
Cumulative Memory Lower Bounds for
Randomized and Quantum Computation
Paul Beame #Ñ

Computer Science & Engineering, University of Washington, Seattle, WA, USA

Niels Kornerup #Ñ

Computer Science, University of Texas, Austin, TX, USA

Abstract
Cumulative memory – the sum of space used per step over the duration of a computation – is
a fine-grained measure of time-space complexity that was introduced to analyze cryptographic
applications like password hashing. It is a more accurate cost measure for algorithms that have
infrequent spikes in memory usage and are run in environments such as cloud computing that allow
dynamic allocation and de-allocation of resources during execution, or when many multiple instances
of an algorithm are interleaved in parallel.

We prove the first lower bounds on cumulative memory complexity for both sequential classical
computation and quantum circuits. Moreover, we develop general paradigms for bounding cumulative
memory complexity inspired by the standard paradigms for proving time-space tradeoff lower bounds
that can only lower bound the maximum space used during an execution. The resulting lower
bounds on cumulative memory that we obtain are just as strong as the best time-space tradeoff
lower bounds, which are very often known to be tight.

Although previous results for pebbling and random oracle models have yielded time-space
tradeoff lower bounds larger than the cumulative memory complexity, our results show that in
general computational models such separations cannot follow from known lower bound techniques
and are not true for many functions.

Among many possible applications of our general methods, we show that any classical sorting
algorithm with success probability at least 1/poly(n) requires cumulative memory Ω̃(n2), any classical
matrix multiplication algorithm requires cumulative memory Ω(n6/T ), any quantum sorting circuit
requires cumulative memory Ω(n3/T ), and any quantum circuit that finds k disjoint collisions in a
random function requires cumulative memory Ω(k3n/T 2).

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Quantum query complexity; Theory of computation → Quantum complexity theory

Keywords and phrases Cumulative memory complexity, time-space tradeoffs, branching programs,
quantum lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.17

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2301.05680 [18]

Funding Paul Beame: Research supported by NSF grant CCF-2006359.

Acknowledgements Many thanks to David Soloveichik for his guidance and contributions to our
initial results.

1 Introduction

For some problems, algorithms can use additional memory for faster running times or
additional time to reduce memory requirements. While there are different kinds of tradeoffs
between time and space, the most common complexity metric for such algorithms is the
maximum time-space (TS) product. This is appropriate when a machine must allocate an

EA
T
C
S

© Paul Beame and Niels Kornerup;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beame@cs.washington.edu
https://cs.washington.edu/people/faculty/beame
https://orcid.org/0000-0002-2666-3545
mailto:nielskornerup@utexas.edu
https://nielskornerup.github.io/
https://orcid.org/0000-0002-1519-726X
https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://arxiv.org/abs/2301.05680
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Computational Cumulative Memory Lower Bounds

algorithm’s maximum space throughout its computation. However, recent technologies like
AWS Lambda [15] suggest that in the context of cloud computing, space can be allocated to
a program only as it is needed. When using such services, analyzing the average memory
used per step leads to a more accurate picture than measuring the maximum space.

Cumulative memory (CM), the sum over time of the space used per step of an algorithm, is
an alternative notion of time-space complexity that is more fair to algorithms with rare spikes
in memory. Cumulative memory complexity was introduced by Alwen and Serbinenko [12]
who devised it as a way to analyze time-space tradeoffs for “memory hard functions” like
password hashes. Since then, lower and upper bounds on the CM of problems in structured
computational models using the black pebble game have been extensively studied, beginning
with the work of [12, 7, 32, 10, 9, 8]. Structured models via pebble games are natural in the
context of the random oracle assumptions that are common in cryptography. By carefully
interweaving their memory-intensive steps, authors of these papers devise algorithms for
cracking passwords that compute many hashes in parallel using only slightly more space
than is necessary to compute a single hash. While such algorithms can use parallelism to
amortize costs and circumvent proven single instance TS complexity lower bounds, their
cumulative memory only scales linearly with the number of computed hashes. Strong CM
results have also been shown for the black-white pebble game and used to derive related
bounds for resolution proof systems [11].

The ideas used for these structured models yield provable separations between CM and
TS complexity in pebbling and random oracle models. The key question that we consider is
whether or not the same applies to general models of computation without cryptographic or
black-box assumptions: Are existing time-space tradeoff lower bounds too pessimistic for a
world where cumulative memory is more representative of a computation’s cost?

Our Results

The main answer we provide to this question is negative for both classical and quantum
computation: We give generic methods that convert existing paradigms for obtaining time-
space tradeoff lower bounds involving worst-case space to new lower bounds that replace the
time-space product by cumulative space, immediately yielding a host of new lower bounds
on cumulative memory complexity. With these methods, we show how to extend virtually
all known proofs for time-space tradeoffs to equivalent lower bounds on cumulative memory
complexity, implying that there cannot be cumulative memory savings for these problems.
Our results, like those of existing time-space tradeoffs, apply in models in which arbitrary
sequential computations may be performed between queries to a read-only input. Our lower
bounds also apply to randomized and quantum algorithms that are allowed to make errors.

Classical computation. We focus on lower bound paradigms that apply to computations
of multi-output functions f : Dn → Rm. Borodin and Cook [22] introduced a method for
proving time-space tradeoff lower bounds for such functions that takes a property such as
the following: for some K = K(R, n), constant γ, and distribution µ on Dn:
(*) For any partial assignment τ of k ≤ γm output values over R and any restriction (i.e.,

partial assignment) π of h = h(k, n) coordinates on Dn,

Pr
x∼µ

[f(x) is consistent with τ | x is consistent with π] ≤ K−k.

and derives a lower bound of the following form:



P. Beame and N. Kornerup 17:3

Table 1 All CM bounds match the TS lower bound when considering RAM computation or
quantum circuits. The symbol * indicates that the result requires additional assumptions.

Problem TS Lower Bound Source Matching CM Bound
Ranking, Sorting Ω(n2/ log n) [22] Corollary 4.4
Unique Elements, Sorting Ω(n2) [16] Corollary 4.14
Matrix-Vector Product (F) Ω(n2 log |F|) [4] Corollary 4.5
Matrix-Multiplication (F) Ω((n6 log |F|)/T ) [4] Corollary 4.15
Hamming Closeness Ω(n2−o(1)) [19]* Full paper [18]*
Element Distinctness Ω(n2−o(1)) [19]* Full paper [18]*
Quantum Sorting Ω(n3/T ) [29] Theorem 3.6
Quantum k disjoint collisions Ω(k3n/T 2) [27] Corollary 4.16
Quantum Boolean Matrix-Mult Ω(n5/T ) [29] Full paper [18]*

▶ Proposition 1.1 ([22]). Assume that Property (*) holds for f : Dn → Rm with γ > 0
constant. Then, T (S + log2 T ) is Ω(m h(S/ log2 K, n) log K).

In particular, since S ≥ log2 n is essentially always required, if we have the typical
case that h(k, n) = k∆ h1(n) for some function h1(n) then this says that T · S1−∆ is
Ω(m h1(n) log1−∆ K) or, equivalently, that max(S, log n) is Ω([(m h1(n)/T ]1/(1−∆) log K).
As a simplified example of our new general paradigm, we prove the following analog for
cumulative complexity:

▶ Theorem 1.2. Suppose that Property (*) holds for f : Dn → Rm with h(k, n) = k∆h1(n)
and γ > 0 constant. If T log2 T is o(m h1(n) log K) then any algorithm computing f requires
cumulative memory Ω

([
(m h1(n))1/(1−∆) log K

]
/T ∆/(1−∆)) .

We note that this bound corresponds exactly to the bound on the product of time and
space from Borodin-Cook method. The full version of our general theorem for randomized
computation (Theorem 4.8) is inspired by an extension by Abrahamson [4] of the Borodin-
Cook paradigm to average case complexity.

Our full paper ([18]) also shows how the paradigms for the best time-space tradeoff lower
bounds for single-output Boolean functions, which are based on the densities of embedded
rectangles where these functions are constant, can be extended to yield cumulative memory
bounds.

Quantum computation. We develop an extension of our general approach that applies to
quantum computation as well. In this case Property (*) and its extensions that we use for
our more general theorem must be replaced by statements about quantum circuits with a
small number of queries. In this case, we first generalize the quantum time-space tradeoff
for sorting proven in [29], which requires that the time order in which output values are
produced must correspond to the sorted order, to a matching cumulative memory complexity
bound of Ω(n3/T ) that works for any fixed time-ordering of output production, yielding a
more general lower bound. (For example, an algorithm may be able to determine the median
output long before it determines the other outputs.) We then show how an analog of our
classical general theorem can be applied to extend to paradigms for quantum time-space
tradeoffs to cumulative memory complexity bounds for other problems.

A summary of our results for both classical and quantum complexity is given in Table 1.

ICALP 2023



17:4 Computational Cumulative Memory Lower Bounds

Previous work
Memory hard functions and cumulative memory complexity. Alwen and Serbinenko [12]
introduced parallel cumulative (memory) complexity as a metric for analyzing the space
footprint required to compute memory hard functions (MHFs), which are functions designed
to require large space to compute. Most MHFs are constructed using hashgraphs [26] of
DAGs whose output is a fixed length string and their proofs of security are based on pebbling
arguments on these DAGs while assuming access to truly random hash functions for their
complexity bounds [12, 21, 32, 8, 10, 20]. (Also see our full paper [18] for their use in
separating CM and TS complexity.) Recent constructions do not require random hash
functions; however, they still rely on cryptographic assumptions [25, 14].

Classical time-space tradeoffs. While these were originally studied in restricted pebbling
models similar to those considered to date for cumulative memory complexity [35, 23],
the gold-standard model for time-space tradeoff analysis is that of unrestricted branching
programs, which simultaneously capture time and space for general sequential computation.
Following the methodology of Borodin and Cook [22], who proved lower bounds for sorting,
many other problems have been analyzed (e.g., [37, 2, 3, 16, 30]), including universal
hashing and many problems in linear algebra [4]. (See [34, Chapter 10] for an overview.) A
separate methodology for single-output functions, introduced in the context of restricted
branching programs [24, 31], was extended to general branching programs in [17], with
further applications to other problems [5] including multi-precision integer multiplication [33]
and error-correcting codes [28] as well as over Boolean input domains [6, 19]. Both of these
methods involve breaking the program into blocks to analyze the computation under natural
distributions over the inputs based on what happens at the boundaries between blocks.

Quantum time-space tradeoffs. Similar blocking strategies can be applied to quantum
circuits to achieve time-space trade-offs for multi-output functions. In [29] the authors
use direct product theorems to prove time-space tradeoffs for sorting and Boolean matrix
multiplication. They also proved somewhat weaker lower bounds for computing matrix-vector
products for fixed matrices A; those bounds were extended in [13] to systems of linear
inequalities. However, both of these latter results apply to computations where the fixed
matrix A defining the problem depends on the space bound and, unlike the case of sorting
or Boolean matrix multiplication, do not yield a fixed problem for which the lower bound
applies at all space bounds. More recently [27] extended the recording query technique of
Zhandry in [38] to obtain time-space lower bounds for the k-collision problem and match the
aforementioned result for sorting.

Our methods
At the highest level, we employ part of the same paradigms previously used for time-space
tradeoff lower bounds. Namely breaking up the computations into blocks of time and
analyzing properties of the branching programs or quantum circuits based on what happens
at the boundaries between time blocks. However, for cumulative memory complexity, those
boundaries cannot be at fixed locations in time and their selection needs to depend on the
space used in these time steps.

Further, in many cases, the time-space tradeoff lower bound needs to set the lengths of
those time blocks in a way that depends on the specific space bound. When extending the
ideas to bound cumulative memory usage, there is no single space bound that can be used



P. Beame and N. Kornerup 17:5

throughout the computation; this sets up a tricky interplay between the choices of boundaries
between time blocks and the lengths of the time blocks. Because the space usage within a
block may grow and shrink radically, even with optimal selection of block boundaries, the
contribution of each time block to the overall cumulative memory may be significantly lower
than the time-space product lower bound one would obtain for the individual block.

We show how to bound any loss in going from time-space tradeoff lower bounds to
cumulative memory lower bounds in a way that depends solely on the bound on the lengths
of blocks as a function h0 of the target space bound (cf. Lemma 4.7). For many classes of
bounding functions we are able to bound the loss by a constant factor, and we are able show
that it is always at most an O(log n) factor loss. If this bounding function h0 is non-constant,
we also need to bound the optimum way for the algorithm to allocate its space budget for
producing the require outputs throughout its computation. This optimization again depends
on the bounding function h0. This involves minimizing a convex function based on h0 subject
to a mix of convex and concave constraints, which is not generally tractable. However,
assuming that h0 is nicely behaved, we are able to apply specialized convexity arguments (cf.
Lemma 4.10) which let us derive strong lower bounds on cumulative memory complexity.

Road map. We give the overall definitions in Section 2, including a review of the standard
definitions of the work space used by quantum circuits. In Section 3, we give our lower bound
for quantum sorting algorithms which gives a taste of the issues involved for our general
theorems. In Section 4, we give the general theorems that let us convert the Borodin-Cook-
Abrahamson paradigm for multi-output functions to cumulative memory lower bounds for
classical randomized algorithms; that section also contains the corresponding theorems for
quantum lower bounds and statements of some sample applications for our general results.
Appendix A contains the arguments that bound the optimum allocations of cumulative space
budgets to time steps. Our full paper [18] contains more details, a conditional separation
between CM and TS complexity, detailed applications of the general theorems we present
here, and our bounds for single-output functions.

2 Preliminaries

Cumulative memory is an abstract notion of time-space complexity that can be applied
to any model of computation with a natural notion of space. Here we will use branching
programs and quantum circuits as concrete models, although our results generalize to any
reasonable model of computation.

Branching Programs. A branching programs with input {x1, . . . , xn} ∈ Dn is defined using
a rooted DAG in which each non-sink vertex is labeled with an i ∈ [n] and has |D| outgoing
edges that correspond to possible values of xi. Each edge is optionally labeled by some
number of output statements expressed as pairs (j, oj) where j ∈ [m] is an output index
and oj ∈ R (if outputs are to be ordered) or simply oj ∈ R (if outputs are to be unordered).
Evaluation starts at the root v0 and follows the appropriate labels of the respective xi. We
consider branching programs P that contain T + 1 layers where the outgoing edges from
nodes in each layer t are all in layer t + 1. We impose no restriction on the query pattern of
the branching program or when it can produce parts of the output. The time of the branching
program is T (P ) = T . The space of the branching program is S(P ) = maxt log2 |Lt| where
Lt is the set of nodes in layer t. Observe that in the absence of any limit on its space, a
branching program could be a decision tree; hence the minimum time for branching programs

ICALP 2023



17:6 Computational Cumulative Memory Lower Bounds

to compute a function f is its decision tree complexity. The time-space (product) used by the
branching program is TS(P ) = T (P )S(P ). The cumulative memory used by the branching
program is CM(P ) =

∑
t log2 |Lt|.

Branching programs are very general, and simultaneously model time and space for
sequential computation. In particular they model time and space for random-access off-line
multitape Turing machines and random-access machines (RAMs) when time is unit-cost, space
is log-cost, and the input and output are read-only and write-only respectively. Branching
programs are much more flexible than these models since they can make arbitrary changes
to their storage in a single step.

Quantum Circuits. We also consider quantum circuits C classical read-only input X =
x1, . . . , xn that can be queried using an XOR query oracle. As is normal in circuit models,
each output wire is associated with a fixed position in the output sequence, independent of the
input. As shown in Figure 1 following [29], we abstract an arbitrary quantum circuit C into
layers C = {L1, . . . , LT } where layer Lt starts with the t-th query Q to the input and ends
with the start of the next layer. During each layer, an arbitrary unitary transformation V gets
applied which can express an arbitrary sub-circuit involving input-independent computation.
The sub-circuit/transformation V outputs St qubits for use in the next layer in addition to
some qubits that are immediately measured in the standard basis, some of which are treated
as classical write-only output. The time of C is lower bounded by the number of layers T

and we say that the space of layer Lt is St. Observe that to compute a function f , T must
be at least the quantum query complexity of f since that measure corresponds the above
circuit model when the space is unbounded. Note that the cumulative memory of a circuit is
lower-bounded by the sum of the St. For convenience we define S0, the space of the circuit
before its first query, to be zero. Thus we only consider the space after the input is queried.

Figure 1 The abstraction of a quantum circuit into layers.

3 Quantum cumulative memory complexity of sorting

As an illustrative example, we first show that the quantum cumulative memory complexity
of sorting is Ω(n3/T ), matching the TS complexity bounds given in [29, 27]. This involves
the quantum circuit model which, as we have noted, produces each output position at a
predetermined input-independent layer. We restrict our attention to circuits that output all
elements in the input in some fixed rank order. While our proof is inspired by the time-space
lower bound of [29], it can be easily adapted to follow the proof in [27] instead. We start by
constructing a probabilistic reduction from the k-threshold problem to sorting.

▶ Definition 3.1. In the k-threshold problem we receive an input X = x1, . . . , xn where
xi ∈ {0, 1}. We want to accept iff there are at least k distinct values for i where xi = 1.

▶ Proposition 3.2 (Theorem 13 in [29]). For every γ > 0 there is an α > 0 such that any
quantum k-threshold circuit with at most T ≤ α

√
kn queries and with perfect soundness must

have completeness σ ≤ e−γk on inputs with Hamming weight k.



P. Beame and N. Kornerup 17:7

▶ Lemma 3.3. Let γ > 0. Let n be sufficiently large and C(X) be a quantum circuit with
input X = x1, . . . , xn. There is a β < 1 depending only on γ such that for all k ≤ β2n

and R ⊆ {n/2 + 1, . . . , n} where |R| = k, if C(X) makes at most β
√

kn queries, then the
probability that C(X) can correctly output all k pairs (xi, rj) where rj ∈ R and xi is the rj-th
smallest element of X is at most e(1−γ)k−1. If R is a contiguous set of integers, then the
probability is at most e−γk.

A version of this lemma was first proved in [29] with the additional assumption that the
set of output ranks R is a contiguous set of integers; this was sufficient to show that any
quantum circuit that produces its sorted output in sorted time order requires that T 2S is
Ω(n3). The authors stated that their proof can be generalized to any fixed rank ordering,
but the generalization is not obvious. We generalize their lemma to non-contiguous R, which
is sufficient to obtain an Ω(n3/T ) lower bound on the cumulative complexity of sorting
independent of the time order in which the sorted output is produced.

Proof of Lemma 3.3. Choose α as the constant for γ in Proposition 3.2 and let β =
√

2α/6.
Let C be a circuit with at most β

√
kn layers that outputs the k correct pairs (xi, rj) with

probability p. Let R = {r1, . . . rk} where r1 < r2 < . . . < rk. We describe our construction
of a circuit C′(X) solving the k-threshold problem on inputs X = x1, . . . , xn/2 with exactly k

ones in terms of a function f : [n/2] → R. Given f , we re-interpret the input as follows: we
replace each xi with x′

i = f(i)xi, add k dummy values of 0, and add one dummy value of j

for each j ∈ {n/2 + 1, . . . , n} \ R. Doing this gives us an input X ′ = x′
1, . . . , x′

n that has n/2
zeroes. If we assume that f is 1-1 on the k ones of X, then the image of the ones of X will
be R and there will be precisely one element of X ′ for each j ∈ {n/2 + 1, . . . , n}. Therefore
the element of rank j > n/2 in X ′ will have value j, and hence the rank r1, . . . , rk elements
of X ′ will be the images of precisely those elements of X with xi = 1.

To obtain perfect soundness, we cannot rely on the output of C(X ′) and must be able
to check that each of the output ranks was truly mapped to by a distinct one of X. For
each element xi of X we simply append its index i as log2 n low order bits to its image x′

i

and append an all-zero bit-vector of length log2 n to each dummy value to obtain input X ′′.
Doing so will not change the ranks of the elements in X ′, but will allow recovery of the k

indices that should be the ones in X. In particular, circuit C′(X) will run C(X ′′) and then
for each output x′′

j with low order bits i, C′(X) will query xi, accepting if and only if all of
those xi = 1. More precisely, since the mapping from each xi to the corresponding x′′

i is
only a function of f , xi, and i, as long as C′(X) has an explicit representation of f , it can
simulate each query of C(X ′′) with two oracle queries to X. Since C′ has at most

2β
√

kn + k ≤ 3β
√

kn ≤ α
√

kn/2

layers, by Proposition 3.2, it can only accept with probability ≤ e−γk on inputs with k ones.
We now observe that for each fixed X with exactly k ones, for a randomly chosen function

f : [n/2] → R, the probability that f is 1-1 on the ones of X ′ is exactly k!/kk ≥ e1−k.
Therefore C′(X) will give the indices of the k ones in X with probability1 at least p · e1−k.
However, this probability must be at most e−γk, so we can conclude that p ≤ e(1−γ)k−1. In
the event that R is a contiguous set of integers, observe that any choice for the function f

will make X ′′ have the ones of X become ranks r1, . . . , rk. So the probability of finding the
ones is at least p ≤ e−γk. ◀

1 Note that though this is exponentially small in k it is still sufficiently large compared to the completeness
required in the lower bound for the k-threshold problem.

ICALP 2023



17:8 Computational Cumulative Memory Lower Bounds

By setting k and γ appropriately, Lemma 3.3 gives a useful upper bound on the number
of fixed ranks successfully output by any β

√
Sn query quantum circuit that has access to S

qubits of input dependent initial state. To handle input-dependent initial state, we will need
to use the following proposition.

▶ Proposition 3.4 ([1]). Let C be a quantum circuit, ρ be any S qubit (possibly mixed) state,
and I be the S qubit maximally mixed state. If C with initial state ρ produces some output O
with probability p, then C with initial state I produces O with probability at least p/22S.

This allows us to bound the overall progress made by any short quantum circuit.

▶ Lemma 3.5. There is a constant β > 0 such that, for any fixed set of S ≤ β2n ranks that
are greater than n/2, the probability that any quantum circuit C with at most β

√
Sn queries

and S qubits of input-dependent initial state correctly produces the outputs for these S ranks
is at most 1/e.

Proof. Choose β as the constant when γ is 1 + ln(4) in Lemma 3.3. Applying Proposition 3.4
to the bound in Lemma 3.3 gives us that a quantum circuit with S qubits of input-dependent
state can produce a fixed set of k ≤ β2n outputs larger than median with a probability at
most 22Se(1−γ)k−1. Since γ = 1 + ln(4) setting k = S gives that this probability is ≤ 1/e. ◀

▶ Theorem 3.6. When n is sufficiently large, any quantum circuit C for sorting a list of
length n with success probability at least 1/e and at most T layers that produces its sorted
outputs in any fixed time order requires cumulative memory that is Ω(n3/T ).

Proof. We partition C into blocks with large cumulative memory that can only produce a
small number of outputs. We achieve this by starting at last unpartitioned layer and finding
a suitably low space layer before it so that we can apply Lemma 3.5 to upper bound the
number of correct outputs that can be produced in that block with a success probability of
at least 1/e. Let β be the constant from Lemma 3.5 and k∗(t) be the least non-negative
integer value of k such that the interval:

I(k, t) =
[
t − β

2 (2k+1 − 1)
√

n, t − β

2 (2k − 1)
√

n

]
contains some t′ such that St′ ≤ 4k − 1. We recursively define our blocks as follows. Let ℓ be
the number of blocks generated by this method. The final block Cℓ starts with the first layer
tℓ−1 ∈ I(k∗(T ), T ) where Stℓ−1 ≤ 4k∗(T ) − 1 and ends with layer tℓ = T . Let ti be the first
layer of block Ci+1. Then the block Ci starts with the first layer ti−1 ∈ I(k∗(ti), ti) where
Sti−1 ≤ 4k∗(ti) − 1 and ends with ti. See Figure 2 for an illustration of our partitioning. Since
S0 = 0 we know that k∗(t) ≤ log(T ). Likewise since St > 0 when t > 0, for all t > β

2
√

n we
know that 0 < k∗(t) ≤ log(T ).

Block Ci starts with less than 4k∗(ti) qubits of initial state and has length at most
β2k∗(ti)√n; so by Lemma 3.5, if 4k∗(ti) ≤ β2n, the block Ci can output at most 4k∗(ti) inputs
with failure probability at most 1/e. Additionally Ci has at least β

2 2k∗(ti)−1√
n layers so

ℓ∑
i=1

β

4 2k∗(ti)√n ≤ T (1)

and each of these layers has at least 4k∗(ti)−1 qubits2, so the cumulative memory of Ci is at

2 This may not hold for C1 with length less than β
2

√
N , but Lemma 3.3 gives us that this number of

layers is insufficient to find a fixed rank input with probability at least 1/e. Thus we can omit such a
block from our analysis.



P. Beame and N. Kornerup 17:9

Figure 2 How we define the block Ci that ends at layer Lti . The red line is a plot of C’s space over
time. The grey layers are the ones used to lower bound the cumulative memory complexity of Ci, as
each of these layers uses at least 4k∗(ti)−1 qubits and the length of this interval is β

2 2k∗(ti)−1√
n.

least β
2 23k∗(ti)−3√

n so

CM(C) ≥
ℓ∑

i=1

β

2 23k∗(ti)−3√
n. (2)

We now have two possibilities: If we have some i such that 4k∗(ti) > β2n, the cumulative
memory of Ci alone is at least β4n2/16 which is Ω(n2) and hence C has cumulatively memory
Ω(n3/T ) since T ≥ n. Otherwise, since we require that the algorithm is correct with
probability at least 1/e, each block Ci can produce at most 4k∗(ti) outputs. Since our circuit
must output all n/2 elements larger than the median, we know

∑ℓ
i=1 4k∗(ti) ≥ n/2. For

convenience we define wi = 2k∗(ti) which allows us to express the constraints as

CM(C) ≥ β

16
√

n

ℓ∑
i=1

w3
i and β

4
√

n

ℓ∑
i=1

wi ≤ T and
ℓ∑

i=1
w2

i ≥ n/2. (3)

Minimizing
∑ℓ

i=1 w3
i is a non-convex optimization problem and can instead be solved using

Minimize
ℓ∑

i=1
x3

i subject to
ℓ∑

i=1
x2

i ≥ ξ and
ℓ∑

i=1
xi ≤ ξ and ∀i, xi ≥ 0, (4)

for xi = 8T

βn3/2 wi and ξ = 32T 2

β2n2 . Lemma A.1 from Appendix C shows that for non-negative

xi with
∑

xi ≤
∑

x2
i , we have

∑
x2

i ≤
∑

x3
i . Thus

∑
x3

i ≥ ξ and applying the variable

substitution gives us:
ℓ∑

i=1
w3

i ≥ βn5/2

16T
. Plugging this into Equation (3) gives us the bound:

CM(C) ≥ β2n3

256T
and hence the cumulative memory of C is Ω(n3/T ). ◀

4 General methods for proving cumulative memory lower bounds

Our method involves adapting techniques previously used to prove tradeoff lower bounds on
worst-case time and worst-case space. We show that the same properties that yield lower
bounds on the product of time and space in the worst case can also be used to produce
nearly identical lower bounds on cumulative memory. To do so, we first revisit the standard
approach to such time-space tradeoff lower bounds.

ICALP 2023



17:10 Computational Cumulative Memory Lower Bounds

The standard method for time-space tradeoff lower bounds for
multi-output functions
Consider a multi-output function f on Dn where the output f(x) is either unordered (the
output is simply a set of elements from R) or ordered (the output is a vector of elements
from R). Then |f(x)| is either the size of the set or the length of the vector of elements. The
standard method for obtaining an ordinary time-space tradeoff lower bounds for multi-output
functions on D-way branching programs is the following:

The part that depends on f . Choose a suitable probability distribution µ on Dn, often
simply the uniform distribution on Dn and then:
(A) Prove that Prx∼µ[|f(x)| ≥ m] ≥ α.
(B) Prove that for all k ≤ m′ and any branching program B of height ≤ h′(k, n), the

probability for x ∼ µ that B produces at least k correct output values of f on input x is
at most C · K−k for some m′, h′, K = K(R, n), and constant C independent of n.

Observe that under any distribution µ, a branching program with ordered outputs that
makes no queries can produce k outputs that are all correct with probability at least |R|−k,
so the bound in (B) shows that, roughly, up to the difference between K and |R| there is not
much gained by using a branching program of height h.

The generic completion. In the following outline we omit integer rounding for readability.
Let S′ = S + log2 T and suppose that

S′ ≤ m′ log2 K − log2(2C/α). (5)

Let k = [S′ + log2(2C/α)]/ log2 K, which is at most m′ by hypothesis on S′, and define
h(S′, n) = h′(k, n).
Divide time T into ℓ = T/h blocks of length h = h(S′, n).
The original branching program can be split into at most T · 2S = 2S′ sub-branching
programs of height ≤ h, each beginning at a boundary node between layers. By Property
(B) and a union bound, for x ∼ µ the probability that at least one of these ≤ 2S′

sub-branching programs of height at most h produces k correct outputs on input x is at
most 2S′ · C · K−k ≤ α/2 by our choice of k.
Under distribution µ, by (A), with probability at least α, an input x ∼ µ has some block
of time where at least m/ℓ = m · h(S′, n)/T outputs of f must be produced on input x.
If m · h(S′, n)/T ≤ k, this can occur for at most an α/2 fraction of inputs under µ.
Therefore we have m · h(S′, n)/T > k = [S′ + log2(2C/α)]/ log2 K and hence since
h(S′, n) ≥ h(S, n), combining with Equation (5), we have

T · (S + log2 T ) = T · S′ ≥ min (m h(S, n), m′ n′) log2 K − log2(C/α) · T

where n′ ≤ n is the decision tree complexity of f and hence a lower bound on T .

▶ Remark 4.1. Though it will not impact our argument, for many instances of the above
outline, the proof of Property (B) is shown for a decision tree of the same height by proving
an analog for the conditional probability along each path in the decision tree separately; this
will apply to the tree as a whole since the paths are followed by disjoint inputs, so Property
(B) follows from the alternative property below:
(B’) For any partial assignment τ of k ≤ m′ output values over R and any restriction (i.e.,

partial assignment) π of h′(k, n) coordinates within Dn,

Pr
x∼µ

[f(x) is consistent with τ | x is consistent with π] ≤ C · K−k.



P. Beame and N. Kornerup 17:11

Figure 3 Our generic method for choosing blocks when h(k, n) = h(n). The area marked in grey
corresponds to the cumulative memory lower bound we obtain.

Observe that Property (B’) is only a slightly more general version of Property (*) from the
introduction where C = 1, m′ is arbitrary, and h′ is used instead of h.
▶ Remark 4.2. The above method still gives lower bounds for many multi-output functions
g : DN → RM that have individual output values that are easy to compute or large portions
of the input space on which they are easy to compute. The bounds follow by applying
the method to some subfunction f of g given by f(x) = ΠO(g(x, π)) where π is a partial
assignment to the input coordinates and ΠO is a projection onto a subset O of output
coordinates. In the subsequent discussions we ignore this issue, but the idea can be applied
to all of our lower bound methods.

A general extension to cumulative memory bounds
To give a feel for the basic ideas of the method, we first show this for a simple case. Observe
that, other than the separate bound on time, the lower bound on cumulative memory usage
we prove in this case is asymptotically identical to the bound achieved for the product of
time and worst-case space using the standard outline.

▶ Theorem 4.3. Let c > 0. Suppose that properties (A) and (B) apply for h′(k, n) = h(n),
m′ = m, and α = C = 1. If T log2 T ≤ m h(n) log2 K

6(c+1) then the cumulative memory used
in computing f : Dn → Rm in time T with success probability at least T −c is at least
1
6 m h(n) log2 K.

Proof. Fix a deterministic branching program P of length T computing f . Rather than
choosing fixed blocks of height h = h(n), layers of nodes at a fixed distance from each other,
and a fixed target of k outputs per block, we choose the block boundaries depending on the
properties of P and the target k depending on the property of the boundary layer chosen.

Let H = ⌊h(n)/2⌋. We break P into ℓ = ⌈T/H⌉ time segments of length H working
backwards from step T so that the first segment may be shorter than the rest. We let t1 = 0
and for 1 < i ≤ ℓ we let ti = arg min{ |Lt| : T − (ℓ − i + 1) · H ≤ t < T − (ℓ − i) · H } be the
time step with the fewest nodes among all time steps t ∈ [T − (ℓ − i + 1) · H, T − (ℓ − i) · H].

The i-th time block of P will be between times ti and ti+1. Observe that by construction
|ti+1 − ti| ≤ h(n) so each block has length at most h(n). This construction is shown in
Figure 3 Set Si = log2 |Lti

| so that Lti
has at 2Si nodes. By definition of each ti, the

cumulative memory used by P ,

CM(P ) ≥
ℓ∑

i=1
Si · H. (6)

(Note that since S1 = 0, it does not matter that the first segment is shorter than the rest3.)

3 This simplifies some calculations and is the prime reason for starting the time segment boundaries at T .

ICALP 2023



17:12 Computational Cumulative Memory Lower Bounds

We now define the target ki for the number of output values produced in each time block
to be the smallest integer such that K−ki ≤ 2−Si/T c+1. That is,

ki = ⌈(Si + (c + 1) log2 T )/ log2 K⌉.

For x ∼ µ, for each i ∈ [ℓ] and each sub-branching program B rooted at some node in Lti
and

extending until time ti+1, by our choice of ki and Property (B), if ki ≤ m, the probability
that B produces at least ki correct outputs on input x is at most 2−Si/T c+1. Therefore, by a
union bound, for x ∼ µ the probability that P produces at least ki correct outputs in the i-th
time block on input x is at most |Lti | · 2−Si/T c+1 = 1/T c+1. Therefore, if each ki ≤ m, the
probability for x ∼ µ that there is some i such that P produces at least ki correct outputs
on input x during the i-th block is at most ℓ/T c+1 < T c and the probability for x ∼ µ that
P produces at most

∑ℓ
i=1(ki − 1) correct outputs in total on input x is > 1 − 1/T c.

If each ki ≤ m, since P must produce m correct outputs on x ∈ Dn with probability at
least 1/T c, we must have

∑ℓ
i=1(ki − 1) ≥ m. On the other hand, if some ki > m we have the

same bound. Using our definition of ki we have
∑ℓ

i=1[(Si + (c + 1) log2 T )]/ log2 K] ≥ m or∑ℓ
i=1(Si + (c + 1) log2 T ) ≥ m · log2 K. Plugging in the bound (6) on the cumulative memory

and the value of ℓ, it implies that CM(P )/H + (c + 1)⌈T/H⌉ · log2 T ≥ m · log2 K or that
CM(P ) + (c + 1)T log2 T ≥ 1

3 m · h(n) · log2 K, where the 3 on the right rather than a 2
allows us to remove the ceiling. Therefore either

T log2 T >
m · h(n) · log2 K

6(c + 1) or CM(P ) ≥ 1
6 m h(n) log2 K. ◀

Simple applications. This simple case of our general theorem is sufficient to obtain many
tight new lower bounds on cumulative memory complexity including the following (full proofs
are in [18]):

▶ Corollary 4.4. Producing the ranks (positions of each input in the sorted order) or sorting
n integers from [n2] requites CMC that is Ω(n2/ log2 n).

▶ Corollary 4.5. For many fixed (random or explicit) n × n matrices A, computing Ax over
a finite field F requires CMC that is Ω(n2 log |F|).

Corollary 4.4 uses property (B) for ranking with m′ = h′(k, n) = Θ(n), C = 1, K =
2Θ(1/ log n) proven in [22, Lemma 1]. Corollary 4.5 uses property (B’) with m′ = h′(k, n) = cn,
for 0 < c ≤ 1/2, C = 1, and K = |F|c proven in [4, Theorem 4.6].

Full general theorem. In the general version of our theorem there are a number of additional
complications, most especially because the branching program height limit h(k, n) in Property
(B) can depend on k, the target for the number of outputs produced. This forces the lengths
of the blocks and the space used at the boundaries between blocks to depend on each other
in a quite delicate way. In order to discuss the impact of that dependence and state our
general theorem, we need the following definition.

▶ Definition 4.6. Given a non-decreasing function p : R → R with p(1) = 1, we define
p−1 : R → R ∪ {∞} by p−1(R) = min{j | p(j) ≥ k}. We also define the loss, Lp, of p by

Lp(n) = min
1≤k≤p(n)

∑k
j=1 p−1(j)

k · p−1(k) .



P. Beame and N. Kornerup 17:13

▶ Lemma 4.7. The following hold for every non-decreasing function p : R → R with p(1) = 1:
(a) 1/p(n) ≤ Lp(n) ≤ 1.
(b) If p is a polynomial function p(s) = s1/c then Lp(n) > 1/2c+1.

(c) For any c > 1, Lp(n) ≥ min
1≤s≤n

p(s) − p(s/c)
cp(s) .

(d) We say that p is nice if it is differentiable and there is an integer c > 1 such that for
all x, p′(cx) ≥ p′(x)/c. If p is nice then Lp(n) is Ω(1/ log2 n). This is tight for p with
p(s) = 1 + log2 s.
We prove this technical lemma in the full paper [18]. Here is our full general theorem.

▶ Theorem 4.8. Let c > 0. Suppose that function f defined on Dn has properties (A) and
(B) with α that is 1/nO(1) and m′ that is ω(log2 n). For s > 0, define h(s, n) to be h′(k, n)
for k = s/ log2 K. Suppose that h(s, n) = h0(s) h1(n) with h0(1) = 1 and h0 is constant or a
differentiable function such that s/h0(s) is increasing and concave. Define S∗ = S∗(T, n) by

S∗/h0(S∗) = (m h1(n) log2 K) /6T.

(a) Either T log2(2CT c+1/α) >
1
6 m h1(n) log2 K, which implies that T is Ω( m h1(n) log K

log n ),
or the cumulative memory used by a randomized branching program in computing f in
time T with error ε ≤ α(1 − 1/(2T c)) is at least

1
6 Lh0(n log2 |D|) · min (m h(S∗(T, n), n), 3m′ h′(m′/2, n)) · log2 K.

(b) Further any randomized random-access machine computing f in time T with error
ε ≤ α(1 − 1/(2T c)) requires cumulative memory

Ω (Lh0(n log2 |D|) · min (m h(S∗(T, n), n), m′ h′(m′/2, n)) · log2 K) .

Before we give the proof of the theorem, we note that by Lemma 4.7, in the case that h0
is constant or h0(s) = s∆ for some constant ∆ > 0, which together account for all existing
applications we are aware of, the function Lh0 is lower bounded by a constant. In the latter
case, h0 is differentiable, has h0(s) = 1, and the function s/h0(s) = s1−∆ is increasing and
concave so it satisfies the conditions of our theorem. By using α = 1, m′ = m, and C = 1
with h from Property (*) in place of h′ in Property (B’), Theorem 4.8 yields Theorem 1.2.

More generally, the value S∗ in the statement of this theorem is at least a constant
factor times the value of S used in the generic time-space tradeoff lower bound methodology.
Therefore, the cumulative memory lower bound in Theorem 4.8 for random-access machines
is close to the lower bound on the product of time and space using standard methods.

Proof of Theorem 4.8. We prove both (a) and (b) directly for branching programs, which
can model random-access machines, and will describe the small variation that occurs in
the case that the branching program in question comes from a random-access machine. To
prove these properties for randomized branching programs, by Yao’s Lemma [36] it suffices
to prove the properties for deterministic branching programs that have error at most ε under
distribution µ. Fix a (deterministic) branching program P of length T computing f with
error at most ε under distribution µ. Without loss of generality, P has maximum space
usage at most Smax = n log2 |D| space since there are at most |Dn| inputs.

Let H = ⌊h1(n)/2⌋. We break P into ℓ = ⌈T/H⌉ time segments of length H working
backwards from step T so that the first segment may be shorter than the rest. We then
choose a sequence of candidates for the time steps in which to begin new blocks, as follows:
We let τ1 = 0 and for 1 < i ≤ ℓ we let

τi = arg min{ |Lt| : T − (ℓ − i + 1) · H ≤ t < T − (ℓ − i) · H }

ICALP 2023



17:14 Computational Cumulative Memory Lower Bounds

be the time step with the fewest nodes among all time steps t ∈ [T −(ℓ−i+1)·H, T −(ℓ−i)·H].
Set σi = log2 |Lτi

| so that Lτi
has at 2σi nodes. This segment contributes at least σi · H to

the cumulative memory bound of P .
To choose the beginning ti∗ of the last time block4. we find the smallest k such that

h0(σℓ−k+1) < k. Such a k must exist since h0 is a non-decreasing non-negative function,
h0(1) = 1 and σ1 = 0 < 1. We now observe that the length of the last block is at most k · H

which by choice of k is less than h(σℓ−k+1, n) and hence we have satisfied the requirements
for Property (B) to apply at each starting node of the last time block.

By our choice of each τi, the cumulative memory used in the last k segments is at least∑k
j=1 σℓ+1−j · H. Further, since k was chosen as smallest with the above property, we know

that for every j ∈ [k − 1] we have h0(σℓ−j+1) ≥ j Hence we have σℓ−j+1 ≥ h−1
0 (j) and we

get a cumulative memory bound for the last k segments of at least

(σℓ−k+1 +
k−1∑
j=1

h−1
0 (j)) · H. (7)

▷ Claim 4.9. σℓ−k+1 +
∑k−1

j=1 h−1
0 (j) ≥ Lh0(Smax) · σℓ−k+1 · k.

Proof of Claim. Observe that it suffices to prove the claim when we replace σℓ−k+1, which
appears on both sides, by a larger quantity. In particular, we show how to prove the claim
with h−1

0 (k) instead, which is larger since h0(σℓ−k+1) < k. But this follows immediately

since by definition Lh0(Smax) ≤
∑k

j=1
h−1

0 (j)

k·h−1
0 (k) , which is equivalent to what we want to prove.

◁

Write Si∗ = σℓ−k+1. By the claim, the cumulative memory contribution associated with
the last block beginning at ti∗ is at least Lh0(Smax) · Si∗ · h0(Si∗)H.

We repeat this in turn to find the time step for the beginning of the next block from the
end, ti∗−1. One small difference now is that there is a last partial segment of height at most
H from the beginning of segment containing ti∗ to layer ti∗ . However, this only adds at most
h1(n)/2 to the length of the segment which still remains well within the height bound of
h(Si∗−1, n) = h0(Si∗−1)h1(n) for Property (B) to apply.

Repeating this back to the beginning of the branching program we obtain a decomposition
of the branching program into some number i∗ of blocks, the i-th block beginning at time
step ti with 2Si nodes, height between h0(Si)H and h0(Si)H + H ≤ 2h0(Si)H, and with an
associated cumulative memory contribution in the i-th block of ≥ Lh0(Smax) · Si · h0(Si)H.

(This is correct even for the partial block starting at time t1 = 0 since S1 = 0.) Since we know
that i∗ ≤ ℓ, for convenience, we also define Si = 0 for i∗ + 1 ≤ i ≤ ℓ. Then, by definition

CM(P ) ≥ Lh0(Smax) ·

(
i∗∑

i=1
Si · h0(Si)

)
· H = Lh0(Smax) ·

(
ℓ∑

i=1
Si · h0(Si)

)
(8)

and
ℓ∑

i=1
h0(Si) ≤ T/H. (9)

As in the previous argument for the simple case, for i ≤ i∗, we define the target ki for
the number of output values produced in each time block to be the smallest integer such
that CK̇−ki ≤ 2−Siα/(2T c+1). That is, ki = ⌈(Si + log2(2CT c+1/α))/ log2 K⌉.

4 Since we are working backwards from the end of the branching program and we do not know how many
segments are included in each block, we don’t actually know this index until things stop with t1 = 0



P. Beame and N. Kornerup 17:15

If ki > m′ for some i, then Si ≥ m′ · log2 K − log2(2CT c+1/α) ≥ (m′ log2 K)/2 since m′

is ω(log n) and 1/α and T are nO(1). Therefore h0(Si) ≥ h′(m′/2, n) and hence

CM(P ) ≥ 1
2 Lh0(Smax) · m′ · h′(m′/2, n) · log2 K

Suppose instead that ki ≤ m′ for all i ≤ i∗. Then, for x ∼ µ, for each i ∈ [i∗] and each
sub-branching program B rooted at some node in Lti and extending until time ti+1, by our
choice of ki and Property (B), the probability that B produces at least ki correct outputs on
input x is at most α · 2−Si/(2T c+1). Therefore, by a union bound, for x ∼ µ the probability
that P produces at least ki correct outputs in the i-th time block on input x is at most

|Lti | · α · 2−Si/(2T c+1) = α/(2T c+1)

and hence the probability for x ∼ µ that there is some i such that P produces at least
ki correct outputs on input x during the i-th block is at most ℓ · α/(2T c+1) < α/(2T c).
Therefore, the probability for x ∼ µ that P produces at most

∑ℓ
i=1(ki − 1) correct outputs

in total on input x is > 1 − α/(2T c).
Since, by Property (A) and the maximum error it allows, P must produce at least m

correct outputs with probability at least α − ϵ ≥ α − α(1 − 1/(2T c)) = α/(2T c) for x ∼ µ,
we must have

∑i∗

i=1(ki − 1) ≥ m. Using our definition of ki we obtain

i∗∑
i=1

(Si + log2(2CT c+1/α)) ≥ m log2 K.

This is the one place in the proof where there is a distinction between an arbitrary
branching program and one that comes from a random access machine.

We first start with the case of arbitrary branching programs: Note that i∗ ≤ ℓ = ⌈T/H⌉ =
⌈T/⌊h1(n)/2⌋⌉. Suppose that T log2(2CT c+1/α) ≤ 1

6 m · h1(n) · log2 K. Then, even with
rounding, we obtain

∑i∗

i=1 Si ≥ 1
2 m log2 K.

Unlike an arbitrary branching program that may do non-trivial computation with sub-
logarithmic Si, a random-access machine with even one register requires at least log2 n bits
of memory (just to index the input for example) and hence Si + log2(2CT c+1/α) will be
O(Si), since T is at most polynomial in n and 1/α is at most polynomial in n by assumption.
Therefore we obtain that

∑i∗

i=1 Si is Ω(m log2 K) without the assumption on T .
In the remainder we continue the argument for the case of arbitrary branching programs

and track the constants involved. The same argument obviously applies for programs coming
from random-access machines with slightly different constants that we will not track. In
particular, since Si = 0 for i > i∗ we have

ℓ∑
i=1

Si ≥ 1
2 m · log2 K. (10)

From this point we need to do something different from the argument in the simple case
because the lower bound on the total cumulative memory contribution is given by Equation (8)
and is not simply

∑ℓ
i=1 Si · H. Instead, we combine Equation (10) and Equation (9) using

the following technical lemma that we prove in Appendix A.

▶ Lemma 4.10. Let p : R≥0 → R≥0 be a differentiable function such that q(x) = x/p(x) is a
concave increasing function of x. For x1, x2, . . . ∈ R≥0, if

∑
i xi ≥ K and

∑
i p(xi) ≤ L then∑

i xip(xi) ≥ q−1(K/L) · L.

ICALP 2023



17:16 Computational Cumulative Memory Lower Bounds

In our application of Lemma 4.10, p = h0, K = 1
2 m · log2 K, and L = T/H. Let S∗ be

the solution to S∗

h0(S∗) = K/L = m·H·log2 K
2T ≥ m·h1(n) log2 K

6T . Then Lemma 4.10 implies that∑ℓ
i=1 Si · h0(Si) ≥ S∗ · T/H = 1

2 , m · h0(S∗) · log2 K. and hence

CM(P ) ≥ Lh0(Smax) · 1
2 m · h0(S∗) · H · log2 K ≥ 1

6 Lh0(Smax) · m · h(S∗, n) · log2 K

since H = ⌊h1(n)/2⌋ and h(S∗, n) = h0(S∗) · h1(n). ◀

In the special case that h0(s) = s∆ (and indeed for any nice function h0), there is an
alternative variant of the above in which one breaks up time into exponentially growing
segments starting with time step T . We used that alternative approach in Section 3.
▶ Remark 4.11. If we restrict our attention to o(m′ log K)-space bounded computation, then
each ki ≤ m′ and the cumulative memory bound for a branching program in Theorem 4.8
becomes 1

6 Lh0(n log2 |D|) · m · h(S∗(T, n), n) · log2 K. And the bound for RAM cumulative
memory becomes Ω (Lh0(n log2 |D|) · m · h(S∗(T, n), n) · log2 K) .

Generic method for quantum time-space tradeoffs
Quantum circuit time-space lower bounds have the same general structure as their classical
branching program counterparts. They require a lemma similar to (B) that gives an
exponentially small probability of producing k outputs with a small number of queries.

▶ Lemma 4.12 (Quantum generic property). For all k ≤ m′ and any quantum circuit C with
at most h′(k, n) layers, there exists a distribution µ such that when x ∼ µ, the probability
that C produces at least k correct output values of f(x) is at most C · K−k.

Such lemmas have historically been proving using direct product theorems [29, 13] or
the recording query technique [27]. Quantum time-space tradeoffs use the same blocking
strategy as branching programs; however, they cannot use union bounds to account for input-
dependent state at the start of a block. Instead, Proposition 3.4 lets us apply Lemma 4.12
to blocks in the middle of a quantum circuit. The 22S factor in Proposition 3.4 means that a
quantum time-space or cumulative memory lower bound is half of what you would expect
from a classical bound. Since a quantum circuit requires log2 n qubits to make a query, we
know that the space between layers is always at least log2 n and

T · S is Ω (min{m h′(S, n), m′ Q(f)} · log2 K)

where Q(f) is the bounded-error quantum query complexity of f .

Generic method for quantum cumulative complexity bounds
Our generic argument can just as easily be applied to quantum lower bounds for problems
where we have an instance of Lemma 4.12 using Proposition 3.4 to bound the number
of outputs produced even with initial input-dependent state. Quantum circuits require
at least log2 n qubits to hold the query index so the bounds derived are like those from
Theorem 4.8(b).

▶ Corollary 4.13. Let c > 0. Suppose that function f defined on Dn satisfies generic
Lemma 4.12 with m′ that is ω(log2 n). For s > 0, let h(s, n) = h′(s/ log2 K, n). Let
h(s, n) = h0(s)h1(n) where h0(1) = 1 and h0 is constant or a differentiable function where
s/h0(s) is increasing and concave. Let S∗ be defined by:

S∗/h0(S∗) = (m h1(n) log2 K) /6T.



P. Beame and N. Kornerup 17:17

The CM used by a quantum circuit that computes f in time T with error ε ≤ (1 − 1/(2T c)) is

≥ 1
6 Lh0(n log2 |D|) · min {m h(S∗, n), 3m′ h′(m′/2, n)} · log2 K.

If the circuit uses o(m′ log K) qubits, the CMC instead is 1
6 Lh0(n log2 |D|)·m·h(S∗, n)·log2 K.

Full general applications. Some applications of our full general theorem generalizing classical
and quantum time-space product lower bounds are the following (full proofs are in [18]):

▶ Corollary 4.14. The CMC for listing all uniquely occurring elements or sorting n integers
from [n] is Ω(n2).

▶ Corollary 4.15. Matrix multiplication for n×n matrices over finite field F requires classical
CMC that is Ω((n6 log |F|)/T ).

▶ Corollary 4.16. For every m ≥ n, finding k disjoint collisions in a random function from
[m] to [n] requires quantum CMC that is Ω(k3n/T 2).

Corollary 4.14 uses properties (A) and (B) for unique elements with h′(k, n) = n/4,
m′ = n/4, m = n/(2e), α = 1/(2e − 1), K = 1/(2 ln N) and C = 1 that follow from
[16, Lemmas 2, 3]. Corollary 4.15 uses properties (A) and (B’) with h′(k, n) = Θ(n

√
k),

m′ = m = n2, α = 1, K = |F|Θ(1) and C = d2. as proven in [4, Theorem 7.1]. Corollary 4.16
uses Lemma 4.12 with h′(k, n) = Θ(k2/3n1/3), m′ = m = k, and C = K = 2 which follow
from [27, Theorem 9].

References
1 Scott Aaronson. Limitations of quantum advice and one-way communication. Theory of

Computing, 1(1):1–28, 2005. doi:10.4086/toc.2005.v001a001.
2 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.

doi:10.1137/0216067.
3 Karl R. Abrahamson. A time-space tradeoff for Boolean matrix multiplication. In 31st

Annual IEEE Symposium on Foundations of Computer Science, Volume I, pages 412–419,
1990. doi:10.1109/FSCS.1990.89561.

4 Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general sequential
machines. J. Comput. Syst. Sci., 43(2):269–289, 1991. doi:10.1016/0022-0000(91)90014-v.

5 Miklós Ajtai. Determinism versus nondeterminism for linear time RAMs with memory
restrictions. J. Comput. Syst. Sci., 65(1):2–37, 2002. doi:10.1006/jcss.2002.1821.

6 Miklós Ajtai. A non-linear time lower bound for Boolean branching programs. Theory Comput.,
1(1):149–176, 2005. doi:10.4086/toc.2005.v001a008.

7 Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard
functions. In Advances in Cryptology – CRYPTO 2016, pages 241–271, 2016.

8 Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their cumulative
memory complexity. In Advances in Cryptology – EUROCRYPT 2017, pages 3–32, 2017.

9 Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof Pietrzak, and
Stefano Tessaro. On the complexity of Scrypt and proofs of space in the parallel random
oracle model. In Advances in Cryptology - EUROCRYPT 2016, Proceedings, Part II, volume
9666 of LNCS, pages 358–387, 2016. doi:10.1007/978-3-662-49896-5_13.

10 Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. Scrypt
is maximally memory-hard. In Advances in Cryptology - EUROCRYPT 2017, Proceedings,
Part III, volume 10212 of Lecture Notes in Computer Science, pages 33–62, 2017. doi:
10.1007/978-3-319-56617-7_2.

ICALP 2023

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.1137/0216067
https://doi.org/10.1109/FSCS.1990.89561
https://doi.org/10.1016/0022-0000(91)90014-v
https://doi.org/10.1006/jcss.2002.1821
https://doi.org/10.4086/toc.2005.v001a008
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2


17:18 Computational Cumulative Memory Lower Bounds

11 Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. Cumulative
space in black-white pebbling and resolution. In 8th Innovations in Theoretical Computer
Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 38:1–38:21, 2017. doi:10.4230/LIPIcs.ITCS.2017.38.

12 Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing,
pages 595–603, 2015. doi:10.1145/2746539.2746622.

13 Andris Ambainis, Robert Špalek, and Ronald de Wolf. A new quantum lower bound method,
with applications to direct product theorems and time-space tradeoffs. Algorithmica, 55(3):422–
461, 2009. doi:10.1007/s00453-007-9022-9.

14 Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-hard puzzles
in the standard model with applications to memory-hard functions and resource-bounded
locally decodable codes. Cryptology ePrint Archive, Paper 2021/801, 2021. URL: https:
//eprint.iacr.org/2021/801.

15 Andrew Baird, Bryant Bost, Stefano Buliani, Vyom Nagrani, Ajay Nair, Rahul Popat,
and Brajendra Singh. AWS serverless multi-tier architectures with Amazon API Gate-
way and AWS Lambda, 2021. URL: https://docs.aws.amazon.com/whitepapers/latest/
serverless-multi-tier-architectures-api-gateway-lambda/welcome.html.

16 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.
Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

17 Paul Beame, T. S. Jayram, and Michael E. Saks. Time-space tradeoffs for branching programs.
J. Comput. Syst. Sci., 63(4):542–572, 2001. doi:10.1006/jcss.2001.1778.

18 Paul Beame and Niels Kornerup. Cumulative memory lower bounds for randomized and
quantum computation. CoRR, abs/2301.05680, 2023. doi:10.48550/arXiv.2301.05680.

19 Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower
bounds for randomized computation of decision problems. J. ACM, 50(2):154–195, 2003.
doi:10.1145/636865.636867.

20 Jeremiah Blocki and Samson Zhou. On the depth-robustness and cumulative pebbling cost of
Argon2i. In Theory of Cryptography, pages 445–465, 2017.

21 Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. Balloon hashing: A memory-hard
function providing provable protection against sequential attacks. In Advances in Cryptology –
ASIACRYPT 2016, pages 220–248, 2016.

22 Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential
model of computation. SIAM J. Comput., 11(2):287–297, 1982. doi:10.1137/0211022.

23 Allan Borodin, Michael J. Fischer, David G. Kirkpatrick, Nancy A. Lynch, and Martin
Tompa. A time-space tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci.,
22(3):351–364, 1981. doi:10.1016/0022-0000(81)90037-4.

24 Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-
times branching programs. Comput. Complex., 3:1–18, 1993. doi:10.1007/BF01200404.

25 Binyi Chen and Stefano Tessaro. Memory-hard functions from cryptographic primitives. In
Advances in Cryptology – CRYPTO 2019, pages 543–572, 2019.

26 Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Advances in
Cryptology – CRYPTO 2005, pages 37–54, 2005.

27 Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for finding multiple
collision pairs. In 16th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2021), volume 197 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 1:1–1:21, 2021. doi:10.4230/LIPIcs.TQC.2021.1.

28 Stasys Jukna. A nondeterministic space-time tradeoff for linear codes. Inf. Process. Lett.,
109(5):286–289, 2009. doi:10.1016/j.ipl.2008.11.001.

29 Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and classical strong direct
product theorems and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–
1493, 2007. doi:10.1137/05063235x.

https://doi.org/10.4230/LIPIcs.ITCS.2017.38
https://doi.org/10.1145/2746539.2746622
https://doi.org/10.1007/s00453-007-9022-9
https://eprint.iacr.org/2021/801
https://eprint.iacr.org/2021/801
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://doi.org/10.1137/0220017
https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.48550/arXiv.2301.05680
https://doi.org/10.1145/636865.636867
https://doi.org/10.1137/0211022
https://doi.org/10.1016/0022-0000(81)90037-4
https://doi.org/10.1007/BF01200404
https://doi.org/10.4230/LIPIcs.TQC.2021.1
https://doi.org/10.1016/j.ipl.2008.11.001
https://doi.org/10.1137/05063235x


P. Beame and N. Kornerup 17:19

30 Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal
hashing. Theor. Comput. Sci., 107(1):121–133, 1993. doi:10.1016/0304-3975(93)90257-T.

31 E. Okol’nishnikova. On lower bounds for branching programs. Siberian Advances in Mathe-
matics, 3(1):152–166, 1993.

32 Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Proceedings, Part I,
of the 14th International Conference on Theory of Cryptography - Volume 9985, pages 262–285.
Springer-Verlag, 2016. doi:10.1007/978-3-662-53641-4_11.

33 Martin Sauerhoff and Philipp Woelfel. Time-space tradeoff lower bounds for integer multipli-
cation and graphs of arithmetic functions. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pages 186–195, 2003. doi:10.1145/780542.780571.

34 John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edition, 1997.

35 Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties
of their circuits. J. Comput. Syst. Sci., 20(2):118–132, 1980. doi:10.1016/0022-0000(80)
90056-2.

36 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual IEEE Symposium on Foundations of Computer Science,
pages 222–227, 1977. doi:10.1109/sfcs.1977.24.

37 Yaacov Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier transform
on any general sequential random-access computer. Journal of Computer and System Sciences,
29(2):183–197, 1984. doi:10.1016/0022-0000(84)90029-1.

38 Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In Advances in Cryptology – CRYPTO 2019, pages 239–268, 2019.

A Optimizations

In this section we prove general optimization lemmas that allow us to derive worst-case
properties of the allocation of branching program layers into blocks.

▶ Lemma A.1. For non-negative reals x1, x2, . . . if
∑

i xi ≤
∑

i x2
i then

∑
i x3

i ≥
∑

i x2
i .

Proof. Without loss generality we remove all xi that are 0 or 1 since they contribute the
same amount to each of

∑
i xi,

∑
i x2

i , and
∑

i x3
i . Therefore every xi satisfies 0 < xi < 1 or

it satisfies xi > 1. We rename those xi with 0 < xi < 1 by yi and those xi with xi > 1 by zj .
Then

∑
i xi ≤

∑
i x2

i can be rewritten as
∑

i yi(1−yi) ≤
∑

j zj(zj −1), and both quantities
are positive. Let y∗ be the largest value < 1 and z∗ be the smallest value > 1. Thus:∑

i

(y2
i − y3

i ) =
∑

i

y2
i (1 − yi) ≤

∑
i

y∗yi(1 − yi) = y∗
∑

i

yi(1 − yi) ≤ y∗
∑

j

zj(zj − 1)

< z∗
∑

j

zj(zj − 1) =
∑

j

z∗zj(zj − 1) ≤
∑

j

z2
j (zj − 1) =

∑
j

(z3
j − z2

j ).

Rewriting gives
∑

i y2
i +

∑
j z2

j <
∑

i y3
i +

∑
j z3

j , or
∑

i x3
i >

∑
i x2

i , as required. ◀

The following is a generalization of the above to all differentiable functions p : R≥0 → R≥0

such that s/p(s) is a concave increasing function of s.

▶ Lemma 4.10. Let p : R≥0 → R≥0 be a differentiable function such that q(x) = x/p(x) is a
concave increasing function of x. For x1, x2, . . . ∈ R≥0, if

∑
i xi ≥ K and

∑
i p(xi) ≤ L then∑

i xip(xi) ≥ q−1(K/L) · L.

ICALP 2023

https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1007/978-3-662-53641-4_11
https://doi.org/10.1145/780542.780571
https://doi.org/10.1016/0022-0000(80)90056-2
https://doi.org/10.1016/0022-0000(80)90056-2
https://doi.org/10.1109/sfcs.1977.24
https://doi.org/10.1016/0022-0000(84)90029-1


17:20 Computational Cumulative Memory Lower Bounds

Proof. By hypothesis,
∑

i (xi − Kp(xi)/L) ≥ 0. Observe that s − Kp(s)/L is an increasing
function of s since s/p(s) is an increasing function of s that is 0 precisely when s = q−1(K/L).
Since all xi with xi = q−1(K/L) evaluate to 0 in the sum, we can rewrite it as∑

xi>q−1(K/L)

(xi − Kp(xi)/L) ≥
∑

xi<q−1(K/L)

(Kp(xi)/L − xi) , (11)

where each of the summed terms is positive. For xi ̸= q−1(K/L), define

f(xi) = xi · p(xi) − q−1(K/L) · L/K

xi − Kp(xi)/L
.

Observe that for xi = q−1(K/L) the denominator is 0 and the numerator equals p(xi)−xi·L/K

which is also 0. For xi > q−1(K/L) both the numerator and denominator are positive and
for xi < q−1(K/L) both the numerator and denominator are negative. Hence f(xi) is
non-negative for every xi ̸= q−1(K/L). The following claim holds because of the concavity
of q; its proof is in the full paper [18].

▷ Claim A.2. If q is a convex differentiable function, we can complete f to a (non-decreasing)
continuous function of x with f ′(x) ≥ 0 for all x with 0 < x ̸= q−1(K/L)

We now have the tools we need. Let x∗
− be the largest xi < q−1(K/L) and x∗

+ be the
smallest xi > q−1(K/L). Then we have f(x∗

+) ≥ f(x∗
−) and∑

xi>q−1(K/L)

(
xi p(xi) − q−1(K/L) · L/K · xi

)
=

∑
xi>q−1(K/L)

f(xi) · (xi − Kp(xi)/L)

≥
∑

xi>q−1(K/L)

f(x∗
+) · (xi − Kp(xi)/L)

≥ f(x∗
−)

∑
xi>q−1(K/L)

(xi − Kp(xi)/L)

≥ f(x∗
−)

∑
xi<q−1(K/L)

(Kp(xi)/L − xi) by Equation (11)

≥
∑

xi<q−1(K/L)

f(xi) · (Kp(xi)/L − xi)

=
∑

xi<q−1(K/L)

(
q−1(K/L) · L/K · xi − xi p(xi)

)
.

Adding back the terms where xi = q−1(K/L), which have value 0, and rewriting we obtain∑
i

(
xi p(xi) − q−1(K/L) · L/K · xi

)
≥ 0.

Therefore we have∑
i

xi p(xi) ≥ q−1(K/L) · L/K ·
∑

i

xi ≥ q−1(K/L) · (L/K) · K = q−1(K/L) · L. ◀


	1 Introduction
	2 Preliminaries
	3 Quantum cumulative memory complexity of sorting
	4 General methods for proving cumulative memory lower bounds
	A Optimizations

