
Fault-Tolerant ST-Diameter Oracles
Davide Bilò #

Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy

Keerti Choudhary #

Department of Computer Science and Engineering, Indian Institute of Technology Delhi, India

Sarel Cohen #

School of Computer Science, Tel-Aviv-Yaffo Academic College, Israel

Tobias Friedrich #

Hasso Plattner Institute, Universität Potsdam, Germany

Simon Krogmann #

Hasso Plattner Institute, Universität Potsdam, Germany

Martin Schirneck #

Faculty of Computer Science, Universität Wien, Austria

Abstract
We study the problem of estimating the ST -diameter of a graph that is subject to a bounded number
of edge failures. An f-edge fault-tolerant ST -diameter oracle (f -FDO-ST) is a data structure that
preprocesses a given graph G, two sets of vertices S, T , and positive integer f . When queried with a
set F of at most f edges, the oracle returns an estimate D̂ of the ST -diameter diam(G−F, S, T),
the maximum distance between vertices in S and T in G − F . The oracle has stretch σ ⩾ 1 if
diam(G−F, S, T) ⩽ D̂ ⩽ σ diam(G−F, S, T). If S and T both contain all vertices, the data structure
is called an f -edge fault-tolerant diameter oracle (f -FDO). An f -edge fault-tolerant distance sensitivity
oracles (f -DSO) estimates the pairwise graph distances under up to f failures.

We design new f -FDOs and f -FDO-ST s by reducing their construction to that of all-pairs
and single-source f -DSOs. We obtain several new tradeoffs between the size of the data structure,
stretch guarantee, query and preprocessing times for diameter oracles by combining our black-box
reductions with known results from the literature.

We also provide an information-theoretic lower bound on the space requirement of approximate
f -FDOs. We show that there exists a family of graphs for which any f -FDO with sensitivity f ⩾ 2
and stretch less than 5/3 requires Ω(n3/2) bits of space, regardless of the query time.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Data structures design and analysis; Theory of computation → Cell probe models and lower
bounds

Keywords and phrases diameter oracles, distance sensitivity oracles, space lower bounds, fault-
tolerant data structures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.24

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.03697

1 Introduction

The diameter, i.e., the largest distance between any two vertices, is one of the most fun-
damental graph parameters for it measures how fast information can spread in a network.
The problem of approximating the diameter of a given graph in a time-efficient manner has
been extensively studied [1, 3, 4, 25, 26, 27, 43, 44, 45]. Here, we investigate the diameter
computation problem in the fault-tolerant model. The interest in this setting stems from the

EA
T

C
S

© Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, and
Martin Schirneck;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@univaq.it
https://orcid.org/0000-0003-3169-4300
mailto:keerti@iitd.ac.in
https://orcid.org/0000-0002-8289-5930
mailto:sarelco@mta.ac.il
https://orcid.org/0000-0003-4578-1245
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:simon.krogmann@hpi.de
https://orcid.org/0000-0001-6577-6756
mailto:martin.schirneck@univie.ac.at
https://orcid.org/0000-0001-7086-5577
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://arxiv.org/abs/2305.03697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Fault-Tolerant ST-Diameter Oracles

fact that most real-world networks are prone to errors. These failures, though unpredictable,
are transient due to some simultaneous repair process that is undertaken in these applications.
This has motivated the research on designing fault-tolerant oracles for various graph problems
in the past decade. An f -edge/vertex fault-tolerant oracle is a compact data structure that
can quickly report the desired solution or graph property of the network on occurrence of up
to f edge/vertex failures. The parameter f that describes the degree of robustness against
errors is known as the sensitivity of the oracle. A lot of work has been done in designing
fault-tolerant structures for various problems like connectivity [20, 32, 33], finding shortest
paths [2, 12, 36], and distance sensitivity oracles [5, 7, 14, 24, 30, 31, 34, 47].

While the fault-tolerant model has been studied a lot for distances, the landscape of
fault-tolerant diameter oracles is far less explored. For a given graph G = (V, E) and
two sets S, T ⊆ V of vertices, an f-edge fault-tolerant diameter oracle (f -FDO-ST) is a
data structure that stores information about G after a preprocessing step. When queried
with a set F of at most f edges, the oracle returns an upper bound of the ST -diameter
diam(G − F, S, T) = maxs∈S,t∈T dG−F (s, t) of G − F . This is the maximum among all s-t-
distances for s ∈ S and t ∈ T under the condition that none of the shortest paths can use an
edge in the query set F . We say that the oracle has a stretch of σ ⩾ 1 if the value D̂ returned
upon query F satisfies diam(G − F, S, T) ⩽ D̂ ⩽ σ diam(G − F, S, T). When S = T = V ,
the data structure is called an f -edge fault-tolerant diameter oracle (f -FDO).

The problem of designing f -FDOs was originally raised by Henzinger, Lincoln, Neumann,
and Vassilevska Williams [40] and has recently been studied by Bilò, Cohen, Friedrich, and
Schirneck [17] and the same authors together with Choudhary [15], see also Section 1.1.

The problem of designing f -FDO-ST can be seen as a generalisation of the Bichromatic
Diameter, a problem in which the two sets S and T form a partition of V . The latter
problem is motivated by several related, well-studied problems in computational geometry,
e.g., Bichromatic Diameter on point sets (commonly known as Bichromatic Farthest Pair),
where one seeks to determine the farthest pair of points in a given set of points in space.
The problem of Bichromatic Diameter was studied by Dalirrooyfard, Vassilevska Williams,
Vyas, and Wein [28].

Given the plethora of work on distance oracles and the close connection between the
distance and the diameter problem, a natural question is if we can convert the results on
distance computation under failures into analogous oracles for the diameter without sacrificing
much on our performance parameters.

▶ Question. Are there black-box reductions from fault-tolerant diameter oracles to fault-
tolerant distance oracles without considerable overhead in stretch, query time, and space?

In this work, we present several such reductions and, from them, conclude trade-offs
between the space, stretch, preprocessing, and query time for diameter oracles. In more
detail, our techniques for obtaining upper bounds is by presenting reductions to the problem
of constructing f-edge fault-tolerant distance sensitivity oracles (f -DSOs) in two widely
studied categories. The all-pairs variant can be queried with any pair of vertices s, t ∈ V

and set F ⊆ E of f failures and reports (an estimate) of the distance dG−F (s, t) between
s and t in G − F . In the single-source variant, the source s is fixed and the set of allowed
queries consists of the target vertices t together with a set F of failures.

For the regular diameter (S = T = V), we provide two theorems showing that both
all-pairs and single-source f -DSOs can be used to construct f -FDOs.

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:3

Table 1 Properties of the f -FDOs obtained via Theorem 1 using all-pairs f -DSOs from the
literature. The applicable graph class (un-/directed, un-/weighted) is determined by the f -DSO. W

denotes the maximum edge weight for graphs with arbitrary positive weights, M is the maximum
edge weight for integer weighted graphs. The parameter k ⩾ 1 is a positive integer, ε > 0 a
positive real, α ∈ [0, 1] is a real number in the unit interval, and ω < 2.37286 denotes the matrix
multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 2 Õ(n2) O(1) Õ(mn) [10, 11]

1 2 Õ(n2) O(1) Õ(n2.5794M + mn) [37]

1 1 + (2k − 1)(1 + ε) Õ(k5n1+1/k ε−4) O(k) O(kmn1+1/k) [8]

2 2 Õ(n2) Õ(1) poly(n) [32]

f = o(log n
log log n

) 2 Õ(n3−α) Õ(f2n2−(1−α)/f) O(nω+1−αM) [47]

f = o(log n
log log n

) 2 + ε O(fn2+o(1)(log W)ε−f) Õ(f7 log log W) O(fn5+o(1)(log W)ε−f) [23]

f ⩾ 1 2 O(fn4) fO(f) nO(f) [34]

f ⩾ 1 2 O(n2+αM) Õ(f4n2−αM + f2+ωnM) Õ(nω+(3−ω)αM + mn) [18]

f ⩾ 1 1 + (8k − 2)(f + 1) O
(
fkn1+1/k log (nW)

)
Õ(f3) poly(n) [24]

▶ Theorem 1. Let G be a (undirected or directed) graph with n vertices, m edges, and possibly
positive edge weights. Given access to an f-DSO D for G with stretch σ ⩾ 1, preprocessing
time P, space S, and query time Q, one can construct an f-FDO for G with stretch 1 + σ,
preprocessing time O(P + mn log n), space O(S), and query time O(f2Q).

In Section 1.2, we review existing all-pairs f -DSOs. By applying the reduction stated in
Theorem 1 we obtain new f -FDOs as listed in Table 1.

The following theorem shows how we can use the single-source variant of distance
sensitivity oracles to construct f -FDOs.

▶ Theorem 2. Let G be a (undirected or directed) graph with n vertices, m edges, and
possibly positive edge weights. Given access to a single-source f-DSO D for G with stretch
σ ⩾ 1, preprocessing time P, space S, and query time Q, one can construct an f -FDO for G

with stretch 2(1 + σ), preprocessing time O(P), space O(S), and query time O(fQ).

Section 1.3 discusses single-source f -DSOs from the literature. Together with Theorem 2
they give new f -FDOs, summarized in Table 2.

The main technical contribution of this work, however, is a novel fault-tolerant data
structure for the more general ST -diameter problem that was introduced and studied in
recent years. For example, Backurs, Roditty, Segal, Vassilevska Williams, and Wein [4] proved
that for any undirected graph one can compute a 3-approximation of the ST -diameter in
O(mn) time. They also provided a randomized algorithm that computes a 2-approximation
of the ST -diameter in Õ(m

√
n) time.1 Dalirrooyfard, Vassilevska Williams, Vyas, and

Wein [28] studied the problem of computing the bi-chromatic ST -diameter, the special case
of ST -diameter problem where the sets S and T form a partition of V . Similar to f -FDOs,
we explore the problem of designing compact oracles that report the ST -diameter of a graph
after occurrences of up to f failures. We present reductions between f -DSOs and f -FDO-ST s,
as stated in the following theorem. To the best of our knowledge, our paper is the first work
that provides some results on f -FDO-ST s, for general values of f .

1 For a non-negative function g(n, m, f), we write Õ(g) for O(g · polylog(n)).

ICALP 2023

24:4 Fault-Tolerant ST-Diameter Oracles

Table 2 Properties of the f -FDOs obtained via Theorem 2 using single-source f -DSOs from the
literature. The applicable graph class (un-/directed, un-/weighted) is determined by the single-source
f -DSO. W denotes the maximum edge weight for graphs with arbitrary positive weights, M is the
maximum edge weight for integer weighted graphs. The parameter ε > 0 is a positive real and
ω < 2.37286 denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 4 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 4 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 4 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 6 O(n) O(1) Õ(mn) [13]

f ⩾ 1 4f + 4 Õ(fn) Õ(f3) Õ(fm) [14]

▶ Theorem 3. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T ⊆ V be two non-empty sets. Given access to an f -DSO for G

with stretch σ ⩾ 1, preprocessing time P, space S, and query time Q, one can compute an f -
FDO-ST for G with preprocessing time P + Õ(mn + n|S||T |) and stretch 1 + 3σ. Additionally,
the f -FDO-ST has the following properties.

If the sensitivity is f = o(log n), the oracle requires S + O(n3/2 (2f + log n)) space and
has a query time of O(f2 (2f + Q)).

If f = Ω(log n), the oracle requires S + O(n2) space and has a query time of O(f2(f + Q)).

Some more remarks on the preprocessing time stated in Theorem 3 may be in order.
The reduction itself takes time P + O(mn + n2 log n + n|S||T |) to compute but requires
that the shortest paths in G are unique. The total preprocessing time depends on how this
condition is achieved. It is always possible to guarantee unique shortest paths either by
randomly perturbing the edge weights with sufficiently small values, see [41], or by using a
more complex deterministic method, also known as lexicographic perturbation [19, 21, 39].
While the first method increases the preprocessing only by a constant factor, it makes the
preprocessing procedure randomized. Lexicographic perturbation, in turn, increases the time
by an additive O(mn + n2 log2 n) term [19]. By applying the reduction stated in Theorem 3
to existing all-pairs f -DSOs we obtain the f -FDOs listed in Table 3.

In addition, we present improved constructions of f -FDO-ST s for the important case of
a single source or target, i.e., when |S| = 1 or |T | = 1, or when one is only given access to
single-source f -DSOs. In the following, for the sake of readability, when S = {s}, we will use
“sT -diameter” instead of “ST -diameter” or “{s}T -diameter”, same for the oracles.

▶ Theorem 4. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let s ∈ V be a vertex and T ⊆ V a non-empty set. Given a single-
source f -DSO for G with preprocessing time P, space S, query time Q, and stretch σ, one can
compute an f-FDO-sT for G with preprocessing time P + O(m + n log n), space S + O(n),
query time O(f2 + fQ), and stretch 1 + 2σ. For unweighted graphs, the preprocessing time
can be improved to P + O(m).

Table 4 shows the f -fault-tolerant sT -diameter-oracle obtained from Theorem 4.

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:5

Table 3 Properties of the f -FDO-ST for undirected graphs obtained via Theorem 3 using all-pairs
f -DSOs from the literature. The preprocessing time is omitted due to space reasons. W denotes the
maximum edge weight for graphs with arbitrary positive weights, M is the maximum edge weight for
integer weighted graphs. The parameter k ⩾ 1 is a positive integer, ε > 0 a positive real, α ∈ [0, 1]
is a real number in the unit interval, and ω < 2.37286 denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time Ref.

1 4 Õ(n2) O(1) [10, 11, 37]

1 1 + (6k − 3)(1 + ε) Õ(n3/2 + k5n1+1/k ε−4) O(1) [8]

2 4 Õ(n2) Õ(1) [32]

f = o(log n
log log n

) 4 Õ(n3−α) Õ(f2n2−(1−α)/f) [47]

f = o(log n
log log n

) 4 + ε O(fn2+o(1)(log W)ε−f) Õ(f2 2f + f7 log log W) [23]

f = o(log n) 4 O(n2+αM) Õ(f4n2−αM + f2+ωnM) [18]

f = o(log n) 4 O(fn4) fO(f) [34]

f = o(log n) 1 + (24k − 6)(f + 1) O(n3/2+o(1) + fkn1+1/k log (nW)) Õ(f2 2f) [24]

Table 4 Properties of the f -FDO-sT for undirected graphs obtained via Theorem 4 using single-
source f -DSOs from the literature.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 3 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 3 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 3 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 5 O(n) O(1) Õ(mn) [13]

f ⩾ 1 4f + 3 Õ(fn) Õ(f3) Õ(fm) [14]

▶ Theorem 5. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T be two non-empty subsets of V . Given a single-source f -DSO
for G with preprocessing time P, space S, query time Q, and stretch σ, one can compute an
f-FDO-ST for G with preprocessing time O(P + m+n log n), space O(S + n), query time
O(f2 +fQ), and stretch 2+5σ. For unweighted graphs, the preprocessing time can be improved
to O(P + m)

Table 5 corresponds to the oracles obtained via Theorem 5.
We also prove an information-theoretic lower bound on the space requirement of approxi-

mate f -FDOs that support f ⩾ 2 edge failures. Note that the lower bound in Theorem 6
holds independently of the query time. It is known from work of Bilò, Cohen, Friedrich, and
Schirneck [17] that f -FDOs with stretch σ < 1.5 require Ω(n2) bits of space, and in our work
we complement this result by proving that f -FDOs with stretch σ < 5/3 require Ω(n1.5)
bits of space. Obtaining Ω(n2) lower bound for f -FDOs with stretch σ < 2 for undirected
unweighted graphs is an interesting open problem.

▶ Theorem 6. Let n be a positive integer. Any f-FDO or f-FDO-ST for n-vertex graphs
with sensitivity f ⩾ 2 and stretch 5

3 − ε for any ε > 0 requires Ω(n3/2) bits of space.

ICALP 2023

24:6 Fault-Tolerant ST-Diameter Oracles

Table 5 Properties of the fault-tolerant ST -diameter oracles (f -FDO-ST) obtained via the
reduction in Theorem 5 using single-source distance sensitivity oracles (f -DSOs) from the literature.
W denotes the maximum edge weight for graphs with arbitrary positive weights, M is the maximum
edge weight for integer weighted graphs. The parameter ε > 0 is a positive real and ω < 2.37286
denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 7 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 7 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 7 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 12 O(n) O(1) Õ(mn) [13]

f ⩾ 1 10f + 7 Õ(fn) Õ(f3) Õ(fm) [14]

Outline. This work is structured as follows. In the remainder of this section, we review
the literature focusing on diameter oracles and distance sensitivity oracles. We then fix
our notations and some preliminaries in Section 2. Section 3 presents our constructions of
f -FDO-ST, for the general case of S, T ⊆ V . In Section 4 we consider the special case of a
single source, that is, of f -FDO-sT . In Section 5 we prove the space lower bound. The proofs
of Theorems 1 and 2 follow from similar ideas as discussed in Section 3 and are deferred to
the full version of the paper.

1.1 Related Work on Fault-Tolerant Diameter Oracles
Fault-tolerant diameter oracles were introduced by Henzinger, Lincoln, Neumann, and
Vassilevska Williams [40]. They showed that for a single failure in unweighted directed
graphs, one can compute in time Õ(mn + n1.5

√
Dm/ε), where ε ∈ (0, 1] and D is the

diameter of the graph, a 1-FDO with 1 + ε stretch that has O(m) space, constant query time.
Bilò, Cohen, Friedrich, and Schirneck [17] showed that one can improve the preprocessing time
to Õ(mn + n2/ε), which is nearly optimal under certain conditional hardness assumptions
for combinatorial algorithms (see [40]). They also showed that fast matrix multiplication
reduces the preprocessing time for dense graphs to Õ(n2.5794 + n2/ε).

Bilò, Choudhary, Cohen, Friedrich, and Schirneck [15] addressed the problem of computing
1-FDOs with o(m) space. They showed that for unweighted directed graphs with diameter
D = ω(n5/6), there is a 1-FDO with Õ(n) space, 1 + n5/6

D = 1 + o(1) stretch, and O(1) query
time. It has a preprocessing time of O(mn). In the same work it was also shown that for
graphs with diameter D = ω((n4/3 log n)/(ε

√
m)) and any ε > 0, there is a (1 + ε)-stretch

1-FDO, with preprocessing time O(mn), space o(m), and constant query time.
For undirected graphs the space requirement can be reduced. There is a folklore con-

struction that combines the DSO by Bernstein and Karger [11] with the observation that in
undirected graphs the eccentricity of an arbitrary vertex is a 2-approximation of the diameter.
This results in an 1-FDO with stretch 2 and constant query time that takes only O(n) space,
details can be found in [17, 40].

For f > 1 edge failures in undirected graphs with non-negative edge weights, Bilò et al. [17]
presented an f -FDO with (f + 2) stretch, O(f2 log2 n) query time, Õ(fn) space, and Õ(fm)
preprocessing time. A lower bound in that work showed that f -FDO with finite stretch must
have Ω(fn) space, nearly matching their construction.

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:7

Table 6 Existing f -sensitive all-pairs distance oracles for undirected graphs. The parameter
k ⩾ 1 is a positive integer, ε > 0 a positive real, α ∈ [0, 1] is a real number in the unit interval, and
ω < 2.37286 denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 1 Õ(n2) O(1) Õ(mn) [10, 11]

1 1 Õ(n2) O(1) Õ(n2.5794M) [37]

1 (2k − 1)(1 + ε) Õ(k5n1+1/k ε−4) O(k) O(kmn1+1/k) [8]

2 1 Õ(n2) Õ(1) poly(n) [32]

f = o(log n
log log n

) 1 Õ(n3−α) Õ(n2−(1−α)/f) O(nω+1−αM) [47]

f = o(log n
log log n

) 1 + ε O(fn2+o(1)(log W)ε−f) Õ(f5 log log W) O(fn5+o(1)(log W)ε−f) [23]

f ⩾ 1 1 O(fn4) fO(f) nO(f) [34]

f ⩾ 1 1 O(n2+αM) Õ(f2n2−αM + fωnM) Õ(nω+(3−ω)αM) [18]

f ⩾ 1 (8k − 2)(f + 1) O
(
fkn1+1/k log (nW)

)
Õ(f3) poly(n) [24]

We are not aware of any O(n)-sized, constant-stretch FDOs for directed graphs with
arbitrary diameter in the literature prior to this work, not even for sensitivity (f = 1). Also,
no non-trivial f -FDOs with o(f)-stretch were known. To the best of our knowledge, we are
the first to study the problem of general f -FDO-ST s with S, T ̸= V .

We now discuss the known information-theoretic lower bounds for FDOs. Bilò, Cohen,
Friedrich, Schirneck [17] showed that any FDO with stretch σ < 3/2 for undirected unweighted
graphs requires Ω(m) bits of space, even for f = 1. They also extended the same lower
bound of Ω(m) bits to edge-weighted graphs and σ < 2. Bilò, Choudhary, Cohen, Friedrich,
and Schirneck [15] extended this result to directed graphs. In particular, they showed that
for directed unweighted graphs with diameter D = O(

√
n /m), any FDO with stretch better

than
(3

2 − 1
D

)
requires Ω(m) bits of space. They further proved that for directed graphs any

f -FDO requires Ω(2f/2n) bits of space, as long as 2f/2 = O(n).

1.2 All-Pairs Distance Sensitivity Oracles
The first distance-sensitive oracle was in the context of directed graphs [29]. It maintained
exact distances and was capable of handling a single edge failure. The space requirement
of this oracle is O(n2 log n) and its query time is O(log n). This was later generalized
to handle a single vertex or edge failure in [30]. Demetrescu, Thorup, Chowdhury, and
Ramachandran [30] presented an exact 1-sensitive distance oracle of size O(n2 log n), O(1)
query time and Õ(mn2) preprocessing time. Later, in two consecutive papers, Bernstein and
Karger improved the preprocessing time (while keeping the space and query time unchanged),
first to O(n2√

m) in [10] and then to Õ(mn) in [11]. Baswana and Khanna [8] considered
approximate 1-DSOs for unweighted graphs. More precisely, they presented a data structure
of size O(k5n1+1/k log3 n

ε4), (2k − 1)(1 + ε) stretch and O(k) query time. Duan and Pettie [32]
considered the case of two failures (vertices or edges) with exact distances. The size of their
oracle is O(n2 log3 n), the query time is O(log n) and the construction time is polynomial.

Using fast matrix multiplication, Weimann and Yuster [47] presented, for any parameter
α ∈ [0, 1], a DSO that can handle up to O(log n/ log log n) edges or vertices failures with
Õ(n2−(1−α)/f) query time and O(Mnω+1−α) preprocessing time for directed graphs with
integer weights in the range [−M, M], where ω < 2.373 is the matrix multiplication exponent.
In [35], Grandoni and Vassilevska Williams presented a distance sensitivity oracle with

ICALP 2023

24:8 Fault-Tolerant ST-Diameter Oracles

Table 7 Existing f -sensitive single-source distance oracles for undirected graphs W denotes the
maximum edge weight for graphs with arbitrary positive weights, M is the maximum edge weight
for integer weighted graphs. The parameter ε > 0 is a positive real and ω < 2.37286 denotes the
matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 1 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 1 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 1 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 2 O(n) O(1) Õ(mn) [13]

f ⩾ 1 2f + 1 Õ(fn) Õ(f2) Õ(fm) [14]

subcubic Õ(Mnω+1/2 + Mnω+α(4−ω)) preprocessing time and sublinear Õ(n1−α) query time.
Van den Brand and Saranurak [18] presented a distance-sensitive oracle that can handle
f ⩾ log n updates (where an update is an edge insertion or deletion), with Õ(Mnω+(3−ω)µ)
preprocessing time, Õ(Mn2−µf2 + Mnfω) update time, and Õ(Mn2−µf + Mnf2) query
time, where the parameter µ ∈ [0, 1] can be chosen. Chechik and Cohen [22] presented a
1-DSO with with subcubic Õ(Mn2.873) preprocessing time and Õ(1) query time. This was
improved by Ren [42] and later by Gu and Ren [37], who obtained a 1-DSO with Õ(Mn2.5794)
preprocessing time and constant query time. Recently Duan and Ren [34] presented an exact
f -DSO with O(fn4) space, fO(f) query time, and nO(f) preprocessing time.

In Table 6 we summarize several of the above f -DSOs for undirected graphs.

1.3 Related Work on Single-Source Distance Sensitivity Oracles

First, we discuss undirected graphs. Baswana and Khanna [8] showed that unweighted
undirected graphs can be preprocessed in O(m

√
n/ε) time to compute a (1 + ε)-stretch

single-source edge/vertex fault-tolerant distance-oracle of size O(n log n + n/ε3) and constant
query time. For weighted graphs, they showed the construction of an O(n log n) size oracle
which can report 3-approximate distances on single failure in O(1) time. Bilò, Gualà, Leucci,
and Proietti [13] showed that for a single edge failure in weighted graphs we can compute an
O(n)-size oracle with stretch 2 and constant query time. Also, a construction is provided
that has 1 + ε stretch, with O

(
ε−1n log(1/ε)

)
size and O

(
ε−1 log n log(1/ε)

)
query time. All

the results stated till now are for a single edge or vertex failure only. For multiple failures,
Bilò, Gualà, Leucci, and Proietti [14] gave a construction of size O(fn log2 n), computable in
Õ(mf) time that reports (2f + 1)-stretched distances in O(f2 log2 n) time.

Bilò, Cohen, Friedrich, and Schirneck [16] presented several additional single-source DSOs.
For undirected unweighted graphs, they presented a single-source DSO that has size O(n3/2),
query time Õ(1) and Õ(m

√
n + n2) preprocessing time. For graphs with integer edge weights

in the range [1, M] and using fast matrix multiplication, they presented a single-source DSO
with O(M1/2n3/2) space, Õ(1) query time and Õ(Mnω) preprocessing time. For sparse
graphs with m = O(M3/7n7/4) they presented a single-source DSO with the same size, Õ(1)
query time, and subquadratic Õ(M7/8m1/2n11/8) preprocessing time.

For directed graphs, Baswana, Choudhary, Hussain, and Roditty [5] showed that we
can preprocess directed weighted graphs with edge weights in range [1, W] to compute an
oracle of Õ(ε−1n log W) size that reports (1 + ε)-approximate distances on single edge/vertex

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:9

failure in Õ(log log1+ε(nW)) time. Gupta and Singh [38] designed exact distance oracles of
Õ(n3/2) size that on single edge/vertex failure in directed/undirected unweighted graphs
reports distances in Õ(1) time. In Table 7 we summarize several of the above f -DSOs for
undirected graphs.

2 Preliminaries

For a given graph G = (V, E), possibly with positive edge weights, we denote by dG(u, v)
the distance in G from vertex u ∈ V to vertex v ∈ V . Given two non-empty subsets
S, T ⊆ V , the ST -diameter of G is defined as diam(G, S, T) = maxs∈S,t∈T dG(s, t). With
a little abuse of notation, when S = {s} (resp., T = {t}), we also use diam(G, s, T) (resp.,
diam(G, S, t)) as a shorthand of diam(G, {s}, T) (resp., diam(G, S, {t})) for the sT -diameter
(resp., St-diameter). Moreover, if S = T = V , we use diam(G) instead of diam(G, V, V).

For a given set F ⊆ E, we denote by G−F the graph obtained from G by removing all the
edges of F . If H is a subgraph of G, we use V (H) and E(H) for the vertices and edges of H,
respectively. An f -edge fault-tolerant distance sensitivity oracle (f -DSO) with stretch σ ⩾ 1
is a data structure that answers queries (u, v, F) with u, v ∈ V and F ⊆ E with |F | ⩽ f . It
returns an estimate d̂G−F (u, v) of the distance from u to v in G − F such that dG−F (u, v) ⩽
d̂G−F (u, v) ⩽ σ · dG−F (u, v). An f -edge fault-tolerant ST -diameter oracle (f -FDO-ST) with
stretch σ returns, upon query F ⊆ E with |F | ⩽ f , an estimate D̂ = D̂(F, S, T) of the
ST -diameter of G − F such that diam(G−F, S, T) ⩽ D̂ ⩽ σ · diam(G−F, S, T). If S = {s}
is a singleton or S = T = V are both the whole vertex set, we abbreviate such oracles for as
f -FDO-sT and f -FDO, respectively.

3 ST-Diameter Oracles

We start by showing how to use distance sensitivity oracles to design data structures for the
fault-tolerant ST -diameter, i.e., the ST -diameter of G − F after a set of edges F ⊆ E failed.
The maximum number f of supported failures is called the sensitivity of the data structure.
The result is formally stated in Theorem 3.

In the following, we assume that the shortest paths in G are made unique. This way, we can
identify a shortest path with its endpoints, which enabled saving both in the time-efficiency
of the preprocessing and the space-efficiency of the resulting data structure. In particular, it
allows for a subquadratic (in n) space overhead over the underlying f -DSO. However, the
precise way how to make the paths unique influences the nature of the preprocessing. As
discussed in Section 1, one can ensure a unique shortest path in a random fashion by slightly
perturbing the edge weights. Alternatively, lexicographic perturbation [19, 21, 39] provides a
deterministic procedure but adds an O(mn + n2 log2 n) term to the running time.

Let πu,v denote the (unique) shortest path in G from u to v. Fix a set F ⊆ E of at
most f edges and recall that we use V (F) to denote the set of endpoints of edges in F . Our
f -DSO-ST uses a data structure to map S and T into two suitable subsets S′ and T ′ of
V (F), respectively. A vertex v ∈ V (F) belongs to S′ (resp., T ′) if there exists a shortest
path πs,t from some s ∈ S to some t ∈ T such that v is a vertex on πs,t and the subpath πs,v

(resp., πv,t) of πs,t from s to v (resp., from t to v) contains no vertex of V (F) other than v.
Note that πs,v (resp., πv,t) is completely contained in G − F , whence dG−F (s, v) = dG(s, v)
(analogously for dG−F (v, t)). The sizes of S′, T ′ ⊆ V (F) are in O(f).

ICALP 2023

24:10 Fault-Tolerant ST-Diameter Oracles

3.1 Query Algorithm
Before describing the data structure, we present the query algorithm. Let D denote the
f -DSO with stretch σ ⩾ 1 that is assumed in Theorem 3. Given the query F , our diameter
oracle computes the two sets S′ and T ′. Next, for every two vertices u and v such that u ∈ S′

and v ∈ T ′, it queries D with the triple (u, v, F) to obtain a σ-approximation of dG−F (u, v).
The f -FDO-ST returns the value D̂ = diam(G, S, T) + max(u,v)∈S′×T ′ D(u, v, F).

Given S′ and T ′, the time needed to compute D̂ is O(f2Q), where Q is the query time of
the f -DSO D. The value diam(G, S, T) can be precomputed.

▶ Lemma 7. The f -FDO-ST has a stretch of 1 + 3σ.

Proof. Let s ∈ S and t ∈ T be two arbitrary vertices. We first show that dG−F (s, t) ⩽ D̂,
that is, the returned value never underestimates the ST -diameter of G − F . We only
need to prove the case in which some of the failing edges in F belong to πs,t as otherwise
dG−F (s, t) = dG(s, t) ⩽ diam(G, S, T) ⩽ D̂. Thus, let xs (resp., xt) be the vertex of
V (F) that is closest to s (resp., t) in πs,t. By definition of S′, T ′, we have xs ∈ S′ and
xt ∈ T ′ and thus dG−F (s, xs) = dG(s, xs) and dG−F (xt, t) = dG(xt, t). Moreover, it holds
that dG−F (s, xs) + dG−F (xt, t) = dG(s, xs) + dG(xt, t) ⩽ diam(G, S, T) as πs,xs

and πxt,t are
vertex-disjoint. Using the triangle inequality twice and the fact that max(u,v)∈S′×T ′ D(u, v, F)
never underestimates diam(G−F, S′, T ′), we get

dG−F (s, t) ⩽ dG−F (s, xs) + dG−F (xs, xt) + dG−F (xt, t)

⩽ diam(G, S, T) + diam(G−F, S′, T ′) ⩽ D̂.

We now prove that D̂ ⩽ (1 + 3σ) · diam(G−F, S, T). Let u ∈ S′ and v ∈ T ′ be arbitrary.
There are s ∈ S and t ∈ T such that dG−F (s, u), dG−F (v, t) ⩽ diam(G, S, T). We arrive at

D(u, v, F) ⩽ σdG−F (u, v) ⩽ σ
(
dG−F (u, s) + dG−F (s, t) + dG−F (t, v)

)
⩽ σ

(
diam(G, S, T) + diam(G−F, S, T) + diam(G, S, T)

)
⩽ 3σ diam(G−F, S, T),

thus D̂ = diam(G, S, T) + maxu∈S′,v∈T ′ D(u, v, F) ⩽ (1 + 3σ) diam(G − F, S, T). ◀

3.2 Data Structure for the Sets S′ and T ′ for Large Sensitivity
Recall that, given the failure set F , the set S′ contains all v ∈ V (F) such that there are
s ∈ T and t ∈ T for which v is the closest vertex to s on V (F) ∩ E(πs,t), analogously for T ′.
We now describe the data structure that computes the sets S′ and T ′, focusing on S′ since
the case of T ′ follows in the same fashion.

The construction algorithm depends on the sensitivity f . Suppose first that f = Ω(log n).
For each vertex v ∈ V , the data structure stores the shortest-path tree Tv of G rooted at v

and mark some of its vertices. Namely, all s ∈ S are marked for which there is a t ∈ T such
that v lies on the path πs,t. For every two vertices s ∈ S and t ∈ T , πs,t contains v if and
only if dG(s, t) = dG(s, v) + dG(v, t). We used here that the paths are unique. It suffices to
compute the all-pairs distances in G in time O(mn + n2 log n) time2 and use them to mark
the vertices of Tv for all v with the obvious O(n|S||T |)-time algorithm.

2 The time needed for this step reduces to O(mn) in case G is unweighted or has only small integer or
even floating point weights (in exponent-mantissa representation) using Thorup’s algorithm [46].

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:11

Additionally, each vertex u of Tv is annotated with the value countv(u), the number of
marked vertices in the subtree (Tv)u rooted at u. For a fixed tree Tv, all values countv(u)
are computable in O(n) time in a bottom-up fashion. Finally, we store, for each Tv, a
data structure that supports least common ancestor (LCA) queries in constant time. Such
structures can be built in time and space that is linear in the size of the tree [9]. The time
needed to construct the data structure is O(mn + n2 log n + n|S||T |) and the space is O(n2).

To answer a query F , the algorithm scans all the vertices v ∈ V (F) and decides which
of them to include in S′. The graph Tv − F is a collection of rooted trees. (Possibly some
of the trees degenerated to isolated vertices.) We observe that v ∈ S′ if and only if Tv − F

contains a marked vertex that is still reachable from v. To check this condition, the algorithm
computes the set F0 of all the edges {u, w} ∈ F that are contained in Tv. This is the case if
and only if the LCA of u and w in Tv is either u or w.

Next, we define a notion of domination for edges in F0. We say that an edge {u, w} ∈ F0,
where u is the parent of w in Tv, is dominated by another edge {a, b} ∈ F0, where a is the
parent of b in Tv, if {u, w} is in the subtree of Tv rooted at b. This is equivalent to b being
the LCA of b and u. The query algorithm removes all dominated edges from F0, which can
be done in O(|F0|2) = O(f2) time.

Recall that countv(v) is the overall number of marked vertices in Tv. Evidently, some
vertex in Tv − F is reachable from v iff they are in the same connected component. Thus,
there is a marked vertex reachable from v if and only if countv(v) is strictly larger than the
number of marked vertices contained in those components of Tv − F that do not contain v.
Indeed, the difference between those two values is exactly the number of marked vertices
reachable from v. Each connected component of Tv − F that does not contain v is a tree T ′

rooted at some vertex w ∈ V (F0)\{v}. Let u be the parent of w in Tv. Compared to the full
subtree (Tv)u rooted at u, T ′ is missing those subtrees “further down” that are rooted at
some other vertex b whose parent a is a vertex of T ′. Those are exactly the edges {a, b} ∈ F0
that are dominated by {u, w}. Accordingly, the value countv(u) counts the marked vertices in
T ′ and additionally those in the subtrees rooted at the vertices b. By removing all dominated
edges from F0, we avoid any double counting and ensure that countv(v)−

∑
u∈V (F0) countv(u)

is indeed the quantity we are interested in. It can be computed in time O(f) for each v.

3.3 Small Sensitivity
We now modify the data structure in the case where the sensitivity f = o(log n) is sublog-
arithmic. If so, the information of all the trees Tv can be stored in a more compact way.
For every vertex v ∈ V , we define a new representation Tv of the tree Tv by first removing
unnecessary parts and then replacing long paths with single edges. This corresponds to
the two steps of the compression described below. For the first one, we need the following
definition. We say a subtree Tv of Tv preserves the source-to-leaf reachability if, for every set
F ⊆ E of up to f failing edges, there is a marked vertex of Tv that is reachable from the
source v in Tv − F if and only if there is a leaf of Tv that is reachable from v in Tv − F .

The first compression step. We first describe how to preserve the source-to-leaf reachability.
We select a set Lv ⊆ S of at most 2f marked vertices and set Tv as the smallest subtree of
Tv that contains v and Lv. We say that a marked vertex s of Tv is relevant if there is no
marked vertex s′ ̸= s that is contained in the path from v to s in Tv.

We compute Lv as follows. We construct a DAG Gv that is obtained from a copy of Tv

in which each edge (u, u′), with u being the parent of u′ in Tv, is directed from u to u′. The
DAG is augmented with a dummy sink vertex x that contains an incoming directed edge

ICALP 2023

24:12 Fault-Tolerant ST-Diameter Oracles

from each relevant vertex s of Tv. We then run the algorithm of Baswana, Choudhary, and
Roditty [6] to compute a subgraph Hv of Gv such that (i) the in-degree of each vertex of Hv

is at most 2f and (ii) for every possible set F of at most f edge failures, each vertex u is
reachable from v in the graph Gv − F iff u is reachable from v in Hv − F .

The set Lv of marked vertices corresponds to the tails of the edges in Hv that enter the
sink x. As x has in-degree of at most 2f in Hv, the size of Lv is O(2f). Moreover, Lv is the
set of leaves of Tv. The following lemma proves the correctness of our selection algorithm.

▶ Lemma 8. For every F ⊆ E(G), with |F | ⩽ f , there is a marked vertex of Tv that is
reachable from v in Tv − F iff there is a vertex of Lv that is reachable from v in Tv − F .

Proof. Fix a set F of at most f failing edges of G. As Tv is a subtree of Tv, if there is a
vertex in Lv that is reachable from v in Tv − F , then the same marked vertex is reachable
from v in Tv − F . To prove the other direction, let X be the set of all marked vertices that
are reachable from v in Tv − F . We prove that X ∩ Lv ̸= ∅. Let s ∈ X be a marked vertex
that is reachable from v in Tv − F . Let s∗ ∈ S be the vertex closest to v in the path from v

to s in Tv (possibly, s∗ = s). We have that s∗ is relevant and is reachable from v in Tv − F .
This implies that the sink x is reachable from v in Gv − F via the path that goes through s∗.
As a consequence, x is also reachable in Hv − F . Hence, there is a vertex in Lv that is also
reachable from v in Tv − F . Therefore, X ∩ Lv ̸= ∅. ◀

The second compression step. After the first compression step, the tree Tv contains at
most 2f leaves. However, it might still be the case that the number of vertices of Tv is
large due to the presence of very long paths connecting two consecutive branch vertices, i.e.,
vertices of Tv with two or more children. The second step of compressing Tv allows us to
represent long paths between consecutive branch vertices in a more compact way.

Let x and y be two consecutive branch vertices in Tv, i.e., x is an ancestor of y in Tv and
the internal vertices of the path P from x to y are not branch vertices. We say that P is
long if it contains at least

√
n edges. If the path P is long, we substitute the path P in Tv

with a representative edge between x and y (so we also remove all the internal vertices of P

from the tree) and we add the path P to the set P of long paths. So, in every tree Tv, we
replace every long path between two consecutive branch vertices with a representative edge.
We observe that P can be computed in O(n2) time. Moreover, we observe that P contains
O(n3/2) paths as each tree Tv contributes with at most

√
n long paths.

Next, we use the algorithm given in [2] to hit all the long paths in P with a set Z of
O(

√
n log n) pivot vertices in O(|P|

√
n) = O(n2) time, where a path is hit if we select a

pivot vertex that belongs to the path. For each pivot z ∈ Z, we store the shortest-path tree
Tz of G rooted at z. By construction, each long path P ∈ P between two consecutive branch
vertices x and y of a tree Tv is contained in Tz, for some z ∈ Z that hits P ; moreover, a
vertex z ∈ Z that hits P is also the least-common-ancestor of x and y in Tz.

The representative edge (x, y) in Tv stores a pointer to the tree Tz of any pivot z that
hits P (ties can be arbitrarily broken). Clearly, after the second compression step, each
tree Tv contains O(2f

√
n) vertices. Therefore, the overall size needed to store all the trees

Tv is O(2f n3/2). Moreover, storing the trees Tz for all the pivots in Z requires O(n) space
per tree, for a total of O(n3/2 log n) space. Hence, the overall size of our data structure is
O(n3/2(2f + log n)).

Now, given a set F of at most f failing edges, we describe how the query algorithm
computes the set S′ in O(f22f) time. As before, for every v ∈ V (F), we need to understand
whether v must be added to S′ or not. In the following, we fix v ∈ V (F) and explain how to

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:13

check whether v ∈ S′ or not in O(f2f) time. We recall that v must be added to S′ iff there
is a marked vertex in Tv − F that is still reachable from v. By Lemma 8, this is equivalent
to having a leaf of Lv that is reachable from v in Tv − F .

We visit the tree Tv and we remove from Tv all edges that correspond to edges in F . This
can be easily done in O(f) time for each non-representative edge using least-common-ancestor
queries. For the representative edges we proceed as follows. We consider all the representative
edges in Tv. Let (x, y) be a representative edge of Tv and let z be the pivot of the tree Tz

that is associated with the edge (x, y) in Tv. We remove (x, y) from Tv iff there is a failing
edge in F that is contained in the path P in Tz from x to y. We check whether P contains
some edges of F in O(f) time as follows. We look at all the failing edges in F and, for each
failing edge (u, u′) ∈ F , we check whether (u, u′) is an edge of P using a constant number of
least-common-ancestor queries in the tree Tz.3 As each tree Tv contains O(2f) representative
edges and we need O(f) time to understand if a representative edge can be removed or not
from the tree, we need O(f2f) to understand which are the representative edges that need
to be removed from Tv, for a fixed v ∈ V (F).

Once all edges that represent F have been removed from Tv, it is enough to check whether
there is a vertex of Lv that is still reachable from v. This can be clearly done in O(f2) time
per tree Tv using the values ku, as already discussed for the case in which f = Ω(log n). In
particular, for every vertex u in Tv, the value ku is equal to the number of vertices of Lv

that are contained in the subtree of Tv rooted at u.

4 Single-Source sT-Diameter Oracles

In the following theorem, we address the question of computing an sT -diameter oracle using
a single-source DSO with source s. We restate the relevant theorem below. Its proof uses
similar ideas as those shown in Section 3, but the single-source setting allows for a better
preprocessing time, space, and stretch.

▶ Theorem 4. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let s ∈ V be a vertex and T ⊆ V a non-empty set. Given a single-
source f -DSO for G with preprocessing time P, space S, query time Q, and stretch σ, one can
compute an f-FDO-sT for G with preprocessing time P + O(m + n log n), space S + O(n),
query time O(f2 + fQ), and stretch 1 + 2σ. For unweighted graphs, the preprocessing time
can be improved to P + O(m).

Proof. Let D denote the single-source f -DSO. The preprocessing algorithm for the f -FDO-
sT first constructs D with source s. It also computes a shortest path tree Ts of G rooted at s.
Each node v ∈ V (Ts) = V is annotated with a pointer to its parent node and its respective
number in the pre-order and post-order traversal of Ts. Similarly as above, the algorithm also
computes the value count(v) for every v, which is the number of descendants of v (including
v itself) that are in T . Finally, it stores the maximum distance C = maxt∈T dG(s, t) from the
root among the vertices in the set T . The preprocessing takes total time P + O(m + n log n)
in general weighted graphs and, again, can be reduced to P + O(m) for certain classes of
weights [46]. Storing the oracle and the tree takes S + O(n) space.

3 We observe that (u, u′) is on the path P iff one of the following two conditions hold: (i) the least-
common-ancestor of u and x in Tz is u and the least-common-ancestor of u′ and x in Tz is u′; (ii) the
least-common-ancestor of u and y in Tz is u and the least-common-ancestor of u′ and y in Tz is u′.

ICALP 2023

24:14 Fault-Tolerant ST-Diameter Oracles

For the query, consider a set F ⊆ E of up to f failing edges and let F0 = F ∩ E(Ts)
be those failures that are in the tree. Consider the collection of rooted (sub-)trees Ts − F0.
Define XF to be the set of roots of those trees that contain some vertex from T . For some
v ∈ V , let D(v, F) be the σ-approximation of the replacement distance dG−F (s, v) computed
by the DSO D. Our sT -diameter oracle answers the query F by reporting the value

D̂ = C + max
x∈XF

D(x, F).

Regarding the correctness of that answer, consider a vertex t ∈ T . Let x ∈ XF be
the root of the subtree of Ts that contains t. There is a path from s to t in G − F of
length at most dG−F (s, x) + dG(x, t) ⩽ dG−F (s, x) + dG(s, t) ⩽ D(x, F) + C. Hence, we
have dG−F (s, t) ⩽ C + maxx∈XF

D(x, F), that is, diam(G−F, s, T) ⩽ D̃. We next prove
D̂ ⩽ (1 + 2σ) · diam(G−F, s, T). Let x0 ∈ XF be the maximizer of D(x, F), and t ∈ T be in
the tree in Ts −F0 that is rooted in x0. Then, we have dG−F (s, x0) ⩽ dG−F (s, t)+dG(t, x0) ⩽
dG−F (s, t) + dG(t, s) ⩽ 2 · dG−F (s, t). We used here that G is undirected so that we can go
“up” the tree from t to x0. From this, we get

D̂ = C +D(x0, F) ⩽ C +σ ·dG−F (s, x0) ⩽ C +2σ ·dG−F (s, t) ⩽ (1+2σ) ·diam(G−F, s, T).

Given XF , computing D̂ takes time O(fQ). It remains to show how to compute XF from
F in O(f2) time. Recall that we know the parent of every non-root node in Ts. We use it to
first obtain F0 from F in time O(f) as an edge {a, b} is in Ts iff a is parent of b or vice versa.

For each edge e ∈ F0, let b(e) be the endpoint of e that is farther from the source s. Next,
define B0 = {b(e) | e ∈ F0} ∪ {s}. Every root in XF is either the source s or the “lower”
endpoint of a failing edge, i.e., XF ⊆ B0. For each b ∈ B0, let B0(b) be the closest proper
descendants of b in B0, if any. That is, on the paths in Ts between b and any b′ ∈ B0(b) there
is no other vertex from B0. We can compute the sets B0(b) for all b ∈ B0 simultaneously in
total time O(|B0|2) = O(f2) as follows. A vertex is a proper ancestor of b′ iff its pre-order
number is strictly smaller than that of b′ and its post-order number is strictly larger. So
finding those takes time O(|B0|) for each b′ ∈ B0. Then, b′ is in the set B0(b) for the proper
ancestor b with the highest pre-order number.

Finally, observe that a vertex b ∈ B0 lies in XF if and only if there is at least one vertex
of T that falls into the subtree of Ts rooted at v but not in any of the subtrees rooted at
(proper) descendants of b in B0. To check this condition via the counts, we only need to
consider the immediate descendants in B0(b). If the element of T is in some lower subtree,
then it is also accounted for by an immediate descendant. In summary, some b ∈ B0 is in XF

iff count(b)−
∑

b′∈B0(b) count(b′) > 0. This proves that XF is computable in time O(f2). ◀

We now handle multiple sources, that is, we build an f -FDO-ST for a general set S. The
next result is a straightforward reduction to the sT -case. As it turns out, it is enough to
construct the sT -diameter oracle for two arbitrary vertices s ∈ S and t ∈ T . Due to lack of
space, the proof of Lemma 9 is deferred to the full version of the paper.

▶ Lemma 9. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T ⊆ V be non-empty sets of vertices, and s ∈ S and t ∈ T be two
vertices. Suppose one is given access to an f -FDO-sT and an f -FDO-tS for G with respective
preprocessing times PsT and PtS, space requirements SsT and StT , query times QsT and QsT ,
and stretches σsT and σtS. Then, one can compute an f -FDO-ST for G with preprocessing
time PsT + PtS, space SsT + StS, query time QsT + QtT , and stretch σsT + σtS + min(σsT , σtS).

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:15

Table 8 Conditions for the presence of edges between the vertex sets of graph G in Section 5.
The symbol ⊕ stands for the exclusive or. All conditions are symmetric with respect to the index
pairs (i, x), (j, y), and (k, z), whence H is undirected.

Set Pair Vertex Pair Edge Condition
A × A independent set
B × B b[i, j, k], b[x, y, z] (i = x) ⊕ (j = y)
C × C c[i, j, k], c[x, y, z] (i = x) ⊕ (j = y)
D × D independent set
A × B a[i, j], b[x, y, z] (i = x) ∧ (z = 0)
B × C b[i, j, k], c[x, y, z] (i = x) ∧ (j = y)
C × D c[i, j, k], d[x, y] (j = y) ∧ (k = 0)

Combining Theorem 4 and Lemma 9 gives a reduction from f -FDO-ST to single-source
f -DSOs. However, it results in a data structure with a stretch of 3 + 6σ, where σ is the
original stretch of the f -DSO We can improve this by not treating Lemma 9 as a black box.

▶ Theorem 5. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T be two non-empty subsets of V . Given a single-source f -DSO
for G with preprocessing time P, space S, query time Q, and stretch σ, one can compute an
f-FDO-ST for G with preprocessing time O(P + m+n log n), space O(S + n), query time
O(f2 +fQ), and stretch 2+5σ. For unweighted graphs, the preprocessing time can be improved
to O(P + m)

Proof. Let s ∈ S and t ∈ T be arbitrary. The preprocessing algorithm of the f -FDO-ST uses
the single-source f -DSO twice, once for source s and once for t, to construct an f -FDO-sT

DsT and an f -FDO-tS DtS both with stretch 1 + 2σ, as described in Theorem 4.
For a set F ⊆ E of at most f edge failures, let DsT (F) and DtS(F) be the respective

(1 + 2σ)-approximations of diam(G − F, s, T) and diam(G − F, t, S). Further, let Dst(F) be a
σ-approximation of dG−F (s, t), obtained from the DSO with source s. The query algorithm
outputs D̂ = DtS(F) + Dst(F) + DsT (F). Let (s0, t0) ∈ S × T . We have

dG−F (s0, t0) ⩽ dG−F (s0, t) + dG−F (t, s) + dG−F (s, t0)
⩽ DtS(F) + Dst(F) + DsT (F) ⩽ (2+5σ) · diam(G−F, S, T). ◀

5 Space Lower Bound

Recall that Theorem 6 states a space lower bound for f -FDOs and f -FDO-STs with sensitivity
f ⩾ 2 in that if they have stretch better than 5/3, they must take Ω(n3/2) space. The theorem
is implied by the following lemma, which we prove in this section.

▶ Lemma 10. For infinitely many n, there is a graph G = (V, E) with n vertices (and two
sets S, T ⊆ V) such that any data structure that decides for any pair of edges e, e′ ∈ E,
whether G − {e, e′} has diameter (resp., ST -diameter) 3 or 5 requires Ω(n3/2) bits of space.

We first construct an auxiliary graph H. Let n = 6N for some N which is a perfect
square. In the following, indices i, j range over the set [

√
N] and k ranges over {0, 1}

Define four pairwise disjoint sets of vertices A = {a[i, j]}i,j , B = {b[i, j, k]}i,j,k, C =
{c[i, j, k]}i,j,k, D = {d[i, j]}i,j with respective cardinalities N, 2N, 2N, and N . The vertex
set of H is V (H) = A ∪ B ∪ C ∪ D. The edges in H are shown in Table 8 and are defined

ICALP 2023

24:16 Fault-Tolerant ST-Diameter Oracles

A B C D

j ik

i⊕ j i⊕ j

Figure 1 Visual representation of the graph H. Each vertex corresponds to a tuple [i, j] or [i, j, k]
and belongs to one of the sets A, B, C, or D. To move from vertex a[i, j] to b[i′, j′, k′] it must be
the case that i = i′ and k′ = 0, but one can jump from any j to any j′. This is marked by the blue
edge labeled j between sets A and B, analogously for the other pairs of sets. When moving inside
the sets B or C either the first index i ≠ i′ or the second one j ̸= j′ changes, marked by the red
labels. Sets A and D have no internal edges.

depending on the relations among the indices of the participating vertices. For example,
some edge {b[i, j, k], b[x, y, z]} between elements of B and C exists if and only if either i and
x are equal or j and y are equal, while k, z ∈ {0, 1} can be arbitrary. Note that the number
of edges in E is Θ(N3/2) = Θ(n3/2).

▶ Lemma 11. The diameter of H is at most 3.

Proof. To verify that the diameter of H is at most 3, we give explicit paths of length at
most 3 between all possible vertex pairs from the sets A, B, C, and D. Note that all paths
below are reversible as the edges are undirected. The symbol x stands for any index from
[
√

N] except x, analogously for y.

For vertices a[i, j], a[x, y] ∈ A, we distinguish two cases depending on whether the first
indices i ̸= x are different or not. In the first case, the vertices are joined by the path
(a[i, j], b[i, y, 0], b[x, y, 0], a[x, y]). In the second case, the middle two vertices are the same,
thus the path shortens to (a[i, j], b[x, y, 0], a[x, y]).

Symmetrically, for vertices d[i, j], d[x, y] ∈ D, the cases are defined with respect two the
second indices, i.e., whether j ≠ y. The paths are (d[i, j], c[x, j, 0], c[x, y, 0], d[x, y]) and
(d[i, j], c[x, y, 0], d[x, y]), respectively.

For vertices b[i, j, k], b[x, y, z] ∈ B, the generic path is (b[i, j, k], b[x, j, k], b[x, y, z]). If
i = x, then the first two vertices are the same; if j = y, the last two are. The argument
for vertices c[i, j, k], c[x, y, z] ∈ C is the same.

For the vertex pair (a[i, j], b[x, y, z]) ∈ A × B, the ley point is that any edge inside of B

changes exactly one of the first two indices. If i ̸= x, the path is (a[i, j], b[i, y, 0], b[x, y, z]),
otherwise it is (a[i, j], b[x, y, 0], b[x, y, z]).

The pair (d[i, j], c[x, y, z]) ∈ D × C is handled symmetrically. If j ̸= y, the path is
(d[i, j], c[x, j, 0], c[x, y, z]), otherwise it is (d[i, j], b[x, y, 0], b[x, y, z]).

Vertex pair (a[i, j], c[x, y, z]) ∈ A × C: path (a[i, j], b[i, y, 0], c[i, y, z], c[x, y, z]). Note that
if i = x the last two vertices are the same. Vertex pair (d[i, j], b[x, y, z]) ∈ D × B: path
(d[i, j], c[x, j, 0], b[x, j, z], b[x, y, z]).

Vertex pair (a[i, j], d[x, y]) ∈ A × D: path (a[i, j], b[i, y, 0], c[i, y, 0], d[x, y]).

Vertex pair (b[i, j, k], c[x, y, z]) ∈ B × C: the path (b[i, j, k], b[x, j, k], c[x, j, k], c[x, y, z])
possibly shortens if consecutive vertices are the same. ◀

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:17

Consider an arbitrary binary
√

N ×
√

N ×
√

N matrix (tensor) M . We build a supergraph
G ⊇ H embedding the information about the entries of M in the fault-tolerant diameter of
G under dual failures, i.e., diam(G−F) with |F | = 2. The number of possible matrices M

will then imply the space lower bounds for diameter oracles for G.
The graph G contains all vertices and edges of H and the following additional edges.

For all i, j, y ∈ [
√

N], if M [i, j, y] = 1, then add {a[i, j], b[i, y, 1]} as an edge of G.
For all i, x, y ∈ [

√
N], if M [i, x, y] = 1, then add {c[i, y, 1], d[x, y]}.

Note that the diameter of G remains at most 3.
Consider any four indices i, j, x, y ∈ [

√
N] such that i ̸= x and j ̸= y. We define two

sets F, F ′ both containing pairs of vertices in V = V (H). First, let F ⊆ E(H) ⊆ E contain
e1 = {a[i, j], b[i, y, 0]} and e2 = {c[i, y, 0], d[x, y]}. Secondly, let F ′ be the set comprising the
two pairs e′

1 = {a[i, j], b[i, y, 1]} and e′
2 = {c[i, y, 1], d[x, y]}. Note that the elements of F ′ are

only edges of G if the entries M [i, j, y] and M [i, x, y] are 1.

▶ Lemma 12. For any four indices i, j, x, y ∈ [
√

N] such that i ≠ x and j ̸= y, the diameter
of G − (F ∪ F ′) is at least 5.

Proof. We show that the distance between a[i, j] and d[x, y] in G − (F ∪ F ′) is at least 5.
Contrarily, assume that P = (a[i, j], w1, w2, w3, d[x, y]) is a path of length at most 4. P must
pass across sets A → B, B → C, and C → D and change the indices from (i, j) to (x, y).

The neighborhood of a[i, j] in G − (F ∪ F ′) is the set{
b[i, y, 0] | y ∈ [

√
N] \ {y}

}
∪

{
b[i, y, 1] | y ∈ [

√
N] \ {y} ∧ M [i, j, y]} = 1

}
.

The index i cannot change on the first edge {a[i, j], w1} of P and, since the edges e1 =
{a[i, j], b[i, y, 0]} ∈ F and e′

1 = {a[i, j], b[i, y, 1]} ∈ F ′ are missing, the second index of w1
must differ from y. Symmetrically, the change of j cannot take place on the last edge
{w3, d[x, y]} and the first index of w3 must differ from x. At least one of the edges {w1, w2}
or {w2, w3} passes from B to C, w.l.o.g. let this be {w1, w2}. This edge (already present in
H) cannot change any of the indices. We are left with {w2, w3}. If P has strictly less than 4
edges, then w2 = w3. Otherwise, either both endpoints w2 and w3 are in B, both are in C

or there is exactly one in either. None of those cases allows one to make the two necessary
changes to the indices simultaneously. ◀

▶ Lemma 13. The diameter of (G − F) ∪ F ′ is 3.

Proof. The proof is very similar to that of Lemma 11, only that every time the edge
e1 = {a[i, j], b[i, y, 0]} ∈ F (respectively, e2 = {c[i, y, 0], d[x, y]}) has been used, it is replaced
by e′

1 = {a[i, j], b[i, y, 1]} ∈ F ′ (respectively, by e′
2 = {c[i, y, 1], d[x, y]}). ◀

▶ Lemma 14. The diameter of G − F is at most 3 if M [i, j, y] = M [i, x, y] = 1, and at least
5 if M [i, j, y] = M [i, x, y] = 0.

Proof. The diameter of graph G − F is at least 5 if neither vertex pair in F ′ is an edge of G

by Lemma 12. This is only true if M [i, j, y] = M [i, x, y] = 0. Conversely, by Lemma 13, the
diameter is at most 3 if both edges in F ′ lie in G, i.e., if M [i, j, y] = M [i, x, y] = 1. ◀

We now finish the proof of Lemma 10. Suppose there exists a data structure that
distinguishes whether after any two edges fail the diameter of the resulting graph is bounded
by 3 or at least 5. We can use it to infer the entry M [i, j, y] for any triple (i, j, y) ∈ [

√
N]3

ICALP 2023

24:18 Fault-Tolerant ST-Diameter Oracles

of indices such that i and j differ from each other, and j and y differ. We compute the
edges in F with respect to the indices i ≠ x = j ̸= y and apply Lemma 14 to check whether
M [i, j, y] = M [i, x, y] = 1 or M [i, j, y] = M [i, x, y] = 0. For the assertion in Lemma 10 about
the ST -diameter, we choose S = A and T = D. Since there are 2

√
N (

√
N −1)2 = 2Ω(n3/2)

collections of possible answers, the oracle must take Ω(n3/2) bits of space.

References
1 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast Estimation of

Diameter and Shortest Paths (Without Matrix Multiplication). SIAM Journal on Computing,
28:1167–1181, 1999. doi:10.1137/S0097539796303421.

2 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 12:1–12:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.12.

3 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and Hardness for Diameter in Dynamic Graphs. In Proceedings of the
46th International Colloquium on Automata, Languages, and Programming (ICALP), pages
13:1–13:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.13.

4 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Toward Tight Approximation Bounds for Graph Diameter and Eccentricities. SIAM Journal
on Computing, 50:1155–1199, 2021. doi:10.1137/18M1226737.

5 Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approximate
Single-Source Fault Tolerant Shortest Path. ACM Transactions on Algorithms, 16:44:1–44:22,
2020. doi:10.1145/3397532.

6 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-Tolerant Subgraph for Single-
Source Reachability: General and Optimal. SIAM Journal on Computing, 47:80–95, 2018.
doi:10.1137/16M1087643.

7 Surender Baswana and Telikepalli Kavitha. Faster Algorithms for Approximate Distance Ora-
cles and All-Pairs Small Stretch Paths. In Proceedings of the 47th Symposium on Foundations
of Computer Science (FOCS), pages 591–602, 2006. doi:10.1109/FOCS.2006.29.

8 Surender Baswana and Neelesh Khanna. Approximate Shortest Paths Avoiding a Failed Vertex:
Near Optimal Data Structures for Undirected Unweighted Graphs. Algorithmica, 66:18–50,
2013. doi:10.1007/s00453-012-9621-y.

9 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

10 Aaron Bernstein and David R. Karger. Improved Distance Sensitivity Oracles via Random
Sampling. In Proceedings of the 19th Symposium on Discrete Algorithms (SODA), pages 34–43,
2008. URL: https://dl.acm.org/citation.cfm?id=1347082.1347087.

11 Aaron Bernstein and David R. Karger. A Nearly Optimal Oracle for Avoiding Failed Vertices
and Edges. In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages
101–110, 2009. doi:10.1145/1536414.1536431.

12 Davide Bilò, Keerti Choudhary, Luciano Gualà, Stefano Leucci, Merav Parter, and Guido
Proietti. Efficient Oracles and Routing Schemes for Replacement Paths. In Proceedings of
the 35th Symposium on Theoretical Aspects of Computer Science (STACS), pages 13:1–13:15,
2018. doi:10.4230/LIPIcs.STACS.2018.13.

13 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Compact and Fast Sensitivity
Oracles for Single-Source Distances. In Piotr Sankowski and Christos D. Zaroliagis, editors,
Proceedings of the 24th European Symposium on Algorithms (ESA), pages 13:1–13:14, 2016.
doi:10.4230/LIPIcs.ESA.2016.13.

https://doi.org/10.1137/S0097539796303421
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1137/18M1226737
https://doi.org/10.1145/3397532
https://doi.org/10.1137/16M1087643
https://doi.org/10.1109/FOCS.2006.29
https://doi.org/10.1007/s00453-012-9621-y
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://dl.acm.org/citation.cfm?id=1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.STACS.2018.13
https://doi.org/10.4230/LIPIcs.ESA.2016.13

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:19

14 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-Edge-Fault-
Tolerant Approximate Shortest-Path Trees. Algorithmica, 84:37–59, 2022. doi:10.1007/
s00453-021-00879-8.

15 Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Deter-
ministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances. In Proceedings
of the 49th International Colloquium on Automata, Languages, and Programming (ICALP),
pages 22:1–22:19, 2022. doi:10.4230/LIPIcs.ICALP.2022.22.

16 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Near-Optimal Deterministic
Single-Source Distance Sensitivity Oracles. In Proceedings of the 29th European Symposium
on Algorithms (ESA), pages 18:1–18:17, 2021. doi:10.4230/LIPIcs.ESA.2021.18.

17 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Space-Efficient Fault-
Tolerant Diameter Oracles. In Proceedings of the 46th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS), pages 18:1–18:16, 2021. doi:10.4230/LIPIcs.
MFCS.2021.18.

18 Jan van den Brand and Thatchaphol Saranurak. Sensitive Distance and Reachability Oracles
for Large Batch Updates. In Proceedings of the 60th Symposium on Foundations of Computer
Science (FOCS), pages 424–435, 2019. doi:10.1109/FOCS.2019.00034.

19 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-Source Shortest Paths in
Embedded Graphs. SIAM J. Comput., 42:1542–1571, 2013. doi:10.1137/120864271.

20 Diptarka Chakraborty and Keerti Choudhary. New Extremal Bounds for Reachability and
Strong-Connectivity Preservers Under Failures. In Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 25:1–25:20, 2020.
doi:10.4230/LIPIcs.ICALP.2020.25.

21 Abraham Charnes. Optimality and Degeneracy in Linear Programming. Econometrica,
20:160–170, 1952.

22 Shiri Chechik and Sarel Cohen. Distance Sensitivity Oracles with Subcubic Preprocessing
Time and Fast Query Time. In Proccedings of the 52nd Symposium on Theory of Computing
(STOC), pages 1375–1388, 2020. doi:10.1145/3357713.3384253.

23 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ε)-Approximate f -Sensitive
Distance Oracles. In Proceedings of the 28th Symposium on Discrete Algorithms (SODA),
pages 1479–1496, 2017. doi:10.1137/1.9781611974782.96.

24 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f -Sensitivity Distance Ora-
cles and Routing Schemes. Algorithmica, 63:861–882, 2012. doi:10.1007/s00453-011-9543-0.

25 Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert E. Tarjan, and
Virginia Vassilevska Williams. Better Approximation Algorithms for the Graph Diameter. In
Proceedings of the 25th Symposium on Discrete Algorithms (SODA), pages 1041–1052, 2014.
doi:10.1137/1.9781611973402.78.

26 Keerti Choudhary and Omer Gold. Extremal Distances in Directed Graphs: Tight Spanners
and Near-Optimal Approximation Algorithms. In Proceedings of the 31st Symposium on
Discrete Algorithms (SODA), pages 495–514, 2020. doi:10.1137/1.9781611975994.30.

27 Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino. On Computing the
Diameter of Real-World Directed (Weighted) Graphs. In Ralf Klasing, editor, Proceedings of
the 11th Symposium on Experimental Algorithms (SEA), pages 99–110, 2012. doi:10.1007/
978-3-642-30850-5_10.

28 Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein. Tight
Approximation Algorithms for Bichromatic Graph Diameter and Related Problems. In
Proceedings of the 46th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 47:1–47:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.47.

29 Camil Demetrescu and Mikkel Thorup. Oracles for Distances Avoiding a Link-Failure. In
Proceedings of the 13th Symposium on Discrete Algorithms (SODA), pages 838–843, 2002.
URL: https://dl.acm.org/citation.cfm?id=545381.545490.

ICALP 2023

https://doi.org/10.1007/s00453-021-00879-8
https://doi.org/10.1007/s00453-021-00879-8
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1137/120864271
https://doi.org/10.4230/LIPIcs.ICALP.2020.25
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1137/1.9781611973402.78
https://doi.org/10.1137/1.9781611975994.30
https://doi.org/10.1007/978-3-642-30850-5_10
https://doi.org/10.1007/978-3-642-30850-5_10
https://doi.org/10.4230/LIPIcs.ICALP.2019.47
https://dl.acm.org/citation.cfm?id=545381.545490

24:20 Fault-Tolerant ST-Diameter Oracles

30 Camil Demetrescu, Mikkel Thorup, Rezaul A. Chowdhury, and Vijaya Ramachandran. Oracles
for Distances Avoiding a Failed Node or Link. SIAM Journal on Computing, 37:1299–1318,
2008. doi:10.1137/S0097539705429847.

31 Ran Duan, Yong Gu, and Hanlin Ren. Approximate Distance Oracles Subject to Multiple
Vertex Failures. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages
2497–2516, 2021. doi:10.1137/1.9781611976465.148.

32 Ran Duan and Seth Pettie. Dual-Failure Distance and Connectivity Oracles. In Proceedings
of the 20th Symposium on Discrete Algorithms (SODA), pages 506–515, 2009. URL: http:
//dl.acm.org/citation.cfm?id=1496770.1496826.

33 Ran Duan and Seth Pettie. Connectivity Oracles for Failure Prone Graphs. In Leonard J.
Schulman, editor, Proceedings of the 42nd Symposium on Theory of Computing (STOC), pages
465–474, 2010. doi:10.1145/1806689.1806754.

34 Ran Duan and Hanlin Ren. Maintaining Exact Distances under Multiple Edge Failures. In
Proceedings of the 54th Symposium on Theory of Computing (STOC), pages 1093–1101, 2022.
doi:10.1145/3519935.3520002.

35 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved Distance Sensitivity Oracles via
Fast Single-Source Replacement Paths. In Proceedings of the 53rd Symposium on Foundations
of Computer Science (FOCS), pages 748–757, 2012. doi:10.1109/FOCS.2012.17.

36 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster Replacement Paths and Distance
Sensitivity Oracles. ACM Transaction on Algorithms, 16:15:1–15:25, 2020. doi:10.1145/
3365835.

37 Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n2.5794M) Time. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 76:1–76:20, 2021. doi:10.4230/LIPIcs.ICALP.2021.76.

38 Manoj Gupta and Aditi Singh. Generic Single Edge Fault Tolerant Exact Distance Oracle. In
Proceedings of the 45th International Colloquium on Automata, Languages, and Programming,
(ICALP), pages 72:1–72:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.72.

39 David Hartvigsen and Russell Mardon. The All-Pairs Min Cut Problem and the Minimum
Cycle Basis Problem on Planar Graphs. SIAM J. Discret. Math., 7:403–418, 1994. doi:
10.1137/S0895480190177042.

40 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional Hardness for Sensitivity Problems. In Proceedings of the 8th Conference on
Innovations in Theoretical Computer Science (ITCS), pages 26:1–26:31, 2017. doi:10.4230/
LIPIcs.ITCS.2017.26.

41 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching Is as Easy as Matrix
Inversion. Comb., 7:105–113, 1987. doi:10.1007/BF02579206.

42 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. Journal
of Computer and System Sciences, 123:159–170, 2022. doi:10.1016/j.jcss.2021.08.005.

43 Liam Roditty. Approximating the Diameter. In Ming-Yang Kao, editor, Encyclopedia
of Algorithms, pages 116–117. Springer, New York City, NY, USA, 2016. doi:10.1007/
978-1-4939-2864-4_566.

44 Liam Roditty and Virginia Vassilevska Williams. Fast Approximation Algorithms for the
Diameter and Radius of Sparse Graphs. In Proceedings of the 45th Symposium on Theory of
Computing (STOC), pages 515–524, 2013. doi:10.1145/2488608.2488673.

45 Frank W. Takes and Walter A. Kosters. Determining the Diameter of Small World Networks.
In Craig Macdonald, Iadh Ounis, and Ian Ruthven, editors, Proceedings of the 20th Conference
on Information and Knowledge Management (CIKM), pages 1191–1196, 2011. doi:10.1145/
2063576.2063748.

46 Mikkel Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights in
Linear Time. Journal of the ACM, 46:362–394, 1999. doi:10.1145/316542.316548.

47 Oren Weimann and Raphael Yuster. Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. ACM Transactions on Algorithms, 9:14:1–14:13, 2013. doi:
10.1145/2438645.2438646.

https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/1.9781611976465.148
http://dl.acm.org/citation.cfm?id=1496770.1496826
http://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1145/1806689.1806754
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.4230/LIPIcs.ICALP.2018.72
https://doi.org/10.1137/S0895480190177042
https://doi.org/10.1137/S0895480190177042
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.1007/BF02579206
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1007/978-1-4939-2864-4_566
https://doi.org/10.1007/978-1-4939-2864-4_566
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1145/2063576.2063748
https://doi.org/10.1145/2063576.2063748
https://doi.org/10.1145/316542.316548
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646

	1 Introduction
	1.1 Related Work on Fault-Tolerant Diameter Oracles
	1.2 All-Pairs Distance Sensitivity Oracles
	1.3 Related Work on Single-Source Distance Sensitivity Oracles

	2 Preliminaries
	3 ST-Diameter Oracles
	3.1 Query Algorithm
	3.2 Data Structure for the Sets S' and T' for Large Sensitivity
	3.3 Small Sensitivity

	4 Single-Source sT-Diameter Oracles
	5 Space Lower Bound

