
Dynamic Averaging Load Balancing on Arbitrary
Graphs
Petra Berenbrink #

Universität Hamburg, Germany

Lukas Hintze #

Universität Hamburg, Germany

Hamed Hosseinpour #

Universität Hamburg, Germany

Dominik Kaaser #

TU Hamburg, Germany

Malin Rau #

Universität Hamburg, Germany

Abstract
In this paper we study dynamic averaging load balancing on general graphs. We consider infinite time
and dynamic processes, where in every step new load items are assigned to randomly chosen nodes.
A matching is chosen, and the load is averaged over the edges of that matching. We analyze the
discrete case where load items are indivisible, moreover our results also carry over to the continuous
case where load items can be split arbitrarily. For the choice of the matchings we consider three
different models, random matchings of linear size, random matchings containing only single edges,
and deterministic sequences of matchings covering the whole graph. We bound the discrepancy,
which is defined as the difference between the maximum and the minimum load. Our results cover
a broad range of graph classes and, to the best of our knowledge, our analysis is the first result
for discrete and dynamic averaging load balancing processes. As our main technical contribution
we develop a drift result that allows us to apply techniques based on the effective resistance in an
electrical network to the setting of dynamic load balancing.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Stochastic processes; Theory of computation → Distributed algorithms

Keywords and phrases Dynamic Load Balancing, Distributed Computing, Randomized Algorithms,
Drift Analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.18

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2302.12201

Funding Petra Berenbrink: Supported by DFG Research Group ADYN (FOR 2975) under grant
411362735, and by DFG grant 427756233.
Hamed Hosseinpour : Supported by DFG grant 427756233.
Malin Rau: Supported by DFG Research Group ADYN (FOR 2975) under grant DFG 411362735.

Acknowledgements We thank the anonymous reviewers for their comments.

1 Introduction

Parallel and distributed computing is ubiquitous in science, technology, and beyond. Key to
the performance of a distributed system is the efficient utilization of resources: in order to
obtain a substantial speed-up it is of utmost importance that all processors have to handle
the same amount of work. Unfortunately, many practical applications such as finite element

EA
T

C
S

© Petra Berenbrink, Lukas Hintze, Hamed Hosseinpour, Dominik Kaaser, and Malin Rau;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petra.berenbrink@uni-hamburg.de
https://orcid.org/0000-0002-6930-3259
mailto:lukas.rasmus.hintze@uni-hamburg.de
mailto:hamed.hosseinpour@uni-hamburg.de
https://orcid.org/0000-0003-3625-5913
mailto:dominik.kaaser@tuhh.de
https://orcid.org/0000-0002-2083-7145
mailto:malin.rau@uni-hamburg.de
https://orcid.org/0000-0002-5710-560X
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://arxiv.org/abs/2302.12201
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Dynamic Averaging Load Balancing on Arbitrary Graphs

simulations are highly “irregular”, and the amount of load generated on some processors
is much larger than the amount of load generated on others. We therefore investigate load
balancing to redistribute the load. Efficient load balancing schemes have a plenitude of
applications, including high performance computing [34], cloud computing [27], numerical
simulations [26], and finite element simulations [29].

In this paper we consider neighborhood load balancing on arbitrary graphs with n nodes,
where the nodes balance their load in each step only with their direct neighbors. We assume
discrete load items as opposed to continuous (or idealized) load items which can be broken
into arbitrarily small pieces. We study infinite and dynamic processes where new load items
are generated in every step.

We consider two different settings. In the synchronous setting m load items are generated
on randomly chosen nodes. Then a matching is chosen and the load of the nodes is balanced
(via weighted averaging) over the edges of that matching. Here we further distinguish
between two matching models. We consider the random matching model where linear-size
matchings are randomly chosen, and the balancing circuit model where the graph is divided
deterministically into dmax many matchings. Here dmax is the maximum degree of any
node. In the asynchronous model exactly one load item is generated on a randomly chosen
node. In turn, the node chooses one of its edges at random and balances its load with
the corresponding neighbor. This model can be regarded as a variant of the synchronous
model where the randomly chosen matching has size one. It was introduced by [2] where the
authors show results for cycles assuming continuous load. Our goal is to bound the so-called
discrepancy, which is defined as the maximal load of any node minus the minimal load of
any node.

The assumption that load items initially arrive at uniformly random nodes is a limitation
of the model. However, we believe this to be a good starting point for further investigations
into the behavior of load balancing methods in dynamic settings.

Results in a Nutshell. In this paper we present bounds on the expected discrepancy and
bounds that hold with high probability for the three models introduced above. Our bounds
for the synchronous model with balancing circuits hold for arbitrary graphs G, the bounds
for the asynchronous model and the synchronous model with random matchings hold for
regular graphs G only. For the asynchronous model and the model with random matchings
our bounds on the discrepancy are expressed in terms of hitting times of a standard random
walk on G, as well as in terms of the spectral gap of the Laplacian of G. For the synchronous
model with balancing circuits we express our bounds in terms of the global divergence. This
can be thought of as a measure of the convergence speed of the Markov chains modeling
a random walk on G. However, it does not directly measure the speed of convergence of
the chain. It accounts for the time period in which the chain keeps a given distance from
the stationary (and uniform) distribution. In physics terminology, it is a measure of total
absement, which is the time-integral of displacement.

For all three infinite processes our bounds on the discrepancy hold at an arbitrary point
of time as long as the system is initially empty. Otherwise, the bounds hold after an initial
time period, its length is a function of the initial discrepancy. In the following we give some
exemplary results assuming that the system is initially empty and m = n. For the synchronous
model with random matchings and the asynchronous model we can bound the discrepancy
by O(

√
n log(n)) for any regular graph G. Our results show a polylogarithmic bound on

the discrepancy for all regular graphs with a hitting time at most O(n poly log(n)) (e.g.,
the two-dimensional torus or the hypercube). In all models we can bound the discrepancy

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:3

Table 1 Asymptotic upper bounds on the discrepancy in specific graph classes.

Graph SBal(DRM(G), 1, m) SBal(DBC(G), 1, m) ABal(DA(G), 1)

d-regular
graph
(const. d)

log(n) +
√

m · log(n) log(n) +
√

m · log(n)
√

n · log(n)

cycle Cn log(n) +
√

m · log(n) log(n) +
√

m · log(n)
√

n · log(n)

2-D torus log(n) +
√

m/n · log3/2(n) (1 +
√

m/n) · log(n) log3/2(n)

r-D torus
(const.
r ≥ 3)

(1 +
√

m/n) · log(n) log(n) +
√

m/n · log(n) log(n)

hypercube (1 +
√

m/n) · log(n) (1 +
√

m/n) · log(n) log(n)

expander log n +
√

m/n · log(n) log n +
√

ζ/ λ(R) ·
√

m/n · log n log(n)

by O(
√

n log(n)) for arbitrary constant-degree regular graphs. For the full results we refer
the reader to Theorem 3.1, Theorem 4.1, and Theorem 5.1. We show an overview of our
bounds on the discrepancy for specific graph classes in Table 1. The corresponding results
are formally derived and can be found in the full version.

All bounds presented in this paper also hold for the corresponding continuous processes
without rounding. The authors of [2] consider the asynchronous process on cycles in the
continuous setting where the load items can be divided into arbitrary small pieces. They
bound the expected discrepancy, showing that E[disc(G)] = O(

√
n log(n)) for a cycle G

with n nodes. In contrast, we improve that bound for the cycle to O(
√

n log(n)), both in
expectation and with high probability.

Our main analytical vehicle is a drift theorem that bounds the tail of the sum of a
non-increasing sequence of random variables. Our drift theorem adapts known drift results
from the literature, similarly to the Variable Drift Theorem in [23].

1.1 Related Work
There is a vast body of literature on iterative load balancing schemes on graphs where nodes
are allowed to balance (or average) their load with neighbors only. One distinguishes between
diffusion load balancing where the nodes balance their load with all neighbors at the same
time and the matching model (or dimension exchange) model where the edges which are
used for the balancing form a matching. In the latter model every resource is only involved
in one balancing action per step, which greatly facilitates the analysis.

In this overview we only consider theoretical results and, as it is beyond the scope of this
work to provide a complete survey, we focus on results for discrete load balancing. For results
about continuous load balancing see, for example, [14, 22]. There are also many results in
the context of balancing schemes where not the resources try to balance their load but the
tokens (acting as selfish players) try to find a resource with minimum load. See [16] for a
comprehensive survey about selfish load balancing and [1, 21, 11] for some recent results.
Another related topic is token distribution where nodes do not balance their entire load with
neighbors but send only single tokens over to neighboring nodes with a smaller load. See
[18, 5, 30] for the static setting and [4] for the dynamic setting.

ICALP 2023

18:4 Dynamic Averaging Load Balancing on Arbitrary Graphs

Discrete Models. The authors of [28] give the first rigorous result for discrete load balancing
in the diffusion model. They assume that the number of tokens sent along each edge is
obtained by rounding down the amount of load that would be sent in the continuous case.
Using this approach they establish that the discrepancy is at most O(n2) after O(log(Kn))
steps, where K is the initial discrepancy. Similar results for the matching model are shown
in [19]. While always rounding down may lead to quick stabilization, the discrepancy tends
to be quite large, a function of the diameter of the graph. Therefore, the authors of [32]
suggest to use randomized rounding in order to get a better approximation of the continuous
case. They show results for a wide class of diffusion and matching load balancing protocols
and introduce the so-called local divergence, which aggregates the sum of load differences over
all edges in all rounds. The authors prove that the local divergence gives an upper bound
on the maximum deviation between the continuous and discrete case of a protocol. In [17]
the authors show several results for a randomized protocol with rounding in the matching
model. For complete graphs their results show a discrepancy of O(n

√
log n) after Θ(log(Kn))

steps. Later, [7] extended some of these results to the diffusion model. In [33] the authors
show that the number of rounds needed to reach constant discrepancy is w.h.p. bounded
by a function of the spectral gap of the relevant mixing matrix and the initial discrepancy.
In [8] the authors propose a very simple potential function technique to analyze discrete
diffusion load balancing schemes, both for discrete and continuous settings. In [9] the authors
investigate a load balancing process on complete graphs. In each round a pair of nodes is
selected uniformly at random and completely balance their loads up to a rounding error of
±1.

The authors of [12] study load balancing via matchings assuming random placement of
the load items. The initial load distribution is sampled from exponentially concentrated
distributions (including the uniform, binomial, geometric, and Poisson distributions). The
authors show that in this setting the convergence time is smaller than in the worst case
setting. Regardless of the graph’s topology, the discrepancy decreases by a factor of 4

√
t

within t synchronous rounds. Their approach of using concentration inequalities to bound
the discrepancy (in terms of the squared 2-norm of the columns of the matrices underlying
the mixing process) strongly influenced our approach.

Dynamic Models. There are far fewer results for the dynamic diffusion models where new
loads enter the system over time. In [2] the authors study a model similar to our asynchronous
model. In each step one load item is allocated to a chosen node. In the same step, the
chosen node picks a random neighbor, and the two nodes balance their loads by averaging
them (continuous model). The authors show that the expected discrepancy is bounded by
O(

√
n log n), as well as a lower bound on the square of the discrepancy of Ω(n). The authors

of [3] consider load balancing via matchings in a dynamic model where the load is, in every
step, distributed by an adversary. They show the system is stable for sufficiently limited
adversaries. They also give some upper bounds on the maximum load for the somewhat more
restricted adversary. The authors of [10] consider discrete dynamic diffusion load balancing
on arbitrary graphs. In each step up to n load items are generated on arbitrary nodes (the
allocation is determined by an adversary). Then the nodes balance their load with each
neighbor and finally one load item is deleted from every non-empty node. The authors show
that the system is stable, which means that the total load remains bounded over time (as a
function of n alone and independently of the time t).

In the graphical balanced allocations setting, the initial allocation of a load item is
constrained to a randomly chosen edge of a graph, but load items cannot be moved after
allocation (in contrast to our setting). For d-regular graphs, Peres, Talwar, and Wieder [31]

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:5

show that for the greedy algorithm which allocates the load item to the lower-loaded node
at the edge, with the edge distribution being uniform, the discrepancy is in O(log(n)d/ε)
with high probability, where ε is the edge expansion of the graph. In fact, they show a more
general result in terms of distributions over arbitrary subsets of nodes. Furthermore, Bansal
and Feldheim [6] give a non-greedy algorithm using some non-local information that achieves
a discrepancy in O((d/k) log4(n) log(log(n))) for k-edge-connected d-regular graphs, as well
as a lower bound for the graphical balanced allocation setting stating that the discrepancy is
in Ω(d/k + log(n)) with constant probability at any given time for any allocation strategy.

2 Balancing Models and Notation

We consider the following class of dynamic load balancing processes on d-regular graphs G

with n nodes V (G) = [n]. Each process is modeled by a Markov chain (X⃗(t))t∈N0 , where
the load vector X⃗(t) = (Xi(t))i∈[n] ∈ Rn is the state of the process at the end of step t,
and Xi(t) is the load of node i at time t. We measure a load vector’s imbalance by the
discrepancy disc(x⃗), which is the difference between the maximum load and the minimum
load disc(x⃗) := maxi∈[n] xi − minj∈[n] xj .

We consider two balancing processes, the synchronous process SBal and the asynchronous
process ABal. Both processes are parameterized by a balancing parameter β determining
the balancing speed and a matching distribution D(G). For SBal, D(G) is a distribution
over linear-sized matchings of G. For ABal, D(G) is a distribution over edges of G. SBal
is additionally parameterized by the number of load items m ∈ N+ allocated in each round.
ABal allocates only one new load item per step.

Synchronous Processes. The synchronous process SBal(D(G), β, m) works as follows.
The process first allocates m items to randomly chosen nodes. Then it uses the matching
distribution D(G) to determine the matching which is applied. Finally it balances the load
over the edges of the matching (see Process Bal(m, β) described below). The parameter
β ∈ (0, 1] controls the fraction of the load difference that is sent over an edge in a step.

For the synchronous process SBal we consider two families of matching distributions,
random matchings (DRM(G)) and balancing circuits (DBC(G)). DRM(G) is generated ac-
cording to the following method described in [19]. In essence, in a first step, nodes mark
edges independently with probability 1/(8d), so that each edge is marked independently with
probability 1/(4d) − 1/(16d2) = Θ(1/d) (as it can be marked from either end); in a second
step, marked edges which are not incident to any other marked edge are selected for the
matching. In expectation, the resulting matching has a size which is linear in the number of
nodes; we refer to [19] for a more detailed description.

We will use capital M for randomly chosen matchings. The analysis for the random
matching model can be found in Section 3. In the balancing circuit model we assume G is
covered by ζ fixed matchings m(1), . . . , m(ζ). DBC(G) deterministically chooses matchings
in periodic manner such that in step t the matching m(t) = m(t mod ζ) is chosen. We will
use small m for deterministically chosen matchings. The analysis for the balancing circuit
model can be found in Section 4.

Asynchronous Process. The asynchronous process ABal(D(G), β) works as follows. The
process first uses D(G) to generate a matching, this time containing one edge only. The
distribution we consider, DA(G), first chooses a node i uniformly at random and then it
chooses one of the nodes’ edges (i, j) uniformly at random. Finally one new token is assigned

ICALP 2023

18:6 Dynamic Averaging Load Balancing on Arbitrary Graphs

to either node i or j and then the edge (i, j) is used for balancing (see Bal(m, β)). Note
that for ABal(DA(G), β) the load allocation heavily depends on the edges which are used
for balancing. This makes the analysis for this model quite challenging. In contrast, in
SBal(DA(G), β, m) the load allocation and the balancing are independent. Note that in the
case of d-regular graphs DA(G) is equivalent to the uniform distribution over all edges or to
choosing a random matching of size one. We analyze the asynchronous model in Section 5.

SBal(D(G), β, m): In each round t ∈ N+:
1. Allocate m discrete, unit-sized load items to the nodes uniformly and independently at

random. Define ℓi(t) as the number of tokens assigned to node i.
2. Sample a matching M(t) according to D(G).
3. Balance with Bal(M(t), β) applied to Xi(t) := Xi(t) + ℓi(t), i ∈ {1, . . . n}.

ABal(D(G), β): In each round t ∈ N+:
1. Select an edge {i, j} according to D(G).
2. Allocate a single unit-size load item to either node i or j with a probability of 1/2.

I.e., with prob. 1/2 set ℓi(t) = 1 and ℓk = 0 for all k ̸= i, otherwise set ℓj(t) = 1 and
ℓk = 0 for all k ̸= j.

3. Balance with Bal(M(t), β) applied to Xi(t) := Xi(t) + ℓi(t), where M(t) includes just
the edge {i, j}.

Bal(m, β): For each edge {i, j} in the matching m balance loads of i and j:
1. Assume w.l.o.g. that Xi(t) ≥ Xj(t).
2. Let p = β·(Xi(t)−Xj(t))

2 −
⌊

β·(Xi(t)−Xj(t))
2

⌋
.

3. Then, node i sends Li,j load items to node j where

Li,j :=

⌈

β·(Xi(t)−Xj(t))
2

⌉
, with probability p,⌊

β·(Xi(t)−Xj(t))
2

⌋
, with probability 1 − p.

In the idealized setting, where the load is continuously divisible, a load of β(Xi(t) − Xj(t))/2
is sent from node i to node j.

2.1 Notation
We are given an arbitrary graph G = (V, E) with n nodes. We mainly assume that G is
regular and write d for the node degree. Recall that the process is modeled by a Markov
chain (X⃗(t))t∈N, where X⃗(t) = (Xi(t))i∈[n] ∈ Rn is the load vector at the end of step t, and
Xi(t) is the load of node i at time t. We write ℓi(t) for the number of load items allocated
to node i in step t and define ℓ⃗(t) = (ℓi(t))i∈[n]. We will use upper case letters such as Xi(t)
and M(t) to denote random variables and random matrices and lower case letters (like xi(t),
m(t)) for fixed outcomes. If clear from the context we will omit t from a random variable.

We model the idealized balancing step in round t by multiplication with a matrix
Mβ(t) ∈ Rn×n given by

Mβ
i,j(t) :=

1, if i = j and i is not matched at time t,
1 − β/2, if i = j and i is matched at time t,
β/2, if i and j are matched at time t,
0, otherwise.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:7

We will omit the parameter β if it is clear from context. With slight abuse of notation we
use the same symbol M(t) for the matching itself and the associated balancing matrix and
refer to both as just “matchings”. Furthermore, we write E(M(t)) for their edges. For the
product of all matching matrices from time t1 to time t2 we write

M[t1,t2] := M(t2) · M(t2 − 1) · · · · · M(t1 + 1) · M(t1),

where for t1 > t2 we consider this to be the identity matrix. We generally refer to these
matrices as mixing matrices. Moreover, we write M[t] for the sequence of matching matri-
ces (M(τ))τ∈[t] and analogously m[t] for a fixed sequence of matching matrices (m(τ))τ∈[t].
We will write Mk,· for the vector forming the kth row of the matrix M (which we often treat
as a column vector despite it being a row).

In the balancing circuit model we define the round matrix R := m[1,ζ] as the product of
the matching matrices forming a complete period of the balancing circuit. Note that ζ has
no relation to the minimum or maximum degree, although we may assume w.l.o.g. that each
edge is covered by at least one of the matchings. We write λ(R) for the spectral gap of the
round matrix R, i.e., for the difference between the largest two eigenvalues of R.

We write ε⃗(t) ∈ Rn for the vector of additive rounding errors in round t. Then εk(t) is
the difference between the load at node k after step t and the load at node k after step t in
an idealized scheme where loads are arbitrarily divisible.

Putting all of this together we can express the load vector at the end of step t ∈ N+ as

X⃗(t) = M(t) ·
(

X⃗(t − 1) + ℓ⃗(t)
)

+ ε⃗(t). (1)

We write thit(G) for the hitting time of G, which is the maximum expected time it takes
for a standard random walk on G (i.e., the walk moves to a neighbor chosen uniformly
at random in each step) to reach a given node i from a given node j, with the maximum
taken over all such pairs of nodes. We write t*

hit(G) for the edge hitting time of G, which is
defined like the hitting time, except that the maximum is taken over adjacent nodes only.
We write L(G) for the normalized Laplacian matrix of a graph G. For regular graphs it
may be defined as L(G) := I − A(G)/d, where A(G) is the adjacency matrix of G. Writing
λ0 ≤ λ1 ≤ . . . ≤ λn−1 for the real eigenvalues of L(G), we let λ(L(G)) := λ1 − λ0 be the
spectral gap of the Laplacian of G.

3 Random Matching Model

In this section we analyze the process SBal(DRM(G), β, m) for d-regular graphs G, where
the matching distribution DRM(G) is generated by the algorithm given in [19]. Note that
the result (as well as the results for the two other models) holds at any point of time t if the
system is initially empty. Furthermore, we can show the same results in the idealized setting
where load items can be divided into arbitrarily small pieces (see [2]). For more details we
refer the reader to the paragraph directly after Equation (3).

▶ Theorem 3.1. Let G be a d-regular graph and define T (G) := min
{

thit(G)
n ·log(n),

√
d

λ(L(G)) ,

1
λ(L(G))

}
. Let X⃗(t) be the state of process SBal(DRM(G), β, m) at time t with disc(X⃗(0)) =:

K ≥ 1. There exists a constant c > 0 such that for all t ≥ c · log(K · n)/(λ(L(G)) · β) it

ICALP 2023

18:8 Dynamic Averaging Load Balancing on Arbitrary Graphs

holds w.h.p.1 and in expectation

disc(X⃗(t)) = O

log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
log(n)

β
· m

n
· T (G)

.

Proof. We first expand the recurrence of Equation (1) (cf. [32]). After one step we get

X⃗(t) = M(t) ·
(

X⃗(t − 1) + ℓ⃗(t)
)

+ ε⃗(t)

= M(t) ·
((

M(t − 1) ·
(

X⃗(t − 2) + ℓ⃗(t − 1)
)

+ ε⃗(t − 1)
)

︸ ︷︷ ︸
X⃗(t−1)

+ℓ⃗(t)
)

+ ε⃗(t)

= M[t−1,t] · X⃗(t − 2) +
t∑

τ=t−1
M[τ,t] · ℓ⃗(τ) +

t∑
τ=t−1

M[τ+1,t] · ε⃗(τ)

We repeatedly expand this form up to the beginning of the process and get

X⃗(t) = M[1,t] · X⃗(0)︸ ︷︷ ︸
I⃗(t)

+
t∑

τ=1
M[τ,t] · ℓ⃗(τ)︸ ︷︷ ︸

D⃗(t)

+
t∑

τ=1
M[τ+1,t] · ε⃗(τ)︸ ︷︷ ︸

R⃗(t)

. (2)

We write I⃗(t), D⃗(t), and R⃗(t) for the three terms as indicated. Note that in general these
terms are vectors of real numbers. The sum I⃗(t) + D⃗(t) can be regarded as the contribution
of an idealized process, where I⃗(t) is the contribution of the initial load and D⃗(t) is the
contribution of the dynamically allocated load. Thus, R⃗(t) is the deviation between the
idealized process without rounding and the discrete process described in Section 2.

To bound the discrepancy disc(X⃗(t)) of the load vector X⃗(t) at time t, we use the fact
that the discrepancy is sub-additive, i.e., that disc(x⃗ + y⃗) ≤ disc(x⃗) + disc(y⃗). Hence, to
bound disc(X⃗(t)), we individually bound the discrepancies of the three terms in Equation (2)
and get

disc(X⃗(t)) ≤ disc(I⃗(t)) + disc(D⃗(t)) + disc(R⃗(t)). (3)

If the system is initially empty, then disc(I⃗(t)) = 0. Moreover, in the idealized setting
without rounding disc(R⃗(t)) = 0. Techniques to bound the first term disc(I⃗(t)) and the last
term disc(R⃗(t)) are well-established. We state the corresponding results in Lemma 3.2 and
Lemma 3.3 directly below the proof of our theorem. The main part of the proof is to bound
disc(D⃗(t)), which will be done in Section 3.1.

Let now γ > 1. First, it follows from Lemma 3.2 that for all t ≥ c · log(K ·n)/(λ(L(G)) · β)
we have disc(I⃗(t)) ≤ 1 with probability at least 1 − n−γ . Second, it follows from Lemma 3.4
that disc(R⃗(t)) ≤ 2

√
γ log(n)/β with probability at least 1 − 3 · n−γ+1. Third, it follows

from Lemma 3.3 that

disc(D⃗(t)) = O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
γ log(n)

β
· m

n
· T (G)

with probability at least 1 − 2 · n−γ+1. The statement of the theorem therefore follows from
a union bound over the statements of Lemma 3.2, Lemma 3.3, and Lemma 3.4. The bound
on expectation follows analogously from the linearity of expectation and the bounds on the
expected discrepancies in the aforementioned lemmas. ◀

1 The expression with high probability (w.h.p.) denotes a probability of at least 1 − n−Ω(1).

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:9

Intuitively, Lemma 3.2 states that the contribution of the initial load to the discrepancy
is insignificant if t is large enough. We generalize the analysis of Theorem 1 [32] (or Theorem
2.9 in [33]) to establish a bound on the discrepancy of the initial load as a function of β. We
prove it in the full version.

▶ Lemma 3.2 (Memorylessness Property). Let G be a d-regular graph. Let K = disc(X⃗(0)).
Then there exists a constant c > 0 such that for all γ > 0 and t ∈ N with t ≥ t0(γ) :=
c·max{γ log(n), log(K · n)}· 1

λ(L(G))·β we get with probability at least 1−n−γ and in expectation

disc(I⃗(t)) ≤ 1.

The next lemma bounds disc(R⃗(t)), the discrepancy contribution of cumulative rounding
errors. Note that this result does not just hold for the random matching model, but for
all the three models that we consider in this paper. In the proof of the lemma we extend
then results of Theorem 3.6 in [33] (which is based on work in [7]) to establish a bound as a
function of β. We prove it in the full version.

▶ Lemma 3.3 (Insignificance of Rounding Errors). Let G be an arbitrary graph. Then for all
γ > 1, t ∈ N, and k ∈ [n] we get with probability at least 1 − 2n−γ+1 and in expectation

disc(R⃗(t)) ≤ 2 ·
√

γ log(n)/β.

To bound disc(D⃗(t)), the discrepancy contribution of dynamically allocated load items
we apply the next lemma. It is in fact the core of our work. We prove it in Section 3.1.

▶ Lemma 3.4 (Contribution of Dynamically Allocated Load). Let G be a d-regular graph.
Define T (G) := min

{
thit(G) · log n/n,

√
d/λ(L(G)), 1/λ(L(G))

}
. Then for all γ > 1 and

t ∈ N we get with probability at least 1 − 3n−γ+1 and in expectation

disc(D⃗(t)) = O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
γ log(n)

β
· m

n
· T (G)

.

3.1 Bounding the Contribution of Dynamically Allocated Load
In this section we prove Lemma 3.4. Some of the proofs are omitted and can be found in full
version. As a first step, we bound disc(D⃗(t)) using the global divergence Υ(M[t]), which is
defined over a sequence of matching matrices M[t] as

Υ(M[t]) := max
k∈[n]

Υk(M[t]), where Υk(M[t]) :=

√√√√ t∑
τ=1

∥∥∥∥∥M[τ,t]
k,· − 1⃗

n

∥∥∥∥∥
2

2

.

The global divergence can be regarded as a measure of the convergence speed of a random
walk that uses the matching matrices as transition probabilities. In [17, 33, 7] the authors
use a related notion which they call the local p-divergence, also defined on a sequence of
matchings m[t]. The difference lies in the fact that the global divergence, essentially, measures
differences between nodes’ values and a global average, while the local divergence measures
differences between neighboring nodes. To show Lemma 3.4 we first observe the following.

▶ Observation 3.5. It holds that disc(D⃗(t)) ≤ 2 · maxk∈[n]|Dk(t) − t · m/n|.

ICALP 2023

18:10 Dynamic Averaging Load Balancing on Arbitrary Graphs

Next we consider a fixed node k and show a concentration inequality on Dk(t) in terms
of Υk(m[t]), where m[t] is the sequence of matchings applied by our process (Lemma 3.6).
Note that in the lemma we assume the matchings are fixed and the randomness is due to
the random load placement only. Hence, the lemma directly applies to DBC(G). Afterwards,
we bound the global divergence of the random sequence of matchings, Υk(M[t]) in terms
of a notion of “goodness” of the used matching distribution D, for the random sequence of
matchings (Lemma 3.9), and then bound the “goodness” of the distribution DRM(G) used
in the random matching model (Lemma 3.10). We start with a bound on the deviation of
Dk(t) from the average load t · m/n in terms of Υ(m[t]).

▶ Lemma 3.6 (Load Concentration). Let m[t] be an arbitrary sequence of matchings. Then
for all γ > 0, t ∈ N, and k ∈ [n] we get with probability at most 2 · n−γ

∣∣∣Dk(t) − t · m

n

∣∣∣ ≥ 4
3 · γ log(n) +

√
8γ log(n) · m

n
· Υk(m[t]).

Proof. Our goal is to decompose Dk(t) into a sum of independent random variables. Recall
that we assume that the matching matrices are fixed and all randomness is due to the random
choices of the load items. This will enable us to apply a concentration inequality to this sum.
For the decomposition observe that D⃗(t) =

∑t
τ=1 m[τ,t] · ℓ⃗(τ), where ℓ⃗(τ) is the random load

vector corresponding to the m load items allocated at time τ . So the kth coordinate of D⃗(t)
is Dk(t) =

∑t
τ=1

∑
w∈[n] m[τ,t]

k,w · ℓw(τ). We define the indicator random variable B(τ, j, w)
for τ ∈ [t], j ∈ [m] and w ∈ [n] as

B(τ, j, w) :=
{

1, if the j-th load item of step τ is allocated to node w,
0, otherwise.

Note that for fixed τ and j we have
∑

w∈[n] B(τ, j, w) = 1, P[B(τ, j, w) = 1] = 1/n and
E[B(τ, j, w)] = 1/n. Observe that ℓw(τ), the load allocated to node w at step τ , can be
expressed as

∑
j∈[m] B(τ, j, w). Merging this with the value of Dk(t) gives

Dk(t) =
t∑

τ=1

∑
w∈[n]

m[τ,t]
k,w ·

 ∑
j∈[m]

B(τ, j, w)

 =
t∑

τ=1

∑
j∈[m]

 ∑
w∈[n]

(
m[τ,t]

k,w · B(τ, j, w)
)

︸ ︷︷ ︸
=:Ck(τ,j)

.

For a fixed τ ∈ [t] and j ∈ [m] we define Ck(τ, j) :=
∑

w∈[n] m[τ,t]
k,w · B(τ, j, w). This

random variable measures the contribution of j-th load item of round τ to Dk(t). Note
that the load items are allocated independently from each other. Since m[τ,t] are fixed
matrices, then Ck(τ, j) and Ck(τ ′, j′) are independent for all τ and τ ′ and j ̸= j′. To apply
the concentration inequality Theorem 3.4 in [13], we need to show that Ck(τ, j) ≤ 1 and
compute an upper bound on Var[Ck(τ, j)]. Showing the first condition is easy since exactly
one of the indicator random variables B(τ, j, w) is one and m[τ,t]

k,w has a value between zero
and one.

It remains to consider the variance of Ck(τ, j). First note that by linearity of expectation

E[Ck(τ, j)] = E

∑
w∈[n]

(
m[τ,t]

k,w · B(τ, j, w)
)=

∑
w∈[n]

m[τ,t]
k,w · E[B(τ, j, w)]=

∑
w∈[n]

m[τ,t]
k,w · 1

n
= 1

n
,

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:11

where the last equality follows form the fact that m[τ,k] is doubly stochastic. Now we get

Var[Ck(τ, j)] = E
[
(Ck(τ, j) − E[Ck(τ, j)])2

]
= E

((∑
w∈[n]

m[τ,t]
k,w · B(τ, j, w)

)
− 1

n

)2

=
∑

w′∈[n]

1
n

·
(

m[τ,t]
k,w′ − 1

n

)2
= 1

n
·

∥∥∥∥∥m[τ,t]
k,· − 1⃗

n

∥∥∥∥∥
2

2

,

where we used that for each τ and each j exactly one of the B(τ, j, w) is one and all others
are zero, and each of the n possible cases has uniform probability.

Recall that Ck(τ, j) and Ck(τ ′, j′) are independent for all τ, τ ′ and j ̸= j′. Hence we get

Var

 t∑
τ=1

∑
j∈[m]

Ck(τ, j)

 =
t∑

τ=1

∑
j∈[m]

Var[Ck(τ, j)] = 1
n

·
t∑

τ=1

∑
j∈[m]

∥∥∥∥∥m[τ,t]
k,· − 1⃗

n

∥∥∥∥∥
2

2

= m

n
·
(

Υk(m[t])
)2

,

where the final equality uses the definition of the global divergence Υk(m[t]). Applying
Theorem 3.4 in [13] with M = 1 and X = Dk(t) =

∑t
τ=1

∑
j∈[m] Ck(τ, j) with λ =

2γ log(n)/3 + Υk(m[t]) ·
√

2γm/n results in

P
[
Dk(t) − t · m

n
≥ 2

3 · γ log(n) +
√

2γ log(n) · m

n
· Υk(m[t])

]
≤ n−γ .

The lower bound can be established using Theorem 4.1 in [13] (with ai = 0 and M = 1). Via
a union bound we get

P
[∣∣∣Dk(t) − t · m

n

∣∣∣ ≥ 4
3 · γ log(n) +

√
8γ log(n) · m

n
· Υk(m[t])

]
≤ 2 · n−γ . ◀

To bound the global divergence of the matching sequence used by the process we use two
potential functions. The quadratic node potential Φ(x⃗) is given by

Φ(x⃗) :=
∑
i∈[n]

(xi − x)2
, where x := 1

n
·

∑
j∈[n]

xj .

For a set of edges S on the nodes [n] and a vector x⃗ ∈ Rn, the quadratic edge potential is

ΨS(x⃗) :=
∑

{i,j}∈S

(xi − xj)2.

We may also write ΨG := ΨE(G) whenever G is a graph, and ΨM := ΨE(M) whenever M is
a matching matrix. The following observation relates the drop of node potential to the edge
potential in terms of β.

▶ Observation 3.7. Let Mβ be a matching matrix with parameter β ∈ (0, 1]. Then for any
x⃗ ∈ Rn we have Φ(x⃗) − Φ(Mβ · x⃗) = 1−(1−β)2

2 · ΨE(Mβ)(x⃗).

We now define a notion of a matching distribution being good. In Lemma 3.9 below we
show that the notion is sufficient for showing that matching sequences generated from such
distributions have bounded global divergence. Note that the “goodness” of a distribution
does not depend on β but on graph properties and the random choices with which the
matchings are chosen. Hence, we assume β = 1.

ICALP 2023

18:12 Dynamic Averaging Load Balancing on Arbitrary Graphs

▶ Definition 3.8. Assume G is an arbitrary d-regular graph. Let g : R+
0 → R+ be an

increasing function and let σ2 > 1. Then a matching distribution D(G) is (g, σ2)-good if the
following conditions hold for M1 ∼ D(G) and all stochastic vectors x⃗ ∈ Rn.
1. Φ(x⃗) − E[Φ(M1 · x⃗)] ≥ g(Φ(x⃗)).
2. Var[Φ(M1 · x⃗)] ≤ (σ2 − 1) ·

(
Φ(x⃗) − E[Φ(M1 · x⃗)]

)2
.

It remains to show two results. First, assuming a matching distribution is (g, σ2)-good,
the global divergence of a matching sequence generated by that distribution can be bounded
in terms of g and σ (Lemma 3.9). Second, we have to calculate a function gG and the values
of σG for which the matching distribution DRM(G) is (gG, σ2

G)-good (see Lemma 3.10).

▶ Lemma 3.9 (Global Divergence). Assume G is an arbitrary graph. Let g : R+
0 → R+ be an

increasing function, σ2 > 1, and β ∈ (0, 1]. Let M[t] = (Mβ(τ))t
τ=1 be an i.i.d. sequence of

matching matrices generated by D(G) and assume D(G) is a (g, σ2)-good matching distribution.
Then for all γ > 0 and k ∈ [n] we get with probability at least 1 − n−γ

(
Υk(M[t])

)2
≤ 8σ2(γ log(n) + log(8σ2)) + 2

β
·
∫ 1

0

x

g(x) dx.

▶ Lemma 3.10. Assume G is an arbitrary d-regular graph. Let

gG(x) := 1
16d

· max
{

d · λ(L(G)) · x,
x2

Res(G) ,
4
27 · x3

}
and σ2

G = 32 · (t*
hit(G) /n) + 5.

Then DRM(G) is (gG, σ2
G)-good.

Proof. First, note that the function gG(x) is increasing in x. Applying the first part
of Lemma 3.11 (see below) we get that for any vector x⃗ ∈ Rn it holds that

Φ(x⃗) − E
[
Φ(M1 · x⃗)

]
≥ 1

16d
· ΨG(x⃗).

From the first two statements of Lemma 3.12 (stated behind Lemma 3.12) we see that for
M1 ∼ DRM(G) and all stochastic vectors x⃗ ∈ Rn

ΨG(x⃗) ≥ max
{

d · λ(L(G)) · Φ(x⃗), Φ(x⃗)2

Res(G) ,
4
27 · Φ(x⃗)3

}
.

Hence,

Φ(x⃗) − E
[
Φ(M1 · x⃗)

]
≥ 1

16d
· max

{
d · λ(L(G)) · Φ(x⃗), Φ(x⃗)2

Res(G) ,
4
27 · Φ(x⃗)3

}
,

and as a consequence, Φ(x⃗) − E[Φ(M1 · x⃗)] ≥ gG(Φ(x⃗)) by the definition of gG.
It remains to check the second condition of Definition 3.8 with our claimed value σ2

G.
Inserting its value as stated in the lemma, the condition requires that

Var[Φ(M1 · x⃗)] ≤ (32(t*
hit(G) /n) + 5 − 1) ·

(
Φ(x⃗) − E[Φ(M1 · x⃗)]

)2
,

which is given in the second part of Lemma 3.11 (see below). ◀

In Lemma 3.11 we first relate the drop of Φ to the quadratic edge potential Ψ. In the
second part we bound the variance of the potential drop as a function of the edge hitting
time.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:13

▶ Lemma 3.11. Let G be a d-regular graph, let M1 ∼ DRM(G), and let x⃗ ∈ Rn, then
1. Φ(x⃗) − E

[
Φ(M1 · x⃗)

]
≥ 1

16d · ΨG(x⃗).
2. Var

[
Φ(M1 · x⃗)

]
≤ (32 · (t*

hit(G) /n) + 4) ·
(
Φ(x⃗) − E

[
Φ(M1 · x⃗)

])2
.

In Lemma 3.12 we relate the size of the quadratic edge potential ΨG to the second-largest
eigenvalue of L(G), effective resistances of G and node potential. To state it, we need some
additional definitions. For any two nodes i and j of the graph G, Res(i, j) is the effective
resistance (or resistive distance) between i and j in G (see Chapter 9 in [24] for a definition,
and refer to further details and properties can also be found in [15] and [25, Section 4]; note
that in our case, all edges have unit weight). Furthermore, we write Res(G) for the resistive
diameter of G, i.e., the largest resistive distance between any pair of nodes in G, and write
Res∗(G) for the maximum effective resistance between any pair of nodes adjacent in G. I.e.,
Res(G) := maxi,j∈[n] Res(i, j) and Res∗(G) := max{i,j}∈E(G) Res(i, j). The first part of the
following lemma was previously shown in [19, 33].

▶ Lemma 3.12. Let x⃗ ∈ Rn, and let G be a connected d-regular graph.
1. ΨG(x⃗) ≥ d · λ(L(G)) · Φ(x⃗).
2. If x⃗ is stochastic, then ΨG(x⃗) ≥ max

{
1

Res(G) · Φ(x⃗)2, 4
27 · Φ(x⃗)3

}
3. max{i,j}∈E(G)(xi − xj)2 ≤ Res∗(G) · ΨG(x⃗).

Proof of Lemma 3.4
Proof. Define gG(x) = 1

16d · max
{

d · λ(L(G)) · x, x2/Res(G), 4x3/27
}

and let σ2
G := 32 ·

(t*
hit(G) /n) + 5. Then by Lemma 3.10 the matching distribution DRM(G) is (gG, σ2

G)-good.
By Lemma 3.9 we have for all t ∈ N, k ∈ [n]

P
[(

Υk(M[t])
)2

≤ 8σ2
G((γ + 1) log(n) + log(8σ2

G)) + 1
β

·
∫ 1

0

x

gG(x) dx

]
≥ 1 − n−(γ+1).

To bound Υk(M[t]) we use the following two claims, which we prove in the full version.

▷ Claim 3.13. It holds that
∫ 1

0
x/gG(x) dx = O(T (G)).

▷ Claim 3.14. For any d-regular graph G it holds that t*
hit(G) /n ≥ 1/2.

Together we get from Claim 3.13 and Claim 3.14 that with probability at least 1 − n−(γ+1)

(
Υk(M[t])

)2
= O

(
t*
hit(G)

n
·
(

γ log(n) + log
(

t*
hit(G)

n

))
+ T (G)

β

)
. (4)

Since t*
hit(G) = O(n3) (Proposition 10.16 in [24]), log(t*

hit(G) /n) = O(log n), and γ > 1,

Υk(M[t]) = O

√
γ log(n) ·

t*
hit(G)

n
+ T (G)

β

 = O

√
γ log(n) ·

t*
hit(G)

n
+

√
T (G)

β

.

Now Lemma 3.6 states that for any fixed sequence of matching matrices m[t], with probability
at least 1 − 2n−(γ+1) it holds that∣∣∣Dk(t) − t · m

n

∣∣∣ = O
(

γ log(n) +
√

γ log(n) · m

n
· Υk(m[t])

)
. (5)

ICALP 2023

18:14 Dynamic Averaging Load Balancing on Arbitrary Graphs

Applying a union bound over all k ∈ [n], Equation (4) and Equation (5) hold for all k with
probability at least 1 − 3n−γ . Hence, for all k ∈ [n]

∣∣∣Dk(t) − t · m

n

∣∣∣ = O

γ log(n) +
√

γ log(n) · m

n
·

√
γ log(n) ·

t*
hit(G)

n
+

√
T (G)

β

= O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
(γ + 1) log(n)

β
· m

n
· T (G)

.

The high-probability bound now follows from Observation 3.5. The corresponding bound on
E[disc(D⃗(t)] follows readily; see the full version for details. ◀

4 Balancing Circuit Model

Here we assume β = 1. Recall that we assume G is covered by ζ fixed match-
ings m(1), . . . , m(ζ). The matching distribution DBC(G) then deterministically chooses
the matching m(t) = m(t mod ζ) in step t. The round matrix is defined as R :=
m[1,ζ]. Thus, for a sequence of matchings m[t] the global divergence is Υ(m[t]) :=

maxk∈[n]

√∑t
τ=1

∥∥∥m[τ,t]
k,· − 1/n

∥∥∥2

2
. The next theorem provides an upper bound on the dis-

crepancy for this model. Note that the following theorem holds for arbitrary graphs, while
Theorem 3.1 only holds for d-regular graphs.

▶ Theorem 4.1. Let G be an arbitrary graph and let X⃗(t) be the state of process
SBal(DBC(G), 1, m) at time t with disc(X⃗(0)) =: K. For all t ∈ N with t ≥ ζ

λ (R) ·(ln(K · n))
it holds w.h.p. and in expectation

disc(X⃗(t)) = O
(

log(n) +
√

m/n · Υ(m[t]) ·
√

log(n)
)

.

Proof. The proof follows the same line as the proof Theorem 3.1, which is proved via
Lemma 3.2, Lemma 3.4, and Lemma 3.3 bounding I⃗(t), D⃗(t), and R⃗(t), respectively.
Lemma 3.2 is replaced by Lemma 4.2 below. Lemma 3.2 can also be applied to the balancing
circuit model since it only requires that the subgraph used for balancing is a matching.

It remains to replace Lemma 3.3. Since the matching matrices are fixed this time the
proof is much simpler. The proof of Lemma 3.6 carries to over to this model giving us a
bound on |Dk(t) − tm/n| for k ∈ [n] with probability at least 1 − 2 · n−γ . Applying the
union bound over all nodes k ∈ [n], together with Observation 3.5 (stating that disc(D⃗(t)) ≤
2 · maxk∈[n]|Dk(t) − t · m/n|), gives a bound on disc(D⃗(t)) which holds with probability at
least 1 − 2 · nγ+1. ◀

▶ Lemma 4.2 (Memorylessness Property). For all t ∈ N with t ≥ ζ/λ (R) · (ln(K · n)) it holds
that disc(I⃗(t)) ≤ 2.

Proof. Since Φ(x⃗) ≤ K2 · n it follows from Lemma 2 in [20] that

Φ
(

m[1,t] · x⃗
)

≤ (1−λ (R))2⌊t⌋/ζ ·Φ(x⃗) ≤ (1−λ (R))2⌊t⌋/ζ ·K2 ·n ≤ e−2⌊t⌋·λ (R)/ζ+2 ln(Kn).

Setting t ≥ (ζ/ λ (R)) · (ln(Kn)) gives Φ
(
m[1,t] · x⃗

)
≤ 1 which implies that disc(I⃗(t) ≤ 2. ◀

Note that a similar statement was shown in [32, 33, 7].
The next theorem provides a lower bound on the discrepancy for this model. The proof

can be found in the full version.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:15

▶ Theorem 4.3. Let G be an arbitrary graph and let X⃗(t) be the state of process
SBal(DBC(G), 1, m) at time t. Then for all t ∈ N and m ≥ 4n · log(n)/Υ(m[t]) it holds with
constant probability

disc(X⃗(t)) = Ω
(√

m/n · Υ(m[t])
)

.

5 Asynchronous Model

The following is our main theorem for the asynchronous model. The bounds provided by
Theorem 5.1 for the asynchronous model differ from those in Theorem 3.1 for the random
matching model in two details. First, the lower bound on the balancing time is larger by a
factor of n. This is due to the fact that the asynchronous model balances across just one
edge per round in contrast to Θ(n) edges in the random matching model. Second, the upper
bound on disc(X⃗(t)) is much simpler. Note, however that setting m = n in Theorem 3.1 and
further simplifying the result by using t*

hit(G) /n = Ω(1) (see also Claim 3.14 in the proof of
Lemma 3.4) results in the same asymptotic bound as in Theorem 5.1.

▶ Theorem 5.1. Let G be a d-regular graph and define T (G) := min
{

thit(G)
n ·log(n),

√
d

λ(L(G)) ,

1
λ(L(G))

}
. Let X⃗(t) be the state of process ABal(DA(G), β) at time t with disc(X⃗(0)) =:

K ≥ 1. There exists a constant c > 0 such that for all t ≥ c · n · log(K · n)/(λ(L(G)) · β) it
holds w.h.p. and in expectation

disc(X⃗(t)) = O

log(n)

√
t*
hit(G)

n
+

√
log(n)

β
· T (G)

.

Proof Sketch of Theorem 5.1. The proof of the theorem follows along the same lines at
the proof of Theorem 3.1. However, there are some major differences. Most importantly, the
proof of Lemma 3.6 (giving a concentration bound on Dk(t) in terms of the global divergence
of the sequence of matching matrices) can not be applied for ABal. The proof heavily
relies on the fact that the load allocation and the matching edges are chosen independently
from each other, which is certainly not the case for ABal. In the full version, we carefully
analyze the dependency using a stronger concentration inequality. In addition, we also have
to re-calculate the function gG and σG to show that the matching distribution used by DA is
(gG, σ2

G)-good. ◀

6 Drift Result

In our analysis we use the following tail bound for the sum of a non-increasing sequence
of random variables with variable negative drift. The proof uses established methods from
drift analysis. In particular, it relies one techniques found in the proof of the Variable Drift
Theorem in [23]. We prove it in the full version.

▶ Theorem 6.1. Let (X(t))t≥0 be a non-increasing sequence of discrete random variables
with X(t) ∈ R+

0 for all t with fixed X(0) = x0. Assume there exists an increasing function
h : R+

0 → R+ and a constant σ > 0 such that the following holds. For all t ∈ N and all x > 0
with P[X(t) = x] > 0
1. E[X(t + 1) | X(t) = x] ≤ x − h(x),
2. Var[X(t + 1) | X(t) = x] ≤ σ · (E[X(t + 1) | X(t) = x] − x)2

.

ICALP 2023

18:16 Dynamic Averaging Load Balancing on Arbitrary Graphs

Then the following statements hold.
1. For all δ ∈ (0, 1) and any arbitrary but fixed t

P

[∫ x0

X(t)

1
h(φ) dφ ≤ (1 − δ)t

]
≤ exp

(
− δ2t

2(σ + 1)

)
.

2. For all δ ∈ (0, 1) and p ∈ (0, 1) we define t0 := 2(σ+1)
δ2

(
− log(p) + log

(
2(σ+1)

δ2

))
. Then

P

[∞∑
t=t0+1

X(t) ≤ 1
1 − δ

·
∫ x0

0

φ

h(φ)dφ

]
≥ 1 − p.

7 Conclusions and Open Problems

In this paper we analyze discrete load balancing processes on graphs. As our main contribution
we bound the discrepancy that arises in dynamic load balancing in three models, the random
matching model, the balancing circuit model, and the asynchronous model. Our results for
the random matching model and the asynchronous model hold for d-regular graphs, while
our analysis for the balancing circuit model applies to arbitrary graphs.

To the best of our knowledge our results constitute the first discrepancy bounds for discrete,
dynamic balancing processes on general graphs. Furthermore, our results improve the work
by Alistarh et al. [2] who prove that the expected discrepancy is bounded by

√
n log(n) in

the (arguably simpler) continuous asynchronous process ABal(cont)(DA(G), 1). We improve
their bound to

√
n log(n) and additionally show that it holds with high probability. We

conjecture that our results are tight, up to polylogarithmic factors. However, showing tight
upper and lower bounds remains an open problem.

One interesting feature of our bound on the discrepancy is the scaling with the parameter β:
decreasing it linearly only increases the bound on the discrepancy by a square root factor.
This means for sufficiently small β, the expected amount of load transferred per edge and
round is constant.

Open Problems. We are confident that our results carry over to arbitrary graphs (as
opposed to regular graphs), provided that there exists a lower bound on the probability pmin

with which an edge is used for balancing. However, to show bounds on the discrepancy one
has to overcome fundamental problems such as the bias introduced by high-degree nodes.
Analyzing the behavior for more general load arrival distributions is also an interesting but
likely challenging open problem. More avenues for generalization are the deletion of load
over time as well as varying the amount of load generated in each round dynamically.

Another interesting open question is whether the results carry over to a model where the
amount of load that may be transmitted over an edge in each step is bounded by a constant.
If only a single load item can be transferred per edge and step the problem is similar to the
token distribution problem (see, for example, [5]).

Finally, we believe that one can also adapt our analysis to variant of a graphical balls-into-
bins process. The process works as follows. In each step an edge (i, j) is sampled uniformly at
random. W.l.o.g. assume that the load of i is smaller than the load of j by an additive term ∆.
Then a biased coin is tossed showing heads with probability p := min{1, (1 + β · ∆)/2} and
tails otherwise, where β is a suitably chosen and non-constant parameter. If the coin hits
heads one item is allocated to i and otherwise to j. A formal analysis of this allocation
process (as well as of other, related balls-into-bins processes) is beyond the scope of our
paper and remains an open problem.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:17

References
1 Heiner Ackermann, Simon Fischer, Martin Hoefer, and Marcel Schöngens. Distributed

algorithms for QoS load balancing. Distributed Comput., 23(5-6):321–330, 2011. doi:10.1007/
s00446-010-0125-1.

2 Dan Alistarh, Giorgi Nadiradze, and Amirmojtaba Sabour. Dynamic averaging load balancing
on cycles. In 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, volume 168 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.7.

3 Aris Anagnostopoulos, Adam Kirsch, and Eli Upfal. Load balancing in arbitrary network
topologies with stochastic adversarial input. SIAM Journal on Computing, 34(3):616–639,
2005. doi:10.1137/S0097539703437831.

4 Elliot Anshelevich, David Kempe, and Jon M. Kleinberg. Stability of load balancing algorithms
in dynamic adversarial systems. SIAM J. Comput., 37(5):1656–1673, 2008. doi:10.1137/
050639272.

5 Friedhelm Meyer auf der Heide, Brigitte Oesterdiekhoff, and Rolf Wanka. Strongly adaptive
token distribution. Algorithmica, 15(5):413–427, 1996. doi:10.1007/BF01955042.

6 Nikhil Bansal and Ohad N. Feldheim. The power of two choices in graphical allocation.
In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages 52–63. ACM, 2022.
doi:10.1145/3519935.3519995.

7 Petra Berenbrink, Colin Cooper, Tom Friedetzky, Tobias Friedrich, and Thomas Sauerwald.
Randomized diffusion for indivisible loads. J. Comput. Syst. Sci., 81(1):159–185, 2015.
doi:10.1016/j.jcss.2014.04.027.

8 Petra Berenbrink, Tom Friedetzky, and Zengjian Hu. A new analytical method for parallel,
diffusion-type load balancing. J. Parallel Distributed Comput., 69(1):54–61, 2009. doi:
10.1016/j.jpdc.2008.05.005.

9 Petra Berenbrink, Tom Friedetzky, Dominik Kaaser, and Peter Kling. Tight & simple load
balancing. In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2019, pages 718–726. IEEE, 2019. doi:10.1109/IPDPS.2019.00080.

10 Petra Berenbrink, Tom Friedetzky, and Russell A. Martin. On the stability of dynamic diffusion
load balancing. Algorithmica, 50(3):329–350, 2008. doi:10.1007/s00453-007-9081-y.

11 Petra Berenbrink, Peter Kling, Christopher Liaw, and Abbas Mehrabian. Tight load balancing
via randomized local search. In 2017 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2017, pages 192–201. IEEE Computer Society, 2017. doi:10.1109/IPDPS.
2017.52.

12 Leran Cai and Thomas Sauerwald. Randomized load balancing on networks with stochastic
inputs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, volume 80 of LIPIcs, pages 139:1–139:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.139.

13 Fan R. K. Chung and Lincoln Lu. Survey: Concentration inequalities and martingale inequali-
ties: A survey. Internet Math., 3(1):79–127, 2006. doi:10.1080/15427951.2006.10129115.

14 Ralf Diekmann, Andreas Frommer, and Burkhard Monien. Efficient schemes for nearest neigh-
bor load balancing. Parallel Comput., 25(7):789–812, 1999. doi:10.1016/S0167-8191(99)
00018-6.

15 Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks. Number Book 22
in Carus Mathematical Monographs. Mathematical Association of America, Washington, DC,
1984.

16 Simon Fischer, Harald Räcke, and Berthold Vöcking. Fast convergence to wardrop equilibria
by adaptive sampling methods. SIAM J. Comput., 39(8):3700–3735, 2010. doi:10.1137/
090746720.

17 Tobias Friedrich and Thomas Sauerwald. Near-perfect load balancing by randomized rounding.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
pages 121–130. ACM, 2009. doi:10.1145/1536414.1536433.

ICALP 2023

https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.4230/LIPIcs.ICALP.2020.7
https://doi.org/10.1137/S0097539703437831
https://doi.org/10.1137/050639272
https://doi.org/10.1137/050639272
https://doi.org/10.1007/BF01955042
https://doi.org/10.1145/3519935.3519995
https://doi.org/10.1016/j.jcss.2014.04.027
https://doi.org/10.1016/j.jpdc.2008.05.005
https://doi.org/10.1016/j.jpdc.2008.05.005
https://doi.org/10.1109/IPDPS.2019.00080
https://doi.org/10.1007/s00453-007-9081-y
https://doi.org/10.1109/IPDPS.2017.52
https://doi.org/10.1109/IPDPS.2017.52
https://doi.org/10.4230/LIPIcs.ICALP.2017.139
https://doi.org/10.1080/15427951.2006.10129115
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1137/090746720
https://doi.org/10.1137/090746720
https://doi.org/10.1145/1536414.1536433

18:18 Dynamic Averaging Load Balancing on Arbitrary Graphs

18 Bhaskar Ghosh, Frank Thomson Leighton, Bruce M. Maggs, S. Muthukrishnan, C. Greg
Plaxton, Rajmohan Rajaraman, Andréa W. Richa, Robert Endre Tarjan, and David Zuckerman.
Tight analyses of two local load balancing algorithms. SIAM J. Comput., 29(1):29–64, 1999.
doi:10.1137/S0097539795292208.

19 Bhaskar Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J.
Comput. Syst. Sci., 53(3):357–370, 1996. doi:10.1006/jcss.1996.0075.

20 Bhaskar Ghosh, S. Muthukrishnan, and Martin H. Schultz. First and second order diffusive
methods for rapid, coarse, distributed load balancing (extended abstract). In Proceedings of
the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’96, pages
72–81. ACM, 1996. doi:10.1145/237502.237509.

21 Martin Hoefer and Thomas Sauerwald. Threshold load balancing in networks. CoRR,
abs/1306.1402, 2013. arXiv:1306.1402.

22 David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In 44th Symposium on Foundations of Computer Science (FOCS 2003), pages
482–491. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238221.

23 Johannes Lengler. Drift analysis. In Benjamin Doerr and Frank Neumann, editors, The-
ory of Evolutionary Computation – Recent Developments in Discrete Optimization, Natural
Computing Series, pages 89–131. Springer, 2020. doi:10.1007/978-3-030-29414-4_2.

24 David Levin and Yuval Peres. Markov Chains and Mixing Times. AMS, 2017. doi:10.1090/
mbk/107.

25 László Lovász. Random walks on graphs. Combinatorics, Paul Erdős is Eighty, 2:1–46, 1993.
26 Henning Meyerhenke. Shape optimizing load balancing for mpi-parallel adaptive numerical

simulations. In Graph Partitioning and Graph Clustering, 10th DIMACS Implementation
Challenge Workshop, volume 588 of Contemporary Mathematics, pages 67–82. American
Mathematical Society, 2012. URL: http://www.ams.org/books/conm/588/11699.

27 Vahid Mohammadian, Nima Jafari Navimipour, Mehdi Hosseinzadeh, and Aso Mohammad
Darwesh. Fault-tolerant load balancing in cloud computing: A systematic literature review.
IEEE Access, 10:12714–12731, 2022. doi:10.1109/ACCESS.2021.3139730.

28 S. Muthukrishnan, Bhaskar Ghosh, and Martin H. Schultz. First- and second-order diffusive
methods for rapid, coarse, distributed load balancing. Theory Comput. Syst., 31(4):331–354,
1998. doi:10.1007/s002240000092.

29 Borek Patzák and Daniel Rypl. Object-oriented, parallel finite element framework with
dynamic load balancing. Adv. Eng. Softw., 47(1):35–50, 2012. doi:10.1016/j.advengsoft.
2011.12.008.

30 David Peleg and Eli Upfal. The token distribution problem. SIAM J. Comput., 18(2):229–243,
1989. doi:10.1137/0218015.

31 Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the (1 +
β)-choice process. Random Struct. Algorithms, 47(4):760–775, 2015. doi:10.1002/rsa.20558.

32 Yuval Rabani, Alistair Sinclair, and Rolf Wanka. Local divergence of markov chains and the
analysis of iterative load balancing schemes. In 39th Annual Symposium on Foundations of
Computer Science, FOCS ’98, pages 694–705. IEEE Computer Society, 1998. doi:10.1109/
SFCS.1998.743520.

33 Thomas Sauerwald and He Sun. Tight bounds for randomized load balancing on arbitrary
network topologies. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, pages 341–350. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.86.

34 Gengbin Zheng, Abhinav Bhatele, Esteban Meneses, and Laxmikant V. Kalé. Periodic
hierarchical load balancing for large supercomputers. Int. J. High Perform. Comput. Appl.,
25(4):371–385, 2011. doi:10.1177/1094342010394383.

https://doi.org/10.1137/S0097539795292208
https://doi.org/10.1006/jcss.1996.0075
https://doi.org/10.1145/237502.237509
https://arxiv.org/abs/1306.1402
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1090/mbk/107
https://doi.org/10.1090/mbk/107
http://www.ams.org/books/conm/588/11699
https://doi.org/10.1109/ACCESS.2021.3139730
https://doi.org/10.1007/s002240000092
https://doi.org/10.1016/j.advengsoft.2011.12.008
https://doi.org/10.1016/j.advengsoft.2011.12.008
https://doi.org/10.1137/0218015
https://doi.org/10.1002/rsa.20558
https://doi.org/10.1109/SFCS.1998.743520
https://doi.org/10.1109/SFCS.1998.743520
https://doi.org/10.1109/FOCS.2012.86
https://doi.org/10.1177/1094342010394383

	1 Introduction
	1.1 Related Work

	2 Balancing Models and Notation
	2.1 Notation

	3 Random Matching Model
	3.1 Bounding the Contribution of Dynamically Allocated Load

	4 Balancing Circuit Model
	5 Asynchronous Model
	6 Drift Result
	7 Conclusions and Open Problems

