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Abstract

We provide a new perspective on the problem how high-level state machine models with abstract
actions can be related to low-level models in which these actions are refined by sequences of concrete
actions. We describe the connection between high-level and low-level actions using action codes, a
variation of the prefix codes known from coding theory. For each action code R, we introduce a
contraction operator αR that turns a low-level model M into a high-level model, and a refinement
operator ϱR that transforms a high-level model N into a low-level model. We establish a Galois
connection ϱR(N ) ⊑ M ⇔ N ⊑ αR(M), where ⊑ is the well-known simulation preorder. For
conformance, we typically want to obtain an overapproximation of model M. To this end, we also
introduce a concretization operator γR, which behaves like the refinement operator but adds arbitrary
behavior at intermediate points, giving us a second Galois connection αR(M) ⊑ N ⇔ M ⊑ γR(N ).
Action codes may be used to construct adaptors that translate between concrete and abstract actions
during learning and testing of Mealy machines. If Mealy machine M models a black-box system
then αR(M) describes the behavior that can be observed by a learner/tester that interacts with
this system via an adaptor derived from code R. Whenever αR(M) implements (or conforms to)
N , we may conclude that M implements (or conforms to) γR(N ).

Almost all results, examples, and counter-examples are formalized in Coq.
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Figure 1 Example for the (lack of) preservation of determinism in action refinement.

1 Introduction

Labeled transition systems (LTSs) constitute one of the most fundamental modeling mech-
anisms in Computer Science. An LTS is a rooted, directed graph whose nodes represent
states and whose edges are labeled with actions and represent state transitions. LTS-based
formalisms such as Finite Automata [21], Finite State Machines [25], I/O automata [26],
IOTSs [35], and process algebras [4] have been widely used to model and analyze a broad
variety of reactive systems, and a rich body of theory has been developed for them.

In order to manage the complexity of computer-based systems, designers structure such
systems into hierarchical layers. This allows them to describe and analyze systems at different
levels of abstraction. Many LTS-based frameworks have been proposed to formally relate
models at different hierarchical levels, e.g. [4, 14, 27, 40]. In most of these frameworks, the
states of a high-level LTS correspond to sets of states of a low-level LTS via simulation
or bisimulation-like relations. However, the actions are fixed and considered to be atomic.
Actions used at a lower level of abstraction can be hidden at a higher level, but higher-level
actions will always be available at the lower level. For this reason, Rensink & Gorrieri [18, 31]
argue that these (bi)simulations relate systems at the same conceptual level of abstraction,
and therefore they call them horizontal implementation relations. They contrast them with
vertical implementation relations that compare systems that belong to conceptually different
abstraction levels, and have different alphabets of actions.

A prototypical example of a hierarchical design is a computer network. To reduce design
complexity, such a network is organized as a stack of layers or levels, each one built upon the
one below it [34]. Examples are the transport layer, with protocols such as TCP and UDP,
and the physical layer, concerned with transmitting raw bits over a communication channel.
Now consider a host that receives a TCP packet in some state s. If P is the set of possible
packets then, in an LTS model of the transport layer, state s will contain outgoing transitions
labeled with action receive(p), for each p ∈ P . At the physical layer, however, receipt of
a packet corresponds to a sequence of receive(b) actions, with b a bit in {0, 1}. Only after
the final bits have arrived, the host knows which packet was actually received. Mechanisms
for transforming high-level actions into sequences (or processes) of low-level actions have
been addressed extensively in work on action refinements [18]. These approaches, however,
are unable to describe the above scenario in a satisfactory manner and somehow assume
that a host upfront correctly guesses the packet that it will receive, even before the first bit
has arrived. In order to illustrate this problem, we consider the simplified example of an
LTS with a distinguished initial state, displayed in Figure 1a, which accepts either input
a or input b. At a lower level of abstraction, input a is implemented by three consecutive
inputs 1 4 1, whereas input b is implemented by action sequence 1 4 2 (the ASCII encodings
of a and b in octal format). An action refinement operator will replace the a-transition in
Figure 1a by a sequence of three consecutive transitions with labels 1, 4 and 1, respectively,
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and will handle the b-transition in an analogous manner. Thus, action refinement introduces
a nondeterministic choice (Figure 1b), rather than the deterministic behavior that one would
like to see (Figure 1c). As a consequence of this and other limitations, refinement operators
have not found much practical use [18].

Based on the observation that any action can be modeled as a state change, some
authors (e.g. [2, 10, 24]) prefer modeling formalisms in which the term “action” is only
used informally, and Kripke structures rather than LTSs are used to model systems. These
state-based approaches have the advantage that a distinction between horizontal and vertical
implementation relations is no longer needed, and a single implementation relation suffices.
Purely state-based approaches, however, are problematic in cases where we need to interact
with a black-box system and (by definition) we have no clue about the state of this system.
Black-box systems prominently occur in the areas of model-based testing [36] and model
learning [37]. In these application areas, use of LTSs makes sense and there is a clear practical
need for formalisms that allow engineers to relate actions at different levels of abstraction.

Van der Bijl et al. [7], for instance, observe that in model-based testing specifications
are usually more abstract than the System Under Test (SUT). This means that generated
test cases may not have the required level of detail, and often a single abstract action has to
be translated (either manually or by an adaptor) to a sequence of concrete actions that are
applied to the SUT. Van der Bijl et al. [7] study a restricted type of action refinement in
which a single input is refined into a sequence of inputs, and implement this in a testing tool.

Also in model learning, typically an adaptor is placed in between the SUT and the learner,
to take care of the translation between abstract and concrete actions. For example, in a
case study on hand-held smartcard readers for Internet banking, Chalupar et al. [9] used
abstract inputs that combine several concrete inputs in order to accelerate the learning
process and reduce the size of the learned model. In particular, they introduced a single
abstract input COMBINED_PIN corresponding to a USB command, followed by a 4-digit
PIN code, followed by an OK command. Fiterău-Broştean et al. [12] used model learning
for a comprehensive analysis of DTLS implementations, and found four serious security
vulnerabilities, as well as several functional bugs and non-conformance issues. Handshakes in
(D)TLS are defined over flights of messages. Hence, (D)TLS entities are often expected to
produce multiple messages before expecting a response. During learning, Fiterău-Broştean
et al. [12] used an adaptor that contracted multiple messages from the SUT into a single
abstract output. Also in other case studies on TLS [32], Wi-Fi [33] and SSH [39, 13], multiple
outputs from the SUT were contracted into a single abstract output. Verleg [39] used a single
abstract input to execute the entire key re-exchange during learning higher layers of SSH.

In this article, we provide answers to two fundamental questions: (1) How can we formalize
the concept of an adaptor that translates between abstract and concrete actions?, and (2)
Suppose the behavior of an SUT is described by an unknown, concrete modelM, and suppose
a learner interacts with this SUT through an adaptor and learns an abstract model N . What
can we say about the relation between M and N ?

We answer the first question by introducing action codes, a variation of the prefix codes
known from coding theory [5]. Action codes describe how high-level actions are converted
into sequences of low-level actions, and vice versa. This makes them different from action
refinements, which specify how high-level actions can be translated into low-level processes,
but do not address the reverse translation. Our notion of an action code captures adaptors
that are used in practice, and in particular those described in the case studies listed above.

In order to answer the second question we introduce, for each action code R, a contraction
operator αR that turns a low-level model M into a high-level model by contracting concrete
action sequences ofM according toR. We also introduce the left adjoint of αR, the refinement

ICALP 2023
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operator ϱR that turns a high-level modelM into a low-level model by refining abstract actions
of N according to R. This refinement operator, for instance, maps the LTS of Figure 1a
to the LTS of Figure 1c. We establish a Galois connection ϱR(N ) ⊑M ⇔ N ⊑ αR(M),
where ⊑ denotes the simulation preorder. So if an abstract model N implements contraction
αR(M), then the refinement ϱR(N ) implements concrete model M, and vice versa.

In practice, we typically want to obtain an overapproximation of concrete model M. To
this end, we introduce the right adjoint of αR, the concretization operator γR. This operator
behaves like the refinement operator, but adds arbitrary behavior at intermediate points (cf.
the demonic completion of [6]). We establish another Galois connection: αR(M) ⊑ N ⇔
M ⊑ γR(N ). This connection is useful, because whenever we have established that αR(M)
implements (or conforms to) N , it allows us to conclude that M implements (or conforms
to) γR(N ).

We show that, in a setting of Mealy machines (subsuming Finite State Machines), an
adaptor can be constructed for any action code for which a winning strategy exists in a
certain 2-player game. If a learner/tester interacts with an SUT via an adaptor generated
from such an action code R, and the SUT is modeled by Mealy machine M, then from the
learner/tester perspective, the composition of adaptor and SUT will behave like αR(M).
Thus, if a learner succeeds to learn an abstract model N such that N ≈ αR(M) then, using
the Galois connections, the learner may conclude that ϱR(N ) ⊑M ⊑ γR(N ).

The remainder of this article is structured as follows. We start with a preliminary
Section 2 that introduces basic notations and results for LTSs. Next, action codes and the
contraction operator are introduced in Section 3. After describing the refinement operator,
we establish our first Galois connection in Section 4. Next we define concretization and
establish our second Galois connection in Sections 5. Section 6 explains how action codes
can be composed, and shows that contraction and refinement commute with action code
composition. Section 7 describes how adaptors can be constructed from action codes. Finally,
Section 8 contains a discussion of our results and identifies directions for future research.

Almost all proofs are formalized in Coq (about 6000 lines of code) and can be accessed
via https://gitlab.science.ru.nl/twissmann/action-codes-coq and via the ancillary
files of the full version on arxiv. We mark formalized results with a clickable Coq icon
pointing to the respective location in the HTML documentation. Appendix A (in the full
version) contains comments on the Coq formalization and Appendix B contains full proofs
(in natural language) and additional remarks.

2 Preliminaries

If Σ is a set of symbols then Σ∗ denotes the set of all finite words over Σ, and Σ+ the set of all
non-empty words. We use ε to denote the empty word, so e.g. Σ∗ = Σ+∪{ε}. Concatenation
of words u, w ∈ Σ∗ is notated u · w (or simply u w). We write u ≤ w if u is a prefix of w, i.e.
if there is v ∈ Σ∗ with u v = w. We write |w| to denote the length of word w.

We use f : X⇀Y to denote a partial map f from X to Y and write dom(f) ⊆ X for its
domain, i.e. set of x ∈ X on which f is defined. The image im(f) of a partial map f : X⇀Y

is the set of elements of Y it can reach: im(f) := {f(x) | x ∈ dom(f)} ⊆ Y .

▶ Definition 2.1 ( ). For a set A of action labels, a labeled transition system (LTS) is a tuple
M = ⟨Q, q0, ⟩ where Q is a set of states, q0 ∈ Q is a starting state, and ⊆ Q×A×Q is
a transition relation. We write LTS(A) for the class of all LTSs with labels from A. We refer
to the three components of an LTS M as QM, qM

0 and M, respectively, and introduce
the following notation:

https://gitlab.science.ru.nl/twissmann/action-codes-coq
https://arxiv.org/abs/2301.00199
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#LTS
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Figure 2 A Mealy machine.

q a q′ denotes (q, a, q′) ∈ ; q a denotes that there is some q′ with q a q′;
q

w
q′ for w ∈ A∗ denotes that there are finite sequences a1, . . . , an ∈ A, r0, . . . , rn ∈ Q

such that w = a1 · · · an, and r0 = q, rn = q′ and ri−1
ai ri for all 1 ≤ i ≤ n;

q
w denotes that there is q′ such that q

w
q′;

q ∈ Q is reachable if there is w ∈ A∗ such that q0
w

q.
A special class of LTSs that is frequently used in conformance testing and model learning
are Mealy machines. Mealy machines with a finite number of states are commonly referred
to as Finite State Machines.

▶ Definition 2.2. For non-empty sets of inputs I and outputs O, a (non-deterministic)
Mealy machine M ∈ LTS(I × O) is an LTS where the labels are pairs of an input and an
output. We write q

i/o
q′ to denote that (q, (i, o), q′) ∈ . Whenever we omit a symbol

in predicate q
i/o

q′ this is quantified existentially. Thus, i/o if there are q and q′ s.t.
q

i/o
q′, q

i/
q′ if there is an o s.t. q

i/o
q′, and q

i/ if there is a q′ s.t. q
i/

q′.

▶ Example 2.3 ( ). Figure 2 visualizes a simple Mealy machine with inputs {a, b} and
outputs {0, 1}. The machine always outputs 0 in response to an input, except in one specific
situation. Output 1 is produced in response to input b if the previous input was a and
the number of preceding inputs is odd. The machine has four states q0, q1, q2 and q3, with
starting state q0 marked by an incoming arrow. In states q0 and q2 the number of preceding
inputs is always even, whereas in states q1 and q3 it is always odd. In states q2 and q3 the
previous input is always a, whereas in states q0 and q1 either the previous input is b, or no
input has occurred yet. Thus, only in state q3 input b triggers output 1.

We introduce some notation and terminology for LTSs.

▶ Definition 2.4 ( ). Let M = ⟨Q, q0, ⟩ ∈ LTS(A) be an LTS. We say that
M is deterministic if, whenever q a for some q and a, there is a unique q′ with q a q′.
M is a tree-shaped if each state q ∈ Q can be reached via a unique sequence of transitions
from state q0.
q ∈ Q is a leaf, notated q , if there is no a ∈ A with q a .
M is grounded if every state q ∈ Q has a path to a leaf.

We can now define the set of traces of an LTS:

▶ Definition 2.5 ( ). Let M = ⟨Q, q0, ⟩ ∈ LTS(A). A word w ∈ A∗ is a trace of state
q ∈ Q if q

w , and a trace of M if it is a trace of q0. We write trace(M) for the set
{w ∈ A∗ | q0

w } of all traces of M.

ICALP 2023
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▶ Definition 2.6 (Simulation, ). For M,N ∈ LTS(A), a simulation from M to N is a
relation S ⊆ QM ×QN such that
1. qM

0 S qN
0 and

2. if q1 S q2 and q1
a

M q′
1 then there exists a state q′

2 such that q2
a

N q′
2 and q′

1 S q′
2.

We write M⊑ N if there exists a simulation from M to N .

It is a classical result that trace inclusion coincides with the simulation preorder for
deterministic labeled transition systems (see e.g. [28]):

▶ Lemma 2.7 ( ). For all M,N ∈ LTS(A) where N is deterministic: trace(M) ⊆ trace(N )
iff M⊑ N .

We will often consider LTSs up to isomorphism of their reachable parts:

▶ Definition 2.8 (Isomorphism, ). For M,N ∈ LTS(A), an isomorphism from M to N is
a bijection f : QM

R → QN
R , where:

1. QM
R ⊆ QM and QN

R ⊆ QN are the subsets of reachable states in M and N , respectively;
2. f(qM

0 ) = qN
0 , and

3. q a
M q′ iff f(q) a

N f(q′), for all q, q′ ∈ QM
R , a ∈ A.

We write M∼= N if there exists an isomorphism from M to N .

Note that ∼= is an equivalence relation on LTS(A), and that M∼= N implies M⊑ N , since
each isomorphism (when viewed as a relation) is trivially a simulation.

3 Action Codes

Adaptors that are used for learning and testing translate sequences of abstract actions into
sequences of concrete actions, and vice versa. Action codes describe how an adaptor may
translate between two action label alphabets, for example from A to B. Intuitively, we
understand the first alphabet A as the actions at the lower, concrete level, and the second
alphabet B as the actions at the higher, more abstract level. In an action code, a single
abstract action b ∈ B corresponds to a finite, non-empty sequence of concrete actions a1 · · · an

in A. Essentially, action codes are just a special type of prefix codes [5], as known from
coding theory. Prefix codes have the desirable property that they are uniquely decodable:
given a sequence of concrete actions, there is at most one corresponding sequence of abstract
actions. We provide two equivalent definitions of action codes: one via tree-shaped LTSs and
one via partial maps.

▶ Definition 3.1 (Action code, ). For sets of action labels A and B, a (tree-shaped)
action code R from A to B is a structure R = ⟨M, l⟩, with M = ⟨R, r0, ⟩ ∈ LTS(A) a
deterministic, tree-shaped LTS with L being the set of non-root leaves L ⊆ R \ {r0} and an
injective function l : L→ B. We write Code(A, B) for all action codes from A to B.

The injectivity of l and the tree-shape ensure that every abstract b ∈ B is represented by at
most one w ∈ A+.

▶ Example 3.2. Figure 3 shows an action code for a fragment of the ASCII encoding in
octal format, e.g., 1 1 5 encodes the letter M, 1 4 5 encodes the letter e, etc.

▶ Example 3.3. Figure 4 shows an action code for the activity of getting a cup of coffee or
espresso, in the special case of Mealy machines, i.e. where A = I ×O and B = I ′ ×O′ are
sets of input/output-pairs. Rather than the full sequence of interventions that is required in
order to get a drink, the abstract input/output pair only reports on the type of drink that
was ordered and the number of interventions that occurred.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#Simulation
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#simulation_iff_trace_inclusion_for_deterministic
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#Isomorphism
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.TreeShapedCode.html#TreeShapedCode
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Figure 3 Action code
for a fragment of ASCII.

Figure 4 Action code for a coffee machine.

The definition of action codes as LTSs allows an intuitive visualization. For easier mathe-
matical reasoning, we characterize action codes also in terms of maps:

▶ Definition 3.4 ( ). A (map-based) action code from A to B is a partial map f : B⇀A+

which is prefix-free, by which we mean that for all b, b′ ∈ dom(f),

f(b) ≤ f(b′) implies b = b′. (1)

In the following, we show that these prefix-free partial maps bijectively correspond to the
tree-shaped LTSs:

▶ Lemma 3.5 ( ). Every tree-shaped action code R ∈ Code(A, B) induces a unique map-
based action code f : B⇀A+ with the property that for all b ∈ B, w ∈ A+:

f(b) = w iff ∃r ∈ L : r0
w

R r, l(r) = b (2)

▶ Lemma 3.6 ( ). For each map-based action code f : B⇀A+, there is (up to isomorphism)
a unique tree-shaped action code R ∈ Code(A, B) which is grounded and satisfies (2).

▶ Example 3.7 ( ). For the uniqueness in Lemma 3.6, we use groundedness, because for
A = {a} and any B, the action codes

R :=
( a a · · ·a )

and S :=
( )

.

both have no non-root leaves, and so they both induce the empty partial map f : B⇀A+

via Lemma 3.5. This f is undefined for all b ∈ B. And indeed, R and S are not isomorphic.
The issue is that while the finite S is grounded, the infinite R is not grounded. So R
contains subtrees which do not contribute anything to the partial map f but which hinder
the existence of an isomorphism.

ICALP 2023
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C/1
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(a) An action code R together with αR(M). (b) Another code S together with αS(M).

Figure 5 The resulting contraction of the LTS M from Figure 2 for different action codes.

Having shown the correspondence between tree-shaped and map-based action codes
Code(A, B), we can switch between the two views in proofs. Mostly, we use the tree-shaped
version for visualization and the map-based version for mathematical reasoning.

Consider a concrete M∈ LTS(A), together with an action code R from A to B. We can
construct an abstract LTS for the action labels B by walking through M with seven-league
boots, repeatedly choosing input sequences that correspond to runs to some leaf of R, and
then contracting this sequence to a single abstract transition.

▶ Notation 3.8. In the rest of the paper, we introduce operators αR, ϱR, γR on LTSs,
involving an action code R. Whenever the action code R is clear from the context, we omit
the index and simply speak of operators α, ϱ, γ for the sake of brevity.

▶ Definition 3.9 (Contraction, ). For each action code R ∈ Code(A, B), the contraction
operator αR : LTS(A) → LTS(B) is defined as follows. For M ∈ LTS(A), the LTS αR(M)
has states Qα(M) ⊆ QM and transitions α(M) defined inductively by the rules (1α) and
(2α), for all q, q′ ∈ QM, b ∈ B.

qM
0 ∈ Qα(M) (1α)

q ∈ Qα(M), b ∈ dom(R), q
R(b)

M q′

q b
α(M) q′, q′ ∈ Qα(M)

(2α)

The initial state q
α(M)
0 := qM

0 is the same as in M.

▶ Example 3.10. Figures 5 shows two examples of action codes and the contractions obtained
when we apply them to the Mealy machine of Figure 2 (with the original machine shaded in
the background). The examples illustrate that by choosing different codes we may obtain
completely different abstractions of the same LTS.

The next proposition asserts that we can view αR as a monotone function αR : LTS(A)→
LTS(B) between preordered classes.

▶ Proposition 3.11 (Monotonicity, ). For every action code R ∈ Code(A, B), whenever
M⊑ N for M,N ∈ LTS(A), then αR(M) ⊑ αR(N ) in LTS(B).

4 Refinements

Now that we have introduced the contraction αR of an LTS for a code R, it is natural to
consider an operation in the other direction, which we call the refinement ϱR. Intuitively,
refinement replaces each abstract transition q b q′ by a sequence of concrete transitions, as
prescribed by R.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Contraction.html#contraction
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#contraction_monotone
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q0

M

a

q0, ε q0, 1
q0, 11

q0, 14

1
1

4

5

1

Figure 6 LTS and its refinement w.r.t R of Figure 3.

ϱR(N ) ⊑M N ⊑ αR(M)
If N ∈ LTS(dom(R))

If M is deterministic

Figure 7 Theorem 4.5.

▶ Definition 4.1 (Refinement, ). For each action code R ∈ Code(A, B), we define the
refinement operator ϱR : LTS(B)→ LTS(A) as follows. For M∈ LTS(B), the LTS ϱR(M) ∈
LTS(A) has a set of states

Qϱ(M) := {(q, w) ∈ QM ×A∗ | w = ε or (there is b with q b
M and w ≨ R(b))}

and the initial state (qM
0 , ε). The transition relation ϱ(M) is defined by the following rules:

(q, wa) ∈ Qϱ(M)

(q, w) a
ϱ(M) (q, wa)

(1ϱ)
q b

M q′ wa = R(b)
(q, w) a

ϱ(M) (q′, ε)
(2ϱ)

Intuitively, whenever ϱ(M) is in state (q, w), then this corresponds to being in state q in the
abstract automaton M∈ LTS(B) and having observed the actions w ∈ A∗ so far. However,
we have insufficiently many actions for finding an abstract transition q b

M q′ with w = R(b)
because w is still to short. Nevertheless, whenever ϱ(M) admits a transition to a state (q, w)
with w ̸= ε, then we know that we can eventually complete w to a sequence corresponding
to an abstract transition: there exist at least one q b

M q′ for some b ∈ dom(R) with
w ≤ R(b). If the abstract system M is non-deterministic, then there may be multiple
abstract transitions that match in the final rule (2ϱ), but the transitions produced by rule
(1ϱ) are deterministic.

▶ Example 4.2. Figure 6 shows an example application of a refinement operator that replaces
the actions of the LTS M on the left by their ASCII encoding in octal format, as prescribed
by the action code from Figure 3. The initial state is (q0, ε), corresponding to q0 in M.
Since M contains abstract labels M and a, with R(M) = 1 1 5 and R(a) = 1 4 1, we need to
introduce additional states for having read 1, 1 1, and 1 4, because those are the sequences of
A-actions before we have observed a sequence R(b) ∈ A+ for some b ∈ B.

A more visual explanation of ϱR(M) is the following: for every state q ∈ QM, we consider
the outgoing transitions {q b

M q′ | b ∈ B, q′ ∈ QM} and labels B′ ⊆ B that appear in it.
Then, this outgoing-transition structure is replaced with (a copy of) the minimal subgraph
of the tree R containing all leaves with labels in B′.

Like contraction, the refinement operation also preserves the simulation preorder.

▶ Proposition 4.3 (Monotonicity, ). For all action codes R ∈ Code(A, B), if M⊑ N in
LTS(B), then ϱR(M) ⊑ ϱR(N ) in LTS(A).

As R is deterministic, applying ϱR on a deterministic LTS results in a deterministic LTS:

▶ Proposition 4.4 (Refinement preserves determinism, ). For every action code R ∈
Code(A, B), if M∈ LTS(B) is deterministic, then ϱR(M) ∈ LTS(A) is deterministic, too.

▶ Theorem 4.5 (Galois connection, ). For R ∈ Code(A, B), N ∈ LTS(B), andM∈ LTS(A):
1. If N is in the subclass LTS(dom(R)) ⊆ LTS(B), then ϱR(N ) ⊑M implies N ⊑ αR(M).
2. If M is deterministic, then N ⊑ αR(M) implies ϱR(N ) ⊑M.
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The condition in the first direction means that N ∈ LTS(B) only makes use of action labels
in the subset dom(R) ⊆ B. Hence, in the proof, we can consider R to be a total map
dom(R)→ A+.
▶ Remark 4.6. If we wanted to support non-deterministicM, we can consider a less-pleasant
ϱ′

R that replaces every q b q′ for R(a1 · · · an) = b with literally a sequence q
a1 · · · an q′.

Thus, ϱ′
R would rather create a system as in Figure 1b whereas ϱR creates a system as in

Figure 1c. However, such an operator ϱ′
R does not preserve determinism.

▶ Remark 4.7. In the proof of the Galois connection, we make use of the fact that our action
codes are functional, i.e. that every b ∈ B is encoded by at most one w ∈ A∗. We would
allow multiple, then one can show that α can not have a left-adjoint (details in appendix).
In the first direction, we can even prove a stronger statement for M := ϱR(N ), showing a
Galois insertion between αR and ϱR:

▶ Theorem 4.8 (Galois insertion, ). For R ∈ Code(A, B), if N ∈ LTS(B) is in the subclass
N ∈ LTS(dom(R)), then N ∼= αR(ϱR(N )).

5 Concretizations

In this section, we consider another method of transforming an abstract system into a
concrete one: the concretization operator. Whereas refinement is the left adjoint of contraction
(Theorem 4.5), this section will establish that concretization is the right adjoint (Theorem 5.5)
of contraction. Whereas for refinement we omitted transitions for which the action code R
was not defined, for concretization we add transitions to a new chaos state [20] in which
any action may occur. Essentially, this is the idea of demonic completion of [6]. In order to
reduce the number of transitions to the chaos state, the concretization operator is parametric
in a reflexive relation I ⊆ A×A which describes whether two symbols are sufficiently similar.
With this relation, we allow transitions to the chaos state only for those symbols that are
not similar to any symbol for which the code is defined:

▶ Definition 5.1 (Concretization, ). Let M ∈ LTS(B) be an LTS, R ∈ Code(A, B) an
action code, and I ⊆ A × A a reflexive relation. The concretization γR,I(M) ∈ LTS(A)
consists of:

Qγ(M) := QM ×W ∪ {χ} with W := {w ∈ A∗ | w = ε or ∃b ∈ dom(R) : w ≨ R(b)}.
q

γ(M)
0 := (qM

0 , ε)
Transitions are defined by the following rules, for a ∈ A, w ∈ A∗, b ∈ B:

wa ∈W

(q, w) a
γ(M) (q, wa)

(1γ)
q b

M q′, R(b) = wa

(q, w) a
γ(M) (q′, ε)

(2γ)

∀a′ ∈ A, (a, a′) ∈ I : wa′ /∈W ∧ wa′ /∈ im(R)
(q, w) a

γ(M) χ
(3γ)

χ a
γ(M) χ

(4γ)

Intuitively, W represents the internal nodes of the tree-representation of action code R.
The transitions then try to accumulate a word w ∈ A∗ known to the action code (rule (1γ)).
As soon as we reach w = R(b) for some b, we use a b-transition in the original M∈ LTS(B)
to jump to a new state (rule (2γ)). The chaos state χ attracts all runs with symbols unknown
to the action code. The corresponding rule (3γ) involves the relation I ⊆ A × A. The
rule only allows a transition to χ for a symbol a ∈ A if there is no related symbol a′ ∈ A,
(a, a′) ∈ A for which the code R could make a transition. For general LTSs, we can simply
consider I to be the identity relation on A. Once transitioned to the chaos state χ, we allow
transitions for arbitrary action symbols a ∈ A (rule (4γ)).

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Refinement.html#refinement_galois_insertion
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization
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q0, ε

q2, b q2, ε

q0, aq0, b

χ q2, a

χ

b/0
a/0

a/0, a/1

b/0

b/0
a/0

a/0

b/0, b/1

a/0, a/1
b/0

b/0, b/1
a/0

a/0, a/1,
b/0, b/1

a/0, a/1,
b/0, b/1

Figure 8 Concretization of the Mealy machine of Figure 5a.

▶ Example 5.2. For the special case of Mealy machines A := I × O, we can define I ⊆
(I ×O)× (I ×O) to relate (i, o) and (i′, o′) iff i = i′, i.e. two actions are related if they use
the same input symbol. Then, we only have transitions to the chaos states if the code can’t
do any action for the same input symbol i ∈ I. Figure 8 depicts the concretization (for this
I) of the Mealy machine of Figure 5a(right) with the action code of Figure 5a(left). To
increase readability, we introduced two copies of chaos state χ. Also, multiple labels next to
an arrow denote multiple transitions.

Like in the refinement operator, the transition structure of γ is built in such a way that
transitions for b ∈ B in M correspond to runs of R(b) in γ(M):

(q, ε)
R(b)

γ(M) q̄ iff ∃q′ : q b
M q′ and q̄ = (q′, ε).

To make γ right adjoint to α, all runs outside the code R lead to the chaos state. One may
think that the many transitions to the chaos state χ would make the construction γR trivial.
However, only those paths lead to χ for which the action code is not defined.

The following technical condition describes that a code R contains sufficiently many
related symbols compared to a given M∈ LTS(A):

▶ Definition 5.3 ( ). A code R ∈ Code(A, B) is called I-complete for M∈ LTS(A), if for
all w ∈ B∗, u ∈ A∗, q ∈ QM, a, a′ ∈ A:

r0
u a

R and (a, a′) ∈ I and q0
R∗(w) u

M q a′
implies r0

u a′

R .

Intuitively, I-completeness means that if a state q ∈M can do a transition for a′ ∈ A which
is related to similar symbol a ∈ A defined in the action code, then a′ ∈ A itself is also
defined in the action code. However, we do not compare arbitrary transitions of q inM with
arbitrary symbols mentioned in R, but only look at the node in R reached when ‘executing
R’ zero or more times while following the path q0 q.

For example, if I ⊆ A × A happens to be the identity relation, then R is I-complete
for any M∈ LTS(A). In the instance of I ⊆ (I ×O)× (I ×O) for Mealy machines, if R is
I-complete for M, then this means: whenever a state q ∈ QM has transitions q

i/o and
q

i/o′

, then the code R is defined for either both or none of them.

▶ Assumption 5.4. For the rest of the present Section 5, we fix the sets A, B, an action
code R ∈ Code(A, B), and a reflexive relation I ⊆ A×A.

▶ Theorem 5.5 (Galois connection, ). For all N ∈ LTS(A), and M∈ LTS(B), such that R
is I-complete for N , we have

αR(N ) ⊑M (in LTS(B)) ⇐⇒ N ⊑ γR,I(M) (in LTS(A)).
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▶ Example 5.6 ( ). If we instantiate I to be the identity relation ∆ on A, then this means
that we simply replace a′ with a in rule (3γ), and then we have above equivalence for all
N ∈ LTS(A) and M∈ LTS(B) (without any side-condition):

αR(N ) ⊑M (in LTS(B)) ⇐⇒ N ⊑ γR,∆(M) (in LTS(A)).

▶ Example 5.7 ( ). Consider the instantiation of I for Mealy machines described in
Example 5.2. Let N be our running example of Figure 2, let R be the action code from
Figure 5a(left), and letM be the abstract Mealy machine from Figure 5a(right), i.e. αR(N ) =
M. One can verify thatR is I-complete forN . Therefore, application of the Galois connection
gives that there is a simulation from N to the Mealy machine γR,I(M) of Figure 8.

It is a standard proof that the operators in a Galois connections are monotone. In that
proof, one applies the Galois connection also toM := γR,I(N ), so we first need to show that
it satisfies the technical completeness condition:

▶ Lemma 5.8 ( ). R is always I-complete for γR,I(M).

▶ Corollary 5.9 ( ). M⊑ N in LTS(B) implies γR,I(M) ⊑ γR,I(N ) in LTS(A).

▶ Remark 5.10. Monotonicity of concretization also follows by observing that the rules in
Definition 5.1 all fit the tyft format of [19] if we view (·, w) as a unary operator for each
sequence w ∈ W . Monotonicity then follows from the result of [19] that the simulation
preorder is a congruence for any operator defined using the tyft format. Since contraction
also can be defined using the tyft format, also monotonicity of contraction (Proposition 3.11)
follows from the result of [19].

Like refinement, concretization preserves determinism.

▶ Proposition 5.11 ( ). If M∈ LTS(B) is a deterministic LTS and ∆ the identity relation
on A, then γR,∆(M) is deterministic, too.

If the code R ∈ Code(A, B) is defined for all labels mentioned in M∈ LTS(B), then γR
is even the right inverse of αR, that is, we have a Galois insertion:

▶ Theorem 5.12 (Galois insertion, ). If M∈ LTS(dom(R)), then M∼= αR(γR,I(M)).

Note that dom(R) ⊆ B, and so LTS(dom(R)) ⊆ LTS(B). Since we may reach the chaos state
χ in the concretization, it is clear that γR is not a left inverse of αR in general.

6 Action Code Composition

Since notions of abstraction can be stacked up, it is natural to consider multiple adaptors
for multiple action codes. Assume an action code R ∈ Code(A, B) and an action code
S ∈ Code(B, C). Then the composition of R and S should be an action code from A to C.

▶ Definition 6.1 ( ). Given two map-based action codes R : B⇀A+ and S : C⇀B+, we
define their (Kleisli) composition (R ∗ S) : C⇀A+ by

(R ∗ S)(c) =
{
R(b1) · · ·R(bn) if S(c) = b1 · · · bn with ∀i : bi ∈ dom(R)
undefined otherwise

The composed action code R∗S is only defined for c ∈ C if S is defined for c and additionally
R is defined for every letter bi ∈ B that appears in the word S(c) ∈ B+.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization_galois_connection_lts
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.MealyExample.html#simulation_from_mealy_to_own_concretization
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#icomplete_for_concretization
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization_monotone
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▶ Remark 6.2. The defined composition is an instance of Kleisli composition for a monad,
which is a standard concept in functional programming and category theory.

▶ Lemma 6.3 ( ). Action codes are closed under composition.
Concretely, given two map-based action codes R : B⇀A+ and S : C⇀B+, their Kleisli

composition (R ∗ S) : C⇀A+ is again a prefix-free partial map.

Now that we can compose action codes, we can now investigate how the previously defined
operators on LTSs behave for composed action codes:

▶ Theorem 6.4 ( , ). Contraction and refinement commute with action code composition:
for action codes R ∈ Code(A, B), S ∈ Code(B, C),
1. αR∗S(M) = αS(αR(M)) for all M∈ LTS(A).
2. ϱR∗S(M) = ϱR(ϱS(M)), whenever im(S) ⊆ dom(R)+ and for all M∈ LTS(C).
For the case of refinement, the additional assumption expresses that every word produced
by S only contains letters b ∈ B for which R is defined. The equations of Theorem 6.4
equivalently mean that the following diagrams commute:

LTS(A) LTS(C)

LTS(B)
αR

αR∗S

αS

LTS(A) LTS(C)

LTS(B)
ϱR

ϱR∗S

ϱS

▶ Remark 6.5 ( ). Concretization does not commute with action code composition. The
reason for that is that the rules (1γ) and (2γ) in γR(γS(M)) would also be applied to
transitions for the chaos state in γS(M) ∈ LTS(B) (see appendix for details).

7 Adaptors

In this section, we describe how action codes may be used for learning and testing of black-box
systems. The general architecture is shown in Figure 9. On the right we see the system
under test (SUT), some piece of hardware/software whose behavior can be modeled by a
Mealy machine M with inputs I and outputs O. On the left we see the learner/tester, an

Learner /
Tester

Adaptor
R

SUT
M

x ∈ X i ∈ I

o ∈ Oy ∈ Y

Figure 9 Using action codes for learning/testing.

0/A 0/B

a/0 b/0

Figure 10 Example 7.4.

agent which either tries to construct a model N ofM by performing experiments, or already
has such a model N and performs experiments (tests) to find a counterexample which shows
that M and N behave differently. The learner/tester uses abstract inputs X and outputs Y .
In between the learner/tester and the SUT we place an adaptor, which uses action code R to
translate between the abstract world of the learner/tester and the concrete world of the SUT.
In order to enable the adaptor to do its job, we need to make four (reasonable) assumptions.

Our first assumption, common in model-based testing [35], is that the SUT will accept
any input from I in any state, that is, we require that M is input enabled: for all q ∈ QM

and i ∈ I, q
i/

M. Our second assumption is that code R is I-complete for M (for I
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denoting same input as in Example 5.2). This ensures that whenever the adaptor sends
a concrete symbol i ∈ I to the SUT, the adaptor will accept any output o ∈ O that the
SUT may possibly produce in response. Our third assumption is that whenever the adaptor
receives an abstract input x ∈ X from the learner/tester, it can choose concrete inputs from
I that drive R from its initial state to a leaf with label (x, y), for some y ∈ Y . Output y can
then be returned as a response to the learner/tester. Reaching such a leaf is nontrivial since
the transitions taken in R are also determined by the outputs provided by the SUT. We may
think of the situation in terms of a 2-player game where the adaptor wins if the game ends
in an x-leaf, and the SUT wins otherwise. Formally, we require that R has finitely many
states and a winning strategy for every input x ∈ X, as defined below:

▶ Definition 7.1 (Winning). Let R = ⟨R, r0, , l⟩ ∈ Code(I ×O, X × Y ) be an action code
with R finite and let x ∈ X. Then
1. A leaf r ∈ R is winning for x if π1(l(r)) = x.1

2. An internal state r ∈ R is winning for x with input i ∈ I if r
i/ and, for each transition

of the form r
i/o

r′, r′ is winning for x.
3. An internal state r ∈ R is winning for x if it is winning for x with some i ∈ I.
4. R has a winning strategy for x if r0 is winning for x.

▶ Example 7.2. The action codes for Mealy machines that we have seen thus far (Figures 4,
5a and 5b) are winning for all the inputs that label their leaves. The action code of Figure 4
is not winning for the input (latte macchiato), for the simple reason that this input does
not label any leaf. If we remove the transition to the leaf /2 in Figure 4, then the resulting
code is no longer winning for (espresso), although it is winning for (coffee).

Our fourth and final assumption is that action code R is determinate. If an action code
is determinate then, for each state r and abstract input x, there is at most one concrete
input i such that r is winning for x with i.

▶ Definition 7.3 (Determinate, ). An action code R is determinate if, for each state r,
whenever r

i1/
r1, r

i2/
r2 and from both r1 and r2 there is a path to a leaf labeled with

input x, then i1 = i2.

▶ Example 7.4. All action codes for Mealy machines that we have seen thus far (Figures 4,
5a and 5b) are determinate. Figure 10 shows an action code that is not determinate: in
the root two different concrete inputs a and b are enabled that lead to leaves with the same
abstract input 0. Hence (trivially), this action code does have a winning strategy for input 0.

Algorithm 1 shows pseudocode for an adaptor that implements action code R. During
learning/testing, the adaptor records the current state of the action code in a variable r.
When an abstract input x arrives, it first sets r to r0. As long as current state r is internal,
the adaptor chooses an input i that is winning for x, and forwards it to the SUT. When the
SUT replies with an output o, the adaptor sets r to a state r′ with r

i/o−−→ r′. When the new
r is internal the adaptor chooses again a winning input, and updates its current state after
interacting with the SUT, etc. When the new r is a leaf with label (x, y) then the adaptor
returns symbol y to the learner/tester and waits for the next abstract input to arrive.

1 We use projections functions π1 and π2 to denote the first and second element of a pair, respectively.
So π1(x, y) = x and π2(x, y) = y.
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Algorithm 1 Pseudocode for an adaptor that implements action code R.
1: while true do
2: x← Receive-from-learner()
3: r ← r0
4: while r is internal do ▷ loop invariant: r is winning for x

5: i← unique input such that r is winning for x with i

6: Send-to-SUT(i)
7: o← Receive-from-SUT()
8: r ← unique state r′ such that r

i/o
r′ ▷ R is I-complete for M

9: end while
10: Send-to-learner(π2(l(r)))
11: end while

From the perspective of the learner/tester, the combination of the adaptor and SUT
behaves the same as the contraction αR(M). In the appendix, we will formalize this
statement by modeling both the combination of adaptor and SUT, as well as contraction
αR(M) as expressions in the process calculus CCS [30], and then establish the existence of
delay simulations between these expressions. This implies that both expressions have the
same traces if we remove all occurrences of the synchronizations between adaptor and SUT,
which are invisible from the perspective of the learner.

▶ Theorem 7.5. Let M ∈ LTS(I × O) be an input enabled Mealy machine and let R ∈
Code(I ×O, X ×Y ) be a finite, determinate action code that has a winning strategy for every
input in X and that is output enabled for M. Then the composition of an implementation for
M and an adaptor for R is delay simulation equivalent to an implementation for αR(M).

▶ Remark 7.6. Requiring the existence of a determinate action code with a winning strategy
for a Mealy machine is not a severe restriction. Definition 7.1 implicitly describes a bottom-up
algorithm (linear in the size of the action code) that checks whether a winning strategy exists.
Checking whether an action code is determinate is also easy. A sufficient (but not necessary)
condition for an action code to be determinate and have a winning strategy is that when
we project the action code to the inputs (with concrete inputs labeling the transitions and
abstract inputs as label for the leaves) and merge isomorphic subtrees, then the result is still
an action code (defined for all the abstract inputs). This is a natural condition that can
also be used for the design of determinate action codes with a winning strategy: we start
from an action code for the inputs and recursively add output labels starting from the root.
Whenever, for a given input i, different outputs may occur, we make a copy of the subtree
after i for each possible output o. Finally, the abstract outputs need to be defined in such a
way that the labeling of the leaves remains injective.

Active automata learning algorithms and tools for Mealy machines typically assume that
the system under learning is output deterministic2: the output and target state of a transition
are uniquely determined by its source state and input.

▶ Definition 7.7. Mealy machine M is output deterministic if, for each state q and input i,

q
i/o

r ∧ q
i/o′

r′ ⇒ o = o′ ∧ r = r′.

2 The notion of deterministic that we use in this article is the standard one for LTSs. In the literature on
Mealy machines and FSMs, machines that we call output deterministic are called deterministic, and
machines that we call deterministic are called observable.
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For action codes that are determinate, contraction preserves output determinism. This
property makes it possible to use existing automata learning tools to learn models of an
output deterministic SUT composed with a determinate adaptor.

▶ Proposition 7.8 ( ). Suppose M is a Mealy machine and R is an action code. If M is
output deterministic and R is determinate then αR(M) is output deterministic.

8 Discussion and Future Work

Via the notion of action codes, we provided a new perspective on the fundamental question
how high-level state machine models with abstract actions can be related to low-level models
in which these actions are refined by sequences of concrete actions. This perspective may, for
instance, help with the systematic design of adaptors during learning and testing, and the
subsequent interpretation of obtained results. Our theory allows for action codes (such as in
Figure 4) that are adaptive in the sense that outputs which occur in response to inputs at
the concrete level may determine the sequence of concrete inputs that refines an abstract
input. We are not aware of case studies in which such adaptive codes are used, but believe
they may be of practical interest. One may, for instance, consider a scenario in which an
abstract action AUTHENTICATE is refined by a protocol in which a user is either asked to
authenticate by entering a PIN code, or by providing a fingerprint.

Close to our work are the results of Rensink and Gorrieri [31], who investigate vertical
implementation relations to link models at conceptually different levels of abstraction. These
relations are indexed by a refinement function that maps abstract actions into concrete
processes. Within a setting of a CCS-like language, Rensink & Gorrieri [31] list a number of
proof rules that should hold for any vertical implementation relation, and propose vertical
bisimulation as a candidate vertical implementation relation for which these proof rules hold.
In the setting of our paper, we can define two vertical implementation relations ⊑R

γ and ⊑R
ϱ ,

for any action code R, by

M⊑R
γ N ⇔ M ⊑ γR(N ) and M⊑R

ϱ N ⇔ M ⊑ ϱR(N ).

Then ⊑R
ϱ ⊆ ⊑R

γ and both relations satisfy all language-independent proof rules of [31]. For
instance, we have

M⊑M′ M′ ⊑R
γ N ′ N ′ ⊑ N

M ⊑R
γ N

(since γR is monotone and ⊑ is transitive). With the action code R of Figure 3, both
implementation relations relate the LTSs of Figures 1c and 1a. However, the vertical
bisimulation preorder of Rensink and Gorrieri [31] does not relate these LTSs, when using
a code that maps a to 1 4 1, and b to 1 4 2. This suggests that bisimulations may not be
suitable as vertical implementation relations.

Also close to our work are results of Burton et al. [8, 23], who propose a vertical
implementation relation in the context of CSP. Instead of action codes, they use extraction
patterns, a strict monotonic map extr : Dom → B∗, where Dom is the prefix closure of a set
dom ⊆ A∗ of concrete action sequences that may be regarded as complete. As a mapping from
concrete to abstract sequences of actions, extraction patterns are more general than action
codes. However, as extraction mappings are not required to have an inverse, establishing
interesting Galois connections in this setting may be difficult. With an extraction pattern

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Adaptor.html#contraction_preserves_determinism
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defined in the obvious way, the LTSs of Figures 1c and 1a are related by the implementation
relation of [8]. We are not aware of any other vertical implementation relation proposed
in the literature that handles our basic interface refinement example correctly. We find it
surprising that the fundamental problem of refining inputs actions has not been properly
addressed in the literature, except in some work that apparently has not been picked up
outside Newcastle-upon-Tyne and Catania.

The action refinement operator ϱR that we study is similar to the one proposed by [16, 17].
It improves on the one from [16, 17] by not introducing unnecessary nondeterminism, as
illustrated in the example of Figure 1. However, it falls short of the approach of [16, 17] by
not considering concurrency. Another difference is that in [16, 17] R(b) can be an arbitrary
system (including choice and parallel composition), whereas in our work it must be a sequence.
But then [16, 17] did not have the dual contraction operator αR. It would be very interesting
to combine both approaches.

Our theory is orthogonal to the one of Aarts et al. [1], which explores the use of so-called
mappers to formalize adaptors that abstract the large action alphabets of realistic applications
into small sets of actions that can be handled by a learning tool. Aarts et al. [1] also describe
the relation between abstract and concrete models using a Galois connection. In practical
applications of model learning, it makes sense to construct an adaptor that combines a
mapper in the sense of [1] with an action code as introduced in this paper. Fiterău-Broştean
et al. [11] describe a small domain specific language to specify mapper components, and from
which adaptor software can be generated automatically. It would be interesting to extend
this domain specific language so that it may also be used to specify action codes.

We developed our theory for LTSs and Mealy machines, using the simulation preorder as
the implementation relation. It would be interesting to transfer our results to other modeling
frameworks, such as IOTSs [35] timed automata [3] and Markov Decision Processes, and to
other preorders and equivalences in the linear-time branching-time spectrum for LTSs [15]
and IOTSs [22]. An obvious direction for future work would be to explore how action codes
interact with parallel composition. Here the work of [8, 23] may serve as a basis.

Different action codes lead to different contractions, and thereby to different abstract
views of a system, see for instance Figures 5a and 5b. We may try to exploit this fact during
learning and testing. For instance, if a system M is too big for state-of-the-art learning
algorithms, we may still succeed to learn partial views using cleverly selected action codes.
Using our Galois connections we then could obtain various upper and lower bounds for M.
Ideally, such an approach may even succeed to uniquely identify M. In particular, learning
algorithms such as L# [38] that use observation trees as their primary data structure may
exploit the use of different action codes, since the refinement operator ϱR and contraction
operator αR transform observation trees for abstract actions into observation trees for
concrete actions, and vice versa. Maarse [29] quantified the quality of a contraction αR(M)
in terms of the graph-theoretic concept of eccentricity. If q and q′ are states in an LTS M
then d(q, q′) is defined as the number of transitions in the shortest path from q to q′ (or ∞
if no such path exists). For any set of states Q ⊆ QM, the eccentricity ε(Q) is defined as
maxq′∈QM minq∈Q d(q, q′), that is, the maximal distance one needs to travel to visit a state
of M, starting from a state of Q. A good contraction has a small set of states Q and a low
eccentricity ε(Q): it only covers a small subset Q of the states of M, but any state from M
can be reached via a few transitions from a Q-state.
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