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Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode –
using first-order transductions – arbitrarily long linear orders in graphs from Ĉ. It is known that
nowhere dense graph classes are monadically stable; these include classes of bounded maximum
degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a
property expressed in purely model-theoretic terms that is also suited for capturing structure in
dense graphs.

In this work we provide a characterization of monadic stability in terms of the Flipper game: a
game on a graph played by Flipper, who in each round can complement the edge relation between
any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball
of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes
of graphs (Grohe, Kreutzer, and Siebertz, J. ACM ’17).

We give two different proofs of our main result. The first proof is based on tools borrowed from
model theory, and it exposes an additional property of monadically stable graph classes that is
close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for
graph classes coincides with monadic stability of existential formulas with two free variables, and we
provide another combinatorial characterization of monadic stability via forbidden patterns. The
second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz,
and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves
in a winning strategy.
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1 Introduction

Monadic stability is a notion of logical tameness for classes of structures. Introduced by
Baldwin and Shelah [3] in the context of model theory1, it has recently attracted attention
in the field of structural graph theory. We recall the definition below. One of the main
contributions of this paper is to provide purely combinatorial characterizations of monadically
stable classes of graphs via games and via forbidden patterns. Our game characterization is
effective, and can be employed in algorithmic applications, as we explain later.

In this paper we focus on (undirected, simple) graphs, rather than arbitrary structures.
A graph is modelled as a relational structure with one symmetric binary relation signifying
adjacency. By a class of graphs we mean any set of graphs. For a class of graphs C, a unary
expansion of C is any class Ĉ of structures such that each Ĝ ∈ Ĉ is obtained from some graph
in G ∈ C by adding some unary predicates. Thus, the elements of Ĉ can be regarded as
vertex-colored graphs from C. A class of graphs C is called monadically stable if one cannot
interpret, using a fixed formula φ(x̄, ȳ) of first-order logic, arbitrarily long linear orders in
any unary expansion Ĉ of C. More precisely, for every unary expansion Ĉ and formula φ(x̄, ȳ)
with |x̄| = |ȳ| (over the signature of Ĉ) there is a bound ℓ such that there is no structure
Ĝ ∈ Ĉ and tuples ā1, . . . , āℓ ∈ V (Ĝ)x̄ such that Ĝ |= φ(āi, āj) if and only if i ⩽ j. More
generally, C is monadically dependent (or monadically NIP) if one cannot interpret, using a
fixed formula φ(x̄, ȳ) of first-order logic, all finite graphs in any unary expansion of C. Thus,
from the model-theoretic perspective, the intuition is that being monadically dependent is
being non-trivially constrained: for any fixed interpretation, one cannot interpret arbitrarily
complicated structures in vertex-colored graphs from the considered class. On the other
hand, graphs from monadically stable classes are “orderless”, in the sense that one cannot
totally order any large part of them using a fixed first-order formula.

Baldwin and Shelah proved that in the definitions, one can alternatively consider only
formulas φ(x, y) with just a pair of free variables, instead of a pair of tuples of variables [3,
Lemma 8.1.3, Theorem 8.1.8]. Moreover, they proved that monadically stable theories
are tree decomposable [3, Theorem 4.2.17], providing a structure theorem for such theories,
although one of a very infinitary nature. A more explicit, combinatorial structure theorem
for monadically stable and monadically dependent is desirable for obtaining algorithmic
results for the considered classes, as we discuss later.

On the other hand, Braunfeld and Laskowski [6] very recently proved that for hereditary
classes of structures C that are not monadically stable or monadically dependent, the required
obstructions (total orders or arbitrary graphs) can be exhibited by a boolean combination of
existential formulas φ(x̄, ȳ) in the signature of C, without any additional unary predicates.
Among other things, this shows that for hereditary classes of structures, the notions of
monadic stability coincides with the more well-known notion of stability, and similarly,
monadic dependence coincides with dependence (NIP). Furthermore, since the formulas are
existential, this result can be seen as a combinatorial non-structure theorem for hereditary
classes that are not monadically stable (resp. monadically dependent). Still, they do not
provide explicit structural results for classes that are monadically stable or monadically
dependent.

1 Formally, Baldwin and Shelah [3], as well as Braunfeld and Laskowski [6], study monadically dependent
and monadically stable theories, rather than classes of structures. Some of their results transfer to the
more general setting of monadically dependent/stable classes of structures.
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Explicit, combinatorial and algorithmic structural results for monadically dependent
and monadically stable classes are not only desired, but also expected to exist, based on
the known examples of such classes that have been studied in graph theory and computer
science. As observed by Adler and Adler [2] based on the work of Podewski and Ziegler [16],
all nowhere dense graph classes are monadically stable. A class C is nowhere dense if for
every fixed r ∈ N, one cannot find r-subdivisions of arbitrarily large cliques as subgraphs of
graphs in C. In particular, every class excluding a fixed topological minor (so also the class of
planar graphs, or the class of subcubic graphs) is monadically stable. In fact, it follows from
the results of Adler and Adler [2] and of Dvořák [10] that monadic stability and monadic
dependence are both equivalent to nowhere denseness when considering only sparse classes
of graphs (formally, classes of graphs that excludes a fixed biclique as a subgraph). However,
monadic stability and monadic dependence are not bound to sparsity; they can be used to
understand and quantify structure in dense graphs as well.

The pinnacle of the theory of nowhere dense graph classes is the result of Grohe, Kreutzer,
and Siebertz [14] that the model-checking problem for first-order logic is fixed-parameter
tractable on any nowhere dense class of graphs.

▶ Theorem 1 ([14]). For every nowhere dense graph class C, first-order sentence φ, and
ε > 0, there exists an algorithm that given an n-vertex graph G ∈ C decides whether G |= φ

in time OC,φ,ε(n1+ε).

Here, and in the following, the notation Op(·) hides multiplicative factors that depend
only on the the parameter p.

Monadically dependent classes include all monadically stable classes, in particular all
nowhere dense classes, but also for instance all classes of bounded twin-width [5]. An
analogous result, with 1 + ε replaced by 3, holds for all classes C of ordered graphs2 of
bounded twin-width [4].

In light of the discussion above, monadic stability and monadic dependence seem to be
well-behaved generalizations of nowhere denseness that are defined in purely model-theoretic
terms; hence these concepts may be even better suited for treating the model-checking
problem for first-order logic. This motivated the following conjecture [1], which has been a
subject of intensive study over the last few years3.

▶ Conjecture 2. Let C be a monadically dependent graph class. There exists a constant
c ∈ N depending only on C and, for every first-order sentence φ, an algorithm that, given a
n-vertex graph G ∈ C, decides whether G |= φ in time OC,φ(nc).

Conjecture 2 is not even resolved for monadically stable classes. To approach this conjec-
ture, it is imperative to obtain explicit, combinatorial structure theorems for monadically
stable and in monadically dependent graph classes, with a particular focus on finding analogs
of the tools used in the proof of Theorem 1. Our work contributes in this direction. We
provide certain recursive tree-like decompositions for graphs in monadically stable graph
classes, which can be most intuitively explained in terms of games. On the one hand, our
decompositions generalize a similar result for nowhere dense classes, recalled below. On the
other hand, they are remininiscent of the tree decomposability property proved by Baldwin

2 Ordered graphs are graphs equipped with a total order.
3 To the best of our knowledge the conjecture was first explicitly discussed during the open problem

session of the Algorithms, Logic and Structure Workshop in Warwick, in 2016, see [1].
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and Shelah, but are more explicit and finitary in nature. Furthermore, we provide a charac-
terization of monadic stability via forbidden patterns, similar to the known characterization
of nowhere denseness.

Splitter game. The cornerstone of the proof of Theorem 1 is a game-theoretic characteriza-
tion of nowhere denseness, through the Splitter game. This game has a fixed radius parameter
r ∈ N and is played on a graph G between two players, Splitter and Localizer, who make
moves in rounds alternately. In each round, first Splitter chooses any vertex u and removes
it from the graph. Next, Localizer selects any other vertex v, and the game gets restricted to
the subgraph induced by the ball of radius r with center at v. The game ends with Splitter’s
victory when there are no vertices left in the graph.

▶ Theorem 3 ([14]). A class C of graphs is nowhere dense if and only if for every r ∈ N
there exists k ∈ N such that for every G ∈ C, Splitter can win the radius-r Splitter game
on G within k rounds.

Very roughly speaking, Theorem 3 shows that any graph from a nowhere dense class can
be hierarchically decomposed into smaller and smaller parts so that the decomposition has
height bounded by a constant k depending only on the class and the locality parameter r.
This decomposition is used in the algorithm of Theorem 1 to guide model-checking.

Flipper game. In this work we introduce an analog of the Splitter game for monadically
stable graph classes: the Flipper game. Similarly to before, the game is played on a graph G
and there is a fixed radius parameter r ∈ N. There are two players, Flipper and Localizer,
which make moves in rounds alternately. In each round, first Flipper selects any pair of
vertex subsets A,B (possibly non-disjoint) and applies the flip between A and B: inverts
the adjacency between any pair (a, b) of vertices with a ∈ A and b ∈ B. Then Localizer, just
as in the Splitter game, selects a ball of radius r, and the game is restricted to the subgraph
induced by this ball. The game is won by Flipper once there is only one vertex left. See
Figure 1 for an illustration.

flip loc. flip

Figure 1 An example play of the radius-1 Flipper game. Taking turns, Flipper flips the red set
with the blue set and Localizer restricts to the radius-1 ball centered at the green vertex.

We remark that the Flipper game is a radius-constrained variant of the natural game
for graph parameter SC-depth, which is functionally equivalent to shrubdepth, in the same
way that the Splitter game is a radius-constrained variant of the natural game for treedepth.
SC-depth and shrubdepth were introduced and studied by Ganian et al. in [13, 12].

Our main result is the following analog of Theorem 3 for monadically stable classes.

▶ Theorem 4. A class C of graphs is monadically stable if and only if for every r ∈ N there
exists k ∈ N such that for every graph G ∈ C, Flipper can win the radius-r Flipper game
on G within k rounds.

Let us compare Theorem 4 with another recent characterization of monadic stability,
proposed by Gajarský and Kreutzer, and proved by Dreier, Mählmann, Siebertz, and
Toruńczyk [9], through the notion of flip-flatness. This notion is an analog of uniform
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quasi-wideness, introduced by Dawar [7]. Without going into technical details, a class of
graphs C is uniformly quasi-wide if for any graph G ∈ C and any large enough set of vertices A
in G, one can find many vertices in A that are pairwise far from each other after the removal
of a constant number of vertices from G. As proved by Nešetřil and Ossona de Mendez [15],
a class of graphs is uniformly quasi-wide if and only if it is nowhere dense. The definition
of flip-flatness is obtained from uniform quasi-wideness similarly as the Flipper game is
obtained from the Splitter game: by replacing the concept of deleting a vertex with applying
a flip; see Definition 7 for a formal definition. The fact that monadic stability is equivalent to
flip-flatness (as proved in [9]) and to the existence of a short winning strategy in the Flipper
game (as proved in this paper) suggests the following: the structural theory of monadically
stable graph classes mirrors that of nowhere dense graph classes, where the flip operation is
the analog of the operation of removing a vertex.

We give two very different proofs of Theorem 4. The first proof is based on elementary
model-theoretic techniques, and it provides new insight into the properties of monadically
stable graph classes. As a side effect, it gives a new (though non-algorithmic) proof of the
main result of [9]: equivalence of monadic stability and flip-flatness. On the other hand, the
second proof relies on the combinatorial techniques developed in [9]. It has the advantage
of being effective, and provides an efficient algorithm for computing Flipper’s moves in a
winning strategy.

Forbidden patterns. A class C of graphs is nowhere dense if for every fixed r ∈ N the exact
r-subdivision of some clique Kn is not a subgraph of any G ∈ C, which can be understood
as a forbidden pattern characterization. Our model-theoretic proof of Theorem 4 uncovers
a similar characterization of monadically stable classes, providing a strong combinatorial
non-structure theorem. We prove that a class C of graphs is monadically stable if and only
if there exists a fixed ℓ ∈ N such that all graphs from C exclude a ladder of length ℓ as a
semi-induced subgraph (see Section 2 for a formal definition), and C is pattern-free. A class
C of graphs is not pattern-free if for some r ⩾ 1, k ∈ N the exact r-subdivision of every
clique Kn can be obtained from an induced subgraph H of some G ∈ C by first partitioning
V (H) into k parts, and then either flipping the edges, removing all the edges, or inserting all
the edges between some pairs of the partition. Equivalently C is not pattern-free if, using
a quantifier-free formula φ(x, y), one can encode (more formally transduce) the class of all
r-subdivided cliques for a fixed r ⩾ 1.

Model-theoretic proof. The following statement lists properties equivalent to monadic
stability uncovered in our model-theoretic proof of Theorem 4. Each condition is shortly
explained below the theorem and formally defined in the full version of the paper [11].

▶ Theorem 5. Let C be a class of graphs. Then the following conditions are equivalent:
1. C is monadically stable.
2. C has a stable edge relation and is monadically dependent with respect to existential

formulas φ(x, y) with two free variables.
3. C has a stable edge relation and is pattern-free.
4. For every r ∈ N every model G of the theory of C, every elementary extension H of G,

and every vertex v ∈ V (H) − V (G), there is a finite set S ⊆ V (G) that r-separates v
from G.

5. For every r ∈ N there is k ∈ N such that Flipper wins the Flipper Game with qf-definable
separation of radius r on every G ∈ C in at most k rounds.

ICALP 2023
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6. For every r ∈ N there is k ∈ N such that Flipper wins the Flipper game of radius r on
every G ∈ C in at most k rounds.

7. C is flip-flat.

Note that Theorem 4 is the equivalence (1)↔(6). Let us give a brief overview of the
presented conditions.

Conditions (1) and (2), respectively, are monadic stability and a weak form of existential
monadic stability. Recall that Baldwin and Shelah proved that it is sufficient to consider
formulas φ(x, y) with two free variables in the definition of monadic stability (instead of
formulas φ(x̄, ȳ)). Braunfeld and Laskowski proved that it is sufficient to consider boolean
combinations of existential formulas φ(x̄, ȳ) that do not involve additional unary predicates.
The condition (2) lies somewhere in between: it implies that it is sufficient to consider
existential formulas φ(x, y) with two variables, possibly involving additional unary predicates.
In particular, it implies the result of Baldwin and Shelah (in the case of graph classes)
and is incomparable with the result of Braunfeld and Laskowski. Our proof uses different
techniques.

Condition (3) concerns the combinatorial notion of pattern-freeness discussed earlier.
Condition (4) is phrased in the language of model theory and serves a key role in our

proof. It resembles a fundamental property called “definability of types”, and in essence
it says the following: whenever working with a model G of the theory of C, every element
of any elementary extension of G can be robustly “controlled” by a finite subset of G. We
believe that the new notion of r-separation used here is of independent interest. It refers to
non-existence of short paths after applying some flips governed by S.

Conditions (5) and (6) assert the existence of a short winning strategy in two variants of
the Flipper game.

Finally, condition (7) is the notion of flip-flatness, whose equivalence with monadic
stability was proved by Dreier et al. [9].

Algorithmic proof. We also give a purely combinatorial proof of the forward implication of
Theorem 4, which in particular provides a way to efficiently compute Flipper’s moves in a
winning strategy. Formally, we show the following.

▶ Theorem 6. Let C be a monadically stable class of graphs. Then for every radius r ∈ N
there exist k ∈ N and a Flipper strategy flip⋆ such that the following holds:

When playing according to flip⋆ in the Flipper game of radius r on any graph G ∈ C,
Flipper wins within at most k rounds.
Each move of flip⋆ on an n-vertex graph G ∈ C can be computed in time OC,r(n2).

The main idea behind the proof of Theorem 6 is to rely on the result of Dreier et al. that
monadically stable graph classes are flip-flat [9]. Using the combinatorial tools developed
in [9], we strengthen this property: we prove that the set of flips F whose application uncovers
a large scattered set Y (a set of vertices that are pairwise far from each other) can be selected
in a somewhat canonical way, so that knowing any 5-tuple of vertices in Y is enough to
uniquely determine F . We can then use such strengthened flip-flatness to provide a winning
strategy for Flipper; this roughly resembles the Splitter’s strategy used by Grohe et al. in
their proof of Theorem 3, which in turn relies on uniform quasi-wideness.

Theorem 6, the algorithmic version of Theorem 4, is the key to algorithmic applications
of the Flipper game. In particular, it was very recently used by Dreier, Mählmann, and
Siebertz [8] to approach the first-order model checking problem on monadically stable graph
classes and prove that it is fixed-parameter tractable on structurally nowhere dense classes,
an important subclass of monadically stable classes.



J. Gajarský et al. 128:7

Organization. After introducing monadic stability and the Flipper game in the next section,
we give an outline of the model theoretic proof (Section 3) and the algorithmic proof
(Section 4). We refer to the appended full version for details.

2 Preliminaries

All graphs in this paper are simple and loopless but not necessarily finite. For a vertex v of
a graph G, we write N(v) for the (open) neighborhood of v in G; so N(v) := {u ∈ V (G) |
uv ∈ E(G)}. For two sets X,Y ⊆ V (G) the bipartite graph semi-induced by X and Y

in G, denoted G[X,Y ], is the bipartite graph with parts X and Y , and edges uv for u ∈ X,
v ∈ Y with uv ∈ E(G). For vertices a, b ∈ V (G), an (a, b)-path is a path with ends a and b.
Similarly, for sets A,B ⊆ V (G), an (A,B)-path is a path where one end is in A and the other
end is in B.

Model theory. We work with first-order logic over a fixed signature Σ that consists of
(possibly infinitely many) constant symbols and of relation symbols. A model is a Σ-structure,
and is typically denoted M,N, etc. We usually do not distinguish between a model and
its domain, when writing, for instance, m ∈ M or f : M → X, or X ⊆ M. A graph G is
viewed as a model over the signature consisting of one binary relation denoted E, indicating
adjacency between vertices.

A theory T (over Σ) is a set of Σ-sentences. A model of a theory T is a model M such
that M |= φ for all φ ∈ T . When a theory has a model, it is said to be consistent. The
theory of a class of Σ-structures C is the set of all Σ-sentences φ such that M |= φ for all
M ∈ C. The elementary closure C of C is the set of all models M of the theory of C. Thus
C ⊆ C, and C and C have equal theories.

Let M and N be two structures with M ⊆ N, that is, the domain of M is contained in
the domain of N. Then N is an elementary extension of M, written M ≺ N, if for every
formula φ(x̄) (without parameters) and tuple m̄ ∈ Mx̄ we have M |= φ(m̄) if and only if
N |= φ(m̄). We also say that M is an elementary substructure of N.

Stability and dependence. A formula φ(x̄; ȳ) is stable in a class C of structures if there exists
k ∈ N such that for every M ∈ C, there are no sequences ā1, . . . āk ∈ Mx̄ and b̄1, . . . , b̄k ∈ Mȳ

such that M |= φ(āi; b̄j) if and only if i < j for 1 ⩽ i, j ⩽ k. We say that a class C of graphs
has a stable edge relation if the formula E(x; y) is stable in C. Equivalently, C excludes some
ladder as a semi-induced subgraph, where a ladder (often called also half-graph) of order k is
the graph with vertices a1, . . . , ak, b1, . . . , bk and edges aibj for all 1 ⩽ i < j ⩽ k. Note that
replacing < by ⩽ in the above definitions does not change them.

A formula φ(x̄; ȳ) is dependent, or NIP (standing for “not the independence property”) in
a class C if there exists k ∈ N such that for every M ∈ C, there are no tuples ā1, . . . , āk ∈ Mx̄

and b̄J ∈ Mȳ for J ⊆ {1, . . . , k} such that M |= φ(āi; b̄J) if and only if i ∈ J for 1 ⩽ i ⩽ k

and J ⊆ {1, . . . , k}. Observe that a formula which is stable is also dependent. A class C is
stable (resp. dependent) if every formula φ(x̄; ȳ) is stable (resp. dependent) in C.

Let Σ be a signature and let Σ̂ be a signature extending Σ by (possibly infinitely many)
unary relation symbols and constant symbols. A Σ̂-structure M̂ is a lift of a Σ-structure M
if M is obtained from M̂ by forgetting the symbols from Σ̂ − Σ. A class of Σ̂-structures Ĉ is a
unary expansion of a class of Σ-structures C if every structure M̂ ∈ Ĉ is a lift of some structure
M ∈ C. A class C of structures is monadically stable if every unary expansion Ĉ of C is stable.
Similarly, C is monadically dependent (or monadically NIP) if every unary expansion Ĉ of C is

ICALP 2023
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dependent. A single structure M is monadically stable (resp. monadically dependent) if the
class {M} is. Note that a class which is monadically stable (resp. monadically dependent) is
stable (resp. dependent).

Flips. An atomic flip is an operation F specified by a pair (A,B) of (possibly intersecting)
vertex sets, which complements the adjacency relation between the sets A and B in a given
graph G. Formally, for a graph G, the graph obtained from G by applying the atomic flip F
is the graph denoted G⊕ F with vertex set V (G), where, for distinct vertices u, v in V (G),

uv ∈ E(G⊕ F) ⇐⇒

{
uv /∈ E(G), if (u, v) ∈ (A×B) ∪ (B ×A);
uv ∈ E(G), otherwise.

A set of flips {F1, . . . ,Fk} defines an operation F that, given a graph G, results in the
graph G ⊕ F := G ⊕ F1 ⊕ · · · ⊕ Fk. One can easily show that the order in which we carry
out the atomic flips does not matter and that it would be useless to consider multisets.
Abusing terminology, we will often just say that the operation F is a set of flips, and write
F = {F1, . . . ,Fk}.

Let F be a family of vertex sets. Then an F -flip is a set of flips of the form {F1, . . . ,Fk},
where each flip Fi is a pair (A,B) with A,B ∈ F . Note that there are at most 2|F|2 different
F-flips. In our context, the family F will usually be a partition of the vertex set of some
graph G. An F-flip of a graph G, where F is a family of subsets of V (G), is a graph G′

obtained from G after applying an F-flip. Whenever we speak about an F-flip, it will be
always clear from the context whether we mean a graph or the family of flips used to obtain it.

Flipper game. Fix a radius r. The Flipper game (or the Flipper/Localizer game) of radius
r is played by two players, Flipper and Localizer, on a graph G as follows. At the beginning,
set G0 := G. In the ith round, for i > 0, the game proceeds as follows.

If |Gi−1| = 1 then Flipper wins.
Localizer chooses a vertex v in Gi−1 and we set Gloc

i−1 to be the subgraph of Gi−1 induced
by the ball Br(v) of radius r around v in Gi−1.
Flipper chooses an atomic flip F and applies it to produce Gi, i.e. Gi = Gloc

i−1 ⊕ F.

Variants. It will be convenient to work with different variants of the Flipper game.
Batched flipping: One can consider a variant of the Flipper game where Flipper in the ith
move applies a set F of flips to Gloc

i−1 to obtain Gi, where |F | ⩽ g(i) for some function
g : N → N. This does not change the game significantly – if Flipper wins this extended
game in m rounds, then Flipper wins the standard Flipper game in

∑m
i=1 g(i) rounds.

Localization modes: In the definition above, the graph shrinks at each step, and when
localizing, distances are computed by only taking into account vertices of the current
(shrinked) graph. For this reason, we sometimes call it the shrinking variant, or we say
that the localization is shrinking. In the confining variant, Localizer still remains confined
within short distance to his past moves, however Flipper always produces flips of the
original graph and distances are measured with respect to the full vertex set.
Definability of flips: We also consider the variant where Flipper is restricted to choosing
flips defined using quantifier-free formulas with parameters from the original graph, which
we call qf-definable flips.
Separation: Finally, we will also use a variant where distances are measured according to
the later defined separation metric capturing all possible flips that can be performed over
a given (definable) partition of the vertex set.
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It will turn out that all these variants are equivalent; for more discussion and formal
proofs, see the full version [11]. In particular we will work with the confining Flipper game
with qf-definable separation, whose formal definition is deferred to Section 3.

Flip-flatness. The following notion of flip-flatness was introduced in [9] and characterizes
monadic stability for graph classes. Given a graph G, a set of vertices A ⊆ V (G) is called
distance-r independent if all vertices in A are pairwise at distance greater than r in G.

▶ Definition 7 (Flip-flatness). A class of graphs C is flip-flat if for every r ∈ N there exists a
function Nr : N → N and a constant sr ∈ N such that for all m ∈ N, G ∈ C, and A ⊆ V (G)
with |A| ⩾ Nr(m), there exists a set F of flips with |F | ⩽ sr and B ⊆ A with |B| ⩾ m such
that B is distance-r independent in G⊕ F .

▶ Theorem 8 ([9]). A class of graphs is monadically stable if and only if it is flip-flat.

3 Outline of the model-theoretic proof

We prove the implications between the conditions of Theorem 5 as depicted in Figure 2.

(1)
mon. stable

(2)
stable edge relation

+ ex. mon. dependent

(3)
stable edge relation

+ pattern-free

(4)
separable

(5)
Flipper wins with

qf-definable separation
and confining localization

(6)
Flipper wins

(7)
flip-flat

trivial ♣ ♣ Sec. 3.3

Sec. 3.2

♣

♣

♣

[9]

Figure 2 The implications that constitute Theorem 5. Implications marked with ♣ are proved in
the full version of the paper.

The implication (1)→(2) is trivial. We prove (2)→(3) by contraposition: using the
forbidden patterns, we derive the independence property for some existential formula. The
implication (3)→(4) is the core part of our proof; due to space restrictions we will provide
a sketch of the implication (1)→(4) (which requires fewer definitions) in Section 3.2. The
implication (4)→(5) is proved by proposing a strategy with qf-definable separation in the
confining game for Flipper and using compactness combined with (4) to argue that it leads
to a victory within a bounded number of rounds. The proof is sketched in Section 3.3.
We prove the implication (5)→(7) by (essentially) providing a strategy for Localizer in the
confining game with qf-definable separation when the class is not flip-flat. Then we rely on
the implication (7)→(1) from [9] to close the circle of implications; this proves the equivalence
of (1)-(7) with the exception of (6). We remark that (7)→(1) is the easy implication of [9],
hence our reasoning can also serve as an alternative proof of the flip-flatness characterization
given in [9].

To put the Flipper game into the picture, we separately prove the implications (5)→(6)
and (6)→(2). The implication (5)→(6) relies on a conceptually easy, but technically not-
so-trivial translation of the strategies. In the implication (6)→(2) we use obstructions to
existential monadic stability to give a strategy for Localizer in the Flipper game that enables
her to endure for arbitrarily long.
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3.1 Separation
The crucial new ingredient in our model-theoretic proof is the notion of r-separation. The
definitions provided here are streamlined compared to the full version due to space restrictions.

Let G be a graph, and let S ⊆ V (G) be a finite set of vertices. Consider the equivalence
relation ∼S on V (G), in which two vertices a, b are equivalent if either a, b ∈ S and a = b,
or a, b /∈ S and N(a) ∩ S = N(b) ∩ S. An S-class is an equivalence class of ∼S . In
other words, it is a set of vertices either of the form {s} for some s ∈ S, or of the form
{v ∈ V (G) − S | N(v) ∩ S = T} for some T ⊆ S. The S-class of a vertex v ∈ V (G) is the
unique S-class which contains v. Hence, V (G) is partitioned into S-classes, and the number
of S-classes is at most |S| + 2|S|. An S-flip of a graph G is an F -flip G′ of G, where F is the
partition of V (G) into S-classes.

▶ Definition 9 (r-separation). Let G be a graph, S a finite subset of vertices of G. We say
that vertices a and b of G are r-separated over S, denoted by4 a |⌣

r

S
b, if there exists a S-flip

H of G such that distH(a, b) > r.

For any r ∈ N and any graph G, finite subset S of V (G), and sets A,B ∈ V (G), we write
A |⌣

r

S
B if there exists an S-flip H of G such that H has no (A,B)-path of length at most r.

Note that A |⌣
r

S
B is a stronger condition than a |⌣

r

S
b for all a ∈ A and b ∈ B, since we

require that the same S-flip H is used for all a ∈ A and b ∈ B. We write ̸ |⌣
r

S
to denote the

negation of the relation |⌣
r

S
. If A ̸ |⌣

r

S
B we say that A and B are r-connected over S. If A

consists of a single vertex a then we write a |⌣
r

S
B for A |⌣

r

S
B.

We now formally introduce the confining Flipper game with qf-definable separation; the
most important difference is that we evaluate distances in the original graph G: the localizing
ball is always defined with respect to the distance induced by |⌣

r

S
in G, where S is the set

of vertices played by Flipper.
Fix a radius r ∈ N. The game of radius r is played on a graph G as follows. Let

A0 = V (G) and S0 = ∅. For k = 1, 2, . . . , the kth round proceeds as follows.
If |Ak−1| = 1, then Flipper wins.
Otherwise, Localizer picks ck ∈ Ak−1 and we set

Ak := Ak−1 −
{
w

∣∣∣ w r

|⌣
Sk−1

ck

}
(where separation is evaluated in the graph G).
Then Flipper picks sk ∈ V (G) and we set Sk := Sk−1 ∪ {sk}, and proceed to the next
round.

As previously, we may allow Flipper to add g(i) vertices to Si−1 in the ith round, where
g : N → N is some fixed function. Again, if Flipper can win this new game in m rounds, then
Flipper can also win the original game in

∑m
i=1 g(i) rounds.

In the full paper [11, Lemma 3.2], we prove that a winning strategy for Flipper in the
above game can be adapted by to win in the original Flipper game. The idea is that Flipper
carries out all possible S-flips and then flips back to (an induced subgraph of) the original
graph.

4 The symbol |⌣ denotes forking independence in stable theories. Its use here is justified by the relationship
of r-separation and forking independence in monadically stable theories, which is briefly explained in
the full version of the paper.
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▶ Lemma 10. There exists a function f : N → N such that for every radius r and every
graph G the following holds. If Flipper wins the confining game with qf-definable separation
of radius 2r on G in at most k rounds, then Flipper wins the shrinking game with arbitrary
flips of radius r on G in at most f(k) rounds.

Note that the converse direction, allowing to translate a winning strategy of Flipper from
the shrinking to the confining variant, is not immediately clear. However, the equivalence of
the two games ultimately follows from Theorem 5.

3.2 Finite separators in monadically stable models
In this section, we provide our key model-theoretic characterization of monadically stable
graphs. We will use M to denote a graph that is typically infinite.

▶ Definition 11. A graph M is r-separable if for every elementary extension N of M, and
every v ∈ N − M, there is a finite set S ⊆ M such that v |⌣

r

S
M in N.

The main result of this section is the following theorem.

▶ Theorem 12. Every monadically stable graph M is r-separable, for every r ∈ N.

The proof will rely on Lemma 13 and Lemma 14 below. To state them, we will need one
more definition. Let M be a graph and A,B ⊆ M. We say that a, a′ ∈ A have the same
E-type over B if N(a) ∩B = N(a′) ∩B; this is clearly an equivalence relation. We denote
the set of E-types of A over B by TypesE(A/B).

▶ Lemma 13. Fix r ∈ N. Let M be a monadically stable graph, let N be an elementary
extension of M, and let v ∈ N be such that the r-ball Br(v) around v in N is disjoint from M.
Then TypesE(Br(v)/M) is finite.

We now briefly outline the idea behind the proof of Lemma 13. It is a folklore result that
in an infinite bipartite graph with sides L and R there is an infinite induced matching, or
an infinite induced co-matching, or an infinite induced ladder, or TypesE(L/R) is finite.
Assume towards a contradiction that the last option (with L = Br(v) and R = M) does not
hold. Since we work with a monadically stable graph, we cannot have an infinite ladder.
Therefore, there is an infinite induced matching or co-matching between Br(v) and M. By
symmetry, we can assume the former. From this we obtain, for any k, vertices a1, . . . , ak

in M and b1, . . . , bk in Br(v) ⊆ N − M such that the corresponding pairs ai, bi form a
semi-induced matching and any bi, bj are connected by a path of length at most 2r that
passes through v. Let H denote the subgraph of N induced by b1, . . . , bk together with the
paths connecting them (we pick one such path for each pair). Using the fact that M is an
elementary substructure of N, we can then show that there exist as many disjoint copies
of H in M as we want, and all these copies behave in the same way towards a1, . . . ak as the
original H. Consequently, we can for each pair ai, aj use one copy of H to create a short
path between ai and aj , and all these paths can be defined using a single first-order formula,
which in turn defines a subdivided clique with k principal vertices. Since k is arbitrary, this
means that M is not monadically dependent, as desired.

▶ Lemma 14. For any graphs M and N with M ≺ N and such that N is monadically stable
and for any set U ⊆ N − M such that TypesE(U/M) is finite, there exists a finite set S ⊆ M
and an S-flip which:

1-separates U from M; and
does not flip the S-class T := {v ∈ N : ∀s ∈ S.¬E(v, s)} with any other S-class (including
itself), as long as T ∩ U is nonempty.
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The idea behind the proof of Lemma 14 can be briefly summarized as follows. Roughly
speaking, we aim to find a finite S ⊆ M such that if a, a′ ∈ U are in the same S-class,
then N(a) ∩ M = N(a′) ∩ M, and analogously, if b, b′ ∈ M are in the same S-class, then
N(a) ∩U = N(a′) ∩U . Then we can use these properties to suitably flip between S-classes to
obtain the result. First we note that since TypesE(U/M) is finite, we have that TypesE(M/U)
is also finite, and so by taking one representative from each class of TypesE(M/U) we find
a finite subset SM ⊆ M such that any two elements in the same SM-class have the same
neighborhood in M. Clearly, by the same idea we could find a finite subset set SU of U
such that vertices in the same SU -class have the same neighborhood in U . However, we
need our set SU to be contained in M. To achieve this, we rely on a fundamental fact about
stable formulas known as definability of types, which allows us to show that sets N(u) ∩ M
(where u ∈ U) can be defined from within M by looking at Su-classes, where Su is a finite
subset of M. Since there are only finitely many types of vertices in U with respect to the
adjacency towards M, we can list them as u1, . . . , uk and set SU := ∪iSu. We can then take
S = SM ∪ SU . We remark that the set S defined in the actual proof of Lemma 14 contains
more vertices; we refer to the full version of the paper for details.

An inductive proof of Theorem 12 now follows by putting together Lemmas 13 and 14.

Proof sketch of Theorem 12. We proceed by induction on r. Let M be a monadically
stable graph and let N be an elementary extension of M. For every v ∈ N − M, we have to
find a finite set S ⊆ M such that v |⌣

r

S
M in N. The base case r = 0 is immediate as we

may take S to be ∅ since v /∈ M. In the inductive step, assume that the result is proved
for the distance r ∈ N. Stated differently, assume there is a finite S ⊆ M and an S-flip N′

of N in which the r-ball around v is disjoint from M. It is easily checked that an S-flip of a
monadically stable graph is monadically stable, and so N′ is monadically stable. Moreover,
one can also show that N′ is an elementary extension of the subgraph of N′ induced by the
domain of M. We can therefore apply Lemma 13 to N′,M and Br

N′(v). By Lemma 13,
TypesE(Br(v)/M) is finite. Now Lemma 14 applied to Br(v) finishes the inductive step and
the proof (we are using the fact that we obtain a set S and an S-flip, which doesn’t flip the
S-class that contains Br−1(v)). ◀

Since monadic stability is preserved in the elementary closure5, we get the following
corollary, proving the implication (1)→(4) in Theorem 5.

▶ Corollary 15. If C is a monadically stable class of graphs and r ∈ N, then every M ∈ C is
r-separable.

3.3 From separability to winning the confining Flipper game
For brevity, in this section we use “Flipper game” to refer to the confining Flipper game with
qf-definable separation.

▶ Theorem 16. Fix r ∈ N, and let C be a class of graphs such that every G ∈ C is r-separable.
Then there exists k ∈ N such that Flipper wins the Flipper game with radius r in k rounds on
every G ∈ C.

In the proof we will use the Tarski-Vaught test, which we now recall.

5 The preservation of monadic stability in the elementary closure is true but not obvious (follows from [6]).
However, in the full version of the paper, we prove the implication (3)→(4) of Theorem 5 and only
require the preservation of edge-stability and pattern-freeness, which we prove easily.
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▶ Theorem 17 (Tarski-Vaught Test). The following conditions are equivalent for any structures
M and N with M ⊆ N.

The structure N is an elementary extension of M.
For every formula φ(y; x̄) and tuple m̄ ∈ Mx̄, if N |= φ(n; m̄) holds for some n ∈ N,
then N |= φ(n′; m̄) holds for some n′ ∈ M.

In the rest of this section we sketch the proof of Theorem 16. Fix an enumeration
φ1, φ2, . . . of all formulas (in the signature of graphs) of the form φ(y, x1, . . . , xℓ), with ℓ ⩾ 0.
We define a strategy of Flipper in any graph G. In the kth round, after Localizer picks
ck ∈ Ak−1, Flipper first sets S := Sk−1 ∪ {ck} and marks ck. Then, for every i = 1, . . . , k,
for the formula φi(y, x̄), Flipper does the following.

For each ā ∈ Sx̄ such that G |= ∃y.φi(y, ā), Flipper marks any vertex b ∈ V (G) such
that G |= φi(b, ā).

We say that any strategy of Flipper with this property is Localizer-complete. The marked
vertices form Flipper response in the kth round, and we set Sk to be the union of Sk−1 and
all the marked vertices. Note that there is a function f : N → N such that |Sk| ⩽ f(k) for all
k ∈ N, regardless of which vertices Localizer picks or which of the formulas ∃y.φi(y, ā) hold.

We prove that there is a number k ∈ N such that when Flipper plays according to any
Localizer-complete strategy on a graph G ∈ C, then he wins in at most k rounds. Assume
that the conclusion of the theorem does not hold. Then, there exists a sequence of graphs
G1, G2, . . . ∈ C, where in Gn Localizer has a strategy ensuring that Flipper does not win for
at least n rounds. We shall now prove that there is some graph G in the elementary closure
of C and a vertex in the graph that survives in the arena indefinitely, when Flipper plays
according to a Localizer-complete strategy. We will then use the r-separability of G to derive
a contradiction.

▷ Claim 18. There exists a graph G ∈ C, a strategy of Localizer, and a Localizer-complete
strategy of Flipper for which the Flipper Game on G lasts indefinitely and the intersection
of the arenas

⋂
n<ω An is nonempty.

Proof sketch. For every graph Gn ∈ C, choose any Localizer-complete strategy of Flipper,
and any strategy of Localizer ensuring the game continues for more than n rounds.

In each Gi, use constants to mark moves of Localizer and Flipper in a play in which they
play for i moves according to the chosen strategies, and moreover mark by cω an arbitrary
vertex that remains the arena after i rounds. We then consider, for every i ∈ N, a sentence
ψi that is true in a graph if and only if the play encoded by the introduced constants is a
valid i move play in the Flipper game and cω is in the arena after the ith move. We then
have Gi |= ψi for each i. By a compactness argument, we can argue that there exists a graph
G ∈ C such that G |= ψi for every i. Then we have in G that cω ∈ Ai for each i, and so
cω ∈

⋂
n<ω An, which means that

⋂
n<ω An is nonempty, as desired. ◁

Let G ∈ C be the graph produced by Claim 18, along with the strategies of Localizer and
Flipper. By assumption, G is r-separable. Recall that A0 ⊇ A1 ⊇ . . . is the sequence of
arenas in the play, c1, c2, . . . is the sequence of moves of Localizer, and S0 ⊆ S1 ⊆ . . . is the
sequence of sets of vertices marked by Flipper. Denote Aω :=

⋂
n<ω An, and Sω :=

⋃
n<ω Sn.

We will get a contradiction with the previous claim by proving the following claim:

▷ Claim 19. Aω is empty.
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Proof. Observe that for each k ∈ N, we have ck /∈ Sk−1: as soon as Localizer plays ck in Sk−1,
the arena Ak shrinks to a single vertex and Flipper wins in the following round. Then, Ak is
disjoint from Sk−1: since Localizer plays ck outside of Sk−1, each vertex of Sk−1 becomes
separated from ck and thus is removed from the arena. It follows that Aω ∩ Sω = ∅.

Since Flipper follows a Localizer-complete strategy, Sω induces an elementary substructure
of G by the Tarski-Vaught test (Theorem 17). We also have that c1, c2, . . . ∈ Sω by
construction. Now suppose for a contradiction that there exists some cω ∈ Aω. We remark
that cω /∈ Sω.

By Theorem 12, there exists a finite set S ⊆ Sω such that cω |⌣
r

S
Sω. As S is finite,

there is some n < ω such that S ⊆ Sn, so in particular, cω |⌣
r

Sn
Sω. On the other hand,

cω ̸ |⌣
r

Sn
cn+1, as cω ∈ An+1. This is a contradiction since cn+1 ∈ Sω. ◁

However, this means that there exists a graph G ∈ C and strategies of Localizer and
Flipper, for which Aω is simultaneously nonempty (Claim 18) and empty (Claim 19). This
contradicts the existence of the graphsG1, G2, . . . ∈ C and completes the proof of Theorem 16.

4 Outline of the algorithmic proof

In this part we outline the proof of Theorem 6 by sketching a winning Flipper strategy whose
moves can be computed in time OC,r(n2).

Let us first sketch a natural approach to use the flip-flatness characterization of monadic
stability (see Definition 7) to derive a winning strategy for Flipper. Consider the radius-r
Flipper game on a graph G from a monadically stable class C. For convenience we may
assume for now that we work with an extended version of the game where at each round
Flipper can apply a bounded (in term of the round’s index) number of flips, instead of just
one (see the discussion in the preliminaries). As making a vertex isolated requires one flip –
between the vertex in question and its neighborhood – we can always assume that the flips
applied by Flipper in round i make all the i vertices previously played by Localizer isolated.
Hence, Localizer needs to play a new vertex in each round, thus building a growing set X of
her moves.

Fix some constant m ∈ N. According to flip-flatness, there exists some number N :=
N2r(m) with the property that once X has grown to the size N , we find a set of flips F –
whose size is bounded independently of m – and a set Y of m vertices in X that are pairwise
at distance greater than 2r in G⊕ F . It now looks reasonable that Flipper applies the flips
from F within his next move. Indeed, since after applying F the vertices of Y are at distance
more than 2r from each other, the intuition is that F robustly “disconnects” the graph so
that the subsequent move of the Localizer will necessarily localize the game to a simpler
setting. This intuition is, however, difficult to capture: flip-flatness a priori does not provide
any guarantees on the disconnectedness of G⊕ F other than that the vertices of Y are far
from each other.

The main idea for circumventing this issue is to revisit the notion of flip-flatness and
strengthen it with an additional predictability property. Intuitively, predictability says that
being given any set of 5 vertices in Y as above is sufficient to uniquely reconstruct the set of
flips F . Formally, we prove the following strengthening of the results of [9]. Here and later
on, O(G) denotes the set of linear orders on the vertices of G.

▶ Theorem 20 (Predictable flip-flatness). Fix a radius r ∈ N and a monadically stable class
of graphs C. Then there exist the following:

An unbounded non-decreasing function αr : N → N and a bound λr ∈ N.
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A function FFr that maps each triple (G ∈ C,≼ ∈ O(G), X ⊆ V (G)) to a pair (Y, F ) such
that:
F is a set of at most λr flips in G, and
Y is a set of αr(|X|) vertices of X that is distance-r independent in G⊕ F .

A function Predictr that maps each triple (G ∈ C,≼ ∈ O(G), Z ⊆ V (G)) with |Z| = 5 to
a set F of flips in G such that the following holds:

For every X ⊆ V (G), if (Y, F ) = FFr(G,≼, X) and Z ⊆ Y , then F = Predictr(G,≼, Z).

Moreover, given G, ≼, and Z, Predictr(G,≼, Z) can be computed in time OC,r(|V (G)|2).

Let us explain the intuition behind the mappings FFr and Predictr provided by Theorem 20.
The existence of bounds αr and λr and of the function FFr with the properties as above is
guaranteed by the standard flip-flatness, see Definition 7 and Theorem 8. However, in the
proof we pick the function FFr in a very specific way, so that the flip set F is defined in a
somewhat minimal way with respect to a given vertex ordering ≼. This enables us to predict
what the flip set F should be given any set of 5 vertices from Y . This condition is captured
by the function Predictr.

We remark that the predictability property implies the following condition, which we
call canonicity, and which may be easier to think about. (We assume the notation from
Theorem 20.)

For every G ∈ C, ≼ ∈ O(G), and X,X ′ ⊆ V (G), if we denote (Y, F ) = FFr(G,≼, X) and
(Y ′, F ′) = FFr(G,≼, X ′), then |Y ∩ Y ′| ⩾ 5 entails F = F ′.

Indeed, to derive canonicity from predictability note that F = Predictr(G,≼, Z) = F ′, where
Z is any 5-element subset of Y ∩ Y ′. Predictability strengthens canonicity by requiring that
the mapping from 5-element subsets to flip sets is governed by a single function Predictr,
which is moreover efficiently computable. We prove Theorem 20 in the appended full version
of the paper. The proof is based on the combinatorial tools from [9], which were developed
to prove the standard flip-flatness. However, the generated sets of flips have to be chosen
and analyzed with much greater care.

We now outline how Flipper can use predictable flip-flatness for radius 2r to win the
radius-r Flipper game in a bounded number of rounds. Suppose the game is played on a
graph G; we also fix an arbitrary ordering ≼ of vertices of G. Flipper will keep track of a
growing set X of vertices played by the Localizer. The game proceeds in a number of eras,
where at the end of each era X will be augmented by one vertex. In an era, Flipper will
spend 2 ·

(|X|
5

)
rounds trying to robustly disconnect the current set X. To this end, for every

5-element subset Z of X Flipper performs a pair of rounds:
In the first round, Flipper computes F := Predict2r(G,≼, Z) and applies the flips from F .
Subsequently, Localizer needs to localize the game to a ball of radius r in the F -flip of
the current graph.
In the second round, Flipper reverses the flips by applying F again, and Localizer again
localizes.

Thus, after performing a pair of rounds as above, we end with an induced subgraph of
the original graph, which moreover is contained in a ball of radius r in the F -flip. Having
performed all the

(|X|
5

)
pairs of rounds as above, Flipper makes the last round of this era: he

applies flips that isolates all vertices of X, thus forcing Localizer to play any vertex outside
of X that is still available. This adds a new vertex to X and a new era begins.

Let us sketch why this strategy leads to a victory of Flipper within a bounded number of
rounds. Suppose the game proceeds for N eras, where N is such that α2r(N) ⩾ 7. Then
we can apply predictable flip-flatness to the set X built within those eras, thus obtaining
a pair (Y, F ) := FF2r(G,≼, X) such that |Y | = 7 and F is a set of flips such that Y is
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distance-2r independent in G ⊕ F . Enumerate Y as {v1, . . . , v7}, according to the order
in which they were added to X during the game. Let Z := {v1, . . . , v5} and note that
F = Predict2r(G,≼, Z). Observe that in the era following the addition of v5 to X, Flipper
considered Z as one of the 5-element subsets of the (current) set X. Consequently, within one
of the pairs of rounds in this era, he applied flips from F and forced Localizer to localize the
game subsequently. Since v6 and v7 are at distance larger than 2r in G⊕ F , this necessarily
resulted in removing v6 or v7 from the graph. This is a contradiction with the assumption
that both v6 and v7 were played later in the game.
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