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Abstract
We use model-theoretic tools originating from stability theory to derive a result we call the Finitary
Substitute Lemma, which intuitively says the following. Suppose we work in a stable graph class C ,
and using a first-order formula φ with parameters we are able to define, in every graph G ∈ C , a
relation R that satisfies some hereditary first-order assertion ψ. Then we are able to find a first-order
formula φ′ that has the same property, but additionally is finitary: there is finite bound k ∈ N such
that in every graph G ∈ C , different choices of parameters give only at most k different relations R
that can be defined using φ′.

We use the Finitary Substitute Lemma to derive two corollaries about the existence of certain
canonical decompositions in classes of well-structured graphs.

We prove that in the Splitter game, which characterizes nowhere dense graph classes, and in the
Flipper game, which characterizes monadically stable graph classes, there is a winning strategy
for Splitter, respectively Flipper, that can be defined in first-order logic from the game history.
Thus, the strategy is canonical.

We show that for any fixed graph class C of bounded shrubdepth, there is an O(n2)-time algorithm
that given an n-vertex graph G ∈ C , computes in an isomorphism-invariant way a structure H
of bounded treedepth in which G can be interpreted. A corollary of this result is an O(n2)-time
isomorphism test and canonization algorithm for any fixed class of bounded shrubdepth.
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135:2 Canonical Decompositions of Stable Graphs

1 Introduction

Stability theory is a well-established branch of model theory devoted to the study of stable
theories, or equivalently classes of structures that are models of such theories. Here, we
say that a formula1 φ(x̄; ȳ) is stable on a class of relational structures C if there is an
integer k ∈ N such that for every M ∈ C , one cannot find tuples ū1, . . . , ūk ∈ Mx̄ and
v̄1, . . . , v̄k ∈ Mȳ such that for all i, j ∈ {1, . . . , k},

M |= φ(ūi, v̄j) if and only if i < j.

Then C is stable if every formula is stable on C . Intuitively, this means that using a fixed
formula, one cannot interpret arbitrarily long total orders in structures from C . We refer to
the textbooks of Pillay [24] or of Tent and Ziegler [27] for an introduction to stability.

The goal of this paper is to use certain classic results of stability theory, particularly
the understanding of forking in stable theories, to derive statements about the existence of
canonical decompositions in certain classes of well-structured graphs. Here, we model graphs
as relational structures with one binary adjacency relation that is symmetric.

Finitary Substitute Lemma. Our main model-theoretic tool is the Finitary Substitute
Lemma, which we state below in a simplified form; see Lemma 10 for a full statement.

To state the lemma, we need some definitions. A formula φ(x̄; ȳ) is finitary on a class of
structures C if there exists k ∈ N such that for every M ∈ C , we have∣∣{φ(Mx̄, v̄) : v̄ ∈ Mȳ

}∣∣ ⩽ k,

where φ(Mx̄, v̄) = {ū ∈ Mx̄ | M |= φ(ū, v̄)}. In other words, φ(x̄; ȳ) is finitary on C if by
substituting different parameters for ȳ in any model M ∈ C , one can define only at most k
different relations on x̄-tuples. Next, a sentence ψ is hereditary if for every model M and its
induced substructure M′, M |= ψ implies M′ |= ψ. Finally, for a relation R(x̄) present in
the signature, formula φ(x̄) (possibly with parameters), and sentence ψ, by ψ[R(x̄)/φ(x̄)] we
mean the sentence derived from ψ by substituting every occurrence of R with formula φ.

▶ Lemma 1 (Finitary Substitute Lemma, simplified version). Let C be a stable class of structures.
Suppose φ(x̄; ȳ) is a formula and ψ a hereditary sentence such that for every G ∈ C ,

there exists s̄ ∈ Gȳ such that G |= ψ[R(x̄)/φ(x̄; s̄)]. (1)

Then there exists a formula φ′(x̄, z̄) that also satisfies (1), but is additionally finitary on C .

Thus, intuitively, the Finitary Substitute Lemma says that in stable classes, every relation
that is definable with parameters can be replaced by a finitary one, as long as we care that
the relation satisfies some hereditary first-order assertion. The main observation of this paper
is that this can be used in the context of various graph decompositions. Intuitively, if every
step in decomposing the graph can be defined by a first-order formula with parameters, and
the validity of the step can be verified using a hereditary first-order sentence, then we can
use the Finitary Substitute Lemma to derive an equivalent definition of a step that is finitary.
This yields only a bounded number of different steps that can be taken, making it possible
to construct a decomposition that, in a certain sense, is canonical.

1 All formulas considered in this paper are first-order, unless explicitly stated.
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Classes of bounded shrubdepth. Our first application concerns classes of bounded shrub-
depth. The concept of shrubdepth was introduced by Ganian et al. [17] to capture dense
graphs that are well-structured in a shallow way. On one hand, classes of bounded shrub-
depth are exactly those that can be interpreted, using first-order formulas with two free
variables, in classes of forests of bounded depth. On the other hand, graphs from any fixed
class of bounded shrubdepth admit certain decompositions, called connection models, which
are essentially clique expressions of bounded depth. (See Section 5.1 for a definition of a
connection model.) Thus, in particular every graph class of bounded shrubdepth has bounded
cliquewidth, but classes of bounded shrubdepth are in addition stable [17].

Shrubdepth is a dense counterpart of treedepth, defined as follows: the treedepth of a
graph G is the smallest integer d such that G is a subgraph of the ancestor/descendant
closure of a rooted forest of depth at most d. In particular, every class of graphs of bounded
treedepth has bounded shrubdepth; boundedness of treedepth and of shrubdepth is in fact
equivalent assuming that the class excludes some biclique Kt,t as a subgraph [17]. In essence,
treedepth is a bounded-depth counterpart of treewidth in the same way as shrubdepth is a
bounded-depth counterpart of cliquewidth.

In spite of the above, the combinatorial properties of shrubdepth are still much less
understood than those of treedepth. For instance, a good understanding of subgraph obstacles
allows one to construct suitable canonical decompositions for graphs of bounded treedepth.
This allowed Bouland et al. [4] to design a graph isomorphism test that works in fixed-
parameter time parameterized by the treedepth, or more precisely, in time f(d) · n3 logn,
where f is a computable function. While it is known that every class of bounded shrubdepth
can be characterized by a finite number of forbidden induced subgraphs [17], it is unclear
how to use just this result to design any kind of canonical decompositions for classes of
bounded shrubdepth. Consequently, so far it was unknown whether the graph isomorphism
problem can be solved in fixed-parameter time on classes of bounded shrubdepth2. The most
efficient isomorphism test in this context is the one designed by Grohe and Schweitzer [20] for
the cliquewidth parameterization: it works in XP time, that is, in time nf(k) where k is the
cliquewidth and f is a computable function. See also the later work of Grohe and Neuen [19],
which improves the XP running time and applies to the more general canonization problem.

We show that the Finitary Substitute Lemma can be used to bridge this gap by proving
the following result.

▶ Theorem 2. Let C be a class of graphs of bounded shrubdepth. Then there is a class D of
binary structures of bounded treedepth and a mapping A : C → D such that:

For each G ∈ C , the vertex set of G is contained in the domain of A(G) and the mapping
G 7→ A(G) is isomorphism-invariant.
Given an n-vertex graph G ∈ C , the structure A(G) has O(n) elements and can be
computed in time O(n2).
There is a simple first-order interpretation I such that G = I(A(G)), for every G ∈ C .

Here, by isomorphism-invariance we mean that every isomorphism between G,G′ ∈ C

extends to an isomorphism between A(G) and A(G′). Further, by a simple interpretation
we mean a first-order interpretation that is 1-dimensional: vertices of G are interpreted in

2 This statement is somewhat imprecise, as shrubdepth is defined as a parameter of a graph class, rather
than of a single graph. By this we mean that there is a universal constant c such that for every graph
class C of bounded shrubdepth, the isomorphism of graphs from C can be tested in O(nc) time, with
the constant hidden in the O(·) notation possibly depending on C .
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single elements of A(G) (actually, every vertex is interpreted in itself). Thus, A(G) can be
regarded as a canonical – obtained in an isomorphism-invariant way – sparse decomposition
of G that encodes G faithfully and takes the form of a structure of bounded treedepth. We
remark that certain logic-based sparsification procedures for classes of bounded shrubdepth
were proposed in [8, 14], but these are insufficient for our applications, which we explain
next.

The third point above together with the fact that A is isomorphism-invariant imply the
following: for all G,G′ ∈ C , G and G′ are isomorphic if and only if A(G) and A(G′) are. We
can now combine Theorem 2 with the approach of Bouland et al. [4] to give a fixed-parameter
isomorphism test on classes of bounded shrubdepth.

▶ Theorem 3. For every graph class C of bounded shrubdepth there is an O(n2)-time
algorithm that given n-vertex graphs G,G′ ∈ C , decides whether G and G′ are isomorphic.

In fact, our algorithm solves also the general canonization problem, see Section 5.4.
We remark that the algorithm of Theorem 3 is non-uniform, in the sense that we

obtain a different algorithm for every class C . Despite the existence of parameters such as
rankdepth [22] or SC-depth [17] that are suited for the treatment of single graphs and are
equivalent in terms of boundedness on classes to shrubdepth, we do not know how to make
our algorithm uniform even for the rankdepth or SC-depth parameterizations.

Finally, we believe that the construction behind our proof of Theorem 2 can be used to
obtain an alternative proof of a result of Hliněný and Gajarský [13], later reproved by Chen
and Flum [8]: the expressive power of first-order and monadic second-order logic coincide on
classes of bounded shrubdepth. This direction will be explored in future research.

Nowhere dense and monadically stable classes. Second, we use the Finitary Substitute
Lemma to provide canonical strategies in game characterizations of two important concepts
in structural graph theory: nowhere dense classes and monadically stable classes. In both
cases, a strategy in the game can be regarded as decompositions of the graph in question.

We start with some definitions. A unary lift of a class of graphs C is any class of structures
C + such that every member of C + is obtained from a graph belonging to C by adding any
number of unary predicates on vertices. A class of graphs C is monadically stable if every
unary lift of C is stable. On the other hand, a class of graphs C is nowhere dense if for every
d ∈ N there exists t such that no graph in C contains the d-subdivision of Kt as a subgraph.

Nowhere denseness is the most fundamental concept of uniform sparsity in graphs
considered in the theory of Sparsity; see the monograph of Nešetřil and Ossona de Mendez [23]
for an introduction to this area. A pinnacle result of this theory was derived by Grohe et
al. [18]: the model-checking problem for first-order logic is fixed-parameter tractable on
any nowhere dense graph class. As observed by Adler and Adler [2] using earlier results of
Podewski and Ziegler [25], monadically stable classes are dense counterparts of nowhere dense
classes in the following sense: every nowhere dense class is monadically stable, and nowhere
denseness and monadic stability coincide when we assume the class to be sparse, for instance
to exclude some biclique Kt,t as a subgraph. This motivated the following conjecture [1],
which is an object of intensive studies for the last few years: The model-checking problem for
first-order logic is fixed-parameter tractable on every monadically stable class of graphs C .

To approach this conjecture, it is imperative to obtain a better structural understanding
of graphs from monadically stable classes. This is the topic of several very recent works [5, 6,
7, 11, 15]. In this work we are particularly interested in the results of Gajarský et al. [15],
who characterized monadically stable classes of graphs through a game model called the
Flipper game, which reflects the characterization of nowhere dense classes through the Splitter
game, due to Grohe et al. [18].
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The radius-r Splitter game is played on a graph G between two players: Splitter and
Connector. In every round, Connector first chooses any vertex u and the current arena –
graph on which the game is played – gets restricted to a ball of radius r around u. Then
Splitter removes any vertex of the graph. The game finishes, with Splitter’s win, when
the arena becomes empty. Splitter’s goal is to win the game as quickly as possible, while
Connector’s goal is to avoid losing for as long as possible. The Flipper game is defined
similarly, except that the moves of Flipper – who replaces Splitter – are as follows. Instead
of removing a vertex, Flipper selects any subset of vertices F and performs a flip: replaces
all edges with both endpoints in F with non-edges, and vice versa. Also, the game finishes
when the arena consists of one vertex.

Grohe et al. [18] proved that a class of graphs C is nowhere dense if and only if for every
radius r ∈ N there exists ℓ ∈ N such that on every graph from C , Splitter can win the radius-r
Splitter game within at most ℓ rounds. This characterization is the backbone of their model-
checking result for nowhere dense classes, as a strategy in the Splitter game provides a shallow
decomposition of the graph in question, useful for understanding its first-order properties.
Very recently, Gajarský et al. [15] proved an analogous characterization of monadically
stable classes in terms of the Flipper game, and subsequently Dreier et al. [10] used this
characterization to prove fixed-parameter tractability of the model-checking first order logic
on monadically stable classes of graphs which possess so-called sparse neighborhood covers.
Given this state-of-the-art, it is clear that a better understanding of strategies for Splitter and
Flipper in the respective games may lead to a deeper insight into decompositional properties
of nowhere dense and monadically stable graph classes.

In the Splitter game, we prove using just basic compactness, that in any arena there is
only a bounded number of possible Splitter’s moves that are progressing: lead to an arena
where the Splitter can win in one less round. (See Theorem 6 for a formal statement.) So
this gives a transparent canonical strategy for Splitter: just play all progressive moves one
by one, in any order. Obtaining a similar canonicity result for strategies in the Flipper game
requires the full power of our Finitary Substitute Lemma, discussed above.

In the interest of space, we have omitted from this version our results about canonical
strategies in the Flipper game, as well as most proofs. For a complete exposition, we refer to
the full version of the paper.

2 Preliminaries

Models. We work with first-order logic over a fixed signature Σ that consists of (possibly
infinitely many) constant symbols and relation symbols. A model is a Σ-structure, and is
typically denoted M,N, etc. We usually do not distinguish between a model and its domain,
when writing, for instance, m ∈ M or X ⊆ M. A graph G is viewed as a model over the
signature consisting of one binary relation denoted E, indicating adjacency between vertices.

If x̄ is a finite set of variables, then we write φ(x̄) to denote a first-order formula φ with
free variables contained in x̄. We may also write φ(x̄1, . . . , x̄k) to denote a formula whose
free variables are contained in x̄1 ∪ . . . ∪ x̄k. We will write x instead of {x} in case of a
singleton set of variables, e.g. φ(x, y) will always refer to a formula with two free variables x
and y. We sometimes write φ(x̄; ȳ) to distinguish a partition of the set of free variables of φ
into two parts, x̄ and ȳ; this partition plays an implicit role in some definitions. A Σ-formula
φ(x̄) with parameters from a set A ⊆ M is a formula φ(x̄) over the signature Σ ⊎A, where
the elements of A are treated as constant symbols (which are interpreted by themselves).

ICALP 2023



135:6 Canonical Decompositions of Stable Graphs

If U is a set and x̄ is a set of variables, then U x̄ denotes the set of all x̄-tuples ā : x̄ → U

of x̄ in U . For a formula φ(x̄) (with or without parameters) and an x̄-tuple m̄ ∈ Mx̄, we
write M |= φ(m̄) if the valuation m̄ satisfies the formula φ(x̄) in M. For a formula φ(x̄; ȳ)
and a tuple b̄ ∈ Mȳ we denote by φ(Mx̄; b̄) the set of all ā ∈ Mx̄ such that M |= φ(ā; b̄).

Theories and compactness. A theory T (over Σ) is a set of Σ-sentences. The theory of
a class of structures C is the set of sentences that hold in every structure M ∈ C . For
instance, the theory of a class of graphs C contains sentences expressing that the relation E
is symmetric and irreflexive. A model of a theory T is a structure M such that M |= φ for
all φ ∈ T . When a theory has a model, it is said to be consistent.

▶ Theorem 4 (Compactness). A theory T is consistent if and only if every finite subset of T
is consistent.

Elementary extensions. Let M and N be two structures with M ⊆ N, that is, the domain
of M is contained in the domain of N. Then N is an elementary extension of M, written
M ≺ N, if for every formula φ(x̄) (without parameters) and tuple m̄ ∈ Mx̄, the following
equivalence holds:

M |= φ(m̄) if and only if N |= φ(m̄).

We also say that M is an elementary substructure of N. In other words, M is an elementary
substructure of N if M is an induced substructure of N, where we imagine that M and N
are each equipped with every relation Rφ of arity k (for k ∈ N) that is defined by any fixed
first-order formula φ(x1, . . . , xk). In this intuition, formulas of arity 0 correspond to Boolean
flags, with the same valuation for both M and N.

Interpretations and transductions. A simple interpretation I between signatures Σ and Γ
is specified by a domain formula δ(x) and a formula αR(x1, . . . , xk) for each relation symbol
R ∈ Γ of arity k, with δ and the αR’s being in the signature Σ. For a given Σ-structure M,
the interpretation outputs the Γ-structure I(M) whose domain is δ(M) and in which the
interpretation of each relation R of arity k consists of the tuples m̄ such that M |= αR(m̄).
In this paper, we only consider simple interpretations, and therefore we will call them
interpretations for conciseness.

For an integer k ∈ N and a structure M, we define k × M to be the structure consisting
of k disjoint copies of M, together with a new symmetric binary relation S containing all
pairs (m,m′) such that m and m′ originate from the same element of M. A transduction
from Σ to Γ consists of an integer k, unary symbols U1, . . . , Uℓ and an interpretation I from
Σ ∪ {S,U1, . . . , Uℓ} to Γ.

For a transduction T and an input Σ-structure M, the output T(M) consists of all
Γ-structures N such that there exists a coloring M̂ of k × M with fresh unary predicates
U1, . . . , Uℓ such that B = I(M̂). We say that a class of Σ-structures C transduces a class of
Γ-structure D if there exists a transduction T such that for every structure N ∈ D there is
M ∈ C satisfying N ∈ T(M).

Graphs. We use standard graph theory notation. For a graph parameter π, we say that
a graph class C has bounded π if there exists k ∈ N such that π(G) ⩽ k for all G ∈ C .
Similarly, a class of structures C has bounded π if the class of Gaifman graphs of structures
in C has bounded π.
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3 Canonical Splitter-strategies in nowhere dense graphs

In this section, we show how compactness can be used to derive canonical decompositions
for nowhere dense classes. More precisely, we will show that in the Splitter game, which
characterizes nowhere dense classes [18], there is a constant k (depending only on the graph
class C ) such that for any graph in C there are at most k optimal Splitter moves. This will
allow us to illustrate the general methodology used in the paper.

Splitter game. First, we recall the rules of the Splitter game. The radius-r Splitter game is
played on a graph G by two players, Splitter and Connector, in rounds i = 1, 2, . . . as follows.
Initially the arena G1 is the whole graph G. In the i-th round,

Connector chooses a vertex ci ∈ Gi;
Splitter chooses a vertex si ∈ Gi and we let Gi+1 = Gi[Br

Gi
(ci)] − si;

Splitter wins if Gi+1 is the empty graph, otherwise the game continues.
Here, Br

H(u) = {v ∈ V (H) | distH(u, v) ⩽ r} denotes the ball of radius r around u in H.
The following result is instrumental in the celebrated proof of model-checking on nowhere

dense classes [18].

▶ Theorem 5 (Theorems 4.2 and 4.5 in [18]). A class of graphs C is nowhere dense if and
only if for every r, there exists ℓ such that on every graph G ∈ C , Splitter can win the
radius-r game in at most ℓ rounds.

The r-Splitter number of a graph G is the minimal ℓ such that Splitter wins the radius-r
game in ℓ rounds. Fix a nowhere dense class C and a radius r, and let ℓ be as in the theorem
(hence ℓ is an upper bound to all r-Splitter numbers of graphs in C ). Observe that for a
given ℓ′ ⩽ ℓ there is a first-order sentence expressing that Splitter wins the radius-r game
in ⩽ ℓ′ rounds, and therefore, there is a first-order sentence expressing that G has Splitter
number ℓ′. Given a Connector move c ∈ V (G), we say that a Splitter move s ∈ V (G) is
r-progressing against c if the r-Splitter number of G[Br(c)] − s is strictly smaller than the
r-Splitter number of G[Br(c)]. In other words, playing s is strictly better for Splitter than
not playing any vertex. Again, since an upper bound to Splitter numbers depends only on C ,
this can be expressed by a formula φr(s; c). This leads to the following result.

▶ Theorem 6. Let C be a nowhere dense class of graphs, and r ∈ N. There is a constant k
such that for every graph G ∈ C , and every Connector move c, there are at most k progressing
moves against c in G.

In particular, this gives an isomorphism-invariant strategy for Splitter: simply play all
progressing moves (either one by one, in any order, or all at once in an extended variant of
the game considered in [18], where Splitter can remove a bounded number of vertices in each
turn, instead of just one.) The idea of the proof is to extend, by compactness, progressive
moves towards outside the model (in an elementary extension), and conclude by observing
that “being a progressive move” is a definable and hereditary property.

Proof. Let T be the theory of C . Note that T contains the sentence “Splitter wins the
radius-r game in ⩽ ℓ rounds”. Our aim is to prove that for some k, it contains the sentence
“for all connector moves c, there are at most k progressing Splitter moves against c”. We
show that for any model of T and any connector move c, there are finitely many progressing
Splitter moves against c; the result then follows from an easy application of compactness.

Assume for contradiction that there is a model M of T and a connector move c ∈ M such
that Splitter has infinitely many progressing moves against c. We now let T ′ be the theory
over the signature extended by a constant corresponding to each element m ∈ M and an
additional constant s, such that T ′ consists of:

ICALP 2023



135:8 Canonical Decompositions of Stable Graphs

all sentences in T ,
all sentences (with parameters in M) which hold in M,
a sentence expressing that s is a progressing move against c, and
for each m ∈ M, the sentence s ̸= m.

Since every finite subset T ′′ of T ′ mentions finitely many m ∈ M, one can construct a model
of T ′′ by starting from M and setting s to be one of those progressing moves that are not
mentioned. We conclude from compactness (Theorem 4) that T ′ is consistent.

Let N be a model of T ′. By construction N is an elementary extension of M – in particular,
N[Br(c)] has the same Splitter number ℓ′ as M[Br(c)] – and contains a progressing move
s ∈ N − M against c. This means that N[Br(c)] − s has Splitter number < ℓ′. But M[Br(c)]
is a subgraph of N[Br(c)] − s with Splitter number ℓ′: this is absurd. ◀

The next section presents more elaborate tools from stability theory that will allow us to
extend the above idea to different settings.

4 Stability, forking, and Finitary Substitution

This section collects notions and a few basic results from stability theory. The purpose is to
give a self-contained exposition culminating in our Finitary Substitution Lemma; for more
context and explanations we refer to [27].

4.1 Stability and definability of types
We say that a formula φ(x̄; ȳ) defines a ladder of order k in a model M if there are sequences
ā1, . . . āk ∈ Mx̄ and b̄1, . . . , b̄k ∈ Mȳ satisfying

M |= φ(āi; b̄j) if and only if i < j, for 1 ⩽ i, j ⩽ k.

For a formula φ(x̄; ȳ) we call the largest k such that φ defines a ladder of order k the ladder
index of φ in M. If no such k exists, we say that the ladder index of φ is ∞.

We say that φ is stable in M if its ladder index is finite. We say that φ is stable in a
theory T if it is stable in all models of T . Moreover, we say that a model (or a theory) is
stable if every formula is stable.

We now state a fundamental result about stable formulas; it states that sets definable by
stable formulas with parameters in some elementary extension can actually be defined from
the model itself.

▶ Theorem 7 (Definability of types). Let M ≺ N be two models and φ(x̄; ȳ) be a stable
formula of ladder index d in M. For every n̄ ∈ Nȳ there is a formula ψ(x̄), which is a
positive boolean combination of formulas of the form ψ(x̄; m̄) using a tuple m̄ of 2d + 1
parameters from M, such that for every ā ∈ Mx̄,

N |= φ(ā; n̄) if and only if M |= ψ(ā).

4.2 Forking in stable theories
We move on to the definition of forking, which was first defined by Shelah in order to study
stable theories [26], and later grew to become the central notion of stability theory. In stable
theories, forking coincides with the simpler notion of dividing, so by a slight abuse we will
only work with dividing (and call it forking). We first need to formally introduce types, then
we give a definition of forking in stable theories and a few useful properties.
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Types. Fix a model M over a signature Σ. A set π of formulas in variables x̄ with parameters
from A ⊆ M is called a partial type over A if it is consistent: for every finite subset π′ ⊆ π

there is m̄ ∈ Mx̄ which satisfies all the formulas from π′ (i.e. for every formula φ(x̄) ∈ π′ we
have M |= φ(m̄)). We sometimes write π(x̄) to explicitly mention free variables. Partial types
p which are maximal are called types; this amounts to stating that for every formula φ(x̄)
with parameters from A, either φ(x̄) ∈ p or ¬φ(x̄) ∈ p. Observe that for sets A ⊆ B ⊆ M
every type p over A can be seen as a partial type over B. We denote the set of types over A
in variables x̄ by Sx̄(A).

For a tuple ā ∈ Mx̄ and a set A ⊆ M of parameters, the type of ā over A, denoted
tp(ā/A) ∈ Sx̄(A), is the set of all formulas φ(x̄) with parameters from A such that M |= φ(ā).
It follows from compactness that for every p ∈ Sx̄(M) there is some N ≻ M and an x̄-tuple
n̄ ∈ Nx̄ such that tp(n̄/M) = p.

Forking. Fix a stable model M over a signature Σ and a set A ⊆ M. Let φ(x̄; ȳ) be a
formula without parameters and let b̄ ∈ Mȳ. We say that φ(x̄; b̄) forks over A if there is
an elementary extension N ≻ M, a sequence b̄1, b̄2, . . . ∈ Nȳ satisfying tp(b̄i/A) = tp(b̄/A)
for every i and an integer k such that S = {φ(x̄; b̄i) : i ∈ N} is k-inconsistent: no k-element
subset of S is consistent. For a type p ∈ Sx̄(B) over a set B ⊆ M, we say that p forks over
A if there is a formula φ(x̄; b̄) ∈ p which forks over A.

We will make use of the following important property of forking which is often called
(full) existence.

▶ Theorem 8 (See [27, Corollary 7.2.7]). Let M be a stable model and let A ⊆ B ⊆ M. For
every p ∈ Sx̄(A) there is some q ∈ Sx̄(B) such that p ⊆ q and q does not fork over A.

Finitary formulas. We say that a formula φ(x̄; ȳ) is finitary in a theory T if for every model
M of T , the set {φ(Mx̄; m̄) : m ∈ Mȳ} is finite. By compactness, this is equivalent to
the following assertion: there exists k ∈ N such that |{φ(Mx̄; m̄) : m ∈ Mȳ}| ⩽ k for every
model M of T . We now relate forking and finitary formulas.

▶ Theorem 9 (Special case of [27, Theorem 8.5.1]3). Let M be a stable model, N an
elementary extension of M, φ(x̄; ȳ) a formula, n̄ ∈ Nȳ, and A ⊆ M. If tp(n̄/M) does
not fork over A, then there is a finitary formula φ′(x̄; z̄) and a tuple r̄ ∈ Mz̄ such that
φ(Nx̄; n̄) ∩ Mx̄ = φ′(Mx̄; r̄).

Combining Theorems 8 and 9 yields the following statement.

▶ Lemma 10. Let M be a stable model over the signature Σ, φ(x̄; ȳ) a Σ-formula, and
ψ a sentence over signature Σ ∪ {R}, where R /∈ Σ has arity |x̄|. Let s̄ ∈ Mȳ be such
that M |= ψ[R(x̄)/φ(x̄; s̄)]. Then there is an elementary extension N of M, a tuple s̄′ ∈
Nȳ, a finitary formula φ′(x̄; z̄) and a tuple r̄ ∈ Mz̄, such that N |= ψ[R(x̄)/φ(x̄; s̄′)] and
φ(Nx̄; s̄′) ∩ Mx̄ = φ′(Mx̄; r̄).

Proof. Consider p = tp(s̄/∅). By Theorem 8, p extends to a type q ∈ Sȳ(M) which does
not fork over ∅. By compactness there is an elementary extension N ≻ M and a tuple
s̄′ ∈ Nȳ such that tp(s̄′/M) = q. In particular tp(s̄′/∅) = p = tp(s̄/∅), and therefore
N |= ψ[R(x̄)/φ(x̄; s̄′)] as required. Applying Theorem 9 we get a finitary formula φ′(x̄; z̄)
and a tuple r̄ ∈ Mz̄ with the wanted properties. ◀

3 Formally, [27, Theorem 8.5.1] speaks about definability with imaginaries, which is known to be equivalent
to the existence of finitary formulas (see for instance [9, Lemma 1.3.2 (5), Lemma 1.3.7]).
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4.3 Finitary Substitute Lemma

Recall from Section 3 that applying our method requires a mechanism for moving the wanted
property ψ back towards the structure M we started from. This is formalized by the following
definition. In a theory T , and given two sentences ψ and ψ′ over the signature Σ ∪ {R}, we
say that a sentence ψ induces ψ′ on semi-elementary substructures if for every model M
of T , for every elementary extension N and for every R ⊆ Nk, where k is the arity of R,

N[R/R] |= ψ implies M[R/R|M] |= ψ′.

As an important special case, if ψ is hereditary then ψ induces ψ on semi-elementary
substructures. We are now ready to state our main model-theoretic tool.

▶ Lemma 11 (Finitary Substitute Lemma). Let T be a theory with signature Σ, φ(x̄; ȳ) a stable
formula, and ψ,ψ′ be sentences over the signature Σ ∪ {R}, where R /∈ Σ has arity |x̄|, such
that ψ induces ψ′ on semi-elementary substructures. Assume that T |= ∃s̄.ψ[R(x̄)/φ(x̄; s̄)].
Then there is a finitary formula φ′(x̄; z̄) such that T |= ∃s̄.ψ′[R(x̄)/φ′(x̄; s̄)].

The proof follows from Lemma 10 by applying compactness; we refer to the full version for
details.

5 Canonization of graphs of bounded shrubdepth

In this section, we prove Theorems 2 and 3 which we now recall for convenience.

▶ Theorem 2. Let C be a class of graphs of bounded shrubdepth. Then there is a class D of
binary structures of bounded treedepth and a mapping A : C → D such that:

For each G ∈ C , the vertex set of G is contained in the domain of A(G) and the mapping
G 7→ A(G) is isomorphism-invariant.
Given an n-vertex graph G ∈ C , the structure A(G) has O(n) elements and can be
computed in time O(n2).
There is a simple first-order interpretation I such that G = I(A(G)), for every G ∈ C .

▶ Theorem 3. For every graph class C of bounded shrubdepth there is an O(n2)-time
algorithm that given n-vertex graphs G,G′ ∈ C , decides whether G and G′ are isomorphic.

The proof is broken into three parts.
The first part combines insights about classes of bounded shrubdepth with our Finitary
Substitute Lemma developed in the previous section, to conclude that the first level in a
shrubdepth decomposition (which we will call a dicing, defined below) can be defined
using finitary formulas. This result is stated as Theorem 12 below.
The second part builds on Theorem 12 to propose a canonical transformation from classes
of bounded shrubdepth to classes of bounded treedepth. This proves Theorem 2.
In the third part, we show how Theorem 3 is derived from Theorem 2, and also establish
a stronger result about the canonization problem.

We start by recalling a few preliminaries about shrubdepth in Section 5.1, and proceed with
the three parts outlined above in Sections 5.2, 5.3 and 5.4.
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5.1 Preliminaries on shrubdepth
Shrubdepth. The decomposition notion underlying shrubdepth is that of connection models,
defined as follows. Let G be a graph. A connection model for G consists of:

a finite set of labels Labels;
a labelling label : V (G) → Labels;
a rooted tree T whose leaf set coincides with the vertex set of G; and
for every non-leaf node x of T , a symmetric relation Adj(x) ⊆ Labels × Labels, called the
adjacency table at x.

The rule is as follows: for every distinct vertices u, v of G, u and v are adjacent in G if and
only if (label(u), label(v)) ∈ Adj(x), where x is the lowest common ancestor of u and v in T .

The depth of a connection model is the depth of T . The shrubdepth of a graph class C is
the least integer d with the following property: there exists a finite set of labels Labels such
that every graph G ∈ C has a connection model of depth at most d that uses label set Labels.

Dicings. Our inductive proof requires manipulating the first level (just below the root)
of a connection model; we will call this a dicing. Formally, for a graph G, a pair (P,L)
of partitions of the vertex set of G is called a dicing of G if for every pair of vertices u, v
belonging to different parts of P, whether u and v are adjacent in G depends only on the
pair of parts of L that u and v belong to. In other words, there is a symmetric relation
Z ⊆ L × L such that for all u, v belonging to different parts of P,

u and v are adjacent in G if and only if (L(u),L(v)) ∈ Z,

where L(w) denotes the part of L to which w belongs. In the context of a dicing (P,L),
partition P will be called the component partition, and partition L will be called the label
partition. The order of a dicing (P,L) is |L|, the number of parts in the label partition.

Dicings appear naturally in connection models for shrubdepth: given a connection model
for a graph G, using “having a common ancestor below the root” as component partition P
and label-classes as label partition L defines a dicing of G.

5.2 Definability of canonical dicings
We say that a formula φ(x̄; ȳ) with |x̄| = 2 defines a partition if for every graph G and
b̄ ∈ Gȳ, φ(Gx̄; b̄) is an equivalence relation on the vertex set of G. (Note that for different
choices of b̄, φ can yield different equivalence relations.) Abusing the notation, by φ(Gx̄; b̄)
we will also denote the partition of the vertex set into the equivalence classes of φ(Gx̄; b̄).
Recall that a formula φ(x̄; ȳ) is said to be finitary in (the theory of) a graph class C if there
exists k such that for all graph G ∈ C ,

|{φ(Gx̄; b̄) : b̄ ∈ Gȳ}| ⩽ k.

This section is focused on establishing the following result.

▶ Theorem 12. Let C be a class of shrubdepth at most d, where d > 1. Then there exists
a hereditary class C ′ of shrubdepth at most d− 1, finitary first-order formulas φ(x̄; ȳ) and
λ(x̄; ȳ), each defining a partition, and ℓ ∈ N, such that the following holds: for every graph
G ∈ C there exists s̄ ∈ Gȳ such that

(φ(Gx̄; s̄), λ(Gx̄; s̄)) is a dicing of G of order at most ℓ; and
for every part A of φ(Gx̄; s̄), we have G[A] ∈ C ′.
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On a high level, this proves that connection models can be defined using first-order formulas
φ(x̄; ȳ), λ(x̄; ȳ) and parameters s̄ ∈ Gȳ. While a good start towards sparsification, this alone
would be insufficient for our needs, as different choices of s̄ may lead to many different
connection models, and choosing an arbitrary s̄ would not give an isomorphism-invariant
construction. This difficulty is overcome by the finitariness of φ and λ: our construction will
take into account all of the (boundedly many) possible dicings (see Section 5.3).

The proof of Theorem 12 is broken into three parts as follows.
The first part consists of proving that the label partition L can be chosen to be definable
as a partition λ(Gx̄; s̄) into s̄-types. This is achieved thanks to a more general result of
Bonnet et al. [3] pertaining to classes of bounded VC-dimension.
We then show that the component partition P can be chosen to be definable by a formula
φ(Gx̄; s̄) using the same parameters s̄. This relies on known properties of classes of
bounded shrubdepth [16].
We then apply our Finitary Substitute Lemma (Lemma 11) and prove that φ and λ can
be taken to be finitary.

Definability of the label partition. For a subset of vertices S of a graph G we let LS denote
the partition of the vertex set of G into neighborhood classes with respect to S: u and v

belong to the same part of LS if and only if

{w ∈ S | u and w are adjacent} = {w ∈ S | v and w are adjacent}.

Note that we have |LS | ⩽ 2|S|. It turns out that label partitions can be taken of this form.

▶ Lemma 13 (follows from Theorem 3.5 of [3]). Let C be graph class of bounded shrubdepth.
Then for every graph G ∈ C and dicing (P,L) of G of order at most t, there exists S ⊆ V (G)
with |S| ⩽ O(t2) such that (P,LS) is also a dicing of G.

Definability of the component partition. We now show that the component partition P
can also be defined using a first-order formula.

▶ Lemma 14. Let C be a graph class of bounded shrubdepth and t ∈ N be an integer. There
exist formulas φ(x̄; ȳ) and λ(x̄; ȳ), both defining a partition, such that the following holds: for
every graph G ∈ C and dicing (P,L) of G of order at most t, there exists s̄ ∈ Gȳ such that

(P ′,L′) =
(
φ(Gx̄; s̄), λ(Gx̄; s̄)

)
is a dicing of G of order at most 2O(t2). Further, every part of P ′ is entirely contained in
some part of P.

Proof sketch. By Lemma 13, there exists a vertex subset S with |S| ⩽ O(t2) such that
(P,LS) is also a dicing of G, with relation Z ⊆ LS × LS . We let H denote the graph
obtained by “flipping according to the dicing (P,LS)”, meaning that we exchange edges
and non-edges between pairs of parts in LS that belong to Z. Since (P,LS) is a dicing,
connected components of H are contained in single parts of P; let P ′ denote the partition
of V (G) = V (H) into connected components in H. Since H can be transduced from G, it
has bounded shrubdepth, and thus we get that each part of P ′ have diameter bounded by a
constant; this is because every class of bounded shrubdepth does not admit arbitrarily long
induced paths [16]. We deduce that there is a formula expressing that two vertices belong to
the same P ′-component, and the result follows. ◀
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Finitariness of the definition. We are now ready to derive the theorem.

Proof sketch for Theorem 12. Let Labels be a large enough set of labels so that graphs in
C admit connection models with labels in Labels, and let C ′ be the class of all graphs that
admit a connection model of depth at most d− 1 using the label set Labels. By Lemma 14,
there exist formulas φ(x̄; ȳ) and λ(x̄; ȳ), depending only on C , such that there is s̄ ∈ Gȳ

for which (φ(Gx̄; s̄), λ(Gx̄; s̄)) is a dicing of G of order at most ℓ, where ℓ ∈ 2O(|Labels|2) is a
constant depending only on C . Moreover, every part of φ(Gx̄; s̄) is entirely contained in a
single part of P, which implies that for every part A′ of φ(Gx̄, s̄) we have G[A′] ∈ C ′. It
remains to transform φ and λ into finitary formulas. Let T be the theory of C .

Let R be a relation symbol of arity 4 and consider the following assertion:

“R is the product of two partitions P and L such that (P,L) is a dicing of G of
order at most ℓ. Moreover, for every part A of P it holds that G[A] ∈ C ′”.

It follows from [16, Corollary 3.9] that the assertion above can be expressed by a first order
sentence ψ over the signature {E,R}. Moreover, ψ is hereditary, so we may apply the
Finitary Substitute Lemma to the formula η(x̄1, x̄2; ȳ) = φ(x̄1; ȳ) ∧ λ(x̄2, ȳ); we get a finitary
η′(x̄1, x̄2; ȳ) such that

T implies ∃s̄.ψ[R(x̄1, x̄2)/η′(x̄1, x̄2; s̄)].

Then the formulas

φ′(x̄; ȳ) = ∃z.η′(x̄, z, z; ȳ) and λ′(x̄; ȳ) = ∃z.η′(z, z, x̄; ȳ)

yield the wanted result. ◀

5.3 Canonical reduction to bounded treedepth
With Theorem 12 in hand, we proceed to the proof of Theorem 2. Fix a class C of shrubdepth
at most d.

Properties of the construction. We describe a construction that, given a graph G ∈ C ,
constructs a structure A(G) of the following shape.

A(G) is a structure over a signature consisting of several unary relations and one binary
relation. Thus, we see A(G) as a vertex-colored directed graph, and we will apply the
usual directed graphs terminology to A(G).
The vertex set of G is contained in the vertex set of A(G). The elements of V (G) will be
called leaves of A(G). In A(G) there is a unary predicate marking all the leaves.
In A(G) there is a specified vertex, called the root, such that for every vertex u of A(G)
there is an arc from u to the root. The root is identified using a unary predicate.

The construction will satisfy the following properties.
The mapping G 7→ A(G) is isomorphism-invariant within the class C .
For every vertex u of A(G), there are at most c arcs with tail at u, for some constant c
depending only on C .
There is a transduction T depending on C such that A(G) ∈ T(G).
The class {A(G) | G ∈ C } has bounded treedepth.
There is an interpretation I depending on C such that G = I(A(G)).
Given G, A(G) can be computed in time O(n2), where n is the vertex count of G.

We proceed by induction on d, the shrubdepth of C ; the base case d = 1 is obvious.
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Preparation for the inductive construction. Suppose d > 1. Let φ(x̄; ȳ), λ(x̄; ȳ), ℓ ∈ N,
and C ′ be the finitary formulas, the bound, and the class provided by Theorem 12. Since
the shrubdepth of C ′ is at most d− 1, by induction assumption we get a suitable mapping
A′(·), constant c′, transduction T′, and interpretation I′ that satisfy the properties stated
above for C ′.

Call a tuple s̄ ∈ Gȳ good if (φ(Gx̄; s̄), λ(Gx̄; s̄)) is a dicing of G of order at most ℓ satisfying
that for every part A of φ(Gx̄, s̄) it holds that G[A] ∈ C ′. Define

F = { (φ(Gx̄; s̄), λ(Gx̄; s̄)) : s̄ ∈ Gȳ is a good tuple }.

By Theorem 12, we have

1 ⩽ |F| ⩽ k

for some constant k ∈ N depending only on C .
Let L̂ be the coarsest partition that refines all label partitions of the dicings belonging

to F ; that is, u, v are in the same part of L̂ if and only if u, v are in the same part of L
for each (P,L) ∈ F . Similarly, let P̂ be the coarsest partition that refines all component
partitions of the dicings belonging to F . Since |F| ⩽ k and |L| ⩽ ℓ for each label partition
featured in F , we have

|L̂| ⩽ ℓk.

Moreover, every part of P̂ is contained in a single part of any component partition featured
in F , hence G[B] ∈ C ′ for every part B of P̂.

Let F̂ = {(P, L̂) : (P,L) ∈ F}. Since L̂ refines each label partition featured in F , it
follows that every element of F̂ is a dicing of G. Then, for a component partition P featured
in F , let ZP ⊆ L̂ × L̂ be the symmetric relation witnessing that (P, L̂) is a dicing.

Definition of the construction. We now describe the structure A(G); see Figure 1. Con-
struct:

a root vertex r;
for every part L ∈ L̂, a vertex xL;
for every component partition P featured in F , a vertex yP ;
for every component partition P featured in F , and every part A ∈ P , a vertex zP,A; and
for every component partition P featured in F , and every (unordered) pair LL′ ∈ ZP , a
vertex qP,LL′ . (Note here that ZP is symmetric, so we may treat its elements as unordered
pairs of elements of L̂.)

Further, for every part B of P̂ we have G[B] ∈ C ′, hence we may apply the construction
A′ to G[B], yielding a structure HB = A′(G[B]). Let rB be the root of HB. We add all
structures HB obtained in this way to A(G). We then connect these with the following arcs:
1. for every vertex u of A(G) there is an arc (u, r);
2. for every vertex of the form zP,A there is an arc (zP,A, yP);
3. for every vertex of the form qP,LL′ , there are arcs (qP,LL′ , xL), (qP,LL′ , xL′), and

(qP,LL′ , yP);
4. for every part B of P̂ and every component partition P featured in F , there is an arc

(rB , zP,A), where A is the unique part of P that contains B;
5. for every vertex u of G there is an arc (u, xL), where L is the unique part of L̂ that

contains u. (Recall that the vertex set of G is the union of the leaf sets of HB for B ∈ P̂ .)
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Figure 1 Inductive construction of A(G). Vertices of the form r, yP , zP,A, qP,LL′ are depicted
in red, orange, violet, and green, respectively. Vertices of the form xL are depicted in the top-left
corner of the figure in different soft colors (which do not correspond to unary predicates), matching
the colors of vertices of G that point to them; thus the soft color partition is L̂. We depict a few
representatives for each type of arcs.

Finally, we add five fresh unary predicates, called R,X, Y, Z,Q, respectively selecting the
root r, the vertices of the form xL, the vertices of the form yP , the vertices of the form zP,A,
and the vertices of the form qP,LL′ . Note here that H contains more unary predicates: those
that come with structures HB constructed by induction. These include a unary relation
selecting the leaves.

This concludes the construction of A(G). We do not include detailed proofs of the
properties listed above, and refer instead to the full version. That the transformation is
isomorphism-invariant and that every element is the tail of a bounded number of arcs follows
directly from the construction. Also, it is quite straightforward to transduce A(G) from
G, by guessing good tuples s̄1, . . . , s̄k′ ; then it follows from the results of Ganian et al. [16]
that the class of D = {A(G) : G ∈ C } has bounded shrubdepth. This, together with the
sparsity of A(G) following from the bound on outdegrees, implies that D in fact has bounded
treedepth. Further, there is no difficulty in interpreting G in A(G). To compute A(G) in
quadratic time, we rely on algorithmic meta-theorems over graphs of bounded cliquewidth
obtained from combining [12, 21]. Theorem 2 follows.

5.4 Canonization and isomorphism test
We now use Theorem 2 to prove Theorem 3, that is, give a quadratic-time isomorphism test
for any class of graphs of bounded shrubdepth. As mentioned in the introduction, in fact we
solve the more general canonization problem, defined as follows.

For a class of structures C , a canonization map for C is a mapping c with the following
property: for every M ∈ C , c(M) is a total order on elements of M so that if M,M′ ∈ C

are isomorphic, then associating elements with same index in c(M) and in c(M′) yields an
isomorphism between M and M′. Note that if there is a canonization map c for C that is
efficiently computable, then this immediately gives an isomorphism test within the same
time complexity.
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For classes of bounded treedepth, Bouland et al. [4] gave a relatively easy fixed-parameter
isomorphism test. Their techniques can be easily extended to the canonization problem for
binary structures of bounded treedepth.

▶ Theorem 15 (Adapted from [4]). Let D be a class of binary structures of bounded treedepth.
There exists a canonization map c on D that is computable in time O(n log2 n), where n is
the size of the universe of the input structure.

We can now prove the main result of this section.

▶ Theorem 16. Let C be a class of graphs of bounded shrubdepth. There exists a canonization
map c on C that is computable in time O(n2), where n is the vertex count of the input graph.

Proof. Let D be the class of bounded treedepth and A : C → D be the mapping provided
by Theorem 2 for the class C . Then to get a suitable canonization map for C , it suffices
to compose A with the canonization map for D , provided by Theorem 15, and restrict the
output order to the vertex set of the original graph. ◀

As discussed, Theorem 3 follows immediately from Theorem 16.
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