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Abstract
At the core of the quest for a logic for Ptime is a mismatch between algorithms making arbitrary
choices and isomorphism-invariant logics. One approach to tackle this problem is witnessed symmetric
choice. It allows for choices from definable orbits certified by definable witnessing automorphisms.

We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric
choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The
latter operator evaluates a subformula in the structure defined by an interpretation. When similarly
extending pure fixed-point logic (IFP), IFP+WSC+I simulates counting which IFP+WSC fails to
do. For IFPC+WSC, it is unknown whether the interpretation operator increases expressiveness
and thus allows studying the relation between WSC and interpretations beyond counting.

In this paper, we separate IFPC+WSC from IFPC+WSC+I by showing that IFPC+WSC
is not closed under FO-interpretations. By the same argument, we answer an open question of
Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that
nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if
IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding
CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.
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1 Introduction

The quest for a logic for Ptime is one of the prominent open questions in finite model
theory [6, 19]. It asks whether there is a logic defining exactly all polynomial-time decidable
properties of finite structures. While Fagin’s theorem [14] initiated descriptive complexity
theory by showing that there is a logic capturing NPtime, the question for Ptime is still open.
One problem at the core of the question is a mismatch between logics and algorithms. For
algorithms, it is common to make arbitrary choices as long as the output is still isomorphism-
invariant. In general, it is undecidable whether an algorithm is isomorphism-invariant.
Showing this is usually part of the proof that the algorithm is correct. On the other hand,
every reasonable logic is required to be isomorphism-invariant by design [22, 13], so in contrast
to algorithms we cannot define something non-isomorphism-invariant. That is, a logic has to
enforce isomorphism-invariance syntactically and it is generally not clear how algorithms
making choices can be implemented in a logic.
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133:2 Witnessed Symmetric Choice and Interpretations in IFPC

For totally ordered structures, inflationary fixed-point logic (IFP) captures Ptime due to
the Immerman-Vardi Theorem [27]. On ordered structures, no arbitrary choices are needed
and the total order is used to “choose” the unique minimal element. Thus, the lack of
making choices is crucial on unordered structures. We therefore would like to support choices
in a logic while still guaranteeing isomorphism-invariance. There are logics in which arbitrary
choices can be made [2, 10], but for these it is undecidable whether a formula is isomorphism-
invariant [2]. In particular, such logics fail to be reasonable in the sense of Gurevich [22].
Similarly, when extending structures by an arbitrary order it is undecidable whether a formula
is order-invariant, i.e., it evaluates equally for all such orders (see [16]).

One approach to overcome the lack of choices in logics is to support a restricted form
of choice. If only choices from definable orbits (of the automorphism group of the input
structure) are allowed, that is, from sets of definable objects related by an automorphism of
the input structure, the output is guaranteed to be still isomorphism-invariant [9, 15]. This
form of choice is called symmetric choice (SC). However, it is unknown whether orbits can be
computed in Ptime. So it is unknown whether a logic with symmetric choice can be evaluated
in Ptime because during the evaluation we have to verify that the choice-sets are indeed
orbits. This is solved by handing over the obligation to check whether the choice-sets are
orbits from the evaluation to the formulas themselves. To make a choice, not only a choice-set
but also a set of witnessing automorphisms has to be defined. These automorphisms certify
that the choice-set is indeed an orbit in the following way: For every pair of elements a
and b in the choice-set, an automorphism mapping a to b has to be provided. This condition
guarantees evaluation in Ptime. We call this restricted form of choice witnessed symmetric
choice (WSC).

Besides witnessed symmetric choice, other operators were proposed to extend the expres-
siveness of logics not capturing Ptime including a counting operator (see [35]) and an operator
based on logical interpretations [15]. It was shown that witnessed symmetric choice increases
the expressiveness of IFP [15] and that counting operators increase the expressiveness of
IFP and the logic of Choiceless Polynomial Time (CPT) [4] (one usually refers with CPT to
its extension with counting, which we also do from now). However, for the combination of
counting and choices not much is known. In this paper, we investigate the relation of counting,
witnessed symmetric choice, and interpretations to better understand their expressive power.

Extending IFP with symmetric and witnessed symmetric choice was first studied by
Gire and Hoang [15]. They extend IFP with symmetric choice (which we denote IFP+SC)
and which witnessed symmetric choice (which we denote IFP+WSC). The authors show
that IFP+WSC distinguishes CFI graphs over ordered base graphs, which IFP (and even
fixed-point logic with counting IFPC) fails to do [5]. Afterwards IFP+SC was studied by
Dawar and Richerby [9]. They allowed for nested symmetric choice operators, proved that
parameters of choice operators increase the expressiveness, showed that nested symmetric
choice operators are more expressive than a single one, and conjectured that with additional
nesting depth the expressiveness increases.

Recently, extending CPT with witnessed symmetric choice (CPT+WSC) was studied by
Lichter and Schweitzer [32]. CPT+WSC has the interesting property that a CPT+WSC-
definable isomorphism test on a class of structures implies a CPT+WSC-definable canoniza-
tion for this class. Canonization is the task of defining an isomorphic but totally ordered copy.
The only requirement is that the class is closed under individualization, so under assigning
unique colors to vertices. This is often unproblematic [28, 33]. Individualization is natural in
the context of choices because a choice is, in some sense, an individualization. The concept of
canonization is essential in the quest for a logic for Ptime. It provides the routinely employed
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approach to capture Ptime on a class of structures: Define canonization, obtain isomorphic
and ordered structures, and apply the Immerman-Vardi Theorem (e.g. [42, 20, 21, 31]).
While in CPT+WSC defining isomorphism implies canonization, we do not know whether
the same holds for CPT or whether CPT+WSC is more expressive than CPT. Proving this
requires separating CPT from Ptime, which has been open for a long time.

(Witnessed) symmetric choice has the drawback that it can only choose from orbits of the
input structure. This structure might have complicated orbits that we cannot define or witness
in the logic. However, there could be a reduction to a different structure with easier orbits
exploitable by witnessed symmetric choice. For logics, the natural concept of a reduction
is an interpretation, i.e., defining a structure in terms of another one. Interpretations are
in some sense incompatible with (witnessed) symmetric choice because we always have to
choose from orbits of the input structure. Orbits of the interpreted structure are always
unions of orbits of the input structure, i.e., an interpretation may add more automorphisms
but never removes one. To exploit a combination of choices and interpretations, Gire and
Hoang proposed an interpretation operator [15]. It evaluates a formula in the image of an
interpretation. For logics closed under interpretations (e.g. IFP, IFPC, and CPT) such an
interpretation operator does not increase expressiveness. However, for the extension with
witnessed symmetric choice this is different: IFP+WSC is less expressive than the extension
of IFP+WSC with the interpretation operator. The interpretation operator in combination
with WSC simulates counting, which for WSC alone is indicated not to be the case [15].

We are interested in the relation between witnessed symmetric choice and the interpre-
tation operator not specifically for IFP but more generally. Most of the existing results
in [15, 9] showing that (witnessed) symmetric choice or the interpretation operator increases
in some way the expressiveness of IFP are based on counting. However, counting is not the
actual reason for using witnessed symmetric choice. Counting can be achieved more naturally
in IFPC. Thus, it is unknown whether the interpretation operator increases expressiveness
of IFPC+WSC. In CPT, it is not possible to show that witnessed symmetric choice or the
interpretation operator increases expressiveness without separating CPT from Ptime [32].

Overall, a natural base logic for studying the interplay of witnessed symmetric choice
and the interpretation operator is IFPC. In IFPC, separation results based on counting
are not applicable. But there are known IFPC-undefinable Ptime properties, namely the
already mentioned CFI query, which can be used to separate extensions of IFPC. The CFI
construction assigns to a connected graph, the so-called base graph, two non-isomorphic
CFI graphs: One is called even and the other one is called odd. The CFI query is to define
whether a given CFI graph is even.

Results. We define the logics IFPC+WSC and IFPC+WSC+I, which extend IFPC by a
fixed-point operator featuring witnessed symmetric choice and the latter additionally by an
interpretation operator. We show that the interpretation operator increases expressiveness:

▶ Theorem 1. IFPC+WSC < IFPC+WSC+I ≤ Ptime.

In particular, this separates IFPC+WSC from Ptime. Such a result does not follow from
existing techniques because separating IFP+WSC from Ptime is based on counting in [15].
Moreover, we show that both IFPC+WSC and IFP+SC are not even closed under FO-
interpretations. This answers an open question of Dawar and Richerby [9]. Proving Theorem 1
relies on the CFI construction and on defining the CFI query for certain classes of base graphs.
To show this, we show that IFPC+WSC+I-distinguishable orbits imply an IFPC+WSC+I-
definable canonization (similarly to [32]). We apply this to CFI graphs:

ICALP 2023



133:4 Witnessed Symmetric Choice and Interpretations in IFPC

▶ Theorem 2. If IFPC+WSC+I canonizes a class of colored base graphs K (closed under
individualization), then IFPC+WSC+I canonizes the class of CFI graphs CFI(K) over K.

The conclusion is that for IFPC+WSC+I canonization of a class of CFI graphs is not more
difficult than canonization of the corresponding class of base graphs, which is different in
many other logics [5, 17, 29, 7]. However, to canonize the CFI graphs in our proof, the
nesting depth of WSC-fixed-point operators and interpretation operators increases. We
show that this increase is unavoidable: For L ⊆ IFPC+WSC+I, we denote by WSCI(L) the
IFPC+WSC+I-fragment which uses IFPC-formula-formation-rules to compose L-formulas
and an additional interpretation operator nested inside a WSC-fixed-point operator.

▶ Theorem 3. There is a class of base graphs K, for which WSCI(IFPC) defines a canon-
ization but does not define the CFI query for CFI(K) and WSCI(WSCI(IFPC)) canonizes
CFI(K).

Theorem 3 provides a first step towards an operator nesting hierarchy for IFPC+WSC+I.

Our Techniques. We adapt the techniques of [32] from CPT to IFPC to define a WSC-
fixed-point operator. It has some small but essential differences to [15, 9]. Similar to [32]
for CPT, Gurevich’s canonization algorithm [23] is expressible in IFPC+WSC: It suffices to
distinguish orbits of a class of individualization-closed structures to define a canonization.

To prove Theorem 2, we use the interpretation operator to show that if IFPC+WSC+I
distinguishes orbits of the base graphs, then IFPC+WSC+I distinguishes also orbits of the
CFI graphs and thus canonizes the CFI graphs. The CFI-graph-canonizing formula nests
one WSC-fixed-point operator (for Gurevich’s algorithm) and one interpretation operator (to
distinguish orbits) more than the orbit-distinguishing formula of the base graphs. To show
that this increase in nesting depth is necessary, we construct double CFI graphs. We start
with a class of CFI graphs CFI(K′) canonized in WSCI(IFPC). We create new base graphs K
from the CFI(K′)-graphs. Applying the CFI construction once more, CFI(K) is canonized in
WSCI(WSCI(IFPC)) but not in WSCI(IFPC): To define orbits of CFI(K), we have to define
orbits of the base graph, for which we need to define the CFI query for CFI(K′).

To prove IFPC+WSC < IFPC+WSC+I, we construct a class of asymmetric structures,
i.e., structures without non-trivial automorphisms, for which isomorphism is not IFPC-
definable. Because asymmetric structures have only singleton orbits, witnessed symmetric
choice is not beneficial, thus IFPC+WSC = IFPC, and isomorphism is not IFPC+WSC-
definable. These structures combine CFI graphs and the so-called multipedes [24], which
are asymmetric and for which IFPC fails to distinguish orbits. An interpretation removes
the multipedes and reduces the isomorphism problem to the ones of CFI graphs. Thus,
isomorphism of this class of structures is IFPC+WSC+I-definable.

Related Work. The logic IFPC was separated from Ptime using the CFI graphs [5]. CFI
graphs not only turned out to be difficult for IFPC but variants of them were also used to
separate rank logic [29] and the more general linear-algebraic logic [7] from Ptime. CPT
was shown to define the so-called CFI query for ordered base graphs [12] and base graphs of
maximal logarithmic color class size [37]. Defining the CFI query for these graphs in CPT
turned out to be comparatively more complicated than in IFP+WSC for ordered base graphs
in [15]. In general, it is still open whether CPT defines the CFI query for all base graphs.

The definitions of the (witnessed) symmetric choice operator in [15, 9] differ at crucial
points form the one in [32] and in this paper: The formula defining the witnessing auto-
morphism has access to the obtained fixed-point. This is essential to implement Gurevich’s
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canonization algorithm but has the drawback to impose (possibly) stronger orbit conditions.
Although it is unknown whether these two variants of witnessed symmetric choice have
the same expressiveness, existing results [15, 9] transfer to the variant used in this paper.
We expect that the results of this paper also hold for the other variant. However, proving
Theorem 2 will be more effort because Gurevich’s canonization algorithm cannot be used.

CPT+WSC in [32] is a three-valued logic using, beside true and false, an error marker for
non-witnessed choices. This is needed for CPT because fixed-point computations in CPT do
not necessarily terminate in a polynomial number of steps. Instead, computation is aborted
(and orbits cannot be witnessed). For other approaches to integrate choice in first-order logic,
but which are no Ptime-logic candidates, see e.g. [3, 36, 10]. We refer to [38] for an overview.

Logical interpretations can also be used to characterize CPT. The logic CPT as the same
expressive power as polynomial-time interpretation logic [18]. This logic essentially applies a
first-order interpretation (with an appropriate counting extension) iteratively. The iterative
application of an interpretation and thereby the ability to iteratively take quotients strictly
increases the expressive power. The interpretation operator that we consider evaluates a
formula in the interpreted structure, that is, it evaluates an interpretation only once. By
nesting this operator, constantly many interpretations can be nested. Hence, for logics closed
under interpretations, the interpretation operator does not increase the expressive power.

Multipedes [24] are a class of asymmetric structures not characterized up to isomorphism
in k-variable counting logic for every fixed k. Asymmetry turns multipedes to hard examples
for graph isomorphism algorithms in the individualization-refinement framework [34, 1]. The
size of a multipede not identifiable in k-variable counting logic is large with respect to k.
There also exists a class of asymmetric graphs [8] for which the number of variables needed
for identification is linear. Both classes are based on the CFI construction.

There is another remarkable but not directly-connected coincidence to lengths of resolution
proofs. Resolution proofs for non-isomorphism of CFI-graphs have exponential size [40]. When
adding a global symmetry rule (SRC-I), which exploits automorphisms of the formula (so akin
to symmetric choice), the length becomes polynomial [39]. For asymmetric multipedes the
length in the SRC-I system is still exponential [41]. But when considering the local symmetry
rule (SRC-II) exploiting local automorphisms (so somewhat akin to symmetric choice after
restricting to a substructure with an interpretation) the length becomes polynomial again [39].

2 Preliminaries

We set [k] := {1, . . . , k}. The i-th entry of a k-tuple t̄ ∈ Nk is denoted by ti and its length by
|t̄| = k. The set of all tuples of length at most k is N≤k and the set of all finite tuples is N∗.

A relational signature τ is a set of relation symbols {R1, . . . , Rℓ} of arities ar(Ri). We
use letters τ and σ for signatures. A τ -structure is a tuple A = (A,RA

1 , . . . , R
A
ℓ ) where

RA
i ⊆ Aar(Ri). The set A is called universe and its elements vertices. We use letters A and

B for structures, A and B for their universes, and u, v, and w for vertices. The reduct A ↾ σ
is the restriction of A to the relations in σ ⊆ τ . This paper considers finite structures.

A colored graph is an {E,⪯}-structure G = (V,EG,⪯G). The relation E is the edge
relation and the relation ⪯ is a total preorder. Its equivalence classes are the color classes
or colors. We often write G = (V,E,⪯) for a colored graph. The neighborhood of a vertex
u ∈ V is NG(u). The induced subgraph of G by W ⊆ V is G[W ]. The graph G is k-connected
if |V | > k and, for every V ′ ⊆ V of size at most k − 1, the graph G \ V ′ is connected. The
treewidth tw(G) of G measures how close G is to being a tree. We omit a definition (see [11])
and only use the fact that if G is a minor of H, i.e., G is obtained from H by deleting
vertices or edges and contracting edges, then tw(G) ≤ tw(H).

ICALP 2023



133:6 Witnessed Symmetric Choice and Interpretations in IFPC

Let A and B be two τ -structures and ū ∈ Ak and v̄ ∈ Bk. We write (A, ū) ∼= (B, v̄)
if there is a isomorphism φ : A → B satisfying φ(ū) = v̄. An automorphism φ of (A, ū) is
an isomorphism (A, ū) → (A, ū). We say that φ fixes ū and write Aut((A, ū)) for the set of
all automorphisms fixing ū. We will use the same notation also for other objects, e.g., for
automorphisms fixing relations. A k-orbit of (A, ū) is a maximal set of k-tuples O ⊆ Ak such
that for every v̄, w̄ ∈ O, there is an automorphism φ ∈ Aut((A, ū)) satisfying φ(v̄) = w̄.

Fixed-Point Logic with Counting. We recall fixed-point logic with counting IFPC (proposed
in [26], see [35]). Let τ be a signature and A = (A,RA

1 , . . . , R
A
ℓ ) be a τ -structure. We extend τ

and A with counting. Set τ# := τ ⊎ {·,+, 0, 1} and A# := (A,RA
1 , . . . , R

A
ℓ ,N, ·,+, 0, 1) to be

the two-sorted τ#-structure that is the disjoint union of A and N. IFPC[τ ] is a two-sorted
logic using the signature τ#. Element variables range over vertices and numeric variables
range over N. The letters x, y, and z are used for element variables, ν and µ for numeric
variables, and s and t for numeric terms. IFPC-formulas are built from first-order formulas,
a fixed-point operator, and counting terms. The range of numeric variables needs to be
bounded to ensure Ptime-evaluation: For an IFPC-formula Φ, a closed numeric IFPC-term s,
a numeric variable ν, and a quantifier Q ∈ {∀,∃}, the formula Qν ≤ s.Φ is an IFPC-formula.
An inflationary fixed-point operator defines a relation R. For an IFPC[τ,R]-formula Φ
and variables x̄µ̄, the fixed-point operator [ifpRx̄µ̄ ≤ s̄.Φ] (ν̄µ̄) is an IFPC[τ ]-formula. The
tuple s̄ of |µ̄| closed numeric terms bounds the values of µ̄. The crucial element of IFPC are
counting terms. For an IFPC-formula Φ, variables x̄ν̄, and |ν̄| closed numeric IFPC-terms s̄,
#x̄ν̄ ≤ s̄.Φ is a numeric IFPC-term.

IFPC-formulas (or terms) are evaluated over A#. For a numeric term s(x̄ν̄), the function
sA : A|x̄| × N|ν̄| → N maps the values for the free variables of s to the value that s takes
in A#. Likewise, for a formula Φ(x̄ν̄), we write ΦA ⊆ A|x̄| × N|ν̄| for the set of values for the
free variables satisfying Φ. Evaluating a counting term for a formula Φ(ȳx̄µ̄ν̄) is defined as
follows: (#x̄ν̄ ≤ s.Φ)A(ūm̄) := |{w̄n̄ ∈ A|x̄| × N|ν̄| | ni ≤ sAi for all i ∈ [|ν̄|], ūw̄m̄n̄ ∈ ΦA}|.

Finite Variable Counting Logic. The k-variable logic with counting Ck extends the k-
variable fragment of first-order logic (FO) with counting quantifiers ∃≥jx.Φ (“at least j
distinct vertices satisfy Φ”). For every fixed n ∈ N, every k-variable IFPC-formula is
equivalent to a CO(k)-formula [35] on structures of order up to n. Let A and B be two
τ -structures and ū ∈ Aℓ and v̄ ∈ Bℓ. A logic L distinguishes (A, ū) from (B, v̄) if there
is an L-formula Φ with ℓ free variables such that ū ∈ ΦA and v̄ /∈ ΦB. Otherwise, the
structures are L-equivalent. We write (A, ū) ≃k

C (B, v̄) if (A, ū) and (B, v̄) are Ck-equivalent.
The logics Ck are used to prove IFPC-undefinability: Let (Ak,Bk) be a sequence of finite
structures for every k ∈ N such that Ak has a property P but Bk does not. If Ak ≃k

C Bk

for every k, then IFPC does not define P . The logic Ck is characterized by the bijective
k-pebble game [25]. The game is played on two structures A and B by two players called
Spoiler and Duplicator. There are pebble pairs (pi, qi) for every i ∈ [k]. Positions in the
game are tuples (A, ū;B, v̄) for tuples ū ∈ A≤k and v̄ ∈ B≤k of the same length. A pebble pj

is placed on ui and qj is placed on vi for some j ∈ [k]. No pebbles are placed initially.
If |A| ≠ |B|, then Spoiler wins. If not, Spoiler picks up a pair of pebbles (pi, qi). Duplicator
answers with a bijection λ : A → B. Spoiler places pi on w ∈ A and qi on λ(w) ∈ B. If in the
resulting position (A, ū;B, v̄) the map ui 7→ vi is not a pebble-respecting local isomorphism
(A[ū], ū) → (B[v̄], v̄), then Spoiler wins. Otherwise, the game continues with the next round.
Duplicator wins if Spoiler never wins. Spoiler/Duplicator has a winning strategy in position
(A, ū;B, v̄) if they can always win the game. Spoiler has a winning strategy in position
(A, ū;B, v̄) if and only if (A, ū) ̸≃k

C (B, v̄) [25].



M. Lichter 133:7

Logical Interpretations. Interpretations define maps between structures via formulas evalu-
ated on tuples containing vertices and numbers. We use x̄, ȳ, and z̄ for a tuple of element
and numeric variables and ū and v̄ for a tuple of vertices and numbers in the following.

Let σ := {R1, . . . , Rℓ}. A d-dimensional IFPC[τ, σ]-interpretation Θ(z̄) with parameters z̄
is a tuple

Θ(z̄) =
(
Φdom(z̄x̄),Φ∼=(z̄x̄ȳ),ΦR1(z̄x̄1 . . . x̄ar(R1)), . . . ,ΦRℓ

(z̄x̄1 . . . x̄ar(Rℓ)), s̄
)

of IFPC[τ ]-formulas and a j-tuple s̄ of closed numeric IFPC[τ ]-terms, where j is the number
of numeric variables in x̄. The tuples of variables x̄, ȳ, and the x̄i are all of length d and
agree on whether the k-th variable is an element variable or not. Let A be a τ -structure and
ū ∈ (A ∪ N)|z̄| match the parameter variables (element or numeric). Assume that the first j
variables in x̄ are numeric variables and set D := {0, ..., sA1 } × · · · × {0, ..., sAj } ×Ad−j . We
define the σ-structure B = (B,RB

1 , . . . , R
B
ℓ ) via

B :=
{
v̄ ∈ D

∣∣ ūv̄ ∈ ΦA
dom

}
and

RB
i :=

{
(v̄1, . . . , v̄ar(Ri)) ∈ Bar(Ri) ∣∣ ūv̄1 . . . v̄ar(Ri) ∈ ΦA

Ri

}
and the relation E := {(v̄1, v̄2) ∈ B2 | ūv̄1v̄2 ∈ ΦA∼=}. Set Θ(A, ū) := B/E if E is a
congruence relation on B and otherwise leave Θ(A, ū) undefined. An interpretation is called
equivalence-free if Φ∼=(z̄x̄ȳ) is the formula x̄ = ȳ. For extensions L of IFPC, the notion of an
L[τ, σ]-interpretation is defined similarly. For logics without numeric variables like FO or
IFP, interpretations are defined analogously omitting the numeric parts.

A property P of τ -structures is L-reducible to a property Q of σ-structures if there is a
parameter-free L[τ, σ]-interpretation Θ such that A ∈ P if and only if Θ(A) ∈ Q for every
τ -structure A. A logic L′ is closed under L-interpretations if for every property P that is
L-reducible to an L′-definable property Q, the property P itself is L′-definable (cf. [13, 35]).

3 Witnessed Symmetric Choice

We extend IFPC with an inflationary fixed-point operator with witnessed symmetric choice.
Let τ be a relational signature and R, R∗, and S be relation symbols not in τ satisfying
k = ar(R) = ar(R∗). The relation R will be used for stages in the fixed-point computation,
R∗ for a fixed-point, and S will be a singleton relation containing a chosen tuple.

We define the WSC-fixed-point operator with parameters p̄ν̄. If Φstep(p̄x̄ν̄) is an
IFPC + WSC[τ,R, S]-formula such that |x̄| = ar(R), Φchoice(p̄ȳν̄) is a IFPC + WSC[τ,R]-
formula such that |ȳ| = ar(S), Φwit(p̄ȳȳ′z1z2ν̄) is an IFPC + WSC[τ,R,R∗]-formula where
|ȳ| = |ȳ′| = ar(S), and Φout(p̄ν̄) is an IFPC + WSC[τ,R∗]-formula, then

Φ(p̄ν̄) = ifp-wscR,x̄;R∗;S,ȳ,ȳ′;z1z2 .
(
Φstep(p̄x̄ν̄),Φchoice(p̄ȳν̄),Φwit(p̄ȳȳ′z1z2ν̄),Φout(p̄ν̄)

)
is an IFPC + WSC[τ ]-formula. The formulas Φstep, Φchoice, Φwit, and Φout are called step
formula, choice formula, witnessing formula, and output formula respectively. Note that
only element variables are used for defining the fixed-point in the WSC-fixed-point operator.
This suffices for our purpose in this paper. We expect that our arguments also work with
numeric variables. We omit the free numeric variables ν̄ when defining the semantics of the
WSC-fixed-point operator because numeric parameters do not change automorphisms.

Intuitively, Φ is evaluated as follows. The formula Φ defines the set of vertex-tuples ū that,
when interpreting p̄ with ū, satisfy the following process: Initialize R as the empty relation.
Define a choice-set using the choice formula. Pick an arbitrary tuple of this set and let S
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133:8 Witnessed Symmetric Choice and Interpretations in IFPC

only contain this tuple. Define the next stage from R and S using the step formula. Then
set R to be this next stage and repeat until a fixed-point R∗ is reached. If the witnessing
formula certifies that all choice-set were indeed orbits and the output formula is satisfied
by R∗, then ū satisfies Φ.

We now consider the evaluation in more detail. Let A be a τ -structure and ū ∈ A|p̄|. We
define a sequence of relations called stages ∅ =: RA

1 , . . . , R
A
ℓ = RA

ℓ+1 =: (R∗)A. Given the
relation RA

i , the choice formula defines the choice-set

TA
i+1 :=

{
v̄

∣∣∣ ūv̄ ∈ ΦA,RA
i

choice

}
.

We pick an arbitrary tuple v̄ ∈ TA
i+1 and set SA

i+1 := {v̄} or SA
i+1 := ∅ if TA

i+1 = ∅. The step
formula defines the next stage on the structure (A, RA

i , S
A
i+1):

RA
i+1 := RA

i ∪
{
w̄

∣∣∣ ūw̄ ∈ Φ(A,RA
i ,SA

i+1)
step

}
.

We proceed until a fixed-point (R∗)A is reached. This fixed-point is in general not isomorphism-
invariant, i.e., not invariant under automorphisms of (A, ū). Isomorphism-invariance of Φ is
ensured as follows: Choices are only allowed from orbits, which is certified by the witnessing
formula. A set N ⊆ Aut((A, ū)) witnesses a relation R ⊆ Ak as (A, ū)-orbit, if for very
v̄, v̄′ ∈ R there is a φ ∈ N with v̄ = φ(v̄′). Because we consider isomorphism-invariant sets,
the relation R is never a proper subset of an orbit. We require that Φwit defines a set of
automorphisms. For v̄, v̄′ ∈ TA

i+1, a map φv̄,v̄′ is defined by

w 7→ w′ whenever ūv̄v̄′ww′ ∈ Φ(A,RA
i ,(R∗)A)

wit .

The set {φv̄,v̄′ | v̄, v̄′ ∈ TA
i+1} has to witness TA

i+1 as (A, ū, RA
1 , . . . , R

A
i )-orbit. The witnessing

formula always has access to the fixed-point (note that orbits are witnessed after the fixed-
point is computed). This is possible because TA

i+1 is an (A, ū, RA
1 , . . . , R

A
i )-orbit and not just

an (A, ū, RA
i )-orbit. If some choice is not witnessed, then ū /∈ ΦA. Otherwise, the output

formula is evaluated on the fixed-point:

ΦA := Φ(A,(R∗)A)
out .

Because all choices are witnessed, all possible fixed-points (for different choices) are related
by an automorphism of (A, ū) and thus either all or none satisfy the output formula.

An Example. We give an illustrating example (an adaption of [32]). We show that the class
of threshold graphs (i.e., graphs which can be reduced to the empty graph by iteratively
deleting universal or isolated vertices) is IFPC+WSC-definable (it is actually IFP-definable).
The set of all isolated or universal vertices of a graph forms a 1-orbit (there cannot be an
isolated and a universal vertex in a nontrivial graph). We chose one such vertex, collect it in
a unary relation R, and repeat as follows: The choice formula

Φchoice(y) := ¬R(y) ∧
(
(∀z. ¬R(y) ⇒ E(y, z)) ∨ (∀z. ¬R(y) ⇒ ¬E(y, z))

)
defines the set of all isolated or universal vertices after deleting the vertices in R. The step
formula Φstep(x) := R(x) ∨ S(x) adds the chosen vertex contained in the relation S to R.
The output formula Φout := ∀x.R∗(x) defines whether it was possible to delete all vertices.
Witnessing orbits is easy: To show that two isolated (or universal) vertices y and y′ are
related by an automorphism, it suffices to define their transposition via

Φwit(y, y′, z1, z2) := (z1 = y ∧ z2 = y′) ∨ (z2 = y ∧ z1 = y′) ∨ (y ̸= z1 = z2 ̸= y′).

The formula ifp-wscR,x;R∗;S,y,y′;z1z2 . (Φstep,Φchoice,Φwit,Φout) defines the class of threshold
graphs.
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Reduct Semantics. The semantics is defined formally using the WSC∗-operator from [32].
It formalizes the former evaluation strategy. The WSC-fixed-point operator Φ is evaluated
in the structure A ↾ sig(Φ), where sig(Φ) are all relations symbols used in Φ. So adding
a relation to A that is not mentioned in Φ but possibly changes the orbits of A does not
change ΦA. This is a desirable property of a logic [13]. The reduct semantics of a choice
operator can also be found in [9].

Extension with an Operator for Logical Interpretations. We extend IFPC+WSC with
another operator using interpretations. Every IFPC+WSC-formula is an IFPC+WSC+I-
formula. If Θ(p̄ν̄) is an IFPC+WSC+I[τ, σ]-interpretation with parameters p̄ν̄ and Φ is an
IFPC+WSC+I[σ]-sentence, then the interpretation operator

Ψ(p̄ν̄) := I(Θ(p̄ν̄); Φ)

is an IFPC+WSC+I[τ ]-formula with free variables p̄ν̄. The semantics is defined by

I(Θ(p̄ν̄); Φ)A :=
{
ūn̄ ∈ A|p̄| × N|ν̄| ∣∣ ΦΘ(A,ūn̄) ̸= ∅

}
.

Note that ΦΘ(A,ūn̄) = {()} if Φ is satisfied and ΦΘ(A,ūn̄) = ∅ otherwise. The interpretation
operator evaluates a subformula in the image of an interpretation. For IFPC, such an
operator does not increase expressiveness because IFPC is closed under interpretations [35].
For IFPC+WSC this is not clear: Because Θ(A, ūn̄) may have a different automorphism
structure, Φ possibly can exploit the WSC-fixed-point operator in a way impossible on A.
Indeed, we will see that IFPC+WSC is not even closed under FO-interpretations. We now
study the properties of IFPC+WSC+I and its relation to IFPC+WSC.

4 The CFI Construction

We give an overview of the CFI construction. For more details, we refer to [5]. The degree-d
CFI gadget consists of d pairs of edge vertices {ai0, ai1} for every i ∈ [d] and the set of
gadget vertices {b̄ ∈ Fd

2 | b1 + · · · + bd = 0}. There is an edge {aij , b̄} if and only if bi = j.
If we use d colors to additionally color the vertices {ai0, ai1} for every i ∈ [d], then the
CFI gadget realizes precisely the automorphisms exchanging the vertices {ai0, ai1} for an
even number of i ∈ [d]. We later need a relational variant of the CFI gadgets in which
every gadget vertex b̄ is replaced by the d-tuple (a1b1 , . . . , adbd

). This gadget has the same
automorphisms [24]. A base graph is a simple connected graph. Let G = (V,E,⪯) be a
colored base graph. We call V base vertices and E base edges and use fraktur letters for base
vertices or edges. For f : E → F2, we construct the CFI graph CFI(G, f) as follows: Replace
every base vertex by a CFI gadget of the same degree. For every base edge {u, v} ∈ E,
we obtain two edge-vertex-pairs {ai0, ai1} and {a′

j0, a
′
j1}. The first one is given by the

gadget of u and the second one by the gadget of v. Now add the edges {aik, a
′
jℓ} satisfying

k+ ℓ = f({u, v}). The gadget vertices of the gadget for a base vertex u originate from u, the
edge vertices {ai0, ai1} originate from (u, v), and the edge vertices {a′

j0, a
′
j1} originate from

(v, u). The color of edge and gadget vertices is obtained from the color of its origin.
It is known [5] that CFI(G, g) ∼= CFI(G, f) if and only if

∑
g :=

∑
e∈E g(e) =

∑
f . If we

are interested in the graph up to isomorphism, we write CFI(G, 0) and CFI(G, 1). CFI graphs
with

∑
g = 0 are called even and the others odd. A base edge e ∈ E is twisted by f and g if

g(e) ̸= f(e). Twisted edges can be moved by path isomorphisms [29]: If u1, . . . , uℓ is a path
in G, then there is an isomorphism φ : CFI(G, g) → CFI(G, g′), where g′(e) = g(e) apart from
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e1 := {u1, u2} and e2 := {uℓ−1, uℓ} satisfying g′(ei) = g(ei) + 1. If G is totally ordered, then
every isomorphism is composed of path-isomorphisms. When considering a cycle instead of a
path, we obtain an automorphism of CFI(G, g).

For a class of base graphs K, set CFI(K) := {CFI(G, g) | G = (V,E) ∈ K, g : E → F2}.
The CFI query for CFI(K) is to decide whether a given CFI graph in CFI(K) is even.

▶ Lemma 4 ([11]). If G is of minimum degree 2 and has treewidth at least k, in particular
if G is k-connected, then CFI(G, 0) ≃k

C CFI(G, 1).

▶ Lemma 5. Let G = (V,E,⪯) be (k+2)-connected and A = CFI(G, f) for some f : E → F2.
Let ū ∈ A≤k and {u, v} ∈ E be a base edge such that no vertex in ū has origin u, v, (u, v), or
(v, u). Then the two edge vertices with origin (u, v) are contained in the same orbit of (A, ū).

5 Canonization of CFI Graphs in IFPC+WSC+I

We show that canonizing CFI graphs in IFPC+WSC+I is not harder than canonizing the base
graphs. We work with a class of base graphs closed under individualization, i.e., intuitively
closed under assigning new unique colors to some vertices.

▶ Definition 6 (Individualization of Vertices). Let A be a τ -structure. A binary relation
⊴A ⊆ A2 is an individualization of V ⊆ A if ⊴A is a total order on V and ⊴A ⊆ V 2. We
say that ⊴A is an individualization if it is an individualization of some V ⊆ A and that a
vertex u ∈ A is individualized by ⊴A if u ∈ V .

The closure under individualization of a class of τ -structures K is the class K⊴ of (τ ⊎ {⊴})-
structures such that (A,⊴A) ∈ K⊴ for every A ∈ K and every individualization ⊴A. Instead
of (A,⊴A), one can think of (A, ū) where u1 ⊴A · · · ⊴A u|ū| are the ⊴A-individualized
vertices. In the following, let L be one of the logics IFPC, IFPC+WSC, or IFPC+WSC+I.
We adapt some notions related to canonization from [32] to our first-order setting. Note that
all definitions that follow implicitly include the closure under individualization.

▶ Definition 7 (Canonization). Let K be a class of τ -structures. An L-canonization for K
is an L[τ ⊎ {⊴}, τ ⊎ {⊴,≤}]-interpretation Θ such that ≤Θ(A) is a total order on Θ(A) for
every A ∈ K⊴, A ∼= Θ(A) ↾ (τ ⊎ {⊴}) for every A ∈ K⊴, and Θ(A) ∼= Θ(B) if and only if
A ∼= B for all A,B ∈ K⊴. L canonizes K if there is an L-canonization for K.

▶ Definition 8 (Distinguishable Orbits). The logic L distinguishes k-orbits for a class of
τ -structures K if some L[τ ⊎ {⊴}]-formula Φ(x̄, ȳ) with |x̄| = |ȳ| = k defines, for every
A ∈ K⊴, a total preorder on Ak whose equivalence classes form the k-orbit partition of A,
i.e., Φ orders the k-orbits.

▶ Definition 9 (Ready for Individualization). A class of τ -structures K is ready for individ-
ualization in L if there is an L[τ ⊎ {⊴}]-formula Φ(x) defining for every A ∈ K⊴ a set of
vertices O = ΦA such that O is a 1-orbit of A, |O| > 1 if A has a non-trivial 1-orbit, and if
O = {u} is a singleton set, then u is not individualized by ⊴A unless ⊴A individualizes A.

Let L be one logic of IFPC+WSC and IFPC+WSC+I. The following lemma is similar
to [32] for CPT+WSC and the proof is analogous (we do not include definable isomorphism):

▶ Lemma 10. Let K be a class of τ -structures. Then the following are equivalent:
1. L defines a canonization for K.
2. L distinguishes the k-orbits of K for every k ∈ N.
3. K is ready for individualization in L.
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Gurevich’s canonization algorithm [23] is used to define the canonization. It requires the WSC-
fixed-point operator. When canonizing using Lemma 10, defining witnessing automorphisms
is hidden in Gurevich’s algorithm and they do not have to be defined explicitly.

▶ Lemma 11. Let K be a class of colored base graphs. If IFPC+WSC+I distinguishes
2-orbits of K, then CFI(K) is ready for individualization in IFPC+WSC+I.

Proof Sketch. For a CFI graph A over G ∈ K⊴, the base graph G is definable by an IFPC-
interpretation. With an interpretation operator, we evaluate a 2-orbit-defining formula on G.
a) If there is a 2-orbit O of G such that for all edges in O there is a cycle not using the origins

of individualized vertices, we define the non-trivial orbit of the CFI graph containing the
edge-vertex-pairs with origin in O.

b) Otherwise, we can order each edge-vertex-pair. If there is a non-trivial 2-orbit O of G, we
define the non-trivial orbit of the CFI graph containing the greater edge vertex of each
edge-vertex-pair (with respect to the edge-vertex-pair-order) with origin in O.

c) Otherwise, the edge-vertex-pair-order extends to a total order. ◀

Proof of Theorem 2. The claim follows immediately from Lemmas 10 and 11. ◀

▶ Corollary 12. If K is a class of base graphs of bounded degree, then IFPC+WSC+I defines
canonization for K if and only if IFPC+WSC+I defines canonization for CFI(K).

Proof. One direction is by Theorem 2. For the other direction, a base graph G of bounded
degree is canonized by defining CFI(G, 0) (which is possible because G is of bounded degree),
canonizing CFI(G, 0), and defining the base graph of the ordered copy of CFI(G, 0). ◀

Theorem 2 can be applied iteratively: If IFPC+WSC+I canonizes K, then IFPC+WSC+I
canonizes CFI(K), and so IFPC+WSC+I canonizes CFI(CFI(K)). Every iteration adds one
WSC-fixed-point operator (Gurevich’s algorithm in Lemma 10) and one interpretation opera-
tor (define the base graph in Lemma 11), i.e., the nesting depth of these operators increases.

6 The CFI Query and Nesting of Operators

We show that the increased nesting depth of operators in Theorem 2 is unavoidable. If
IFPC distinguishes orbits of the base graphs, then the nesting depth of WSC-fixed-point
operators has to increase because IFPC does not define the CFI query. To show this for
IFPC+WSC+I-distinguishable orbits, we combine non-isomorphic CFI graphs into a new
base graph and apply the CFI construction again. To define orbits of these double CFI graphs,
one has to define the CFI query for the base CFI graphs, which requires a WSC-fixed-point
operator. However, parameters to WSC-fixed-point operators will complicate matters.

Nested WSC-Fixed-Point and Interpretation Operators. Let IFPC ⊆ L ⊆ IFPC+WSC+I.
We write WSC(L) for formulas composed by IFPC-formula-formation rules from L-formulas
and WSC-fixed-point-operators, for which all subformulas are L-formulas. We define I(L)
similarly: One can use interpretation operators I(Θ,Ψ) where Θ is an L-interpretation and
Ψ is an L-formula. We set WSCI(L) := WSC(I(L)) and WSCIk+1(L) := WSCI(WSCIk(L)).
Note the construction in Lemmas 10 and 11:

▶ Corollary 13. Let K be a class of base graphs.
1. If L distinguishes 2-orbits of K, then CFI(K) is ready for individualization in I(L).
2. If CFI(K) is ready for individualization in L, then WSC(L) canonizes CFI(K).
3. If L distinguishes 2-orbits of K, then WSCI(L) canonizes CFI(K).
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Color Class Joins. Let G1, . . . , Gℓ be connected colored graphs such that all Gi have c
colors. The color class join Jcc(G1, . . . , Gℓ) is the following graph: Start with the disjoint
union of the Gi and add c additional vertices u1, . . . , uc. Add, for every i ∈ [c], edges
between ui and every vertex v in the i-th color class of all Gj . The resulting colored graph
Jcc(G1, . . . , Gℓ) has 2c color classes: For every i ∈ [c], the vertex ui forms a singleton color
class and the union of the i-th color classes of every Gj forms a color class. The Gj are the
parts of Jcc(G1, . . . , Gℓ). The uj are the join vertices and the others the part vertices. The
part of a part vertex v is the Gj containing v. Defining orbits of Jcc(G1, . . . , Gℓ) is at least
as hard as defining isomorphism of the Gj .

▶ Lemma 14. If two part vertices v and v′ are in the same orbit of Jcc(G1, . . . , Gℓ), then
the part of v is isomorphic to the one of v′.

We set Jk
cc(G,H,K) := Jcc(G, . . . , G,H, . . . ,H,K, . . . ,K), where G, H, and K are repeated k

times. To consider color class joins of CFI graphs, let K be a class of colored base graphs.
For G ∈ K and g ∈ F2, we set

CFIk(G, g) := Jk
cc(CFI(G, 0),CFI(G, g),CFI(G, 1)),

CFIk(K) :=
{

CFIk(G, g)
∣∣ G ∈ K, g ∈ F2

}
,

CFIω(K) :=
⋃
k∈N

CFIk(K).

▶ Lemma 15. If L canonizes CFI(K), then L canonizes CFIω(K).

Let G1, . . . , Gℓ be colored base graphs and h ∈ F2. We transfer the notion of part and join
vertices from H := Jcc(G1, . . . , Gℓ) to A := CFI(H,h). The Gi-part of A is the set of vertices
originating from Gi in H. These vertices are called part vertices of Gi. A vertex is a part
vertex, if it is a part vertex of some Gi. The remaining vertices are the join vertices.

We consider a special class of individualizations of A. Let ū ∈ A∗. A part of A is pebbled
by ū if the part contains ui for some i. The set of ū-pebbled-part vertices Vū(A) is the set
of all join vertices and all part vertices of a part pebbled by ū. The set of ū-pebbled-part
individualizations Pū(A) is the set of all individualizations of Vū(A).

▶ Definition 16 (Unpebbled-Part-Distinguishing). For a tuple ū ∈ Aℓ, a relation R ⊆ Ak

is ū-unpebbled-part-distinguishing if there are m ∈ [k] and i ̸= j ∈ [ℓ] such that both the
Gi-part and the Gj-part of A are ū-unpebbled, there is a v̄ ∈ R such that vm is a part vertex
of Gi, and for every w̄ ∈ R, the vertex wm is not a part vertex of Gj.

If Gi ̸∼= Gj are not ū-pebbled, then every k-orbit O of (A, ū) satisfies O ⊆ Vū(A)k or is
ū-unpebbled-part-distinguishing because Gi- and Gj-part vertices are not in the same orbit.

Quantifying over Pebbled-Part Individualizations. We now define an extension of Ck which
allows for quantifying over pebbled-part individualizations. This (unnatural) extension
can only be evaluated on CFI graphs over color class joins. We use this logic for proving
WSCI(IFPC)-undefinability. If Φ(x̄) is a Ck[τ,⊴P ]-formula, then (∃P⊴P .Φ)(x̄) is a Pk[τ ]-
formula. Pk[τ ]-formulas can be combined as usual in Ck with Boolean operators and counting
quantifiers. Note that ∃P -quantifiers cannot be nested. Let G1, . . . , Gℓ be base graphs,
g ∈ F2, and A = CFI(Jcc(G1, . . . , Gn), g). The ∃P -quantifier has the following semantics:

(∃P⊴P . Φ)A :=
{
ū

∣∣ ū ∈ Φ(A,⊴A
P ) for some ⊴A

P ∈ Pū(A)
}
.
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▶ Lemma 17. Let G1, . . . , Gk+1 be colored base graphs, each with c > k ≥ 3 color classes,
such that CFI(Gi, 0) ≃k

C CFI(Gi, 1) for every i ∈ [k + 1]. Then CFI(Jcc(G1, . . . , Gk+1), 0) and
CFI(Jcc(G1, . . . , Gk+1), 1) are Pk-equivalent.

Proof Sketch. The lemma is proven by a game characterization of Pk. Essentially, because
only k of the k + 1 parts can be pebbled by k pebbles, the twist can always be moved in the
pebble-free part, which is not affected by quantifying over pebbled-part individualizations. ◀

Nesting Operators to Define the CFI Query is Necessary. Let K := {Gk | k ∈ N} be a
set of ordered 3-regular base graphs such that Gk has treewidth at least k for every k ∈ N.

▶ Lemma 18. CFI(CFI(Gk, g), 0) ≃k
C CFI(CFI(Gk, g), 1) for every k ∈ N and g ∈ F2.

Proof. The graph Gk is a minor of CFI(Gk, g) for every g ∈ F2 (cf. [11]). Hence, CFI(Gk, g)
has treewidth at least k. The claim follows by Lemma 4. ◀

▶ Lemma 19. WSCI2(IFPC) defines the CFI query for CFI(CFIω(K)).

Proof. IFPC distinguishes 2-orbits of K and so WSCI(IFPC) canonizes CFI(K) (Corollary 13)
and CFIω(K) (Lemma 15) and so also distinguishes 2-orbits of CFIω(K). Thus, WSCI2(IFPC)
canonizes CFI(CFIω(K)) (Corollary 13) and hence defines the CFI query for CFI(CFIω(K)). ◀

To show WSCI(IFPC)-undefinability, there are two cases: If a choice is made from an orbit
of parts not pebbled by parameters, then CFI graphs of CFI(K) are distinguished. Otherwise,
CFI graphs of CFI(CFIω(K)) are distinguished only by choices from parameter-pebbled parts,
so by (at most) individualizing all pebbled-part vertices, i.e., the graphs are distinguished
by Pk. By Lemmas 4 and 17, each case only applies to finitely many K-graphs.

▶ Lemma 20. WSCI(IFPC) does not define the CFI query for CFI(CFIω(K)).

Proof Sketch. Suppose, towards a contradiction, that Φ is a WSCI(IFPC)-formula defining
the CFI query for CFI(CFIω(K)). Because IFPC is closed under interpretations, we can
assume that Φ is a WSC(IFPC)-formula.

Let Ψ1(x̄1), . . . ,Ψp(x̄p) be all WSC-fixed-point operators in Φ and suppose all x̄i are
element variables (for numeric ones see the full version [30]). Let the number of distinct
variables of Φ be k and let ℓ := ℓ(k) ≥ max{k, 3}. We consider the subclass CFI(CFIℓ+1(K)) ⊆
CFI(CFIω(K)) and partition K as follows: Let Korb be the set of all G ∈ K such that, for
every g ∈ F2, there are h ∈ F2, j ∈ [p], and a |x̄j |-tuple ū of CFI(CFIℓ+1(G, g), h)) such that
a) all choice-sets during the evaluation of Ψj(ū) on CFI(CFIℓ+1(G, g), h) are orbits and
b) some choice-set is ū-unpebbled-part-distinguishing.
Set Kcfi := K \ Korb. At least one of Korb and Kcfi is infinite. Assume that Korb is
infinite. We claim that the CFI query for CFI(Korb) is IFPC-definable. There is an IFPC-
interpretation that for G ∈ K maps CFI(G, g) and h ∈ F2 to (CFI(CFIℓ+1(G, g), h),⊴) such
that ⊴ individualizes the vertices of ℓ + 1 many CFI(G, 0)-parts, ℓ + 1 many CFI(G, 1)-
parts, and all join vertices. For every Ψj(x̄j), we try all h ∈ F2 and all tuples ū of
⊴-individualized vertices for x̄j . We simulate Ψj as long as all choices are made from
ū-pebbled parts (which are resolved using ⊴). If that is not the case, we check if the
choice-set is ū-unpebbled-part distinguishing. If not, the choice-set is not an orbit and we
evaluate to false. Otherwise, the choice-set contains vertices of CFI(G, g)-parts and either of
CFI(G, 0)-parts or of CFI(G, 1)-parts. At least one CFI(G, 0)-part and one CFI(G, 1)-part is
not ū-pebbled because |ū| ≤ k < ℓ + 1, which is isomorphic to the CFI(G, g)-parts. So we
defined the parity of CFI(G, g) and IFPC defines the CFI query for CFI(Korb) contradicting
Lemma 4.
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So Kcfi must be infinite. Then there is an ℓ′ > ℓ such that G := Gℓ′ ∈ Kcfi. Hence there
is a g ∈ F2 such that for all h ∈ F2, j ∈ [p], and all |x̄j |-tuples ū of CFI(CFIℓ+1(G, g), h))
a) some choice-set during the evaluation of Ψj(ū) on CFI(CFIℓ+1(G, g), h) is not an orbit or
b) all choice-sets are not ū-unpebbled-part-distinguishing.
We construct a Pℓ-formula equivalent to Φ on CFI(CFIℓ+1(G, g), 0) and CFI(CFIℓ+1(G, g), 1).
The general idea is that we quantify over all ū-pebbled-part individualizations. Choices from
choice-sets using only vertices of the ū-pebbled parts can be resolved deterministically using
the individualization. If this is not always the case, one choice-set will not be an orbit and we
evaluate to false. So a Pℓ-formula distinguishes CFI(CFIℓ+1(G, g), 0) and CFI(CFIℓ+1(G, g), 1).
This finally contradicts Lemma 17: The graphs G and CFI(G, g′) have more than ℓ color classes
for every g′ ∈ F2 and we have CFI(CFI(G, g′), 0) ≃k

C CFI(CFI(G, g′), 1) by Lemma 18. ◀

Proof of Theorem 3. Consider CFIω(K). The claim follows from Lemmas 15, 19, and 20. ◀

▶ Corollary 21. IFPC < WSCI(IFPC) < WSCI2(IFPC).

It seems natural that WSCIn(IFPC) < WSCIn+1(IFPC) for every n ∈ N. Possibly, this
hierarchy can be shown by iterating our construction (e.g., using CFI((CFIω)n(K))).

7 Separating IFPC+WSC from IFPC+WSC+I

We define a class of asymmetric structures K, i.e., structures without non-trivial auto-
morphisms, for which isomorphism can be reduced to isomorphism of CFI graphs via an
interpretation. To do so, we combine CFI graphs and the so-called multipedes.

7.1 Multipedes
We review the multipedes construction [24]. Let G = (V,W,E,≤) be an ordered bipartite
graph, where every vertex in V has degree 3. We obtain the multipede MP(G) as follows. For
every vertex u ∈ W , there is a vertex pair F (u) = {u0, u1} called a segment. We also call
u ∈ W a segment. A single vertex ui is a foot. Vertices v ∈ V are constraint vertices. For
every constraint vertex v ∈ V , a degree-3 CFI gadget with three edge-vertex-pairs {aj

0, a
j
1}

(j ∈ [3]) is added. Let NG(v) = {u1, u2, u3}. Then aj
i is identified with the foot uj

i for all
j ∈ [3] and i ∈ F2. We use the relation-based CFI gadgets, i.e., we do not add further vertices.
All base constraint vertices have degree 3 and we obtain a ternary {R,⪯}-structure. The
coloring ⪯ is obtained from ≤ such that feet in the same segment have the same color.

The feet-induced subgraph by X ⊆ W is G[[X]] := G[X ∪ {v ∈ V | NG(v) ⊆ X}].
We extend the notation to the multipede: MP(G)[[X]] is the induced substructure of
all feet whose segment is contained in X. For a tuple ū of feet of MP(G), we define
S(ū) := {u ∈ W | ui ∈ F (u) for some i ≤ |ū|} to be the set of the segments of the ui.

A bipartite graph G = (V,W,E,≤) is odd if for every ∅ ≠ X ⊆ W , there exists a v ∈ V

such that |X ∩ NG(v)| is odd. The graph G is k-meager, if for every set X ⊆ W of size
|X| ≤ 2k, it holds that |{v ∈ V | NG(v) ⊆ X}| ≤ 2|X|.

▶ Lemma 22 ([24]). If G is an odd and ordered bipartite graph, then MP(G) is asymmetric.

▶ Lemma 23 ([24]). Let G be a k-meager bipartite graph, A = MP(G), and ū, v̄ ∈ Ak. If
there is a local isomorphism φ ∈ Aut(A[[S(ūv̄)]]) with φ(ū) = v̄, then (A, ū) ≃k

C (A, v̄).

Odd and k-meager graphs exist [24]. A closer inspection shows that for these graphs there
are sets of vertices of pairwise large distance. For a bipartite graph G = (V,W,E), a set
X ⊆ W is k-scattered if all distinct u, v ∈ X have distance at least 2k in G.
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▶ Lemma 24. For every k, there is an odd and k-meager bipartite graph G = (V,W,E) and
a k-scattered set X ⊆ W of size |X| ≥ k2.

We will use a k-scattered set X to ensure that in the bijective k-pebble game placing a pebble
on one foot of a segment in X creates no restrictions on the other segments in X. For now,
fix a bipartite graph G = (V,W,E,≤). The attractor of a set X ⊆ W is

attr(X) := X ∪
⋃

u∈V : |NG(u)\X|≤1

NG(u).

The set X is closed if X = attr(X). The closure cl(X) of X is the inclusion-wise minimal
closed superset of X.

▶ Lemma 25 ([24]). Assume that X ⊆ W , |X| ≤ k, G is k-meager, A = MP(G), and
φ ∈ Aut(A[[X]]). Then there is an extension of φ that is an automorphism of A[[cl(X)]].

▶ Lemma 26. Let G be 2k-meager, X = {u1, . . . , uℓ} ⊆ W be 6k-scattered, Y ⊆ W such
that X ∩ cl(Y ) = ∅ and |X| + |Y | < k, A = MP(G), and φ ∈ Aut(A[[Y ]]). Then for all
ū, ū′ ∈ F (u1) × · · · × F (uℓ), there is an extension ψ of φ to A[[X ∪ Y ]] satisfying ψ(ū) = ū′.

The previous lemma turns out to be useful in the bijective k-pebble game: If the pebbles are
placed on the feet in Y , we can simultaneously for all feet in X place arbitrary pebbles and
still maintain a local automorphism. Such sets X will allow us to glue another graph to the
multipede at the feet in X: Whatever restrictions on placing pebbles are imposed by the
other graph, we still can maintain partial automorphisms in the multipede.

7.2 Gluing Multipedes to CFI Graphs
We now use multipedes to make CFI graphs asymmetric. We alter the CFI graphs in this
section. Instead of two edge-vertex-pairs for the same base edge {u, v}, we contract the
edges between the two vertex pairs and obtain a single edge-vertex-pair with origin {u, v}.
This preserves all relevant properties of CFI graphs. In this section we write CFI(H, f) for
CFI graphs of this modified construction. A single edge-vertex-pair per base edge removes
technical details from the following.

Let G = (V G,WG, EG,≤G) be an ordered bipartite graph, H = (V H , EH ,≤H) be an
ordered base graph, f : EH → F2, and X ⊆ WG have size |X| = |EH |. We define the gluing
MP(G) ∪X CFI(H, f) of the multipede MP(G) = (A,RMP(G),⪯MP(G)) and the CFI graph
CFI(H, f) = (B,ECFI(H,f),⪯CFI(H,f)) at X as follows: We start with the disjoint union of
MP(G) and CFI(H, f) and identify the i-th edge-vertex-pair of CFI(H, f) (according to ≤H)
with the i-th segment in X (according to ≤G). We turn the edges ECFI(H,f) into a ternary
relation by extending every edge (u, v) to (u, v, v). In that way, we obtain a {R,⪯}-structure,
where R is the union of RMP(G) and the triples (u, v, v) defined before and ⪯ is the total
preorder obtained from combining ⪯MP(G) and ⪯CFI(H,f).

▶ Lemma 27. If MP(G) is asymmetric, then MP(G) ∪X CFI(H, f) is asymmetric.

Let ū be a tuple of at most k vertices of MP(G) ∪X CFI(H, f), i.e., ū contains either gadget
vertices of CFI(H, f) or feet of MP(G). We call the set of segments S(ū) of all feet in ū

directly-fixed by ū and the segments cl(S(ū)) \ S(ū) closure-fixed by ū. A segment u ∈ X is
gadget-fixed by ū if the feet of u are identified with an edge-vertex-pair with origin {v,w} in
CFI(H, f) such that there is a gadget vertex with origin v or w in ū. A segment is fixed by ū
if it is directly fixed, closure-fixed, or gadget-fixed.

ICALP 2023
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▶ Lemma 28. Let r ≥ k ≥ 2. If H is r-regular, G is 2k-meager, and X is 6k-scattered, then
at most r · |ū| segments are fixed. If ū contains i gadget vertices and ℓ segments in X are
directly-fixed, then at most |ū| − i− ℓ segments in X are closure-fixed.

We now combine winning strategies of Duplicator on multipedes and CFI graphs:

▶ Lemma 29. Let G be 2rk-meager, H be r-regular and at least (k + 2)-connected, and X
be 6rk-scattered. Then MP(G) ∪X CFI(H, 0) ≃k

C MP(G) ∪X CFI(H, 1).

Proof Sketch. Assume A = MP(G), B = CFI(H, 0), and B′ = CFI(H, 1). We show that
Duplicator has a winning strategy in the bijective k-pebble game on A ∪X B and A ∪X B′.
For a set of segments Y and a tuple ū, we denote by ūY the restriction of ū to all feet whose
segment is contained in Y , by ūG the restriction to all gadget vertices, and by ūF to all feet.
Duplicator maintains the following invariant. At every position (A ∪X B, ū;A ∪X B′, ū′) in
the game, there exist tuples of feet v̄gf, v̄cf of A ∪X B and v̄′

gf, v̄
′
cf of A ∪X B′ satisfying the

following:
1. v̄gf (respectively v̄′

gf) contains for every segment gadget-fixed by ū exactly one foot and
no others.

2. v̄cf (respectively v̄′
cf) contains for every segment in X closure-fixed by ū exactly one foot

and no others.
3. There is a local isomorphism φ ∈ Aut(A[[S(ūFv̄gfv̄cf)]]) satisfying φ(ūFv̄gfv̄cf) = ū′

Fv̄
′
gfv̄

′
cf.

4. (B, ūX ūGv̄cf) ≃k
C (B′, ū′

X ū
′
Gv̄

′
cf).

5. For every base vertex u, it holds that (B′, ūGv̄gf)[Vu] ∼= (B, ū′
Gv̄

′
gf)[Vu], where Vu is the

set of all gadget vertices with origin u and all edge vertices with origin {u, v} for some v.
For Property 3, note that S(ūFv̄gfv̄cf) = S(ū′

Fv̄
′
gfv̄

′
cf) and |ūFv̄gfv̄cf| = |ū′

Fv̄
′
gfv̄

′
cf| ≤ rk by

Lemma 28 because G is 2rk-meager. For Property 4, note that |ūX ūGv̄cf| = |ū′
X ū

′
Gv̄

′
cf| ≤ k:

By Lemma 28, the number of closure-fixed segments in X is at most |v̄cf| ≤ k − |ūG| − |ūX |.
Property 5 guarantees that the vertices v̄gf and v̄′

gf are picked consistently. This is needed
because |v̄gf| exceeds k and thus cannot be included in Property 4.

We play two games. Game I is played with rk pebbles on (A, ūFv̄gfv̄cf;A, ū′
Fv̄

′
gfv̄

′
cf).

Game II is played with k pebbles on (B, ūX ūGv̄cf;B′, ū′
X ū

′
Gv̄

′
cf). From the winning strategies

of Duplicator in both games (Lemmas 4 and 23) we construct a winning strategy on
(A∪X B, ū;A∪X B′, ū′). We can do so because in Game I we fixed all gadget-fixed segments
and in Game II we fixed all closure-fixed segments in X. When placing a pebble on a gadget
vertex, we extend the tuples v̄gf and v̄′

gf using Lemma 26. When a pebble is placed on a
segment not in X, at most one segment in X gets closure fixed and the edge vertices are in
the same orbit of the CFI graphs (Lemma 5). ◀

▶ Theorem 30. There is an FO-interpretation Θ and, for every k ∈ N, a pair of ternary
{R,⪯}-structures (Ak,Bk) such that ⪯ is a total preorder, Ak and Bk are asymmetric,
Ak ≃k

C Bk, Ak ̸∼= Bk, and Θ(Ak) ̸∼= Θ(Bk) are CFI graphs of the same ordered base graph.

Proof Sketch. We use the gluings constructed before for suitable base graphs and multipedes
(Lemma 24). By Lemma 29, the odd and even gluing are Ck-equivalent (but surely not
isomorphic) and asymmetric by Lemmas 22 and 27. There is an FO-interpretation Θ removing
the multipede: Shorten R-triples (u, v, v) back to edges (u, v) and remove the others. ◀

Proof Sketch of Theorem 1. Consider the {R,⪯}-structures K from Theorem 30. To ensure
that the reduct semantics does not add automorphisms, ⪯ is encoded into R by attaching
paths of different lengths to the vertices. This preserves asymmetry and non-isomorphism.
The paths are removed by an FO-interpretation ΘK. All structures are asymmetric and have
a single relation, so IFPC = IFPC+WSC and IFPC does not define isomorphism.
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Let ΦCFI be a WSCI(IFPC) = WSC(IFPC)-formula defining the CFI query for ordered
base graphs (Corollary 13) and let ΘCFI be the FO-interpretation extracting the CFI graphs
from K-structures given by Theorem 30. Then the I(WSC(IFPC))-formula I(ΘCFI ◦ΘK; ΦCFI)
defines the isomorphism problem of K-structures. ◀

▶ Corollary 31. IFPC+WSC < Ptime.

▶ Corollary 32. WSC(IFPC) < I(WSC(IFPC)).

Note that the prior corollary refines Corollary 21. We actually expect that

WSC(IFPC) < I(WSC(IFPC)) < WSC(I(WSC(IFPC)))

because it seems unlikely that I(WSC(IFPC)) defines the CFI query of the base graphs of
Theorem 3.

▶ Corollary 33. IFPC+WSC is not closed under IFPC-interpretations and not even under
1-dimensional equivalence-free FO-interpretations.

Using the same structures, we can answer an open question of Dawar and Richerby in [9]:

▶ Corollary 34. IFP+SC is not closed under 1-dimensional equivalence-free FO-interpretations.

8 Discussion

We defined the logics IFPC+WSC and IFPC+WSC+I to study the combination of witnessed
symmetric choice and interpretations beyond simulating counting. Instead, we provided graph
constructions to prove lower bounds. IFPC+WSC+I canonizes CFI graphs if it canonizes
the base graphs, but operators have to be nested. We proved that this increase in nesting
depth is unavoidable using double CFI graphs obtained by essentially applying the CFI
construction twice. Does iterating our construction further show an operator nesting hierarchy
in IFPC+WSC+I? We have seen that also in the presence of counting the interpretation
operator strictly increases the expressiveness. So indeed both, witnessed symmetric choice
and interpretations are needed to possibly capture Ptime. This answers the question to the
relation between witnessed symmetric choice and interpretations for IFPC. But it remains
open whether IFPC+WSC+I captures Ptime. Here, iterating our CFI construction is of
interest again: If one shows an operator nesting hierarchy using this construction, then one
in particular will separate IFPC+WSC+I from Ptime because our construction does not
change the signature of the structures. Studying this remains for future work.
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