
Nondeterministic Interactive Refutations for
Nearest Boolean Vector
Andrej Bogdanov #

University of Ottawa, Canada

Alon Rosen #

Bocconi University, Milano, Italy
Reichman University, Herzliya, Israel

Abstract
Most n-dimensional subspaces A of Rm are Ω(

√
m)-far from the Boolean cube {−1, 1}m when

n < cm for some constant c > 0. How hard is it to certify that the Nearest Boolean Vector (NBV)
is at least γ

√
m far from a given random A?

Certifying NBV instances is relevant to the computational complexity of approximating the
Sherrington-Kirkpatrick Hamiltonian, i.e. maximizing xT Ax over the Boolean cube for a matrix
A sampled from the Gaussian Orthogonal Ensemble. The connection was discovered by Mohanty,
Raghavendra, and Xu (STOC 2020). Improving on their work, Ghosh, Jeronimo, Jones, Potechin,
and Rajendran (FOCS 2020) showed that certification is not possible in the sum-of-squares framework
when m ≪ n1.5, even with distance γ = 0.

We present a non-deterministic interactive certification algorithm for NBV when m ≫ n log n

and γ ≪ 1/mn1.5. The algorithm is obtained by adapting a public-key encryption scheme of Ajtai
and Dwork.
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1 Introduction

When can we expect to have a reduction from problem A to problem B? Complexity theory
can be used not only to show existence of reductions but also to argue separations. For
example, one reason an oracle for factoring is not considered an imminent threat to SAT
is that the correctness of prime factorizations can be both proved and refuted, that is (the
decision version of) factoring is in NP ∩ coNP.

In general, there cannot be a reduction (of sufficiently low complexity) from A to B if
there is a complexity class that (conjecturally) separates the two. For worst-case problems
in NP the separating class is often NP ∩ coNP or one of its close relatives (NP ∩ coAM or
Statistical Zero-Knowledge).
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28:2 Nondeterministic Interactive Refutations for Nearest Boolean Vector

It is natural to wonder whether analogous separations in average-case complexity can
clarify the landscape of reductions within distributional NP; a class of particular importance
to cryptography and learning theory. Reductions among non-NP-complete distributional
problems do exist, but are few and far between. Notable examples include lattice problems [18,
24, 22, 17]. More recently, a web of reductions was developed to explain the hardness of
various statistical inference problems [5].

A handful of average-case NP complete problems were found in the 1980-90s [16, 9]. All
these problems are closely related to simulation of Turing Machines, perhaps necessarily
so [29]. The conjectured hardness of combinatorial problems like random SAT or planted
clique still lacks satisfactory explanation.

In the context of random SAT, Feige, Kim, and Ofek [7] showed that random 3CNF
instances with n variables and m ≫ n1.4 equations admit efficient nondeterministic refutations
of satisfiability, that is, belong to Avg-coNP.1 Although most such instances are unsatisfiable,
it is not known how to efficiently certify the lack of a satisfying assignment in the regime
n1.4 ≪ m ≪ n1.5. On the other hand, when m ≪ n1.4 not even nondeterministic refutations
are known. Thus we do not expect a reduction from random 3SAT with clause-to-variable
density n0.41 to random 3SAT with density n0.39 barring a major algorithmic advance.

Our contribution is an analogous result for the distributional Nearest Boolean Vector to a
Subspace problem which was introduced by Mohanty, Raghavendra and Xu [19]. In Theorem 1
we show that for a certain parameter regime in which this problem may be intractable,
the problem is in average-case statistical zero-knowledge (Avg-SZK) and therefore admits
interactive nondeterministic refutations.

1.1 The Nearest Boolean Vector problem
We work with the following formulation of the Nearest Boolean Vector problem:

Nearest Boolean Vector (NBV):
Input: An n-dimensional subspace A of Rm.
Yes instances: There exists a v ∈ {−1, 1}m such that dist(v, A) ≤ γ

√
m.

No instances: For all v ∈ {−1, 1}m, dist(v, A) >
√

m/2.

When n < cm for a sufficiently small constant c, most subspaces A (chosen from the
uniform Haar measure) are no instances [19]. We are interested in the errorless average-case
complexity of NBV. An efficient average-case algorithm for distributional NBV can be viewed
as an efficiently computable certificate that most subspaces are far from the Boolean cube.

When γ < 1/2, NBV is in NP. Several works [19, 8, 23] provide evidence that it is
intractable on average in the regime m ≪ n2.

1.2 Our Result
We give a reduction from distributional NBV to the Statistical Distance to Uniform (SDU)
problem. The input to SDU is a sampler of outputs in {0, 1}n, the YES instances are samplers
whose outputs are 1 − δ far from uniform, and NO instances are samplers whose values are δ

close to uniform. For δ = 1/3 SDU is in the class Statistical Zero Knowledge (SZK) [26],
which is a subclass of coAM.2

1 Their result was recently extended to the semi-random model [12] in which the formula is arbitrary and
only the literals are polarized randomly.

2 When δ = 1/n, SDU is in the more restricted class Non-Interactive Statistical Zero-Knowledge
(NISZK) [10]. AvgNISZK membership can also be obtained for smaller γ.
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▶ Theorem 1. Let C be a sufficiently large constant and ϵ ≥ 2−n/C . For all but an ϵ-
fraction of instances, NBV with parameters m = Cn log n and γ = 1/Cmn3/2 log1/2(n/ϵ) is
in AvgSZK.

The proof is given in Section 3. In Section 5 we outline a tentative approach for improving
the completeness error γ.

When ϵ is polynomial in n, SZK membership holds for all but a n−O(1) fraction of
instances and the approximation factor γ has value Θ̃(1/mn3/2). When ϵ is 2−Ω(n) then the
fraction of instances is exponential, but γ = Θ(1/mn2).

2 Background and Overview

2.1 Average-case refutations
Refutations come up naturally in the study of combinatorial optimization. A worst-case
approximation algorithm A for a minimization problem P is required to output a value
within a factor of c of the optimum on all instances. Such an algorithm provides an efficient
refutation of the claim

x has a solution of value at most A(x)/c (1)

for every instance x.
When efficient refutations are hard to obtain for all x it may be natural to relax the

condition to hold for most x. An average-case refutation should still certify (1), but it is now
allowed to fail on some small fraction of inputs x.

For many natural distributions, the optimum is tightly concentrated around its expectation.
For example, the maximum number of satisfiable clauses in random 3SAT with sufficiently
large clause-to-variable density is close to 7/8 on most instances. In particular, an average-
case refutation must certify that most instances are not satisfiable, but it should be allowed to
output “I don’t know” on a small fraction of inputs. This motivates the following definition:

▶ Definition 2. A refutation R with failure rate ϵ for distributional (promise) prob-
lem f is an algorithm that outputs “no” or “I don’t know”, is always correct (R(x) =
f(x) or “I don’t know”), and outputs “I don’t know” on at most an ϵ-fraction of inputs.

While efficient deterministic or randomized refutations are needed for the design of
approximation algorithms, in this work we are interested in the existence of nondeterministic
(coNP-type) refutations. Such refutations yield efficiently verifiable certificates of (1) on
most inputs. As a consequence of Theorem 1 we have

▶ Corollary 3. There is a efficient nondeterministic interactive refutation for NBV with
failure rate ϵ ≥ 2−n/C and parameters m = Cn log n, γ = 1/Cmn3/2 log1/2(n/ϵ).

2.2 Refutations in the Sum-of-Squares Framework
The sum-of-squares (SoS) framework is an incomplete but poweful framework for refuting
optimization problems. It has been used to argue efficient refutations do not exist for
problems such as clique [3]. The most notable incorrect prediction of SoS is on random 3LIN
with perfect completeness [11, 27]. In that case not only do refutations exist but they can be
found by Gaussian elimination.

In contrast, the nondeterministic refutations of Feige, Kim, and Ofek arise as solutions to
the level-O(n2δ) SoS relaxation of random 3SAT with n variables and m constraints. This
may be viewed as evidence that SoS correctly predicts refutability in problems that are
immune to Gaussian elimination “attacks”.

ICALP 2023
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2.3 Sherrington-Kirkpatrick and Nearest Boolean Vector
The negative energy of the Sherrington-Kirkpatrick Hamiltonian at zero-temperature is the
value

SK(M) = min 1√
n

· xT Mx subject to x ∈ {±1/
√

n}n

for a matrix M sampled from the Gaussian Orthogonal Ensemble. It can be efficiently
certified that SK(M) ≤ 2 + ϵ for every ϵ > 0 and most matrices M via the relaxation

SK(M) ≤ min
∥u∥=1

1√
n

· uT Mu = λ1(M), (2)

where λ1(M) is the largest eigenvalue of M , which is known to not exceed 2 + ϵ for most
matrices M .

Parisi [21] conjectured and Talagrand [28] proved that SK(M) is in fact strictly smaller
than 2 for most matrices M . The true value for most M is concentrated around Parisi’s
constant P∗ ≈ 1.526. More recently Montanari [20] found an algorithm that finds a solution
x for which xT Mx ≤ P∗ − ϵ for most matrices M and proved its correctness under some
plausible conjecture.

Mohanty, Raghavendra, and Xu [19] ask whether Montanari’s algorithm can be matched
with an efficient certificate that SK(M) ≤ P∗ + ϵ for most matrices M . Together with
Montanari’s algorithm, this would give an errorless heuristic for calculating SK(M) up
to lower-order terms. As a first step they show that SK reduces to the potentially more
tractable Nearest Boolean Vector Problem.

Mohanty, Raghavendra, and Xu prove that for all c, γ > 0 there exists an ϵ > 0 such
that if NBV with parameters m/n = c and γ admits efficient refutations than so does the
claim SK(M) ≤ 2 − ϵ for most M . Moreover, for sufficiently small c, most subspaces A are
no-instances of NBV.

However, their main evidence for refutability of NBV is negative: They show that no
refutations can be obtained from the natural degree-4 SoS relaxation of NBV for any constant
c, even in case of perfect completeness γ = 0. A refutation algorithm for γ = 0 is merely
required to certify that no Boolean vector belongs to the subspace A. The SoS hardness
regime was later extended to m ≪ n3/2 and to degree-nΩ(1) SoS by Ghosh et al. [8]. It is
believed that it can be further extended up to m < n2/4, as (heuristically) suggested by
calculations of the low-degree likelihood ratio (see Potechin et al. [23]).

Theorem 1 has no bearing on the complexity of certifying that SK(M) ≤ 2 for most M .
To obtain an improvement over the spectral certificate (2) the completeness error γ would
have to be constant, or at least m−ϵ for some small ϵ.

2.4 Algorithms for NBV
When m ≫ n2 and γ is a sufficiently small constant it is plausible that NBV can be efficiently
solved by linearization. Represent A as the column span of B for some m × n matrix B.
Consider the objective

minimize
m∑

i=1

(
⟨Bi, x⟩2 − 1

)2 over x ∈ Rn, (3)

where Bi is the i-th row of B. If A had a Boolean vector ⟨Bi, x⟩ = ±1 the value of this
objective would be zero. We suspect that for most matrices B it should be lower bounded by
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Ω(m). If (3) were efficiently computable its value would be the required certificate. Although
this is unlikely, the same argument can be applied to its linearization in which degree-2
monomials xixj are represented by variables yij :

minimize
m∑

i=1

( n∑
j,k=1

BijBikyjk − 1
)2

over y ∈ Rn(n+1)/2, (4)

which is a convex quadratic objective and therefore efficiently minimizable.
In the case of perfect completeness, γ = 0 NBV reduces to the Shortest Vector Problem

(SVP) in lattices with approximation factor exponential in the dimension and can therefore
be solved by the LLL algorithm [15] for any m > n. Here is an outline of the (standard)
reduction R. Let the columns of C ∈ Rm×(m−n) be a random orthonormal basis of the
dual subspace A⊥. Consider the lattice L spanned by the rows of the m × (2m − n) matrix
C ′ = [δIm|C] for δ = 2−2m2 . If A contained a Boolean vector x then C ′x would be a
vector of length δ

√
m in L. If not, by a union bound there is unlikely to exist a vector

x ∈ {−2m, . . . , 2m}m for which ∥Cx∥ < 2mδ so the shortest vector in L has length at least
2mδ.

2.5 Nondeterministic refutations for NBV
This reduction R extends to almost-perfect completeness γ = 2−Θ(m2). It is tempting
to conjecture for m ≫ n log n that there is a constant d such that R reduces NBV with
parameter γ = m−d to SVP with approximation factor

√
m, which is a coNP problem [1].

Should such a reduction exist it would imply efficient nondeterministic refutations for NBV.
We were unable to prove the soundness of R in this parameter regime. Our preliminary

calculations indicate that L may contain unusually short vectors for most instances A of
NBV.

Instead, we prove Theorem 1 by adapting a public-key encryption scheme of Ajtai and
Dwork [2] (see [4] for a “modern” description) into the desired reduction from NBV to SDU.

2.6 Refutations, SZK, and Public-key Encryption
The chosen plaintext attack security notion for one-bit encryption with public key
PK and encryption algorithm Enc posits that the distributions (PK, Enc(PK, 0)) and
(PK, Enc(PK, 1)) are computationally indistinguishable. In contrast, functionality requires
that they be statistically distinguishable by the decryption algorithm.

The security of several public-key encryption candidates is argued using a model (fake)
public-key distribution FK with the property that PK and FK are computationally indistin-
guishable while (FK, Enc(FK, 0)) and (FK, Enc(FK, 1)) are statistically indistinguishable.
This proof strategy yields a reduction from distinguishing real and model public keys to
SDU.

The security proof for the Ajtai-Dwork (AD) and Bogdanov et al.’s (BCHR) pancake
encryptions are of this type. In BCHR, the model public key FK is a sequence m of
independent standard n-dimensional Gaussians, while in the real public key PK an almost-
periodic component is planted in a secret direction s of Rn. If the almost-periodic component
is concentrated around the values −1 and 1, the row-span of PK can be viewed as a
yes-instance of NBV.

To turn this distinguisher between PK and FK into a refutation, we observe that the
encryption remains functional even for a worst-case choice of PK that satisfies some efficiently
verifiable conditions (the largest and smallest singular values of PK are pseudorandom). By

ICALP 2023
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verifying these conditions the reduction from NBV to SDU ensures that all yes-instances of
NBV map to yes-instances of SDU, while affecting only a small fraction of no-instances, thus
providing interactive remoteness certificates for most instances of NBV.

The BCHR encryption and security proof suggest the following visualization of the
remoteness certificates. If a random matrix FK is multiplied on the right by a random
x ∼ {±1}m the output FK · x is close to a random Gaussian point in Rn (see Fact 17).
On the other hand, PK · x is concentrated around “pancakes” perpendicular to the secret
direction s. To certify remoteness, the verifier asks the prover to furnish an x ∈ {±1}m close
to a random Gaussian point g in Rn. Unless g happens to land close to a pancake the prover
will fail on an no- instance PK of NBV .

A fatal weakness of BCHR encryption is that it is insecure unless m ≫ n2, a setting
of parameters in which NBV is tractable. In contrast, security of AD can be proved
when m = O(n log n). This improvement is obtained by modifying the encryption from
round(PK · x) to round(σA · x) mod P(B), where PK = [A|B] with A ∈ R(m−n)×n and
B ∈ Rn×n is the public key matrix, P(B) is the parallelepiped spanned by the columns of B,
and σ is a suitable scaling factor. Reduction 1 in Section 3 implements this security proof
(in a different basis which is more suitable for analysis), again by imposing some efficiently
verifiable conditions that hold for typical yes-instances but for none of the no-instances of
NBV .

3 Refutation via Lattice Smoothing

We represent the random subspace A as the row space of a random n × m matrix [A|B′]
of independent normal entries. It is sufficient to specify these entries up to O(log n) bits of
precision. We carry out our analyses assuming infinite precision. It will be clear from the
calculations that the additional effect of rounding the entries of A does not affect correctness.

For a real number x let x = ⌊x⌉ + {x} be its unique representation with ⌊x⌉ ∈ Z and
{x} ∈ [−1/2, 1/2). Let {x}p be the multiple of 1/p in [−1/2, 1/2) closest to {x}. The
notation extends to vectors and matrices entrywise.

▷ Fact 4. (a) |{x}| ≤ |x| and (b) |{x + y}| ≤ |{x}| + |{y}|.

We choose the modulus p to equal Cn
√

m for a sufficiently large constant C. Let
σ = (1/π)

√
n ln(12mn/ϵ + 2n).

Reduction 1: On input [A|B′], A ∈ Rn×(m/2), B′ ∈ Rn×(m/2),
1 Find a submatrix B of B′ with smallest singular value at least 1/

√
n.

2 If step 1 is unsuccessful, fail.
3 If any column of A has norm more than 2

√
n, fail.

4 Otherwise, output the sampler S that maps x ∼ {±1}m/2 to {{σB−1A}px} ∈ 1
pZ

n
p .

A naive implementation of step 1 would split B′ into m/n candidate matrices B and
attempt to find one with singular value 1/

√
n, resulting in failure rate ϵ = 2−O(m/n) which is

n−O(1) when m = O(n log n). In Section 4 we design a greedy procedure for choosing B that
improves the failure rate to 2−Ω(n).

Theorem 1 follows from Claims 5 and 8.

▷ Claim 5. Assume ϵ > 2−Ω(n). For all but an ϵ-fraction of instances [A|B′] the output of
S is 1/3-close to a uniformly random element of 1

pZ
n
p .
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▷ Fact 6 (Smoothing). [18, Lemmas 3.3 and 4.1] If all columns of B ∈ Rn×n have norm at
most b, g is standard normal in Rn, and σ ≥ (b/2π)

√
ln(n/ϵ + 2n), then {σB−1g} is ϵ-close

to a uniform random point in [−1/2, 1/2)n.

▷ Fact 7 (Leftover hash lemma). [13] If C ∼ Zn×m
p is a random matrix and x ∈ Zm

p be a
random vector uniformly distributed on some set of size M then (C, Cx) is

√
pn/M -close to

uniformly random.

Proof of Claim 5. By Proposition 9 B can be found (efficiently) except with probability
exp(−Ω(m)). By large deviation bounds all columns of B have norm at most 2

√
n except

with probability 2−Ω(n). By our choice of parameters, both conditions are satisfied except
with probability 2−Ω(m) + 2−Ω(n) ≤ ϵ/2. Assuming this we argue the conclusion holds even
when conditioning on B.

For each column ai of A, σai ∈ Rn is a normal vector of zero mean and covariance σI.
By smoothing Fact 6, {σB−1ai} is ϵ/4m-close to a uniform point in [−1/2, 1/2)n. Therefore
C = {σB−1A}p is ϵ/12-close to a random matrix in 1

pZ
(m/2)×n
p . By Fact 7, (C, Cx) is

ϵ/12+
√

pn/2m/2-close to random. By our choice of parameters, ϵ/12+
√

pn/2m/2 ≤ ϵ/6. By
Markov’s inequality the output of the sampler is 1/3-close to random except with probability
ϵ/2 over the choice of A, and therefore except with probability ϵ over the choice of A and B′.

◁

▷ Claim 8. If [A|B′] is a yes instance of NBV with parameters m > Cn log n and γ <

1/Cmn3/2 log1/2(n/ϵ), either the reduction fails, or the output of S is 2/3-far from random.

Proof. As [A|B′] is a yes instance of NBV there exists a witness w ∈ Rn such that w[A|B′] =
v + e, where v ∈ {±1}m and ∥e∥ ≤ γ

√
m. Let D be the distinguisher that on input y ∈ 1

pZ
n
p

accepts if |{⟨wB, y⟩}| < 1/24.
Assume y is uniform in 1

pZ
n
p . We show D accepts y with probability at most 1/6. We

can write y as {u}p where u is uniform in [0, 1)n. Let e′ = y − u and let vB and eB be the
projections of v and e on the columns indexed by B. Then

⟨wB, y⟩ = ⟨vB + eB , u + e′⟩ = ⟨vB , u⟩ + ⟨vB , e′⟩ + ⟨eB , y⟩

The random variable {⟨vB , u⟩} is uniform in [−1/2, 1/2), so |{⟨vB , u⟩}| > 1/12 with proba-
bility 5/6. If this happens, by the triangle inequality,

|{⟨wB, y⟩}| ≥ |{⟨vB , u⟩}| − |⟨vB , e′⟩| − |⟨eB , y⟩|
≥ 1/12 − ∥vB∥∥e′∥ − ∥eB∥∥y∥
≥ 1/12 − n/p − γ

√
mn

> 1/24

and D rejects y.
Now assume the reduction does not fail so that ∥B−1∥ ≤

√
n and all columns of A and B

have norm at most 2
√

n. We will show that D accepts y = {{σB−1A}px} with probability
at least 5/6. Therefore D distinguishes this distribution from the uniform one, so the two
must be 2/3-far.

Let E = {σB−1A}p − {σB−1A}. Then

{σB−1A}p = {σB−1A} + E = σB−1A − ⌊σB−1A⌋ + E.

Since x is integral,

y = {{σB−1A}px} = {σB−1Ax + Ex}.

ICALP 2023
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Therefore

⟨wB, y⟩ = ⟨wB, σB−1Ax⟩ + ⟨wB, Ex⟩ − ⟨wB, f⟩,

where f = ⌊σB−1Ax + Ex⌉. The first term equals

⟨wB, σB−1Ax⟩ = σ⟨wA, x⟩ = σ⟨vA, x⟩ + σ⟨eA, x⟩,

where vA and eA are the projections of v and e on the coordinates indexed by the columns
of A. The third term equals

⟨wB, f⟩ = ⟨vB , f⟩ + ⟨eB , f⟩.

As σ⟨vA, x⟩ and ⟨vB , f⟩ are integers,

|{⟨wB, y⟩}| ≤ |σ⟨eA, x⟩| + |⟨wB, Ex⟩| + |⟨eB , f⟩|
≤ σ∥eA∥∥x∥ + ∥wB∥∥Ex∥ + ∥eB∥∥f∥
≤ σ∥eA∥∥x∥ + (∥vB∥ + ∥eB∥)∥Ex∥ + ∥eB∥(σ∥B−1∥∥Ax∥ + ∥Ex∥ +

√
n)

≤ σγm + (
√

n + γ
√

m)(
√

mn/p) + γ
√

m(σ ·
√

n · ∥Ax∥ +
√

mn/p +
√

n).

As Ax is a random ±1 sum of vectors of norm at most 2
√

n, its expected squared norm is mn,
so its norm is at most 3

√
mn with probability at least 5/6. Since γ < 1/Cmn3/2 log1/2(n/ϵ),

p > Cn
√

m, and so p > Cγm
√

n, each term on the right hand side is less than 1/72 (if C is
sufficiently large). Then the left hand side is less than 1/24 and D accepts y. ◁

4 Well-conditioned submatrices of random matrices

We now present and analyze the simple greedy algorithm used in step 1 in Reduction 1.

▶ Proposition 9. Let B ∈ Rm×n be a random Gaussian matrix with m > Cn. The
probability that B contains a square submatrix with smallest singular value at least 1/

√
n is

1 − exp(−Ω(m)). Moreover this submatrix can be found efficiently.

Think of the column vectors of B as a stream of random normal vector samples. The
matrix A is constructed incrementally column by column, starting with the empty matrix.
After k − 1 columns of A have been chosen, the next sample from the stream is considered
as a candidate for the k-th column. It is rejected unless

ρ =
k∑

i=1

1
σ2

k

≤ k

n − k + 1 , (5)

where σ1, . . . , σk are the singular values of A.
Once all n columns of A have been chosen, (5) guarantees that the sum of inverse squares

of the singular values is at most n, so the smallest singular value will be at least
√

n as desired.
It remains to argue that no more than m − n rejections happen except with probability
exp(−Ω(m)).

Evolution of ρ

We analyze the evolution of ρ as columns are being added to A. Let Ak be any non-singular
n × k matrix. Then

ρ(Ak) =
∑k

i=1
∏

j ̸=i σ2
j∏k

i=1 σ2
i

= −χ′
k(0)

χk(0) ,
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where χk(λ) = det(A⊤
k Ak − λI). Given Ak, let Ak+1 be the random matrix obtained by

appending a random normal column x to Ak.
Let L ∈ Rk×k be an orthogonal matrix such that L⊤A⊤

k AkL = diag(σ2
1 , . . . , σ2

k). It can
be obtained from the singular value decomposition of Ak. The matrix L′ ∈ R(k+1)×(k+1)

given by L′ = diag(L, 1) is also orthogonal and

Ak+1L′ =
[
Ak x

]
·
[
L

1

]
=

[
AkL x

]
Since the columns of AkL are orthogonal of length σ1, . . . , σk, the columns of

AkL diag(σ−1
1 , . . . , σ−1

k )

can be completed to an orthonormal basis C. The change of variables

y⊤ = x⊤C

is then an isometry, so y1, . . . , yn are independent standard normals, and ∥y∥ = ∥x∥. Then

L′⊤A⊤
k+1Ak+1L′ =


σ2

1 σ1y1
σ2

2 σ2y2
. . .

...
σ2

k σkyk

σ1y1 σ2y2 . . . σkyk ∥y∥2


Therefore

χk+1(λ) = det(A⊤
k+1Ak+1 − λI)

= det(L′⊤A⊤
k+1Ak+1L′ − λI)

= (∥y∥2 − λ)
k∏

i=1
(σ2

i − λ) −
k∑

i=1
σ2

i y2
i

∏
j ̸=i

(σ2
j − λ)

= χk(λ)
(

∥y∥2 − λ −
k∑

i=1

σ2
i y2

i

σ2
i − λ

)
.

We obtain the following recurrences:

χk+1(0) = χk(0)∥y⊥k∥2

χ′
k+1(0) = χ′

k(0)∥y⊥k∥2 − χk(0)
(

1 +
k∑

i=1

y2
i

σ2
i

)
,

where y⊥k = (yk+1, . . . , yn).

▷ Claim 10. If (n − k + 1)χ′
k(0) + kχk(0) ≥ 0 then

E
[
(n − k)χ′

k+1(0) + (k + 1)χk+1(0)
∣∣Ak

]
≥ 0.

The claim follows from linearity of expectation using the facts E[y2
i ] = 1 and E∥y⊥k∥2 = k.

Proof of Proposition 9. We show that the number of samples required for each column of
A is dominated by a geometric random variable whose success probability is some absolute
constant p⋆. The expected number of samples required is then at most n/p⋆. By large
deviation bounds for geometric random variables [14] the probability that more than Cn

samples are required is then at most exp(−Ω(Cnp⋆)), assuming C > 1/p⋆.
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For the first column of A to fulfill (5) its squared norm needs to be at least n. This is at
least p⋆ by Corollary 12 (with a1 = · · · = an = 1 and b = 0).

Now suppose (5) holds after the k-th column was added. Fix Ak and let X be the random
variable (n − k)χ′

k+1(0) + (k + 1)χk+1(0). By Claim 10 E[X] ≥ 0. The random variable X

is of the form in Corollary 12 so Pr(X > E[X]) ≥ p⋆. Once a column x has been picked so
that X ≥ 0, the invariant (5) will hold for the matrix Ak+1 = [Ak x]. ◀

4.1 Anticoncentration
The concentration Q of a real-valued random variable X is Q(X, h) = supx Pr(x ≤ X ≤ x+h).

▶ Proposition 11. There exists an absolute constant C such that if X1, . . . , Xn are indepen-
dent mean zero, unit variance random variables such that Q(Xi, h) ≤ 3/4 for all i and some
h ≤ 1/4C then

Pr
(
a1X1 + · · · + anXn > 0

)
≥ h2

32 + 4h2 .

for all a1, . . . , an.

▶ Corollary 12. There is an absolute constant p⋆ so that for every n and a1, . . . , an, b,

Pr
(
a1Z2

1 + · · · + anZ2
n + b ≥ µ

)
≥ p⋆,

where Z1, . . . , Zn are independent normals and µ = a1 + · · · + an + b.

Proof. Apply Proposition 11 to the random variables Yi = (X2
i − 1)/

√
2 which have mean

zero and unit variance. The condition Q(Yi, h) ≤ 3/4 is satisfied for all h ≤ 0.2. ◀

Proof of Proposition 11. Let X = a1X1 + · · ·+anXn. We may assume X has unit variance.
By Rogozin’s inequality [25],

Q(X, H) ≤ CH
(∑

a2
i (1 − Q(aiXi, aih))

)−1/2
= 2CH ≤ 2Ch,

where H = h maxi|ai| ≤ h. Applying Claim 13 we get

Pr[X > 0] ≥ 1
t + h

(h(1 − 2Ch) − 2/t) = h/2 − 2/t

t + h
.

Choosing t = 8/h we get Pr(X > 0) ≥ h2/(32 + 4h2). ◀

▷ Claim 13. For every zero-mean, unit-variance X, every λ > 0, and every t ≥ 1

Pr[X > 0] ≥ 1
t + h

(
h · Pr(−h < X ≤ 0) − 2/t

)
.

Proof. Let p = Pr(X ∈ (0, t]) and q = Pr(X ∈ (−h, 0]). Then

E[X] ≤ −h Pr(X ≤ −h) + 0 Pr(−h < X ≤ 0) + t Pr(0 < X ≤ t) + E[X1(X > t)]
≤ −h · (1 − q − p) + t · p + E[X1(X > t)].

As E[X] = 0,

p ≥ 1
t + h

(
h(1 − q) − E[X1(X > t)]

)
.

By Claim 14, E[X1(X > t)] ≤ E[|X|1(|X| > t)] ≤ 2/t. ◁
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▷ Claim 14. For every zero-mean, unit-variance X and every t ≥ 1,

E
[
|X|1(|X| > t)

]
≤ 2/t.

Proof.

E
[
|X|1(|X| > t)

]
=

∫ ∞

0
Pr(|X|1(|X| > t) > x)dx

=
∫ t

0
Pr(|X| > t)dx +

∫ ∞

t

Pr(|X| > x)dx

≤
∫ t

0
(1/t2)dx +

∫ ∞

t

(1/x2)dx

= 2/t.

The inequality is Chebyshev’s. ◁

5 Refutation via Boolean combinations

Theorem 1 was proved by adapting the Ajtai-Dwork encryption scheme into a refutation
algorithm for NBV. In this Section we carry out an analogous analysis for the “pancake
encryption” of Bogdanov, Cueto Noval, Hoffmann, and Rosen (BCHR).

Their public key is also computationally indistinguishable from a random subspace of Rm.
The dimension of this subspace is, however, only o(

√
m). As a consequence, the resulting

refutation only applies to a regime of NBV that is efficiently tractable.
While BCHR becomes insecure when n ≫

√
m, we believe that a modification of it may

be secure up to n = m1−o(1). The advantage of the BCHR-based reduction over Theorem 1
is that it applies to larger completeness error γ.

▶ Theorem 15. For every constant ϵ there exists a constant C such that for all but an
ϵ-fraction of instances, average-case NBV with parameters m = C(n log n)2 and γ = 1/C

√
m

is in SZK.

Let Z be a normal random variable and let ζ1 < · · · < ζr be the unique numbers
such that Pr(Z ≤ ζi) = (2i + 1)/2r. The Gaussian rounding roundr : R → {ζ1, . . . , ζr}
is the function roundr(z) = ζi where i is the unique index for which ⌈r · Pr(Z ≤ z)⌉ =
⌈r · Pr(Z ≤ ζi)⌉ (see Figure 1). For z ∈ Rn let roundr : Rn → {ζ1, . . . , ζr}n be given by
roundr(z) = (roundr(z1), . . . , roundr(zn)). Ser r = max{Cm, Cn2/γ2}.

ζ1 ζ2 ζ3 ζ5 ζ6 ζ7ζ4 = 0

Figure 1 The function roundr for r = 7. All intervals have equal Gaussian measure. The values
in the i-th interval round to ζi.

Reduction 2: On input A ∈ Rm×n,
1 If the largest singular value of A is more than 2

√
m, fail.

2 If the smallest singular value of A is less than
√

m/4, fail.
3 Otherwise, output the sampler S that maps x ∼ {±1/

√
m}m to roundr(Ax).

Theorem 15 follows from Claims 16 and 19.
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▷ Claim 16. For every ϵ there is a C so that for a 1 − ϵ fraction of instances A ∈ Rm×n,
where m = (Cn log n)2, the output of S is 2/3-close to random.

▷ Fact 17. [4] The distribution (A, roundr(Ax)) is
√

4en ln r/
√

m-close to (A, ζ), where ζ

is uniform over rounded values and independent of A.

▷ Fact 18. [6] Assume m > 2n. The largest and smallest singular values of A is at most
2
√

n and at least
√

n/4, except with probability exp(−Ω(n)).

Proof of Claim 16. By Fact 17, the joint distribution of A and the output of the sampler
is O(C−1/2)-close to uniform. Therefore for all but O(C−1/2) choices of A the output is
2/3-close to uniform. By a Chernoff bound and Fact 18 at most 2−Ω(m) other inputs A cause
the reduction to fail. ◁

▷ Claim 19. If A is a yes instance of NBV with γ < 1/C
√

m, either Reduction 2 fails, or
the output of S is 2/3-far from random.

▷ Fact 20. [4] For sufficiently large r, roundr(z), z ∈ R is r−1/2-close to z unless |z| > t for
t such that Pr(|Z| > t) ≤ 3(r ln r)−1/2, where Z is normal in R.

Proof of Claim 19. Let w ∈ Rn be the witness for which wA = v + e where v ∈ {±1}m and
∥e∥ ≤ γ

√
m. Let D be the distinguisher that, given ζ, accepts if |{

√
m⟨w, ζ⟩}| ≤ 1/48.

Assuming the reduction did not fail, by the assumption on singular values,

1
4 ≤ ∥v∥ − ∥e∥

2
√

m
≤ ∥w∥ ≤ ∥v∥ + ∥e∥√

m/4
≤ 8.

If ζ is random, we argue that D rejects with probability at least 5/6. we can write
ζ = roundr(g) for a normal g ∈ Rn. Let e = roundr(g) − g. Then

√
m⟨w, ζ⟩ =

√
m⟨w, g⟩ +√

m⟨w, e⟩. The random variable
√

m⟨w, g⟩ is a univariate normal with standard deviation
at least

√
m∥w∥ ≥

√
m/4. By Fact 6, {

√
m⟨w, g⟩} is 2−Ω(m) < 1/24 close to uniform in

[−1/2, 1/2). In particular, |{
√

m⟨w, g⟩}| > 1/24 except with probability 11/12 − 1/24. By
Fact 20, ∥e∥∞ ≤ r−1/2 except with probability 3n(r ln r)−1/2 < 1/24. Both events happen
with probability at least 5/6. Assuming this,

|{
√

m⟨w, ζ⟩}| > 1/24 − |{
√

m⟨w, e⟩}| ≥ 1/24 −
√

m∥w∥∥e∥ > 1/48

because
√

m∥w∥∥e∥ ≤ 8
√

mr−1/2 and D rejects.
If ζ is the output of the sampler we argue that the distinguisher accepts it with probability

at least 8/9:

|{
√

m⟨w, Ax⟩}| = |{
√

m⟨v + e, x⟩}| = |{
√

m⟨v, x⟩ +
√

m⟨e, x⟩}| =
√

m|⟨e, x⟩| (6)

because v and
√

mx are integral. As x is random, E[⟨e, x⟩2] = ∥e∥2/m. By Markov’s
inequality, |⟨e, x⟩| ≤ 3∥e∥/

√
m except with probability 1/9. If this holds (6) is at most

3∥e∥ ≤ 3γ
√

m.
As the largest singular value of A is at most 2

√
m, all entries of Ax are between −2 and

2. By Fact 20, ∥roundr(Ax) − Ax∥∞ ≤ nr−1/2. Therefore

|{
√

m⟨w, roundr(Ax) − Ax⟩}| ≤
√

m∥w∥∥roundr(Ax) − Ax∥ ≤ 8
√

mnr−1/2 ≤ γ
√

m.

Together with (6), |{
√

m⟨w, Ax⟩}| ≤ 4γ
√

m ≤ 1/48. ◁
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