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Abstract
Seminal results establish that the coverability problem for Vector Addition Systems with States
(VASS) is in EXPSPACE (Rackoff, ’78) and is EXPSPACE-hard already under unary encodings
(Lipton, ’76). More precisely, Rosier and Yen later utilise Rackoff’s bounding technique to show that
if coverability holds then there is a run of length at most n2O(d log d)

, where d is the dimension and n

is the size of the given unary VASS. Earlier, Lipton showed that there exist instances of coverability
in d-dimensional unary VASS that are only witnessed by runs of length at least n2Ω(d)

. Our first
result closes this gap. We improve the upper bound by removing the twice-exponentiated log(d)
factor, thus matching Lipton’s lower bound. This closes the corresponding gap for the exact space
required to decide coverability. This also yields a deterministic n2O(d)

-time algorithm for coverability.
Our second result is a matching lower bound, that there does not exist a deterministic n2o(d)

-time
algorithm, conditioned upon the Exponential Time Hypothesis.

When analysing coverability, a standard proof technique is to consider VASS with bounded
counters. Bounded VASS make for an interesting and popular model due to strong connections with
timed automata. Withal, we study a natural setting where the counter bound is linear in the size of
the VASS. Here the trivial exhaustive search algorithm runs in O(nd+1)-time. We give evidence
to this being near-optimal. We prove that in dimension one this trivial algorithm is conditionally
optimal, by showing that n2−o(1)-time is required under the k-cycle hypothesis. In general fixed
dimension d, we show that nd−2−o(1)-time is required under the 3-uniform hyperclique hypothesis.
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1 Introduction

Vector Addition Systems with States (VASS) are a popular model of concurrency with a
number of applications in database theory [9], business processes [49], and more (see the
survey [47]). A d-dimensional VASS (d-VASS) consists of a finite automaton equipped with
d non-negative valued counters that can be updated by transitions. A configuration in a
d-VASS consists of a state and a d-dimensional vector over the naturals. One of the central
decision problems for VASS is the coverability problem, that asks whether there is a run
from a given initial configuration to some configuration with at least the counter values
of a given target configuration. Coverability finds application in the verification of safety
conditions, which often equate to whether or not a particular state can be reached without
any precise counter values [13, 24]. Roughly speaking, one can use VASS as a modest model
for concurrent systems where the dimension corresponds with the number of locations a
process can be in and each counter value corresponds with the number of processes in a
particular location [21, 25].

In 1978, Rackoff [45] showed that coverability is in EXPSPACE, by proving that if
coverability holds then there exists a run of double-exponential length. Following, Rosier and
Yen [46] analysed and discussed Rackoff’s ideas in more detail and argued that if a coverability
holds then it is witnessed by a run of length at most n2O(d log d) , where n is the size of the
given unary encoded d-VASS. Furthermore, this yields a 2O(d log d) · log(n)-space algorithm
for coverability. Prior to this in 1976, Lipton [37] proved that coverability is EXPSPACE-hard
even when VASS is encoded in unary, by constructing an instance of coverability witnessed
only by a run of double-exponential length n2Ω(d) . Rosier and Yen [46] also presented a
proof that generalises Lipton’s constructions to show that 2Ω(d) · log(n)-space is required for
coverability. Although this problem is EXPSPACE-complete in terms of classical complexity,
a gap was left open for the exact space needed for coverability [46, Section 1]. By using an
approach akin to Rackoff’s argument, we close this thirty-eight-year-old gap by improving
the upper bound to match Lipton’s lower bound.

Result 1: If coverability holds then there exists a run of length at most n2O(d) (Theorem 3.3).
Accordingly, we obtain an optimal 2O(d) · log(n)-space algorithm that decides
coverability (Corollary 3.4).

Our bound also implies the existence of a deterministic n2O(d)-time algorithm for cover-
ability. We complement this with a matching lower bound on the deterministic running time
that is conditioned upon the Exponential Time Hypothesis (ETH).

Result 2: Under ETH, there is no deterministic n2o(d)-time algorithm deciding coverability
in unary d-VASS (Theorem 4.2).

While our results establish a fast-increasing, conditionally optimal exponent of 2Θ(d) in
the time complexity of the coverability problem, they rely on careful constructions that
enforce the observation of large counter values. In certain settings, however, it is natural to
instead consider a restricted version of coverability, where all counter values remain bounded.
This yields one of the simplest models, fixed-dimension bounded unary VASS, for which we
obtain even tighter results. Decision problems for B-bounded VASS, where B forms part of
the input, have been studied due to their strong connections to timed automata [27, 22, 41].
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We consider linearly-bounded unary VASS, that is when the maximum counter value is
bounded above by a constant multiple of the size of the VASS. Interestingly, coverability
and reachability are equivalent in linearly-bounded unary VASS. The trivial algorithm that
employs depth-first search on the space of configurations runs in O(nd+1)-time for both
coverability and reachability. We provide evidence that the trivial algorithm is optimal.

Result 3: Reachability in linearly-bounded unary 1-VASS requires n2−o(1)-time, subject to
the k-cycle hypothesis (Theorem 5.4).

This effectively demonstrates that the trivial algorithm is optimal in the one-dimensional
case. For the case of large dimensions, we show that the trivial algorithm only differs from
an optimal deterministic-time algorithm by at most an n3+o(1)-time factor.

Result 4: Reachability in linearly-bounded unary d-VASS requires nd−2−o(1)-time, subject
to the 3-uniform k-hyperclique hypothesis (Theorem 5.8).

Broadly speaking, these results add a time complexity perspective to the already known
space complexity, that is for any fixed dimension d, coverability in unary d-VASS is NL-
complete [45].

Organisation and Overview. Section 3 contains our first main result, the improved upper
bound on the space required for coverability. Most notably, in Theorem 3.3 we show that if
coverability holds then there exists a run of length at most n2O(d) . Then, in Corollary 3.4
we are able to obtain a non-deterministic 2O(d) · log(n)-space algorithm and a deterministic
n2O(d)-time algorithm for coverability. In much of the same way as Rackoff, we proceed
by induction on the dimension. The difference is in the inductive step; Rackoff’s inductive
hypothesis dealt with a case where all counters are bounded by the same well-chosen value.
Intuitively speaking, the configurations are bounded within a d-hypercube. This turns out to
be suboptimal. This is due to the fact that the volume of a d-hypercube with sides of length
ℓ is ℓd; unrolling the induction steps gives a bound of roughly nd·(d−1)·...·1 = nd! = n2O(d log d) ,
hence the twice-exponentiated log(d) factor. The key ingredient in our proof is to replace
the d-hypercubes with a collection of objects with greatly reduced volume, thus reducing the
number of configurations in a run witnessing coverability.

Section 4 contains our second main result, the matching lower bound on the time required
for coverability that is conditioned upon ETH. In Lemma 4.3, we first reduce from finding a
k-clique in a graph to an instance of coverability in bounded unary 2-VASS with zero-tests.
Then, via Lemma 4.4, we implement the aforementioned technique of Rosier and Yen to, when
there is a counter bound, remove the zero-tests at the cost of increasing to a d-dimensional
unary VASS. Then, in Theorem 4.2 we are able to conclude, by setting k = 2d, that if ETH
holds, then there is no deterministic n2o(d) -time algorithms for coverability in unary d-VASS.
This is because ETH implies that there is no f(k) ·no(k)-time algorithm for finding a k-clique
in a graph with n vertices (Theorem 4.1).

Section 5 contains our other results where we study bounded fixed dimension unary VASS.
Firstly, Theorem 5.4 states that under the k-cycle hypothesis (Hypothesis 5.2), there does
not exist a deterministic n2−o(1)-time algorithm deciding reachability in linearly-bounded
unary 1-VASS. Further, we conclude in Corollary 5.5, if the k-cycle hypothesis is assumed
then there does not exist a deterministic n2−o(1)-time algorithm for coverability in (not
bounded) unary 2-VASS. Following, we prove Theorem 5.8, that claims there does not exist
a deterministic nd−o(1)-time algorithm reachability in linearly-bounded unary (d + 2)-VASS
under the 3-uniform k-hyperclique hypothesis (Hypothesis 5.7). We achieve this with two
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components. First, in Lemma 5.9, we first reduce from finding a 4d-hyperclique to an
instance of reachability in a bounded unary (d + 1)-VASS with a fixed number of zero-tests.
Second, via Lemma 5.10, we implement the newly developed controlling counter technique
of Czerwiński and Orlikowski [16] to remove the fixed number of zero-tests at the cost of
increasing the dimension by one.

Related Work. The coverability problem for VASS has plenty of structure that still receives
active attention. The set of configurations from which the target can be covered is upwards-
closed, meaning that coverability still holds if the initial counter values are increased. An
alternative approach, the backwards algorithm for coverability, relies on this phenomenon.
Starting from the target configuration, one computes the set of configurations from which it
can be covered [1]. Thanks to the upwards-closed property, it suffices to maintain the collection
of minimal configurations. The backwards algorithm terminates due to Dickson’s lemma,
however, using Rackoff’s bound one can show it runs in double-exponential time [10]. This
technique has been deeply analysed for coverability in VASS and some extensions [23, 32].
Despite high complexity, there are many implementations of coverability relying on the
backwards algorithm that work well in practice. Intuitively, the idea is to prune the set of
configurations, using relaxations that can be efficiently implemented in SMT solvers [21, 7, 8].

Another central decision problem for VASS is the reachability problem, asking whether
there is a run from a given initial configuration to a given target configuration. Reachability
is a provably harder problem. In essence, reachability differs from coverability by allowing
one zero-test to each counter. Counter machines, well-known to be equivalent to Turing
machines [43], can be seen as VASS with the ability to arbitrarily zero-test counters; cover-
ability and reachability are equivalent here and are undecidable. In 1981, Mayr proved that
reachability in VASS is decidable [39], making VASS one of the richest decidable variants of
counter machines. Only recently, after decades of work, has the complexity of reachability in
VASS been determined to be Ackermann-complete [35, 16, 34]. A widespread technique for
obtaining lower bounds for coverability and reachability problems in VASS is to simulate
counter machines with some restrictions. Our overall approach to obtaining lower bounds
follows suit; we first reduce finding cliques in graphs, finding cycles in graphs, and finding
hypercliques in hypergraphs to various intermediate instances of coverability in VASS with
extra properties such as bounded counters or a fixed number of zero-tests. These VASS,
that are counter machines restricted in some way, are then simulated by standard higher-
dimensional VASS. Such simulations are brought about by the two previously developed
techniques. Rosier and Yen leverage Lipton’s construction to obtain VASS that can simulate
counter machines with bounded counters [46]. Czerwiński and Orlikowski have shown that
the presence of an additional counter in a VASS, with carefully chosen transition effects and
reachability condition, can be used to implicitly perform a limited number of zero-tests [16].

Recently, some work has been dedicated to the coverability problem for low-dimensional
VASS [3, 42]. Furthermore, reachability in low-dimensional VASS has been given plenty of
attention, in particular for 1-VASS [48, 26] and for 2-VASS [28, 6]. In the restricted class of
flat VASS, other fixed dimensions have also been studied [15, 17].

Another studied variant, bidirected VASS, has the property that for every transition
(p, x, q), the reverse transition (q,−x, p) is also present. The reachability problem in bidirected
VASS is equivalent to the uniform word problem in commutative semigroups, both of which
are EXPSPACE-complete [40]; not to be confused with the reversible reachability problem
in general VASS which is also EXPSPACE-complete [33]. In 1982, Meyer and Mayr listed
an open problem that stated, in terms of commutative semigroups, the best known upper



M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:5

bound for coverability in general VASS [45], the best known lower bound for coverability in
bidirected VASS [37], and asked for improvements to these bounds [40, Section 8, Problem 3].
Subsequently, Rosier and Yen refined the upper bound for coverability in general VASS to
2O(d log d) · log(n)-space [46]. Finally, Koppenhagen and Mayr showed that the coverability
problem in bidirected VASS can be decided in 2O(n)-space [30], matching the lower bound.

2 Preliminaries

We use bold font for vectors. We index the i-th component of a vector v by writing v[i].
Given two vectors u, v ∈ Zd we write u ≤ v if u[i] ≤ v[i] for each 1 ≤ i ≤ d. For every
1 ≤ i ≤ d, we write ei ∈ Zd to represent the i-th standard basis vector that has ei[i] = 1
and ei[j] = 0 for all j ̸= i. Given a vector v ∈ Zd we define ∥v∥ = max{1, |v[1]|, . . . , |v[d]|}.
Throughout, we assume that log has base 2. We use poly(n) to denote nO(1).

A d-dimensional Vector Addition System with States (d-VASS) V = (Q, T ) consists of
a non-empty finite set of states Q and a non-empty set of transitions T ⊆ Q × Zd × Q.
A configuration of a d-VASS is a pair (q, v) ∈ Q × Nd consisting of the current state q

and current counter values v, denoted q(v). Given two configurations p(u), q(v), we write
p(u) −→ q(v) if there exists t = (p, x, q) ∈ T where x = v − u. We may refer to x as the
update of a transition and may also write p(v) t−→ q(w) to emphasise the transition t taken.

A path in a VASS is a (possibly empty) sequence of transitions ((p1, x1, q1), . . . , (pℓ, xℓ, qℓ)),
where (pi, xi, qi) ∈ T for all 1 ≤ i ≤ ℓ and such that the start and end states of consecutive
transitions match qi = pi+1 for all 1 ≤ i ≤ ℓ − 1. A run π in a VASS is a sequence of
configurations π = (q0(v0), . . . , qℓ(vℓ)) such that qi(vi) −→ qi+1(vi+1) for all 1 ≤ i ≤ ℓ − 1.
We denote the length of the run by len(π) = ℓ + 1. If there is such a run π, we can write
q0(v0) π−→ qℓ(vℓ). We may also write p(u) ∗−→ q(v) if there exists a run from p(u) to q(v).
The underlying path of a run π is sequence of transitions (t1, . . . , tℓ) taken between each of
the configurations in π, so qi(vi)

ti+1−−→ qi+1(vi+1) for all 0 ≤ i ≤ ℓ− 1.
A B-bounded d-VASS, in short (B, d)-VASS, is given as an integer upper bound on

the counter values B ∈ N and d-VASS V. A configuration in a (B, d)-VASS is a pair
q(v) ∈ Q× {0, . . . , B}d. The notions of paths and runs in bounded VASS remain the same
as for VASS, but are accordingly adapted for the appropriate bounded configurations. We
note that one should think that B forms part of the problem statement, not the input, as it
will be given implicitly by a function depending on the size of the VASS. For example, we
later consider linearly-bounded d-VASS, that represent occasions where B = O(∥V∥).

We do allow for zero-dimensional VASS, that is VASS with no counters, which can be seen
as just directed graphs. A hypergraph is a generalisation of the graph. Formally, a hypergraph
is a tuple H = (V, E) where V is a set of vertices and E is a collection of non-empty subsets
of V called hyperedges. For an integer µ, a hypergraph is µ-uniform if each hyperedge has
cardinality µ. Note that a 2-uniform hypergraph is a standard graph.

We study the complexity of the coverability problem. An instance (V, p(u), q(v)) of
coverability asks whether there is a run in the given VASS V from the given initial configuration
p(u) to a configuration q(v′) with at least the counter values v′ ≥ v of the given target
configuration q(v). At times, we also consider the reachability problem that additionally
requires v′ = v so that the target configuration is reached exactly.

To measure the complexity of these problems we need to discuss the encoding used. In
unary encoding, a d-VASS V = (Q, T ) has size ∥V∥ = |Q| +

∑
(p,x,q)∈T ∥x∥. We define a

unary d-VASS U = (Q′, T ′) to have restricted transitions T ′ ⊆ Q′ ×{−1, 0, 1}d ×Q′, the size
is therefore ∥U∥ = |Q′|+ |T ′|. For any unary encoded d-VASS V there exists an equivalent
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unary d-VASS U such that ∥U∥ = ∥V∥. An instance (V, p(u), q(v)) of coverability has size
n = ∥V∥+ ∥u∥+ ∥v∥. An equal in size, equivalent instance (V ′, p′(0), q′(0)) of coverability
exists; consider adding an initial transition (p′, s, p) and a final transition (q,−t, q′).

It is well known that for d-VASS, the coverability problem can be reduced to the
reachability problem. Indeed, for an instance (V, p(u), q(v)) of coverability, define V ′ = (Q, T ′)
that has additional decremental transitions at the target states T ′ = T∪{(q, ei, q) : 1 ≤ i ≤ d}.
It is clear that p(u) ∗−→ q(v′), for some v′ ≥ v, in V if and only if p(u) ∗−→ q(v) in V ′.

▶ Lemma 2.1 (folklore). Let (V, p(u), q(v)) be an instance of coverability. It can be reduced
to an instance of reachability (V ′, p(u), q(v)) such that ∥V ′∥ = O(∥V∥).

A d-dimensional Vector Addition System (d-VAS) V is a system without states, consisting
only of a non-empty collection of transitions V ⊆ Zd. All definitions, notations, and problems
carry over for VAS except that, for simplicity, we drop the states across the board. For
example, a configuration in a VAS is just a vector v ∈ Nd. Another well-known result from the
seventies by Hopcroft and Pansiot, one can simulate the states of a VASS at the cost of three
extra dimensions in a VAS [28]. For clarity, the VAS obtained has an equivalent reachability
relation between configurations; a configuration q(x) in the original VASS corresponds with
a configuration (x, a, b, c) in the VAS, where a, b, and c represent the state q.

▶ Lemma 2.2 ([28, Lemma 2.1]). A d-VASS V can be simulated by (d + 3)-VAS V ′ such that
∥V ′∥ = poly(∥V∥).

3 Improved Bounds on the Maximum Counter Value

This section is devoted to our improvement of the seminal result of Rackoff. Throughout,
we fix our attention to the arbitrary instance (V, p(s), q(t)) of the coverability problem in
a d-VASS V = (Q, T ) from the initial configuration p(s) to a configuration q(t′) with at
least the counter values of the target configuration q(t). We denote n = ∥V∥+ ∥s∥+ ∥t∥.
Informally, n may as well be the number of states plus the absolute value of the greatest
update on any transition, for these differences can be subsumed by the second exponent in
our following upper bounds. The following two theorems follow from Rackoff’s technique
and subsequent work by Rosier and Yen, in particular see [45, Lemma 3.4 and Theorem 3.5]
and [46, Theorem 2.1 and Lemma 2.2].

▶ Theorem 3.1 (Corollary of [45, Lemma 3.4] and [46, Theorem 2.1]). Suppose p(s) ∗−→ q(t′)
for some t′ ≥ t. Then there exists a run π such that p(s) π−→ q(t′′) for some t′′ ≥ t and
len(π) ≤ n2O(d log d) .

▶ Theorem 3.2 (cf. [45, Theorem 3.5]). For a given d-VASS V, integer ℓ, and two con-
figurations p(s) and q(t), there is an algorithm that determines the existence of a run π

of length len(π) ≤ ℓ that witnesses coverability, so p(s) π−→ q(t′) for some t′ ≥ t. The al-
gorithm can be implemented to run in non-deterministic O(d log(n · ℓ))-space or deterministic
2O(d log(n·ℓ))-time.

Note that Theorem 3.1 combined with Theorem 3.2, that is proved in the full version [31],
yield non-deterministic 2O(d log d)-space and deterministic n2O(d log(d))-time algorithms for
coverability. Our result improves this by a O(log(d)) factor in the second exponent.

▶ Theorem 3.3. Suppose p(s) ∗−→ q(t′) for some t′ ≥ t. Then there exists a run π such that
p(s) π−→ q(t′′) for some t′′ ≥ t and len(π) ≤ n2O(d) .
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This combined with Theorem 3.2 yields the following corollary.

▶ Corollary 3.4. Coverability in d-VASS can be decided by both a non-deterministic 2O(d) ·
log(n)-space algorithm and a deterministic n2O(d)-time algorithm.

Note that by Lemma 2.2, we may handle VAS instead of VASS. Recall that, as there are
no states, a d-VAS consists only of a set of vectors in Zd that we still refer to as transitions.
A configuration is just a vector in Nd. Accordingly, we may fix our attention on the instance
(V, s, t) of the coverability problem in a d-VAS V = {v1, . . . , vm} from the initial configuration
s to a configuration t′ that is at least as great as the target configuration t. The rest of this
section is dedicated to the proof of Theorem 3.3. Imitating Rackoff’s proof, we proceed by
induction on the dimension d. Formally, we prove a stronger statement; Theorem 3.3 is a
direct corollary of the following lemma.

▶ Lemma 3.5. Define Li := n4i , and let t ∈ Nd such that ∥t∥ ≤ n. For any s ∈ Nd, if s ∗−→ t′

for some t′ ≥ t then there exists a run π such that s π−→ t′′ for some t′′ ≥ t and len(π) ≤ Ld.

The base case is d = 0. In a 0-dimensional VAS, the only possible configuration is the
empty vector ε and therefore there is only the trivial run ε

∗−→ ε. This trivially satisfies the
lemma.

For the inductive step, when d ≥ 1, we assume that Lemma 3.5 holds for all lower
dimensions 0, . . . , d − 1. Let π = (c0, c1, . . . , cℓ) be a run with minimal length such that
s π−→ t′ for some t′ ≥ t, so in particular, c0 = s and cn = t′. Our objective is to prove that
len(π) = ℓ + 1 ≤ Ld. Observe that configurations ci need to be distinct, else π could be
shortened trivially. We introduce the notion of a thin configuration.

▶ Definition 3.6 (Thin Configuration). In a d-VAS, we say that a configuration c ∈ Nd is thin
if there exists a permutation σ of {1, . . . , d} such that c[σ(i)] < Mi for every i ∈ {1, . . . , d},
where M0 := n and for i ≥ 1, Mi := Li−1 · n.

Recall, from above, the run π = (c0, c1, . . . , cℓ). Let t ∈ {0, . . . , ℓ} be the first index
where ct is not thin, otherwise let t = ℓ + 1 if every configuration in π is thin. We decompose
the run about the t-th configuration π = πthin · πtail, where πthin := (c0, . . . , ct−1) and
πtail := (ct, . . . , cℓ). Note that πthin or πtail can be empty. Subsequently, we individually
analyse the lengths of πthin and πtail (see Figure 1). We will also denote m = ct to be the
first configuration that is not thin.

▷ Claim 3.7. len(πthin) ≤ d! · nd · Ld−1 · . . . · L0.

Proof. By definition, every configuration in πthin is thin. Moreover, since π has a minimal
length, no configurations in π repeat, let alone in πthin. We now count the number of possible
thin configurations. There are d! many permutations of {1, . . . , d}. For a given permutation
σ and an index i ∈ {1, . . . , d}, we know that for a thin configuration c, 0 ≤ c[σ(i)] < Mi, so
there are at most Mi = Li−1 ·n many possible values on the σ(i)-th counter. Hence the total
number of thin configurations is at most d! ·

∏d
i=1(Li−1 · n) = d! · nd · Ld−1 · . . . · L0. ◁

▷ Claim 3.8. len(πtail) ≤ Ld−1.

Proof. Consider m ∈ Nd, the first configuration of πtail. Let σ be a permutation such that
m[σ(1)] ≤ m[σ(2)] ≤ . . . ≤ m[σ(d)]. Given that m is not thin, for every permutation σ′

there exists an i ∈ {1, . . . , d} such that m[σ′(i)] ≥Mi; in particular, this holds for σ. Note
that this also implies Mi ≤m[σ(i + 1)] ≤ . . . ≤m[σ(d)].

ICALP 2023



131:8 Coverability in VASS Revisited

Figure 1 The schematic view of proofs of Claim 3.7 and Claim 3.8, restricted to the two-
dimensional case. Note that s is the initial configuration and t is the target configuration. Every
configuration inside the green shaded polygon is thin, where each rectangular component of the
green shaded polygon corresponds to a permutation of the indices. Observe that m is the first
configuration, just outside the green shaded polygon, that is not thin. Claim 3.7 bounds πthin, and
therefore its maximum length, by the volume of the green polygon. Claim 3.8 argues that there is
an executable run ρ (drawn in blue) from m to t′′ ≥ t of length at most Ld−1 that can be used in
place of the run πtail (drawn in red) from m to t′ ≥ t.

We construct an (i− 1)-VAS U from V by ignoring the counters σ(i), . . . , σ(d). Formally,
u ∈ U if there is v ∈ V such that u[j] = v[σ(j)] for each 1 ≤ j ≤ i− 1. In such a case we say
u is the projection of v via σ. We will use the inductive hypothesis to show that there is a
short path ρ′ in U from (the projection of) m covering (the projection of) t. We will then
show that the remaining components of m are large enough that the embedding of ρ′ into V
maintains its covering status.

Recall that t′ is the final configuration of the run π. Note that the run πtail in-
duces a run π′

tail in U by permuting and projecting every configuration. More precisely,

(m[σ(1)], . . . , m[σ(i− 1)]) π′
tail−−−→ (t′[σ(1)], . . . , t′[σ(i− 1)]). By the inductive hypothesis there

exists a run ρ′ in U such that (m[σ(1)], . . . , m[σ(i− 1)]) ρ′

−→ (t′′[σ(1)], . . . , t′′[σ(i− 1)]), such
that (t′′[σ(1)], . . . , t′′[σ(i− 1)]) ≥ (t[σ(1)], . . . , t[σ(i− 1)]) and len(ρ′) ≤ Li−1.

Let (u1, . . . , ulen(ρ′)) be the underlying path of the run ρ′, that is, the sequence of
transitions in U that are sequentially added to form the run ρ′. By construction, each
transition vector ui ∈ U has a corresponding transition vector vi ∈ V where ui is the
projection of vi via σ. We will now show that the following run witnesses coverability of t.

ρ =

m, m + v1, m + v1 + v2, . . . , m +
len(ρ′)∑

j=1
vj


To this end, we verify that (i) ρ is a run, that is, all configurations lie in Nd, and (ii) the

final configuration indeed covers t. For components σ(1), . . . , σ(i− 1), this follows directly
from the inductive hypothesis. For all other components we will show that all configurations
of ρ are covering t in these components. This satisfies both (i) and (ii).
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Let j be any of the remaining components. Recall that by the choice of m, m[j] ≥Mi =
n · Li−1. Since n > ∥V∥ ≥ ∥vj∥ for every 1 ≤ j ≤ len(ρ′), this means that in a single step,
the value of a counter can change by at most n. Given that len(ρ) = len(ρ′) ≤ Li−1, the
value on each of the remaining components must be at least n for every configuration in ρ.
In particular, observing that ∥t∥ ≤ n, the final configuration of ρ satisfies

m +
len(ρ′)∑

j=1
vj ≥ t.

Finally, observe that len(ρ) = len(ρ′) ≤ Li−1 ≤ Ld−1. ◁

To conclude this section, we show that Lemma 3.5 follows from Claim 3.7 and Claim 3.8.

Proof of Lemma 3.5. From Claim 3.7 and Claim 3.8,
len(π) ≤ len(πthin) + len(πtail) ≤ d! · nd · Ld−1 · . . . · L0 + Ld−1

≤ 2 · d! · nd · Ld−1 · . . . · L0.

Recall that n ≥ 2 and observe that 2 · d! · nd ≤ n2d . Hence,
len(π) ≤ n2d

· Ld−1 · . . . · L0.

Next, we use the definition of Li := n4i to show

len(π) ≤ n2d

·
d−1∏
i=0

n4i

≤ n

(
2d+

∑d−1
i=0

4i
)
.

Finally, when d ≥ 1, 2d +
∑d−1

i=0 4i ≤ 4d holds, therefore

len(π) ≤ n4d

= Ld. ◀

4 Conditional Time Lower Bound for Coverability

In this section, we present a conditional lower bound based on the Exponential Time
Hypothesis (ETH) [29]. Roughly speaking, ETH is a conjecture that an n-variable instance
of 3-SAT cannot be solved by a deterministic 2o(n)-time algorithm (for a modern survey,
see [38]). In our reductions, it will be convenient for us to work with the k-clique problem
instead. In the k-clique problem we are given a graph G = (V, E) as an input and the task is
to decide whether there is a set of k pairwise adjacent vertices in V . The naive algorithm for
k-clique runs in O(nk) time. Even though the exact constant in the dependence on k can be
improved [44], ETH implies that the exponent must have a linear dependence on k.

▶ Theorem 4.1 ([11, Theorem 4.2], [12, Theorem 4.5], and [14, Theorem 14.21]). Assuming
the Exponential Time Hypothesis, there is no algorithm running in f(k) · no(k)-time for the
k-clique problem for any computable function f . Moreover one can assume that G is k-partite,
i.e. G = (V1 ∪ . . . ∪ Vk, E) and edges belong to Vi × Vj for i ̸= j ∈ {1, . . . , k}.

We will use Theorem 4.1 to show the following conditional lower bound for coverability
in unary d-VASS, which is proved at the end of this section.

▶ Theorem 4.2. Assuming the Exponential Time Hypothesis, there does not exist an
n2o(d)-time algorithm deciding coverability in a unary d-VASS with n states.

We first reduce the k-clique problem to coverability in bounded 2-VASS with the ability
to perform a fixed number of zero-tests. We will then leverage a result by Rosier and Yen to
construct an equivalent, with respect to coverability, (O(log k))-VASS without zero-tests.
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▶ Lemma 4.3. Given a k-partite graph G = (V1 ∪ · · · ∪ Vk, E) with n vertices, there exists
a unary (O(n2k), 2)-VASS T such that there is a k-clique in G if and only if there exists a
run from qI(0) to qF (v) in T , for some v ≥ 0. Moreover, ∥T ∥ ≤ poly(n + k) and T can be
constructed in poly(n + k)-time.

Proof. Without loss of generality, we may assume that each of the k vertex subsets in the
graph has the same size |V1| = . . . = |Vk| = ℓ. Thus n = k · ℓ. For convenience, we denote
V = {1, . . . , k} × {1, . . . , ℓ}.

We begin by sketching the main ideas behind the reduction before they are implemented.
We start by finding the first n = k · ℓ primes and associating a distinct prime pi,j to each
vertex (i, j) ∈ V . Note that a product of k different primes uniquely corresponds to selecting
k vertices. Thus the idea is to guess such a product, and test whether the corresponding
verticies form a k-clique. To simplify the presentation we present VASS also as counter
programs, inspired by Esparza’s presentation of Lipton’s lower bound [20, Section 7].

We present an overview of our construction in Algorithm 1. Note that the counter y is
used only by subprocedures. Initially both counter values are 0, as in the initial configuration
of the coverability instance. The program is non-deterministic and we are interested in the
existence of a certain run. One should think that coverability holds if and only if there is a
run through the code without getting stuck so to say. In this example a run can be stuck
only in the Edge[e] subprocedure, that will be explained later. The precise final counter
values are not important, as we are simply aiming to cover the target counter values 0. The
variable i (in the first loop) and variables i and j (in the second loop) are just syntactic
sugar for copying similar code multiple times. The variables j (in the first loop) and e (in
the second loop) allow us to neatly represent non-determinism in a VASS.

Algorithm 1 A counter program for a VASS with zero tests with two counters x and y.

input : x = 0, y = 0

x += 1
for i← 1 to k do

guess j ∈ {1, . . . , ℓ}
Multiply[x, pi,j ]

end
for (i, j) ∈ {1, . . . , k}2, i ̸= j do

guess e ∈ E ∩ (Vi × Vj)
Edge[e]

end

Algorithm 1 uses the Multiply[x, p] and Edge[e] subprocedures. These two subprocedures
will be implemented later. Note that Multiply[x, p] takes a counter x as input as we later
reuse this subprocedure when there is more than one counter subject to multiplication. The
intended behaviour of Multiply[x, p] is that it can be performed if and only if as a result we
get x = x · p, despite the fact that VASS can only additively increase and decrease counters.
The subprocedure Edge[e] can be performed if and only if both vertices of the edge e are
encoded in the value of the counter x. Overall, Algorithm 1 is designed so that in the first
part the variable x is multiplied by pi,j , where for every i one j is guessed. This equates
to selecting one vertex from each Vi. Then the second part the algorithm checks whether
between every pair of selected vertices from Vi and Vj there is an edge. Clearly there is a
run through the program that does not get stuck if and only if there is k-clique in G.
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qIqI

qF

Multiply[x, p1,1]

Multiply[x, p1,2]

··
·

Multiply[x, p1,ℓ]

· · ·

· · ·

· · ·

Multiply[x, pk,1]

Multiply[x, pk,2]

··
·

Multiply[x, pk,ℓ]

x += 1

qF

qI

Edge[{u1, u2}]

Edge[{v1, v2}]

··
·

Edge[{w1, w2}]

V1 × V2 ∩ E

· · ·

· · ·

· · ·

Vi × Vj ∩ E

Edge[{uk−1, uk}]

Edge[{vk−1, vk}]

··
·

Edge[{wk−1, wk}]

Vk−1 × Vk ∩ E

Figure 2 The top part of the VASS implements the first line and the first loop in Algorithm 1.
The variable x is multiplied by k non-deterministically chosen primes pi,j , each corresponding to a
vertex in Vi. The bottom part of the VASS implements the second loop in Algorithm 1. For every
pair i ̸= j the VASS non-deterministically chooses e ∈ Vi ∩ Vj and invokes the subprocedure Edge[e].

In Figure 2 we present a VASS with zero-tests implementing Algorithm 1. The construction
will guarantee that qF (0) can be covered from qI(0) if and only if there is a k-clique in G.

It remains to define the subprocedures. One should think that every call of a subprocedure
corresponds to a unique part of the VASS, like a gadget of sorts. To enter and leave the
subprocedure one needs to add trivial transitions that to do not change the counter values.
All subprocedures rely on the invariant y = 0 at the beginning and admit the invariant at
the end.

Algorithm 2 The counter program of Multiply[x, p] above its VASS implementation
(left) and the counter program of Divide[x, p] above its VASS implementation (right).

input : x = v, y = 0
output : x = v · p, y = 0

repeat
x−= 1; y += 1

until x = 0
repeat

x += p; y−= 1
until y = 0

x = 0 y = 0

x−= 1
y += 1

x += p

y−= 1

input : x = v · p, y = 0
output : x = v, y = 0

repeat
x−= p; y += 1

until x = 0
repeat

x += 1; y−= 1
until y = 0

x = 0 y = 0

x−= p

y += 1
x += 1
y−= 1
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We start with Multiply[x, p] and Divide[x, p] that indeed multiply and divide x by p,
respectively. See Algorithm 2 for the counter program and VASS implementations. Notice
that the repeat loops correspond to the self-loops in the VASS. In the Multiply[x, p] gadget,
it is easy to see that a run passes through the procedure if and only if the counter x is
multiplied by p. Similarly, in the Divide[x, p] gadget, it is easy to see that a run pass
through the procedure if and only if the counter x is divided by p wholly. Indeed, the division
procedure would get stuck if p ∤ x because it will be impossible to exit the first loop.

Algorithm 3 The counter program for Edge[{u, v}] and its VASS implementation.

input : x = v, y = 0
output : x = v, y = 0

Divide[x, pu]

Multiply[x, pu]

Divide[x, pv]

Multiply[x, pv]

Divide[x, pu]

Multiply[x, pu]

Divide[x, pv]

Multiply[x, pv]

The procedure Edge[{u, v}] is very simple, it is a sequence of four subprocedures, see
Algorithm 3. Indeed, to check if the vertices from edge e are encoded in x we simply check
whether x is divisible by the corresponding primes. Afterwards we multiply x with the same
primes so that the value does not change and it is ready for future edge checks.

It remains to analyse the size of the VASS and its construction time in this reduction
time. In every run from qI(0) to qF (v), for some v ≥ 0, the greatest counter value observable
can be bounded above by pk where p is the n-th prime. By the Prime Number Theorem (for
example, see [51]), we know that pk ≤ O((n log(n))k) ≤ O(n2k) is an upper bound on the
counter values observed. Hence T is an O(n2k)-bounded unary 2-VASS.

Finally, the Multiply and Divide subprocedures contain three states and five transitions.
Since the n-th prime is bounded above by O(n log(n)), we also get ∥T ∥ = O(n log(n)), hence
our VASS can be represented using unary encoding. Analysing Algorithm 1, it is easy to
see that overall the number of states is polynomial in n. Finally, the first n primes can be
found in O(n1+o(1))-time [2]. Therefore, in total T has size ∥T ∥ = poly(n + k) and can be
constructed in poly(n + k)-time. ◀

To attain conditional lower bounds for coverability we must replace the zero-tests. We
make use of a technique of Rosier and Yen [46] that relies on the construction of Lipton [37].
They show that a (2n)2k -bounded counter machine with finite state control can be simulated
by a unary (O(k))-VASS with n states. As Rosier and Yen detail after their proof, it is
possible to apply this technique to multiple counters with zero-tests at once [46]. This
accordingly results in the number of VASS counters increasing, but we instantiate this with
just two counters. We remark that the VASS constructed in Lemma 4.3 is structurally
bounded, so for any initial configuration there is a limit on the largest observable counter, as
is the case in the VASS Lipton constructed [37].

▶ Lemma 4.4 (Corollary of [46, Lemma 4.3]). Let T be an n-state unary (nO(k), 2)-VASS
with zero-tests, for some parameter k. Then there exists an O(n)-state (O(log k))-VASS V,
such that there is a run from qI(0) to qF (v), for some v ≥ 0, in T if and only if there is a
run from q′

I(0) to q′
F (w), for some w ≥ 0, in V. Moreover, V has size O(|T |) and can be

constructed in the same time.
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Proof of Theorem 4.2. Let k = 2d. We instantiate Lemma 4.3 on k-partite graphs G with
n vertices. We therefore obtain a unary (n2O(d)

, 2)-VASS with zero tests T such that G

contains a k-clique if and only if there is a run from qI(0) to qF (v), for some v ≥ 0, in T .
Given the bound on the value of the counters, we can apply Lemma 4.4 to T . This gives

us an O(n)-state (O(d))-VASS V such that G contains a k-clique if and only if there is a run
from q′

I(0) to q′
F (w), for some w ≥ 0, in V.

By Theorem 4.1 we conclude that under the Exponential Time Hypothesis there does
not exist an n2o(d) -time algorithm deciding coverability in unary d-VASS. ◀

5 Coverability and Reachability in Bounded Unary VASS

In this section, we give even tighter bounds for coverability in bounded fixed dimension
unary VASS. Specifically, for a time constructible function B(n), the coverability problem in
(B(n), d)-VASS asks, for a given (B(n), d)-VASS V = (Q, T ) of size n as well as configurations
p(u), q(v), whether there is a run in V from p(u) to q(v′) for some v′ ≥ v such that each
counter value remains in {0, . . . , B(n)} throughout. We would like to clarify the fact that
the bound is not an input parameter. We focus on the natural setting of linearly-bounded
fixed dimension VASS, that is (O(n), d)-VASS. There is a simple algorithm, given in the
proof of Observation 5.1 which can be found in the full version [31], that yields an immediate
O(nd+1) upper bound for the time needed to decide the coverability problem. We accompany
this observation with closely matching lower bounds, see Table 1 for an overview.

Table 1 Conditional lower bounds and upper bounds of the time complexity of coverability
and reachability in unary (O(n), d)-VASS. For clarity, we remark that Theorem 5.4 is subject to
Hypothesis 5.2 and that Theorem 5.8 is subject to Hypothesis 5.7. Note that the lower bounds for
dimensions d = 2 and d = 3 follow from Theorem 5.4 by just adding components consisting of only
zeros. All upper bounds follow from Observation 5.1.

d Lower Bound Upper Bound
0 Ω(n) (trivial) O(n)
1 n2−o(1) (Theorem 5.4) O(n2)
2 n2−o(1) (from above) O(n3)
3 n2−o(1) (from above) O(n4)

d ≥ 4 nd−2−o(1) (Theorem 5.8) O(nd+1)

▶ Observation 5.1. Coverability in an n-sized unary (B(n), d)-VASS can be solved in
O(n(B(n) + 1)d)-time.

Lower Bounds for Coverability in Linearly-Bounded VASS
Now, we consider lower bounds for the coverability problem in linearly-bounded fixed
dimension unary VASS. Firstly, in dimension one, we show that quadratic running time is
conditionally optimal under the k-cycle hypothesis. Secondly, in dimensions four and higher,
we require a running time at least nd−2−o(1) under the 3-uniform hyperclique hypothesis.
Together, this provides evidence that the simple O(nd+1) algorithm for coverability in
(O(n), d)-VASS is close to optimal, as summarised in Table 1.

▶ Hypothesis 5.2 (k-Cycle Hypothesis). For every ε > 0, there exists a k such that there does
not exist a O(m2−ε)-time algorithm for finding a k-cycle in directed graphs with m edges.
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The k-cycle hypothesis arises from the state-of-the-art O(m2− c
k +o(1))-time algorithms,

where c is some constant [4, 50, 19]. It has been previously used as an assumption for
hardness results, for example, see [36, 5, 18]. It is a standard observation, due to colour-
coding arguments, that we may without loss of generality assume that the graph given is
a k-circle-layered graph [36, Lemma 2.2]. Specifically, we can assume that the input graph
G = (V, E) has vertex partition V = V0 ∪ · · · ∪ Vk−1 such that each edge {u, v} ∈ E is in
Vi × Vi+1 (mod k) for some 0 ≤ i < k. Furthermore, we may assume |V | ≤ |E|.

The core of the upcoming lower bounds is captured in the following lemma; see Figure 3
for an overview and the full version [31] for the proof.

▶ Lemma 5.3. Given a k-circle-layered graph G = (V0 ∪ · · · ∪ Vk−1, E) with m edges, there
exists a unary (O(n), 1)-VASS V such that there is a k-cycle in G if and only if there exists
a run from p(0) to q(0) in V. Moreover, V has size n ≤ O(m) and can be constructed in
O(m)-time.

P0

pv1

pv2

··
·

pvℓ

+1

+1

+1

Q0

qvℓ

··
·

qv2

qv1

−1

−1

−1

S1 S2

· · ·

Sk−1

Figure 3 The (O(n), 1)-VASS V of size n ≤ O(m) for finding k-cycle in a k-circle-layered graphs
with m edges. Note that unlabelled transitions have zero effect. Observe that the graph is mostly
copied into the states and transitions of the linearly-bounded 1-VASS. Importantly, two copies of V0

are created. By starting at pv1 (0) in the first copy, a vertex from V0 belonging to the k-cycle can be
selected by loading the sole counter with a value corresponding to that vertex. Then, in the second
copy, qv1 (0) can only be reached if the state first arrived at corresponds to the vertex selected in
the beginning. Accordingly, there is a run from pv1 (0) to qv1 (0) if and only if there exists a k-cycle,
since the states visited in the underlying path of the run correspond to the vertices of the k-cycle.

▶ Theorem 5.4. Assuming the k-cycle hypothesis, coverability and reachability in unary
(O(n), 1)-VASS of size n require n2−o(1)-time.

Proof. Assume for contradiction that reachability in a unary (O(n), 1)-VASS of size n can
be solved in O(n2−ε)-time for some ε > 0. By the k-cycle hypothesis (Hypothesis 5.2), there
exists a k such that the problem of finding a k-cycle in a k-circle layered graph with m vertices
cannot be solved in O(m2−ε)-time. Via the reduction presented above in Lemma 5.3, we
create a (O(n), 1)-VASS V of size n ≤ O(m) together with an initial configuration p(0) and
a target configuration q(0), such that deciding reachability from p(0) to q(0) in V determines
the existence of a k-cycle in G. Thus the O(n2−ε) algorithm for reachability would give a
O(m2−ε) algorithm for finding k-cycles, contradicting the k-cycle hypothesis.

By the equivalence of coverability and reachability in unary (O(n), 1) VASS in Lemma 5.6,
the same lower bound holds for coverability. ◀

▶ Corollary 5.5. Assuming the k-cycle hypothesis, coverability in unary 2-VASS of size n

requires n2−o(1)-time.
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Reachability in (O(n), d)-VASS can be decided in O(n(B(n) + 1)d)-time using the simple
algorithm for Observation 5.1 with a trivially modified acceptance condition. It turns out
that coverability and reachability are equivalent in unary (O(n), d)-VASS. The following
lemma is proved in the full version [31].

▶ Lemma 5.6. For a (B(n), d)-VASS, let CB(n)(n) and RB(n)(n) denote the optimal running
times for coverability and reachability, respectively. For any γ > 0, there exists some δ > 0
such that Cγ·n(n) ≤ O(Rδ·n(n)). Conversely, for any γ > 0, there exists some δ > 0 such
that Rγ·n(n) ≤ O(Cδ·n(n)).

Lower Bounds for Reachability in Linearly-Bounded VASS
To obtain further lower bounds for the coverability problem in (O(n), d)-VASS, by Lemma 5.6,
we can equivalently find lower bounds for the reachability problem in (O(n), d)-VASS. In
Theorem 5.8, we will assume a well-established hypothesis concerning the time required
to find hypercliques in 3-uniform hypergraphs. In fact, Lincoln, Vassilevska Williams, and
Williams state and justify an even stronger hypothesis about µ-uniform hypergraphs for
every µ ≥ 3 [36, Hypothesis 1.4]. We will use this computational complexity hypothesis to
expose precise lower bounds on the time complexity of reachability in linearly-bounded fixed
dimension unary VASS.

▶ Hypothesis 5.7 (k-Hyperclique Hypothesis [36, Hypothesis 1.4]). Let k ≥ 3 be an integer.
On Word-RAM with O(log(n)) bit words, finding an k-hyperclique in a 3-uniform hypergraph
on n vertices requires nk−o(1)-time.

▶ Theorem 5.8. Assuming Hypothesis 5.7, reachability in unary (O(n), d + 2)-VASS of size
n requires nd−o(1)-time.

For the remainder of this section, we focus on the proof of Theorem 5.8. The lower bound
is obtained via reduction from finding hyperclique in 3-uniform hypergraphs, hence it is
subject to the k-Hyperclique Hypothesis. We present our reduction in two steps. The first
step is an intermediate step, in Lemma 5.9 we offer a reduction to an instance of reachability
in unary VASS with a limited number of zero-tests (proved in the full version [31]). The
second step extends the first, in Lemma 5.10 we modify the reduction by adding a counter so
zero-tests are absented. This extension leverages the recently developed controlling counter
technique of Czerwiński and Orlikowski [16]. This technique allows for implicit zero-tests to
be performed in the presence of a dedicated counter whose transition effects and reachability
condition ensure the implicit zero-tests were indeed performed correctly.

It has been shown that we may assume that the hypergraph is ℓ-partite for the k-
Hyperclique Hypothesis [36, Theorem 3.1]. Thus, we may assume that the vertices can be
partitioned into ℓ disjoint subsets V = V1 ∪ · · · ∪ Vℓ and all hyperedges contain three vertices
from distinct subsets {u, v, w} ∈ Vi × Vj × Vk for some 1 ≤ i < j < k ≤ ℓ.

▶ Lemma 5.9. Let d ≥ 1 be a fixed integer. Given a 4d-partite 3-uniform hypergraph
H = (V1 ∪ . . . ∪ V4d, E) with n vertices, there exists a unary (O(n4+o(1)), d + 1)-VASS
with O(d3) zero-tests T such that there is a 4d-hyperclique in H if and only if there is
a run from qI(0) to qF (v), for some v ≥ 0, in T . Moreover, T can be constructed in
poly(d) · n4+o(1)-time.

▶ Lemma 5.10 ([16, Lemma 10]). Let ρ be a run in a (d + 2)-VASS such that qI(0) ρ−→ qF (0).
Further, let q0(v0), q1(v1) . . . , qr(vr) be some distinguished configurations observed along the
run ρ with q0(v0) = qI(0) and qr(vr) = qF (0) and let ρj be the segment of ρ that is between
qj−1(vj−1) and qj(vj), so ρ can be described as

qI(0) = q0(v1) ρ1−→ q1(v1)→ · · · → qr−1(vr−1) ρr−→ qr(vr) = qF (0).
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Let S1, . . . , Sd, Sd+1 ⊆ {0, 1, . . . , r} be the sets of indices of the distinguished configurations
where zero-tests could be performed on counters x1, . . . , xd, xd+1, respectively. Let tj,i =
|{s ≥ j : s ∈ Si}| be the number of zero-test for the counter xi in the remainder of the run
ρj+1 · · · ρr. Given that v0 = 0 and vr = 0, if

eff(ρj)[d + 2] =
d+1∑
i=1

tj,i · eff(ρj)[i], (1)

then for every i ∈ {1, . . . , d, d + 1} and j ∈ Si, we know that vj [i] = 0.

With Lemma 5.10 in hand, we can ensure that the O(d3) zero-tests performed by T , from
Lemma 5.9, are executed correctly. We conclude this section with a proof of Theorem 5.8.

Proof of Theorem 5.8. Consider the reduction, presented in Lemma 5.9, from finding a
4d-hyperclique in a 4d-partite 3-uniform hypergraph H to reachability in (O(n4+o(1)), d + 1)-
VASS with O(d3) zero-tests. Now, given Lemma 5.10, we will add a controlling counter to
T so that the zero-tests on the d + 1 counters x1, . . . , xd, y are instead performed implicitly.
So we introduce another counter z that receives updates on transitions, consistent with
Equation 1, whenever any of the other counters are updated. Note that counters y and z,
for the sake of a succinct and consistent description, are respectively referred to as counters
xd+1 and xd+2 in the statement of Lemma 5.10. Moreover, notice that the maximum value
of z is bounded by poly(d) ·

(∑d+1
i=1 xi

)
∈ poly(d) · n4+o(1).

Therefore, we have constructed a unary (poly(d) ·n4+o(1), d+2)-VASS V with the property
that there H contains a 4d-hyperclique if and only if there is a run from q′

I(0) to q′
F (0) in V .

Such a (poly(d) ·n4+o(1), d + 2)-VASS V has size O(t · |T |) where t ∈ poly(d) is the number of
zero-tests performed on the run from qI(0) to qF (0) in T . Moreover, V can be constructed
in poly(d) · n4+o(1) time. Hence, if reachability in (O(n), d + 2)-VASS of size n can be solved
faster than nd−o(1), then one can find a 4d-hyperclique in a 3-uniform hypergraph faster
than n4d−o(1), contradicting Hypothesis 5.7. ◀

6 Conclusion

Summary. In this paper, we have revisited a classical problem of coverability in d-VASS.
We have closed the gap left by Rosier and Yen [46] on the length of runs witnessing instances
of coverability in d-VASS. We have lowered the upper bound of n2O(d log d) , from Rackoff’s
technique [45], to n2O(d) (Theorem 3.3), matching the n2Ω(d) lower bound from Lipton’s
construction [37]. This accordingly closes the gap on the exact space required for the
coverability problem and yields a deterministic n2O(d)-time algorithm for coverability in
d-VASS (Corollary 3.4). We complement this with a matching lower bound conditional on
ETH; there does not exist a deterministic n2o(d) -time algorithm for coverability (Theorem 4.2).
By and large, this settles the exact space and time complexity of coverability in VASS.

In addition, we study linearly-bounded unary d-VASS. Here, coverability and reachability
are equivalent and the trivial exhaustive search O(nd+1) algorithm is near-optimal. We prove
that reachability in linearly-bounded 1-VASS requires n2−o(1)-time under the k-cycle hypo-
thesis (Theorem 5.4), matching the trivial upper bound. We further prove that reachability
in linearly-bounded (d + 2)-VASS requires nd−o(1)-time under the 3-uniform hyperclique
hypothesis (Theorem 5.8).

Open Problems. The boundedness problem, a problem closely related to coverability, asks
whether, from a given initial configuration, the set of all reachable configurations is finite.
This problem was also studied by Lipton then Rackoff and is EXPSPACE-complete [37, 45].
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Boundedness was further analysed by Rosier and Yen [46, Theorem 2.1] and the same gap
also exists for the exact space required. We leave the same improvement, to eliminate the
same twice-exponentiated log(d) factor, as an open problem.

Our lower bounds for the time complexity of coverability and reachability in linearly-
bounded unary d-VASS, for d ≥ 2, leave a gap of up to n3+o(1), see Table 1. We leave it
as an open problem to either improve upon the upper bound O(nd+1) given by the trivial
algorithm, or to raise our conditional lower bounds.
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