; (Y1, Z1, . . . , Yq, Zq))

=
q∑

i=1
I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)

≤ q(O(log logn) +O(log q) + 22qpoly(logn)
n(log n)3). ◀

4 Conclusion

In this paper, we study the power of SAT oracles in the context of approximate model
counting and show a lower bound of Ω̃(logn) on the number of oracle calls. This is in
contrast to other settings where a SAT oracle is provably more powerful than an NP oracle.
In fact, we prove that even with a much more powerful oracle (namely SAT-Sample oracle),
the number of queries needed to approximately count the number of satisfying assignments
of a Boolean formula is Ω̃(logn).

References
1 Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S Meel, and Prateek Saxena. Quantitative

verification of neural networks and its security applications. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 1249–1264, 2019.

2 Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of NP-witnesses using
an NP-oracle. Information and Computation, 163(2):510–526, 2000.

3 Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power
of conditional samples in distribution testing. SIAM J. Comput., 45(4):1261–1296, 2016.
doi:10.1137/140964199.

4 Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Algorithmic improvements in
approximate counting for probabilistic inference: From linear to logarithmic sat calls. Technical
report, Rice University, 2016.

5 Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Company, 1989.

6 Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.
7 Remi Delannoy and Kuldeep S Meel. On almost-uniform generation of SAT solutions: The

power of 3-wise independent hashing. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 1–10, 2022.

8 Leonardo Duenas-Osorio, Kuldeep Meel, Roger Paredes, and Moshe Vardi. Counting-based
reliability estimation for power-transmission grids. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31(1), 2017.

9 Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: A new approach
for analyzing privacy properties. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10, 2014.

https://doi.org/10.1137/140964199

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:17

10 Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for
obtaining good bounds. In AAAI, volume 10, pages 1597538–1597548, 2006.

11 Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.

12 Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302,
1996.

13 Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted
model counting. In AAAI, volume 5, pages 475–481, 2005.

14 Jonathan Scarlett and Volkan Cevher. An introductory guide to Fano’s inequality with
applications in statistical estimation. arXiv preprint, 2019. arXiv:1901.00555.

15 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–Hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

16 Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 118–126, 1983.

17 Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

18 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pages 222–227.
IEEE Computer Society, 1977.

A Proof of Lemma 5

Consider any general SAT-Sample counter, T . We will show that there exists a
semi-oblivious counter that performs similarly. Given a sequence of query-sample
pairs {(A1, s1), . . . , (Ai−1, si−1)}, we say the query Ai is a good strategy by T (given
{(A1, s1), . . . , (Ai−1, si−1)}) if the counter T can return the correct output by fixing
the next query to Ai. It suffices to show that, given a sequence of query-sample
pairs {(A1, s1), . . . , (Ai−1, si−1)}, if Ai is a good strategy then any A′

i is also a good
strategy if A′

i ∩ {s1, . . . , si−1} = Ai ∩ {s1, . . . , si−1} and |A′
i ∩ A| = |Ai ∩ A| for atoms

A ∈ At(A1, . . . , Ai−1). This means that to fix the next query, all it requires to fix the
intersection size with each atom A ∈ At(A1, . . . , Ai) and a subset of {s1, . . . , si−1} (to be
included in next query). We prove it in the following claim.

▷ Claim 11. Suppose Ai is a good strategy for {(A1, s1), . . . , (Ai−1, si−1)}. Consider
A′

i such that A′
i ∩ {s1, . . . , si−1} = Ai ∩ {s1, . . . , si−1} and |A′

i ∩ A| = |Ai ∩ A| for atoms
A ∈ At(A1, . . . , Ai−1). Then A′

i is also a good strategy for {(A1, s1), . . . , (Ai−1, si−1)}.

Proof. We denote by SN the symmetric group acting on a set of size N . Any σ ∈ SN can
be thought of acting on any set of size N (by thinking the elements of the set as numbered
1, . . . , N and σ acting on the set [N]). For any element x in the set, we will denote by σ(x)
the element after the action of σ. For any σ ∈ SN and set A (with |A| = N) we denote by
σ(A) the following set σ(A) := {σ(x) | x ∈ A}.

Let σ ∈ S2n be a permutation acting on the set {T, F}n. For any ϕ observe that
|sol(ϕ)| = |σ(sol(ϕ))|. Since any counter estimates |sol(ϕ)| only, we observe that if Ai

is a good strategy for {(A1, s1), . . . , (Ai−1, si−1)} then σ(Ai) is also a good strategy for
{(σ(A1), σ(s1)), . . . , (σ(Ai−1), σ(si−1)} for any σ : {T, F}n → {T, F}n that preserves the
atoms At(A1, . . . , Ai−1) and the elements {s1, . . . , si−1}.

Since |A′
i ∩ A| = |Ai ∩ A| for atoms A ∈ At(A1, . . . , Ai−1) and A′

i ∩ {s1, . . . , si−1} =
Ai ∩ {s1, . . . , si−1}, there exists a σ such that σ(Aj) = Aj , σ(sj) = sj for all j ≤ i − 1
and also σ(Ai) = A′

i. By our earlier observation, A′
i is also a good strategy for

{(A1, s1), . . . , (Ai−1, si−1)}. ◁

ICALP 2023

https://arxiv.org/abs/1901.00555

	1 Introduction
	1.1 Technical Overview

	2 Notations and Preliminaries
	3 Lower Bound on the number of queries to {SAT-Sample} oracle
	3.1 Semi-oblivious counter
	3.2 Hard instance
	3.2.1 Properties of the hard instance

	3.3 Proof of Theorem 1.2
	3.3.1 Proof of Lemma 9

	4 Conclusion
	A Proof of Lemma 5

