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Abstract
We study the problem of approximating the eigenspectrum of a symmetric matrix A ∈ Rn×n

with bounded entries (i.e., ∥A∥∞ ≤ 1). We present a simple sublinear time algorithm that
approximates all eigenvalues of A up to additive error ±ϵn using those of a randomly sampled
Õ
(

log3 n
ϵ3

)
× Õ

(
log3 n

ϵ3

)
principal submatrix. Our result can be viewed as a concentration bound

on the complete eigenspectrum of a random submatrix, significantly extending known bounds on
just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of
±ϵ
√

nnz(A) and ±ϵ∥A∥F when the rows of A can be sampled with probabilities proportional to
their sparsities or their squared ℓ2 norms respectively. Here nnz(A) is the number of non-zero entries
in A and ∥A∥F is its Frobenius norm. Even for the strictly easier problems of approximating the
singular values or testing the existence of large negative eigenvalues (Bakshi, Chepurko, and Jayaram,
FOCS ’20), our results are the first that take advantage of non-uniform sampling to give improved
error bounds. From a technical perspective, our results require several new eigenvalue concentration
and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds
require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled
submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for
those of A. We complement our theoretical results with numerical simulations, which demonstrate
the effectiveness of our algorithms in practice.
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21:2 Sublinear Time Eigenvalue Approximation via Random Sampling

1 Introduction

Approximating the eigenvalues of a symmetric matrix is a fundamental problem – with
applications in engineering, optimization, data analysis, spectral graph theory, and beyond.
For an n × n matrix, all eigenvalues can be computed to high accuracy using direct eigen-
decomposition in O(nω) time, where ω ≈ 2.37 is the exponent of matrix multiplication [14, 2].
When just a few of the largest magnitude eigenvalues are of interest, the power method and
other iterative Krylov methods can be applied [39]. These methods repeatedly multiply the
matrix of interest by query vectors, requiring O(n2) time per multiplication when the matrix
is dense and unstructured.

For large n, it is desirable to have even faster eigenvalue approximation algorithms,
running in o(n2) time – i.e., sublinear in the size of the input matrix. Unfortunately, for
general matrices, no non-trivial approximation can be computed in o(n2) time: without
reading Ω(n2) entries, it is impossible to distinguish with reasonable probability if all entries
(and hence all eigenvalues) are equal to zero, or if there is a single pair of arbitrarily large
entries at positions (i, j) and (j, i), leading to a pair of arbitrarily large eigenvalues. Given
this, we seek to address the following question:

Under what assumptions on a symmetric n × n input matrix, can we compute non-trivial
approximations to its eigenvalues in o(n2) time?

It is well known that o(n2) time eigenvalue computation is possible for highly structured
inputs, like tridiagonal or Toeplitz matrices [26]. For sparse or structured matrices that
admit fast matrix vector multiplication, one can compute a small number of the largest in
magnitude eigenvalues in o(n2) time using iterative methods. Through the use of robust
iterative methods, fast top eigenvalue estimation is also possible for matrices that admit fast
approximate matrix-vector multiplication, such as kernel similarity matrices [25, 27, 4]. Our
goal is to study simple, sampling-based sublinear time algorithms that work under much
weaker assumptions on the input matrix.

1.1 Our Contributions
Our main contribution is to show that a very simple algorithm can be used to approximate all
eigenvalues of any symmetric matrix with bounded entries. In particular, for any A ∈ Rn×n

with maximum entry magnitude ∥A∥∞ ≤ 1, sampling an s × s principal submatrix AS

of A with s = Õ
(

log3 n
ϵ3

)
and scaling its eigenvalues by n/s yields a ±ϵn additive error

approximation to all eigenvalues of A with good probability.1 This result is formally stated
below, where [n] def= {1, . . . , n}.

▶ Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each
index independently with probability s/n as in Algorithm 1. Let AS be the corresponding
principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with

λi(AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If

s ≥ c log(1/(ϵδ))·log3 n
ϵ3δ , for large enough constant c, then with probability ≥ 1 − δ, for all i ∈ [n],

λi(A) − ϵn ≤ λ̃i(A) ≤ λi(A) + ϵn.

1 Here and throughout, Õ(·) hides logarithmic factors in the argument. Note that by scaling, our algorithm
gives a ±ϵn · ∥A∥∞ approximation for any A.
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See Figure 1 for an illustration of how the |S| eigenvalues of AS are mapped to estimates for
all n eigenvalues of A. Note that the principal submatrix AS sampled in Theorem 1 will
have O(s) = Õ

(
log3 n

ϵ3δ

)
rows/columns with high probability. Thus, with high probability, the

algorithm reads just Õ
(

log6 n
ϵ6δ2

)
entries of A and runs in poly(log n, 1/ϵ, 1/δ) time. Standard

matrix concentration bounds imply that one can sample O
(

s log(1/δ)
ϵ2

)
random entries from

the O(s) × O(s) random submatrix AS and preserve its eigenvalues to error ±ϵs with
probability 1 − δ [1]. See Appendix F of [10] for a proof. This can be directly combined with
Theorem 1 to give improved sample complexity:

▶ Corollary 2 (Improved Sample Complexity via Entrywise Sampling). Let A ∈ Rn×n be
symmetric with ∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). For any ϵ, δ ∈ (0, 1), there
is an algorithm that reads Õ

(
log3 n

ϵ5δ

)
entries of A and returns, with probability at least 1 − δ,

λ̃i(A) for each i ∈ [n] satisfying |λ̃i(A) − λi(A)| ≤ ϵn.

Observe that the dependence on δ in Theorem 1 and Corollary 2 can be improved via
standard arguments: running the algorithm with failure probability δ′ = 2/3, repeating
O(log(1/δ)) times, and taking the median estimate for each λi(A). This guarantees that the
algorithm will succeed with probability at most 1 − δ at the expense of a log(1/δ) dependence
in the complexity.

We note that our ±ϵn error guarantee is particularly useful in applications where the
matrix A has low stable rank and the top eigenvalues have magnitude scaling roughly with
n. Low stable rank is a common feature of real-life data matrices [47], including classes of
bounded entry matrices, such as kernel similarity matrices [18] and adjacency matrices of
power law graphs [36].

−n 0 n

−s 0 s

λ̃n(A) λ̃1(A)λ̃n−(|S|−p)(A) λ̃p−1(A)

λ|S|(AS) λ1(AS)λp(AS) λp−1(AS)

λ̃t(A) for t ∈ (n − (|S| − p + 1), p)

Figure 1 Alignment of eigenvalues in Thm. 1 and Algo. 1. We illustrate how the eigenvalues
of AS , scaled by n

s
, are used to approximate all eigenvalues of A. If AS has p−1 positive eigenvalues,

they are set to the top p − 1 eigenvalue estimates. Its |S| − p + 1 negative eigenvalues are set to the
bottom eigenvalue estimates. All remaining eigenvalues are simply approximated as zero.

Comparison to known bounds. Theorem 1 can be viewed as a concentration inequality on
the full eigenspectrum of a random principal submatrix AS of A. This significantly extends
prior work, which was able to bound just the spectral norm (i.e., the magnitude of the
top eigenvalue) of a random principal submatrix [38, 44]. Bakshi, Chepurko, and Jayaram
[5] recently identified developing such full eigenspectrum concentration inequalities as an
important step in expanding our knowledge of sublinear time property testing algorithms for
bounded entry matrices.

ICALP 2023



21:4 Sublinear Time Eigenvalue Approximation via Random Sampling

Standard matrix concentration bounds [22] can be used to show that the singular values of
A (i.e., the magnitudes of its eigenvalues) are approximated by those of a O

(
log n

ϵ2

)
×O

(
log n

ϵ2

)
random submatrix (see Appendix G of [10]) with independently sampled rows and columns.
However, such a random matrix will not be symmetric or even have real eigenvalues in
general, and thus no analogous bounds were previously known for the eigenvalues themselves.

Lower Bounds. Recently, Bakshi, Chepurko, and Jayaram [5] studied the closely related
problem of testing positive semidefiniteness in the bounded entry model. They show how to
test whether the minimum eigenvalue of A is either greater than 0 or smaller than −ϵn by
reading just Õ( 1

ϵ2 ) entries. They show that this result is optimal in terms of query complexity,
up to logarithmic factors. Like our approach, their algorithm is based on random principal
submatrix sampling. Our eigenvalue approximation guarantee strictly strengthens the testing
guarantee – given ±ϵn approximations to all eigenvalues, we immediately solve the testing
problem. Thus, our query complexity is tight up to a poly(log n, 1/ϵ) factor. It is open if
our higher sample complexity is necessary to solve the harder full eigenspectrum estimation
problem. See Section 1.4 for further discussion.

Improved bounds for non-uniform sampling. Our second main contribution is to show that,
when it is possible to efficiently sample rows/columns of A with probabilities proportional to
their sparsities or their squared ℓ2 norms, significantly stronger eigenvalue estimates can be
obtained. In particular, letting nnz(A) denote the number of nonzero entries in A and ∥A∥F

denote its Frobenius norm, we show that sparsity-based sampling yields eigenvalue estimates
with error ±ϵ

√
nnz(A) and norm-based sampling gives error ±ϵ∥A∥F . See Theorems 3

and 4 for formal statements. Observe that when ∥A∥∞ ≤ 1, its eigenvalues are bounded
in magnitude by ∥A∥2 ≤ ∥A∥F ≤

√
nnz(A) ≤ n. Thus, Theorems 3 and 4 are natural

strengthenings of Theorem 1. Row norm-based sampling (Theorem 4) additionally removes
the bounded entry requirement of Theorems 1 and 3.

As discussed in Section 1.3.1, sparsity-based sampling can be performed in sublinear time
when A is stored in a slightly augmented sparse matrix format, or when A is the adjacency
matrix of a graph accessed in the standard graph query model of the sublinear algorithms
literature [23]. Norm-based sampling can also be performed efficiently with an augmented
matrix format, and is commonly studied in randomized and “quantum-inspired” algorithms
for linear algebra [19, 43].

▶ Theorem 3 (Sparse Matrix Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the ith

index independently with probability pi = min
(

1, s nnz(Ai)
nnz(A)

)
as in Algorithm 2 of [10]. Here

nnz(Ai) is the number of non-zero entries in the ith row of A. Let AS be the corresponding
principal submatrix of A, and let λ̃i(A) be the estimate of λi(A) computed from AS as in
Algorithm 2 of citebhattacharjee2021sublinear. If s ≥ c log8 n

ϵ8δ4 , for large enough constant c,
then with probability ≥ 1 − δ, for all i ∈ [n], |λ̃i(A) − λi(A)| ≤ ϵ

√
nnz(A).

▶ Theorem 4 (Row Norm Based Matrix Eigenvalue Approximation). Let A ∈ Rn×n be
symmetric and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the
ith index independently with probability pi = min

(
1,

s∥Ai∥2
2

∥A∥2
F

+ 1
n2

)
as in Algorithm 3 of [10].

Here ∥Ai∥2 is the ℓ2 norm of the ith row of A. Let AS be the corresponding principal
submatrix of A, and let λ̃i(A) be the estimate of λi(A) computed from AS as in Algorithm
3 of [10]. If s ≥ c log10 n

ϵ8δ4 , for large enough constant c, then with probability ≥ 1 − δ, for all
i ∈ [n], |λ̃i(A) − λi(A)| ≤ ϵ∥A∥F .
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The above non-uniform sampling theorems immediately yield algorithms for testing the
presence of a negative eigenvalue with magnitude at least ϵ

√
nnz(A) or ϵ∥A∥F respectively,

strengthening the results of [5], which require eigenvalue magnitude at least ϵn. In the graph
property testing literature, there is a rich line of work exploring the testing of bounded degree
or sparse graphs [23, 7]. Theorem 3 can be thought of as first step in establishing a related
theory of sublinear time approximation algorithms and property testers for sparse matrices.
Due to lack of space, we defer the proofs of Theorems 3 and 4 to Section 4 and Appendix E
of [10] respectively.

Surprisingly, in the non-uniform sampling case, the eigenvalue estimates derived from
AS cannot simply be its scaled eigenvalues, as in Theorem 1. E.g., when A is the identity,
our row sampling probabilities are uniform in all cases. However, the scaled submatrix
n
s · AS will be a scaled identity, and have eigenvalues equal to n/s – failing to give a
±ϵ
√

nnz(A) = ±ϵ∥A∥F = ±ϵ
√

n approximation to the true eigenvalues (all of which are 1)
unless s ≳

√
n

ϵ . To handle this, and related cases, we must argue that selectively zeroing out
entries in sufficiently low probability rows/columns of A (see Algorithms 2 and 3 of [10])
does not significantly change the spectrum, and ensures concentration of the submatrix
eigenvalues. It is not hard to see that simple random submatrix sampling fails even for the
easier problem of singular value estimation. Theorems 3 and 4 give the first results of their
kinds for this problem as well.

1.2 Related Work
Eigenspectrum estimation is a key primitive in numerical linear algebra, typically known
as spectral density estimation. The eigenspectrum is viewed as a distribution with mass
1/n at each of the n eigenvalues, and the goal is to approximate this distribution [49, 35].
Applications include identifying motifs in social networks [15], studying Hessian and weight
matrix spectra in deep learning [40, 51, 21], “spectrum splitting” in parallel eigensolvers [31],
and the study of many systems in experimental physics and chemistry [48, 41, 28].

Recent work has studied sublinear time spectral density estimation for graph structured
matrices – Braverman, Krishnan, and Musco [11] show that the spectral density of a
normalized graph adjacency or Laplacian matrix can be estimated to ϵ error in the Wasserstein
distance in Õ(n/ poly(ϵ)) time. Cohen-Steiner, Kong, Sohler, and Valiant study a similar
setting, giving runtime 2O(1/ϵ) [13]. We note that the additive error eigenvalue approximation
result of Theorem 1 (analogously Theorems 3 and 4) directly gives an ϵn approximation to
the spectral density in the Wasserstein distance – extending the above results to a much
broader class of matrices. When ∥A∥∞ ≤ 1, A can have eigenvalues as large as n, while the
normalized adjacency matrices studied in [13, 11] have eigenvalues in [−1, 1]. So, while the
results are not directly comparable, our Wasserstein error can be thought as on order of their
error of ϵ after scaling.

Our work is also closely related to a line of work on sublinear time property testing for
bounded entry matrices, initiated by Balcan et al. [6]. In that work, they study testing of
rank, Schatten-p norms, and several other global spectral properties. Sublinear time testing
algorithms for the rank and other properties have also been studied under low-rank and
bounded row norm assumptions on the input matrix [30, 33]. Recent work studies positive
semidefiniteness testing and eigenvalue estimation in the matrix-vector query model, where
each query computes Ax for some x ∈ Rn×n. As in Theorem 4, ±ϵ∥A∥F eigenvalue estimation
can be achieved with poly(log n, 1/ϵ) queries in this model [37]. Finally, several works study
streaming algorithms for eigenspectrum approximation [3, 32, 34]. These algorithms are not
sublinear time – they require at least linear time to process the input matrix. However, they

ICALP 2023



21:6 Sublinear Time Eigenvalue Approximation via Random Sampling

use sublinear working memory. Note that Theorem 1 immediately gives a sublinear space
streaming algorithm for eigenvalue estimation. We can simply store the sampled submatrix
AS as its entries are updated.

1.3 Technical Overview
In this section, we overview the main techniques used to prove Theorems 1, and then
how these techniques are extended to prove Theorems 3 and 4. We start by defining a
decomposition of any symmetric A into the sum of two matrices containing its large and
small magnitude eigendirections.

▶ Definition 5 (Eigenvalue Split). Let A ∈ Rn×n be symmetric. For any ϵ, δ ∈ (0, 1), let
Ao = VoΛoVT

o where Λo is diagonal, with the eigenvalues of A with magnitude ≥ ϵ
√

δn

on its diagonal, and Vo has the corresponding eigenvectors as columns. Similarly, let
Am = VmΛmVT

m where Λm has the eigenvalues of A with magnitude < ϵ
√

δn on its
diagonal and Vm has the corresponding eigenvectors as columns. Then, A can be decomposed
as

A = Ao + Am = VoΛoVT
o + VmΛmVT

m.

Any principal submatrix of A, AS, can be similarly written as

AS = Ao,S + Am,S = Vo,SΛoVT
o,S + Vm,SΛmVT

m,S ,

where Vo,S , Vm,S are the corresponding submatrices obtained by sampling rows of Vo, Vm.

Since AS , Am,S and Ao,S are all symmetric, we can use Weyl’s eigenvalue perturbation
theorem [50] to show that for all eigenvalues of AS ,

|λi(AS) − λi(Ao,S)| ≤ ∥Am,S∥2. (1)

We will argue that the eigenvalues of Ao,S approximate those of Ao – i.e. all eigenvalues
of A with magnitude ≥ ϵ

√
δn. Further, we will show that ∥Am,S∥2 is small with good

probability. Thus, via (1), the eigenvalues of AS approximate those of Ao. In the estimation
procedure of Theorem 1, all other small magnitude eigenvalues of A are estimated to be 0,
which will immediately give our ±ϵn approximation bound when the original eigenvalue has
magnitude ≤ ϵn.

Bounding the eigenvalues of Ao,S. The first step is to show that the eigenvalues of Ao,S

well-approximate those of Ao. As in [5], we critically use that the eigenvectors corresponding
to large eigenvalues are incoherent – intuitively, since ∥A∥∞ is bounded, their mass must
be spread out in order to witness a large eigenvalue. Specifically, [5] shows that for any
eigenvector v of A with corresponding eigenvalue ≥ ϵ

√
δn, ∥v∥∞ ≤ 1

ϵ
√

δ·
√

n
. We give related

bounds on the Euclidean norms of the rows of Vo (the leverage scores of Ao), and on these
rows after weighting by Λo.

Using these incoherence bounds, we argue that the eigenvalues of Ao,S approximate those
of Ao up to ±ϵn error. A key idea is to bound the eigenvalues of Λ1/2

o VT
o,SVo,SΛ1/2

o , which
are identical to the non-zero eigenvalues of Ao,S = Vo,SΛoVT

o,S . Via a matrix Bernstein
bound and our incoherence bounds on Vo, we show that this matrix is close to Λo with high
probability. However, since Λ1/2

o may be complex, the matrix is not necessarily Hermitian
and standard perturbation bounds [42, 29] do not apply. Thus, to derive an eigenvalue
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bound, we apply a perturbation bound of Bhatia [9], which generalizes Weyl’s inequality to
the non-Hermitian case, with a log n factor loss. To the best of our knowledge, this is the
first time that perturbation theory bounds for non-Hermitian matrices have been used to
prove improved algorithmic results in the theoretical computer science literature.

We note that in Appendix B of [10], we give an alternate bound, which instead analyzes
the Hermitian matrix (VT

o,SVo,S)1/2Λo(VT
o,SVo,S)1/2, whose eigenvalues are again identical

to those of Ao,S . This approach only requires Weyl’s inequality, and yields an overall bound
of s = O

(
log n
ϵ4δ

)
, improving the log n factors of Theorem 1 at the cost of worse ϵ dependence.

Bounding the spectral norm of Am,S. The next step is to show that all eigenvalues of
Am,S are small provided a sufficiently large submatrix is sampled. This means that the
“middle” eigenvalues of A, i.e. those with magnitude ≤ ϵ

√
δn do not contribute much to any

eigenvalue λi(AS). To do so, we apply a theorem of [38, 44] which shows concentration of the
spectral norm of a uniformly random submatrix of an entrywise bounded matrix. Observe
that while ∥A∥∞ ≤ 1, such a bound will not in general hold for ∥Am∥∞. Nevertheless, we
can use the incoherence of Vo to show that ∥Ao∥∞ is bounded, which via triangle inequality,
yields a bound on ∥Am∥∞ ≤ ∥A∥∞ + ∥Ao∥∞. In the end, we show that if s ≥ O( log n

ϵ2δ ), with
probability at least 1 − δ, ∥Am,S∥2 ≤ ϵs. After the n/s scaling in the estimation procedure
of Theorem 1, this spectral norm bound translates into an additive ϵn error in approximating
the eigenvalues of A.

Completing the argument. Once we establish the above bounds on Ao,S and Am,S ,
Theorem 1 is essentially complete. Any eigenvalue in A with magnitude ≥ ϵn will correspond
to a nearby eigenvalue in n

s · Ao,S and in turn, n
s · AS given our spectral norm bound on

Am,S . An eigenvalue in A with magnitude ≤ ϵn may or may not correspond to a nearby
by eigenvalue in Ao,S (it will only if it lies in the range [ϵ

√
δn, ϵn]). In any case, in the

estimation procedure of Theorem 1, such an eigenvalue will either be estimated using a small
eigenvalue of AS , or be estimated as 0. In both instances, the estimate will give ±ϵn error.

Can we beat additive error? It is natural to ask if our approach can be improved to yield
sublinear time algorithms with stronger relative error approximation guarantees for A’s
eigenvalues. Unfortunately, this is not possible – consider a matrix with just a single pair
of entries Ai,j , Aj,i set to 1. To obtain relative error approximations to the two non-zero
eigenvalues, we must find the pair (i, j), as otherwise we cannot distinguish A from the all
zeros matrix. This requires reading a Ω(n2) of A’s entries. More generally, consider A with
a random n/t × n/t principal submatrix populated by all 1s, and with all other entries equal
to 0. A has largest eigenvalue n/t. However, if we read s ≪ t2 entries of A, with good
probability, we will not see even a single one, and thus we will not be able to distinguish A
from the all zeros matrix. This example establishes that any sublinear time algorithm with
query complexity s must incur additive error at least Ω(n/

√
s).

1.3.1 Improved Bounds via Non-Uniform Sampling

We now discuss how to give improved approximation bounds via non-uniform sampling. We
focus on the ±ϵ

√
nnz(A) bound of Theorem 3 using sparsity-based sampling. Theorem 4’s

proof (for row norm sampling) follows the same general ideas, but with some additional
complications.

ICALP 2023



21:8 Sublinear Time Eigenvalue Approximation via Random Sampling

Theorem 3 requires sampling a submatrix AS , where each index i is included in S with
probability pi = min(1, s nnz(Ai)

nnz(A) ). We reweight each sampled row by 1√
pi

. Thus, if entry Aij

is sampled, it is scaled by 1√
pi·pj

. When the rows have uniform sparsity (so all pi = s/n),
this ensures that the full submatrix is scaled by n/s, as in Theorem 1.

The proof of Theorem 3 follows the same outline as that of Theorem 1: we first argue that
the outlying eigenvectors in Vo are incoherent, giving a bound on the norm of each row of Vo

in terms of nnz(Ai). We then apply a matrix Bernstein bound and Bhatia’s non-Hermitian
eigenvalue perturbation bound to show that the eigenvalues of Ao,S approximate those of
Ao up to ±ϵ

√
nnz(A).

Bounding the spectral norm of Am,S. The major challenge is showing that the subsampled
middle eigendirections do not significantly increase the approximation error by bounding the
∥Am,S∥2 by ϵ

√
nnz(A). This is difficult since the indices in Am,S are sampled nonuniformly,

so existing bounds [44] on the spectral norm of uniformly random submatrices do not apply.
We extend these bounds to the non-uniform sampling case, but still face an issue due to
the rescaling of entries by 1√

pipj
. In fact, without additional algorithmic modifications,

∥Am,S∥2 is simply not bounded by ϵ
√

nnz(A)! For example, as already discussed, if A = I
is the identity matrix, we get Am,S = n

s · I and so ∥Am,S∥2 = n
s > ϵ

√
nnz(A), assuming

s <
√

n
ϵ . Relatedly, suppose that A is tridiagonal, with zeros on the diagonal and ones on

the first diagonals above and below the main diagonal. Then, if s ≥
√

n, with constant
probability, one of the ones will be sampled and scaled by n

s . Thus, we will again have
∥Am,S∥2 ≥ n

s ≥ ϵ
√

nnz(A), assuming s <
√

n
2ϵ . Observe that this issue arrises even when

trying to approximate just the singular values (the eigenvalue magnitudes). Thus, while
an analogous bound to the uniform sampling result of Theorem 1 can easily be given for
singular value estimation via matrix concentration inequalities (see Appendix G of [10]), to
the best of our knowledge, Theorems 3 and 4 are the first of their kind even for singular
value estimation.

Zeroing out entries in sparse rows/columns. To handle the above cases, we prove a novel
perturbation bound, arguing that the eigenvalues of A are not perturbed by more than
ϵ
√

nnz(A) if we zero out any entry Aij of A where
√

nnz(Ai) · nnz(Aj) ≤ ϵ
√

nnz(A)
c log n . This

can be thought of as a strengthening of Girshgorin’s circle theorem, which would ensure
that zeroing out entries in rows/columns with nnz(Ai) ≤ ϵ

√
nnz(A) does not perturb the

eigenvalues by more than ϵ
√

nnz(A). Armed with this perturbation bound, we argue that
if we zero out the appropriate entries of AS before computing its eigenvalues, then since
we have removed entries in very sparse rows and columns which would be scaled by a large

1√
pipj

factor in AS , we can bound ∥Am,S∥2. This requires relating the magnitudes of the
entries in Am,S to those in AS using the incoherence of the top eigenvectors, which gives
bounds on the entries of Ao,S = AS − Am,S .

Sampling model. We note that the sparsity-based sampling of Theorem 3 can be efficiently
implemented in several natural settings. Given a matrix stored in sparse format, i.e., as
a list of nonzero entries, we can easily sample a row with probability nnz(Ai)

nnz(A) by sampling
a uniformly random non-zero entry and looking at its corresponding row. Via standard
techniques, we can convert several such samples into a sampled set S close in distribution to
having each i ∈ [n] included independently with probability min

(
1, s nnz(Ai)

nnz(A)

)
. If we store

the values of nnz(A), nnz(A1), . . . , nnz(An), we can also efficiently access each pi, which is
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needed for rescaling and zeroing out entries. Also observe that if A is the adjacency matrix
of a graph, in the standard graph query model [23], it is well known how to approximately
count edges and sample them uniformly at random, i.e., compute nnz(A) and sample its
nonzero entries, in sublinear time [24, 17]. Further, it is typically assumed that one has
access to the node degrees, i.e., nnz(A1), . . . , nnz(An). Thus, our algorithm can naturally
be used to estimate spectral graph properties in sublinear time.

The ℓ2 norm-based sampling of Theorem 4 can also be performed efficiently using an
augmented data structure for storing A. Such data structures have been used extensively in
the literature on quantum-inspired algorithms, and require just O(nnz(A)) time to construct,
O(nnz(A)) space, and O(log n) time to update give an update to an entry of A [43, 12].

1.4 Towards Optimal Query Complexity
As discussed, Bakshi et al. [5] show that any algorithm which can test with good probability
whether A has an eigenvalue ≤ −ϵn or else has all non-negative eigenvalues must read Ω̃

( 1
ϵ2

)
entries of A. This testing problem is strictly easier than outputting ±ϵn error estimates of all
eigenvalues, so gives a lower bound for our setting. If the queried entries are restricted to fall in
a submatrix, [5] shows that this submatrix must have dimensions Ω

( 1
ϵ2

)
×Ω

( 1
ϵ2

)
, giving total

query complexity Ω
( 1

ϵ4

)
. Closing the gap between our upper bound of Õ

(
log3 n

ϵ3

)
×Õ

(
log3 n

ϵ3

)
and the lower bound of Ω

( 1
ϵ2

)
× Ω

( 1
ϵ2

)
for submatrix queries is an intriguing open question.

Closing the gap. We show in Appendix A of [10] that this gap can be easily closed via a
surprisingly simple argument if A is positive semidefinite (PSD). In that case, A = BBT

with B ∈ Rn×n. Writing AS = ST AS for a sampling matrix S ∈ Rn×|S|, the non-zero
eigenvalues of AS are identical to those of BSST BT . Via a standard approximate matrix
multiplication analysis [16], one can then show that, for s ≥ 1

ϵ2δ , with probability at least
1 − δ, ∥BBT − BSST B∥F ≤ ϵn. Via Weyl’s inequality, this shows that the eigenvalues of
BSST B, and hence AS , approximate those of A up to ±ϵn error.2

Unfortunately, this approach breaks down when A has negative eigenvalues, and so
cannot be factored as BBT for real B ∈ Rn×n. This is more than a technical issue: observe
that when A is PSD and has ∥A∥∞ ≤ 1, it can have at most 1/ϵ eigenvalues larger than
ϵn – since its trace, which is equal to the sum of its eigenvalues, is bounded by n, and since
all eigenvalues are non-negative. When A is not PSD, it can have Ω(1/ϵ2) eigenvalues with
magnitude larger than ϵn. In particular, if A is the tensor product of a 1/ϵ2 × 1/ϵ2 random
±1 matrix and the ϵ2n × ϵ2n all ones matrix, the bulk of its eigenvalues (of which there are
1/ϵ2) will concentrate around 1/ϵ · ϵ2n = ϵn. As a result it remains unclear whether we can
match the 1/ϵ2 dependence of the PSD case, or if a stronger lower bound can be shown for
indefinite matrices.

Outside the ϵ dependence, it is unknown if full eigenspectrum approximation can be
performed with sample complexity independent of the matrix size n. [5] achieve this for the
easier positive semidefiniteness testing problem, giving sample complexity Õ(1/ϵ2). However
our bounds have additional log n factors. As discussed, in Appendix B of [10] we give
an alternate analysis for Theorem 1, which shows that sampling a O

(
log n
ϵ4δ

)
× O

(
log n
ϵ4δ

)
submatrix suffices for ±ϵn eigenvalue approximation, saving a log2 n factor at the cost of

2 In fact, via more refined eigenvalue perturbation bounds [9] one can show an ℓ2 norm bound on the
eigenvalue approximation errors, which can be much stronger than the ℓ∞ norm bound of Theorem 1.
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worse ϵ dependence. However, removing the final log n seems difficult – it arises when
bounding ∥Am,S∥2 via bounds on the spectral norms of random principal submatrices [38].
Removing it seems as though it would require either improving such bounds, or taking a
different algorithmic approach, as simple modifications such as using bounds depending on
the intrinsic dimension do not seem to help.

Also note that our log n and ϵ dependencies for non-uniform sampling (Theorems 3 and 4)
are likely not tight. It is not hard to check that the lower bounds of [5] still hold in these
settings. For example, in the sparsity-based sampling setting, by simply having the matrix
entirely supported on a

√
nnz(A) ×

√
nnz(A) submatrix, the lower bounds of [5] directly

carry over. Giving tight query complexity bounds here would also be interesting. Finally, it
would be interesting to go beyond principal submatrix based algorithms, to achieve improved
query complexity, as in Corollary 2. Finding an algorithm matching the Õ

( 1
ϵ2

)
overall query

complexity lower bound of [5] is open even in the much simpler PSD setting.

2 Notation and Preliminaries

We now define notation and foundational results that we use throughout our work. For
any integer n, let [n] denote the set {1, 2, . . . , n}. We write matrices and vectors in bold
literals – e.g., A or x. For a vector x, we let ∥x∥2 denote its Euclidean norm. We denote
the eigenvalues of a symmetric matrix A ∈ Rn×n by λ1(A) ≥ . . . ≥ λn(A), in decreasing
order. A symmetric matrix is positive semidefinite if all its eigenvalues are non-negative.
For two matrices A, B, we let A ⪰ B denote that A − B is positive semidefinite. For any
matrix A ∈ Rn×n and i ∈ [n], we let Ai denote the ith row of A. We let nnz(A) denote the
total number of non-zero elements in A, ∥A∥∞ denote the largest magnitude of an entry,
and ∥A∥2 = maxx

∥Ax∥2
∥x∥2

denote the spectral norm. We let ∥A∥F = (
∑

i,j A2
ij)1/2 denote

the Frobenius norm, and ∥A∥1→2 denote the maximum Euclidean norm of a column. For
A ∈ Rn×n and S ⊆ [n] we let AS denote the principal submatrix corresponding to S. We
let E2 denote the L2 norm of a random variable, E2[X] = (E[X2])1/2, where E[·] denotes
expectation.

We use the following basic facts and identities on eigenvalues throughout our proofs.

▶ Fact 1 (Eigenvalue of Matrix Product). For any two matrices A ∈ Cn×m, B ∈ Cm×n, the
non-zero eigenvalues of AB are identical to those of BA.

▶ Fact 2 (Gershgorin’s circle theorem [20]). Let A ∈ Cn×n with entries Aij. For i ∈ [n], let
Ri be the sum of absolute values of non-diagonal entries in the ith row. Let D(Aii, Ri) be
the closed disc centered at Aii with radius Ri. Then every eigenvalue of A lies within one of
the discs D(Aii, Ri).

▶ Fact 3 (Weyl’s Inequality [50]). For any two Hermitian matrices A, B ∈ Cn×n with
A − B = E, maxi |λi(A) − λi(B)| ≤ ∥E∥2.

Weyl’s inequality ensures that a small Hermitian perturbation of a Hermitian matrix will
not significantly change its eigenvalues. The bound can be extended to the case when the
perturbation is not Hermitian, with a loss of an O(log n) factor; to the best of our knowledge
this loss is necessary:

▶ Fact 4 (Non-Hermitian perturbation bound [9]). Let A ∈ Cn×n be Hermitian and B ∈
Cn×n be any matrix whose eigenvalues are λ1(B), . . . , λn(B) such that Re(λ1(B)) ≥ . . . ≥
Re(λn(B)) (where Re(λi(B)) denotes the real part of λi(B)). Let A − B = E. For some
universal constant C, maxi |λi(A) − λi(B)| ≤ C log n∥E∥2
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Beyond the above facts, we use several theorems to obtain eigenvalue concentration
bounds. We first state a theorem from [44], which bounds the spectral norm of a principal
submatrix sampled uniformly at random from a bounded entry matrix. We build on this to
prove the full eigenspectrum concentration result of Theorem 1.

▶ Theorem 6 (Random principal submatrix spectral norm bound [38, 44]). Let A ∈ Cn×n be
Hermitian, decomposed into diagonal and off-diagonal parts: A = D + H. Let S ∈ Rn×n be a
diagonal sampling matrix with the jth diagonal entry set to 1 independently with probability
s/n and 0 otherwise. Then, for some universal constant C,

E2∥SAS∥2 ≤ C

[
log n · E2∥SHS∥∞ +

√
s log n

n
· E2∥HS∥1→2 + s

n
· ∥H∥2

]
+ E2∥SDS∥2.

For Theorems 3 and 4, we need an extension of Theorem 6 to the setting where rows
are sampled non-uniformly. We will use two bounds here. The first is a decoupling and
recoupling result for matrix norms. One can prove this lemma following an analogous result
in [44] for sampling rows/columns uniformly. The proof is almost identical so we omit it.

▶ Lemma 7 (Decoupling and recoupling). Let H be a Hermitian matrix with zero diagonal.
Let δj be a sequence of independent random variables such that δj = 1√

pj
with probability pj

and 0 otherwise. Let S be a square diagonal sampling matrix with jth diagonal entry set to
δj. Then:

E2∥SHS∥2 ≤ 2E2∥SHŜ∥2 and E2∥SHŜ∥∞ ≤ 4E2∥SHS∥∞,

where Ŝ is an independent diagonal sampling matrix drawn from the same distribution as S.

The second theorem bounds the spectral norm of a non-uniform random column sample of a
matrix. We give a proof for uniform sampling in Appendix D of [10], following the results
of [45].

▶ Theorem 8 (Non-uniform column sampling – spectral norm bound). Let A be an m × n

matrix with rank r. Let δj be a sequence of independent random variables such that δj = 1√
pj

with probability pj and 0 otherwise. Let S be a square diagonal sampling matrix with jth

diagonal entry set to δj.

E2∥AS∥2 ≤ 5
√

log r · E2∥AS∥1→2 + ∥A∥2

We use a standard Matrix Bernstein inequality to bound the spectral norm of random
submatrices.

▶ Theorem 9 (Matrix Bernstein [46]). Consider a finite sequence {Sk} of random matrices in
Rd×d. Assume that for all k, E[Sk] = 0 and ∥Sk∥2 ≤ L. Let Z =

∑
k Sk and let V1, V2

be semidefinite upper-bounds for the matrix valued variances Var1(Z) and Var2(Z):

V1 ⪰ Var1(Z) def= E
(

ZZT
)

=
∑

k

E
(
SkST

k

)
, and

V2 ⪰ Var2(Z) def= E
(
ZT Z

)
=
∑

k

E
(
ST

k Sk

)
.

Then, letting v = max(∥V1∥2, ∥V2∥2), for any t ≥ 0,

P(∥Z∥2 ≥ t) ≤ 2d · exp
(

−t2/2
v + Lt/3

)
.

ICALP 2023



21:12 Sublinear Time Eigenvalue Approximation via Random Sampling

For real valued random variables, we use the standard Bernstein inequality.

▶ Theorem 10 (Bernstein inequality [8]). Let {zj} for j ∈ [n] be independent random variables
with zero mean such that |zj | ≤ M for all j. Then for all positive t,

P

∣∣∣∣∣∣
n∑

j=1
zj

∣∣∣∣∣∣ ≥ t

 ≤ exp
(

−t2/2∑n
i=1 E[z2

i ] + Mt/3

)
.

3 Sublinear Time Eigenvalue Estimation using Uniform Sampling

We now prove our main eigenvalue estimation result – Theorem 1. We give the pseudocode
for our principal submatrix based estimation procedure in Algorithm 1. We will show that
any positive or negative eigenvalue of A with magnitude ≥ ϵn will appear as an approximate
eigenvalue in AS with good probability. Thus, in step 5 of Algorithm 1, the positive and
negative eigenvvalues of AS are used to estimate the outlying largest and smallest eigenvalues
of A. All other interior eigenvalues of A are estimated to be 0, which will immediately give
our ±ϵn approximation bound when the original eigenvalue has magnitude ≤ ϵn.

Algorithm 1 Eigenvalue estimator using uniform sampling.

1: Input: Symmetric A ∈ Rn×n with ∥A∥∞ ≤ 1, Accuracy ϵ ∈ (0, 1), failure prob.
δ ∈ (0, 1).

2: Fix s = c log(1/(ϵδ))·log3 n
ϵ3δ where c is a sufficiently large constant.

3: Add each index i ∈ [n] to the sample set S independently with probability s
n . Let the

principal submatrix of A corresponding S be AS .
4: Compute the eigenvalues of AS : λ1(AS) ≥ . . . ≥ λ|S|(AS).
5: For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n

s ·λi(AS). For all i ∈ [|S|] with λi(AS) < 0,
let λ̃n−(|S|−i)(A) = n

s · λi(AS). For all remaining i ∈ [n], let λ̃i(A) = 0.
6: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

Running time. Observe that the expected number of indices chosen by Algorithm 1 is
s = c log(1/(ϵδ))·log3 n

ϵ3δ . A standard concentration bound can be used to show that with high
probability (1 − 1/ poly(n)), the number of sampled entries is O(s). Thus, the algorithm
reads a total of O(s2) entries of A and runs in O(sω) time – the time to compute a full
eigendecomposition of AS .

3.1 Outer and Middle Eigenvalue Bounds
Recall that we will split A into two symmetric matrices (Definition 5): Ao = VoΛoVT

o which
contains its large magnitude (outlying) eigendirections with eigenvalue magnitudes ≥ ϵ

√
δn

and Am = VmΛmVT
m which contains its small magnitude (middle) eigendirections.

We first show that the eigenvectors in Vo are incoherent. I.e., that their (eigenvalue
weighted) squared row norms are bounded. This ensures that the outlying eigenspace of A is
well-approximated via uniform sampling.

▶ Lemma 11 (Incoherence of outlying eigenvectors). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1. Let Vo be as in Definition 5. Let Vo,i denote the ith row of Vo. Then,

∥Λ1/2
o Vo,i∥2

2 ≤ 1
ϵ
√

δ
and ∥Vo,i∥2

2 ≤ 1
ϵ2δn

.
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Proof. Observe that AVo = VoΛo. Let [AVo]i denote the ith row of the AVo. Then we
have

∥[AVo]i∥2
2 = ∥[VoΛo]i∥2

2 =
r∑

j=1
λ2

j · V2
o,i,j , (2)

where r = rank(Ao), Vo,i,j is the (i, j)th element of Vo and λj = Λo(j, j). ∥A∥∞ ≤ 1 by
assumption and since Vo has orthonormal columns, its spectral norm is bounded by 1, thus
we have ∥[AVo]i∥2

2 = ∥[A]iVo∥2
2 ≤ ∥[A]i∥2

2 · ∥Vo∥2
2 ≤ n. Therefore, by (2), we have:

r∑
j=1

λ2
j · V2

o,i,j ≤ n. (3)

Since by definition of Λo, |λj | ≥ ϵ
√

δn for all j, we finally have ∥Λ1/2
o Vo,i∥2

2 =
∑r

j=1 λj ·
V2

o,i,j ≤ n
ϵ
√

δn
= 1

ϵ
√

δ
and ∥Vo,i∥2

2 =
∑r

j=1 V2
o,i,j ≤ n

ϵ2δn2 = 1
ϵ2δn . ◀

Let S̄ ∈ Rn×|S| be the scaled sampling matrix satisfying S̄T AS̄ = n
s · AS . We next apply

Lemma 11 in conjunction with a matrix Bernstein bound to show that Λ1/2
o VT

o S̄S̄T VoΛ1/2
o

concentrates around its expectation, Λo. Since by Fact 1, this matrix has identical eigenvalues
to n

s ·Ao,S = S̄T VoΛoVT
o S̄, this allows us to argue that the eigenvalues of n

s ·Ao,S approximate
those of Λo.

▶ Lemma 12 (Concentration of outlying eigenvalues). Let S ⊆ [n] be sampled as in Algorithm
1 for s ≥ c log(1/(ϵδ))

ϵ3
√

δ
where c is a sufficiently large constant. Let S̄ ∈ Rn×|S| be the scaled

sampling matrix satisfying S̄T AS̄ = n
s · AS. Letting Λo, Vo be as in Definition 5, with

probability at least 1 − δ,

∥Λ1/2
o VT

o S̄S̄T VoΛ1/2
o − Λo∥2 ≤ ϵn.

Proof. Define E = Λ1/2
o VT

o S̄S̄T VoΛ1/2
o − Λo. For all i ∈ [n], let Vo,i be the ith row of Vo

and define the matrix valued random variable

Yi =
{

n
s Λ1/2

o Vo,iVT
o,iΛ

1/2
o , with probability s/n

0 otherwise.
(4)

Define Qi = Yi − E [Yi]. Observe that Q1, . . . , Qn are independent random variables
and that

∑n
i=1 Qi = Λ1/2

o VT
o S̄S̄T VoΛ1/2

o − Λo = E. Further, observe that ∥Qi∥2 ≤
max

(
1, n

s − 1
)

· ∥Λ1/2
o Vo,iVT

o,iΛ
1/2
o ∥2 ≤ max

(
1, n

s − 1
)

· ∥Λ1/2
o Vo,i∥2

2. Now, ∥Λ1/2
o Vo,i∥2

2 ≤
1

ϵ
√

δ
by Lemma 11. Thus, ∥Qi∥2 ≤ n

ϵ
√

δs
. The variance Var(E) def= E(EET ) = E(ET E) =∑n

i=1 E[Q2
i ] can be bounded as:

n∑
i=1

E[Q2
i ] =

n∑
i=1

[
s

n
·
(n

s
− 1
)2

+
(

1 − s

n

)]
· (Λ1/2

o Vo,iVT
o,iΛoVo,iVT

o,iΛ1/2
o )

⪯
n∑

i=1

n

s
· ∥Λ1/2

o Vo,i∥2
2 · (Λ1/2

o Vo,iVT
o,iΛ1/2

o ). (5)

Again by Lemma 11, ∥Λ1/2
o Vo,i∥2

2 ≤ 1
ϵ
√

δ
. Plugging back into (5) we can bound,

n∑
i=1

E[Q2
i ] ⪯

n∑
i=1

n

s
· 1

ϵ
√

δ
· (Λ1/2

o Vo,iVT
o,iΛ1/2

o ) = n

sϵ
√

δ
Λo ⪯ n2

sϵ
√

δ
· I.
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Since Q2
i is PSD, this establishes that ∥Var(E)∥2 ≤ n2

sϵ
√

δ
. We then apply Theorem 9 (the

matrix Bernstein inequality) with L = n
sϵ

√
δ
, v = n2

sϵ
√

δ
, and d ≤ 1

ϵ2δ since there are at most
∥A∥2

F

δϵ2n2 ≤ 1
ϵ2δ outlying eigenvalues with magnitude ≥

√
δϵn in Λo. This gives:

P (∥E∥2 ≥ ϵn) ≤ 2
ϵ2δ

· exp
(

−ϵ2n2/2
v + Lϵn/3

)
≤ 2

ϵ2δ
· exp

(
−ϵ2n2/2

n2

sϵ
√

δ
+ ϵn2

3sϵ
√

δ

)

≤ 2
ϵ2δ

· exp
(

−sϵ3
√

δ

4

)
.

Thus, if we set s ≥ c log(1/(ϵδ))
ϵ3

√
δ

for large enough c, then the probability is bounded above by
δ, completing the proof. ◀

We cannot prove an analogous leverage score bound to Lemma 11 for the interior
eigenvectors of A appearing in Vm. Thus we cannot apply a matrix Bernstein bound as in
Lemma 12. However, we can use Theorem 6 to show that the spectral norm of the random
principal submatrix Am,S is not too large, and thus that the eigenvalues of AS = Ao,S +Am,S

are close to those of Ao,S .

▶ Lemma 13 (Spectral norm bound – sampled middle eigenvalues). Let A ∈ Rn×n be symmetric
with ∥A∥∞ ≤ 1. Let Am be as in Definition 5. Let S be sampled as in Algorithm 1.
If s ≥ c log n

ϵ2δ for some sufficiently large constant c, then with probability at least 1 − δ,
∥Am,S∥2 ≤ ϵs.

Proof. Let Am = Dm +Hm where Dm is the matrix of diagonal elements and Hm the matrix
of off-diagonal elements. Let S ∈ Rn×|S| be the binary sampling matrix with Am,S = ST AmS.
From Theorem 6, we have for some constant C,

E2[∥Am,S∥2] ≤ C

[
log n·E2[∥ST HmS∥∞]+

√
s log n

n
E2[∥HmS∥1→2]+ s

n
∥Hm∥2

]
+E2[∥ST DmS∥].

(6)

Considering the various terms in (6), we have ∥ST HmS∥∞ ≤ ∥Am∥∞ and ∥ST DmS∥2 =
∥ST DmS∥∞ ≤ ∥Am∥∞. We also have

∥Hm∥2 ≤ ∥Am∥2 + ∥Dm∥2 ≤ ∥Am∥2 + ∥Am∥∞ ≤ ϵδ1/2n + ∥Am∥∞

and

∥HmS∥1→2 ≤ ∥AmS∥1→2 ≤ ∥Am∥1→2 ≤
√

n.

The final bound follows since Am = VmVT
mA, where VmVT

m is an orthogonal projection
matrix. Thus, ∥Am∥1→2 ≤ ∥A∥1→2 ≤

√
n by our assumption that ∥A∥∞ ≤ 1. Plugging all

these bounds into (6) we have, for some constant C,

E2[∥Am,S∥2] ≤ C

[
log n · ∥Am∥∞ +

√
log n · s + s · ϵδ1/2

]
. (7)

It remains to bound ∥Am∥∞. We have A = Am + Ao and thus by triangle inequality,

∥Am∥∞ ≤ ∥A∥∞ + ∥Ao∥∞ = 1 + ∥Ao∥∞. (8)
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Writing Ao = VoΛoVT
o (see Definition 5), and letting Vo,i denote the ith row of Vo, the

(i, j)th element of Ao has magnitude

|Ao,i,j | = |Vo,iΛoVT
o,j | ≤ ∥Vo,i∥2 · ∥ΛoVT

o,j∥2,

by Cauchy-Schwarz. From Lemma 11, we have ∥Vo,i∥2 ≤ 1
ϵδ1/2√

n
. Also, from (2),

∥ΛoVT
o,j∥2 = ∥[AVo]j∥2 ≤

√
n. Overall, for all i, j we have Ao,i,j ≤ 1

ϵδ1/2√
n

·
√

n = 1
ϵδ1/2 ,

giving ∥Ao∥∞ ≤ 1
ϵδ1/2 . Plugging back into (8) and in turn (7), we have for some constant C,

E2[∥Am,S∥2] ≤ C

[
log n

ϵδ1/2 +
√

s log n + sϵδ1/2
]
.

Setting s ≥ c log n
ϵ2δ for sufficiently large c, all terms in the right hand side of the above equation

are bounded by ϵ
√

δs and so

E2[∥Am,S∥2] ≤ 3ϵ
√

δs

Thus, by Markov’s inequality, with probability at least 1 − δ, we have ∥Am,S∥2 ≤ 3ϵs. We
can adjust ϵ by a constant to obtain the required bound. ◀

3.2 Main Accuracy Bounds
We now restate our main result, and give its proof via Lemmas 12 and 13.

▶ Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each
index independently with probability s/n as in Algorithm 1. Let AS be the corresponding
principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with

λi(AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If

s ≥ c log(1/(ϵδ))·log3 n
ϵ3δ , for large enough constant c, then with probability ≥ 1 − δ, for all i ∈ [n],

λi(A) − ϵn ≤ λ̃i(A) ≤ λi(A) + ϵn.

Proof. Let S ∈ Rn×|S| be the binary sampling matrix with a single one in each column such
that ST AS = AS . Let S̄ =

√
n/s · S. Following Definition 5, we write A = Ao + Am. By

Fact 1 we have that the nonzero eigenvalues of n
s · Ao,S = S̄T VoΛoVT

o S̄ are identical to those
of Λ1/2

o VT
o S̄S̄T VoΛ1/2

o where Λ1/2
o is the square root matrix of Λo such that Λ1/2

o Λ1/2
o = Λo.

Note that Λo is Hermitian. However Λ1/2
o may be complex, and hence Λ1/2

o VT
o S̄S̄T VoΛ1/2

o

is not necessarily Hermitian, although it does have real eigenvalues. Thus, we can apply the
perturbation bound of Fact 4 to Λo and Λ1/2

o VT
o S̄S̄T VoΛ1/2

o to claim for all i ∈ [n], and
some constant C,

|λi(Λ1/2
o VT

o S̄S̄T VoΛ1/2
o ) − λi(Λo)| ≤ C log n∥Λ1/2

o VT
o S̄S̄T VoΛ1/2

o − Λo∥2.

By Lemma 12 applied with error ϵ
2C log n , with probability at least 1 − δ, for any s ≥

c log(1/(ϵδ))·log3 n

ϵ3
√

δ
(for a large enough constant c) we have ∥Λ1/2

o VT
o S̄S̄T VoΛ1/2

o − Λo∥2 ≤
ϵn

2C log n . Thus, for all i,∣∣∣λi(Λ1/2
o VT

o S̄S̄T VoΛ1/2
o ) − λi(Λo)

∣∣∣ <
ϵn

2 . (9)

We note that the conceptual part of the proof is essentially complete: the nonzero eigenvalues
of n

s ·Ao,S are identical to those of Λ1/2
o VT

o S̄S̄T VoΛ1/2
o , which we have shown well approximate

those of Λo and in turn Ao. i.e., the non-zero eigenvalues of n
s ·Ao,S approximate all outlying
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eigenvalues of A. It remains to carefully argue how these approximations should be “lined
up” given the presence of zero eigenvalues in the spectrum of these matrices. We also must
account for the impact of the interior eigenvalues in Am,S , which is limited by the spectral
norm bound of Lemma 13. The rest of the argument is completed in Theorem 1 of [10]. ◀

▶ Remark. The proof of Lemma 12 and consequently, Theorem 1 can be modified to give
better bounds for the case when the eigenvalues of Ao lie in a bounded range – between
ϵa

√
δn and ϵbn where 0 ≤ b ≤ a ≤ 1. See Theorem 9 in Appendix C of [10] for details. For

example, if all the top eigenvalues are equal, one can show that s = Õ
(

log2 n
ϵ2

)
suffices to give

±ϵn error, nearly matching the lower bound of [5]. This indicates that improving Theorem 1
in general requires tackling the case when the outlying eigenvalues in Λo have a wide range.

4 Conclusion

We present efficient algorithms for estimating all eigenvalues of a symmetric matrix with
bounded entries up to additive error ϵn, by reading just a poly(log n, 1/ϵ) × poly(log n, 1/ϵ)
random principal submatrix. We give improved error bounds of ϵ

√
nnz(A) and ϵ∥A∥F when

the rows/columns are sampled with probabilities proportional to their sparsities or squared
ℓ2 norms, respectively (see Section 4 and Appendix E of [10]). We also perform numerical
simulations which demonstrate the effectiveness of our algorithms in practice (see Section 5
of [10]).

Our work leaves several open questions. In particular, it is open if our query complexity
for ±ϵn approximation can be improved, possibly to Õ(logc n/ϵ4) total entries using principal
submatrix queries or Õ(logc /ϵ2) entries using general queries. The later bound is open
even when A is PSD, a setting where we know that sampling a O(1/ϵ2) × O(1/ϵ2) principal
submatrix (with O(1/ϵ4) total entries) does suffice. Additionally, it is open if we can achieve
sample complexity independent of n, by removing all log n factors, as have been done for
the easier problem of testing positive semidefiniteness [5]. See Section 1.4 for more details.
Finally, it would be interesting to identify additional assumptions on A or on the sampling
model where stronger approximation guarantees (e.g., relative error) can be achieved in
sublinear time.
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