
A 4/3 Approximation for 2-Vertex-Connectivity
Miguel Bosch-Calvo #

IDSIA, USI-SUPSI, Lugano, Switzerland

Fabrizio Grandoni #

IDSIA, USI-SUPSI, Lugano, Switzerland

Afrouz Jabal Ameli #

TU Eindhoven, The Netherlands

Abstract
The 2-Vertex-Connected Spanning Subgraph problem (2VCSS) is among the most basic NP-hard
(Survivable) Network Design problems: we are given an (unweighted) undirected graph G. Our
goal is to find a subgraph S of G with the minimum number of edges which is 2-vertex-connected,
namely S remains connected after the deletion of an arbitrary node. 2VCSS is well-studied in terms
of approximation algorithms, and the current best (polynomial-time) approximation factor is 10/7
by Heeger and Vygen [SIDMA’17] (improving on earlier results by Khuller and Vishkin [STOC’92]
and Garg, Vempala and Singla [SODA’93]).

Here we present an improved 4/3 approximation. Our main technical ingredient is an approx-
imation preserving reduction to a conveniently structured subset of instances which are “almost”
3-vertex-connected. The latter reduction might be helpful in future work.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Algorithm, Network Design, Vertex-Connectivity, Approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.29

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02240 [3]

Funding The first 2 authors are partially supported by the SNF Grant 200021_200731 / 1.

1 Introduction

Real-world networks are prone to failures. For this reason it is important to design them so
that they are still able to support a given traffic despite a few (typically temporary) failures
of nodes or edges. The basic goal of survivable network design is to construct cheap networks
which are resilient to such failures.

Most natural survivable network design problems are NP-hard, and a lot of work was
dedicated to the design of approximation algorithms for them. One of the most basic
survivable network design problems is the 2-Vertex-Connected Spanning Subgraph problem
(2VCSS). Recall that an (undirected) graph G = (V, E) is k-vertex-connected (kVC) if, after
removing any subset W of at most k − 1 nodes (with all the edges incident to them), the
residual graph G[V \ W] is connected. In particular, in a 2VC graph G we can remove any
single node while maintaining the connectivity of the remaining nodes (intuitively, we can
tolerate a single node failure). In 2VCSS we are given a 2VC (unweighted) undirected graph
G = (V, E), and our goal is to compute a minimum cardinality subset of edges S ⊆ E such
that the (spanning) subgraph (V, S) is 2VC.

2VCSS is NP-hard: indeed an n-node graph G admits a Hamiltonian cycle iff it contains
a 2VC spanning subgraph with n edges. Czumaj and Lingas [13] proved that the problem is
APX-hard, hence most likely it does not admit a PTAS. A 2-approximation for 2VCSS can
be obtained in different ways. For example one can compute an (open) ear decomposition of

EA
T

C
S

© Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:miguel.boschcalvo@idsia.ch
mailto:fabrizio@idsia.ch
mailto:a.jabal.ameli@tue.nl
https://doi.org/10.4230/LIPIcs.ICALP.2023.29
https://arxiv.org/abs/2305.02240
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A 4/3 Approximation for 2-Vertex-Connectivity

the input graph and remove the trivial ears (containing a single edge). The resulting graph
is 2VC and contains at most 2(n − 1) edges (while the optimum solution must contain at
least n edges). The first non-trivial 5/3 approximation was obtained by Khuller and Vishkin
[28]. This was improved to 3/2 by Garg, Vempala and Singla [20] (see also an alternative 3/2
approximation by Cheriyan and Thurimella [11]). Finally Heeger and Vygen [24] presented
the current-best 10/7 approximation1. Our main result is as follows (please see Section 2 for
an overview of our approach):

▶ Theorem 1. There is a polynomial-time 4
3 -approximation algorithm for 2VCSS.

1.1 Related Work

An undirected graph G is k-edge-connected (kEC) if it remains connected after removing up
to k − 1 edges. The 2-Edge-Connected Spanning Subgraph problem (2ECSS) is the natural
edge-connectivity variant of 2VCSS, where the goal is to compute a 2EC spanning subgraph
with the minimum number of edges. Like 2VCSS, 2ECSS does not admit a PTAS unless
P = NP [13]. It is not hard to compute a 2 approximation for 2ECSS. For example it is
sufficient to compute a DFS tree and augment it greedily. Khuller and Vishkin [27] found
the first non-trivial 3/2-approximation algorithm. Cheriyan, Sebö and Szigeti [10] improved
the approximation factor to 17/12. This was further improved to 4/3 in two independent
and drastically different works by Hunkenschröder, Vempala and Vetta [25] and Sebö and
Vygen [34]. The current best and very recent 118

89 + ε < 1.326 approximation is due to Garg,
Grandoni and Jabal Ameli [19]. Our work exploits several ideas from the latter paper. The
k-Edge Connected Spanning Subgraph problem (kECSS) is the natural generalization of
2ECSS to any connectivity k ≥ 2 (see, e.g., [11, 17]).

A major open problem in the area is to find a better than 2 approximation for the
weighted version of 2ECSS. This is known for the special case with 0-1 edge weights, a.k.a.
the Forest Augmentation problem, by the recent work by Grandoni, Jabal-Ameli and Traub
[21] (see also [2, 7, 6] for the related Matching Augmentation problem).

A problem related to kECSS is the k-Connectivity Augmentation problem (kCAP): given
a k-edge-connected undirected graph G and a collection of extra edges L (links), find a
minimum cardinality subset of links L′ whose addition to G makes it (k + 1)-edge-connected.
It is known [14] that kCAP can be reduced to the case k = 1, a.k.a. the Tree Augmentation
problem (TAP), for odd k and to the case k = 2, a.k.a. the Cactus Augmentation problem
(CacAP), for even k. Several approximation algorithms better than 2 are known for TAP
[1, 8, 9, 15, 16, 22, 29, 30, 31], culminating with the current best 1.393 approximation by
Cecchetto, Traub and Zenklusen [5]. Till recently no better than 2 approximation was known
for CacAP (excluding the special case where the cactus is a single cycle [18]): the first such
algorithm was described by Byrka, Grandoni and Jabal Ameli [4], and later improved to
1.393 in [5]. In a recent breakthrough by Traub and Zenklusen, a better than 2 (namely
1.694) aproximation for the weighted version of TAP was achieved [35] (later improved to
1.5 + ε in [36]). Partial results in this direction where achieved earlier in [1, 12, 16, 22, 32].

1 Before [24] a few other papers claimed even better approximation ratios [23, 26], however they have
been shown to be buggy or incomplete, see the discussion in [24].

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:3

1.2 Preliminaries
We use standard graph notation. For a graph G = (V, E), we let V (G) = V and E(G) = E

denote its nodes and edges, resp. For W ⊆ V and F ⊆ E, we use the shortcuts G \ F :=
(V, E \ F) and G \ W := G[V \ W]. For a subgraph G′, a node v and an edge e, we also use
the shortcuts v ∈ G′ and e ∈ G′ meaning v ∈ V (G′) and e ∈ E(G′), resp. Throughout this
paper we sometimes use interchangeably a subset of edges F and the corresponding subgraph
(W, F), W = {v ∈ V : v ∈ f ∈ F}. The meaning will be clear from the context. For example,
we might say that F ⊆ E is 2VC or that F contains a connected component. In particular,
we might say that S ⊆ E is a 2VC spanning subgraph. Also, given two subgraphs G1 and
G2, by G′ = G1 ∪ G2 we mean that G′ is the subgraph induced by E(G1) ∪ E(G2). We
sometimes represent paths and cycles as sequence of nodes. A k-vertex-cut of G is a subset
W of k nodes such that G[V \ W] has at least 2 connected components. A node defining a
1-vertex-cut is a cut vertex.

By OPT(G) ⊆ E(G) we denote an optimum solution to a 2VCSS instance G, and let
opt(G) := |OPT(G)| be its size. All the algorithms described in this paper are deterministic.

The proofs that are omitted here due to space constraints will appear in the journal
version of the paper (see also [3]).

2 Overview of Our Approach

In this section we sketch the proof of our 4/3-approximation (Theorem 1). The details and
proofs which are omitted here will be given in the following technical sections.

Our result relies on 3 main ingredients. The first one is an approximation-preserving (up
to a small additive term) reduction of 2VCSS to instances of the same problem on properly
structured graphs, which are “almost” 3VC in a sense described later (see Section 2.1).

At this point we compute a minimum-size 2-edge-cover H similarly to prior work: this
provides a lower bound on the size of the optimal solution. For technical reasons, we transform
H into a canonical form, without increasing its size (see Section 2.2).

The final step is to convert H into a feasible solution S. Starting from S = H, this is
done by iteratively adding edges to and removing edges from S in a careful manner. In order
to take the size of S under control, we assign 1/3 credits to each edge of the initial S, and
use these credits to pay for any increase in the number of edges of S (see Section 2.3). We
next describe the above ingredients in more detail.

2.1 A Reduction to Structured Graphs
Our first step is an approximation-preserving (up to a small additive factor) reduction of
2VCSS to instances of the same problem on properly structured graphs. This is similar in
spirit to an analogous reduction for 2ECSS in [19]. In particular we exploit the notion of
irrelevant edges and isolating cuts defined in that paper. We believe that our reduction might
be helpful also in future work.

In more detail, we can get rid of the following irrelevant edges.

▶ Lemma 2 (irrelevant edge). Given a 2VC graph G, let e = uv ∈ E(G) be such that {u, v}
is a 2-vertex-cut (we call e irrelevant). Then every optimal 2VCSS solution for G does not
contain e.

Proof. We will need the following observation:

ICALP 2023

29:4 A 4/3 Approximation for 2-Vertex-Connectivity

▶ Fact 3. Suppose that a minimal solution S to 2VCSS on a graph G contains a cycle
C. Then S does not contain any chord f of C. Indeed, otherwise consider any open ear
decomposition2 of S which uses C as a first ear. Then f would be a trivial ear (consisting of
a single edge) of the decomposition, and thus S \ {f} would also be 2VC, contradicting the
minimality of S.

Let H ⊆ E be any optimal (hence minimal) solution to 2VCSS on G. Assume by
contradiction that H contains an irrelevant edge e = uv. Removing u and v splits H into
different connected components C1, . . . , Ck, with k ≥ 2. Each one of those components has
edges uiu, viv in H, where ui, vi ∈ Ci for i ∈ {1, . . . , k}, otherwise H would contain a cut
vertex. Let P1 be a path from u1 to v1 in C1, and P2 be a path from v2 to u2 in C2. Then e

is a chord of the cycle P1 ∪ P2 ∪ {uu1, v1v, vv2, u2u}, contradicting the minimality of H by
Fact 3. ◀

We can enforce (see later) that our graph G is “almost” 3VC, in the sense that the only
2-vertex-cuts of G are a very specific type of isolating cuts defined as follows.

▶ Definition 4 (isolating cut). Given a 2-vertex-cut {u, v} of a graph G, we say that this cut
is isolating if G \ {u, v} has exactly two connected components, one of which consisting of 1
node. Otherwise the cut is non-isolating.

Assuming that there are no non-isolating cuts, we can avoid the following local configura-
tion: this will be helpful in the rest of our analysis.

▶ Definition 5 (removable 5-cycle). We say that a 5-cycle C of a 2VC graph G is removable
if it has at least two vertices of degree 2 in G.

▶ Lemma 6. Given a 2VC graph G without non-isolating cuts and with at least 6 nodes. Let
C be a removable 5-cycle of G. Then in polynomial time one can find an edge e of C such
that there exists an optimum solution to 2VCSS on G not containing e (we say that e is a
removable edge).

Proof. Assume C = v1v2v3v4v5. If C has two vertices of degree 2 that are adjacent in C,
namely v1 and v2, then {v3, v5} is a non-isolating cut of G, a contradiction. Thus we can
assume that C has exactly two non-adjacent vertices of degree 2, say v1 and v3 w.l.o.g.

We will show that the edge e = v4v5 is the desired removable edge. Let H be an optimal
2VCSS solution for G that uses the edge v4v5. Observe that in this case since v1 and v3 have
degree 2, then H must contain all the edges of C.

To complete the argument we show that there exists an edge f ∈ E(G) \ E(H), such that
v4v5 is a chord of a cycle in H ′ := H ∪ {f}: hence we can remove v4v5 from H ′ using Fact 3
to obtain an alternative optimum solution not containing v4v5.

Let H ′′ = H \ {v4v5}. There is no cycle C ′ in H ′′ that contains both v4 and v5, otherwise
v4v5 is a chord of C ′ in H, contradicting the minimality of H by Fact 3. Therefore if we
remove v2 from H ′′, there must be no paths from v4 to v5. This means that there is a
partition of V (G)\{v2} into non-empty sets V1 and V2 such that, {v3, v4} ∈ V1, {v1, v5} ∈ V2
and there is no edge in H ′′ between V1 and V2. Since |V (G)| ≥ 6, then we can assume w.l.o.g
that |V1| ≥ 3.

2 An ear-decomposition of an undirected graph G is a sequence of paths or cycles P0, . . . , Pk (ears)
spanning E(G) such that P0 is a cycle and Pi, i ≥ 1, has its internal nodes disjoint from Vi−1 :=
V (P0) ∪ . . . ∪ V (Pi−1) and its endpoints (or one node if Pi is a cycle) in Vi−1. We say that an ear-
decomposition is open if Pi is a path, for i ≥ 1. Every 2VC graph admits an open ear decomposition
[33, Chapter 15].

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:5

u

v

Figure 1 The cycle induced by the blue edges is a removable cycle, since it has two vertices of
degree 2 in G. The edge uv is removable. The red and orange (resp. gray) pairs of vertices form a
non-isolating (resp. isolating) cut. The green edge is irrelevant.

There must be an edge f = u1u2 ∈ E(G) such that u1 ∈ V1 \ {v3, v4} and u2 ∈ V2,
otherwise {v2, v4} is a non-isolating cut in G, a contradiction. Now we show that f is the
desired edge. We claim that there exists a path P1 in H[V1 \ {v3}] between u1 and v4. Since
H is 2VC, there exists a path P1 between u1 and v4 not using v2. Such path does not use v3
either since this node is adjacent only to v2 and v4, and u1 /∈ {v3, v4}. If P1 is not contained
in H[V1], it would need to use at least two edges between V1 and V2 in H, however we argued
before that H contains only one such edge, namely v4v5. Symmetrically, we claim that there
exists a path P2 in H[V2 \ {v1}] between u2 and v5. Notice that u2 = v5 is possible, in which
case the claim trivially holds. Hence next assume u2 ̸= v5. Observe that u2 ̸= v1 since u2 is
adjacent to u1 /∈ {v2, v5}. Thus, the claim about P2 follows symmetrically to the case of P1.
Altogether, v4v5 is a chord of the cycle P1 ∪ P2 ∪ {f} ∪ C \ {v4v5} in H ′ = H ∪ {f}, which
implies the lemma. ◀

We are now ready to define a structured graph and to state our reduction to such graphs.

▶ Definition 7 (structured graph). A 2VC graph G is structured if it does not contain: (1)
Irrelevant edges; (2) Non-isolating cuts; (3) Removable 5-cycles.

▶ Lemma 8. Given a constant 1 < α ≤ 3
2 , if there exists a polynomial-time algorithm for

2VCSS on a structured graph G that returns a solution of cost at most
max{opt(G), α · opt(G) − 2}, then there exists a polynomial-time α-approximation algorithm
for 2VCSS.

We remark that any α−ε approximation of 2VCSS on structured graphs, for an arbitrarily
small constant ε > 0, immediately implies an algorithm of the type needed in the claim of
Lemma 8: indeed, instances with opt(G) ≤ max{ 2

ε , 2
α−1 } can be solved exactly in constant

time by brute force.
The algorithm at the heart of our reduction is algorithm RED given in Algorithm 1.

Lines 1-2 solve by brute force instances with few nodes. Lines 3-4, 5-10, and 11-12 get rid
recursively of irrelevant edges, non-isolating vertex cuts and removable 5-cycles, resp. When
Line 13 is reached, the graph is structured and therefore we can apply a black-box algorithm
ALG for structured instances of 2VCSS.

It is easy to see that the algorithm runs in polynomial time.

ICALP 2023

29:6 A 4/3 Approximation for 2-Vertex-Connectivity

Algorithm 1 Reduction from arbitrary to structured instances of 2VCSS. Here G is 2VC and ALG is
an algorithm for structured instances that returns a solution of cost at most max{opt(G), α·opt(G)−2}
for some 1 < α ≤ 3

2 .

1: if |V (G)| < max{6, 2
α−1 } then

2: Compute OPT(G) by brute force (in constant time) and return OPT(G)
3: if G contains an irrelevant edge then
4: return RED(G \ {e})
5: if G contains a non-isolating vertex cut {u, v} then
6: let (V1, V2), 2 ≤ |V1| ≤ |V2|, be a partition of V (G) \ {u, v} such that there are no

edges between V1 and V2 in G \ {u, v}
7: let G1 be the graph resulting from G by contracting V2 into one node v2 and G2 the

graph resulting from G by contracting V1 into one node v1 (keeping one copy of parallel
edges in both cases)

8: let H1 = RED(G1) and H2 = RED(G2)
9: let E1 (resp. E2) be the two edges of H1 (resp., H2) with endpoints in v2 (resp., v1)

10: return H := (H1 \ E1) ∪ (H2 \ E2)
11: if G contains a removable 5-cycle then
12: let e be the removable edge (found via Lemma 6) in that cycle and return RED(G\{e})
13: return ALG(G)

▶ Lemma 9. RED(G) runs in polynomial time in |V (G)| if ALG does so.

Proof. Let n = |V (G)|. First observe that each recursive call, excluding the corresponding
subcalls, can be executed in polynomial time. In particular, we can find one irrelevant edge,
if any, in polynomial time by enumerating all the possible 2-vertex-cuts. Furthermore, we
can find some removable 5-cycle, if any, in polynomial time by enumerating all 5-cycles.
Then, by Lemma 6, we can indentify a removable edge in such cycle. We also remark that
in Lines 4 and 12 we remove one edge, and we never increase the number of edges. Hence
the corresponding recursive calls increase the overall running time by a polynomial factor
altogether.

It is then sufficient to bound the number f(n) of recursive calls where we execute Lines
6-10 starting from a graph with n nodes. Consider one recursive call on a graph G with n

nodes, where the corresponding graph G1 has 5 ≤ k ≤ n/2 + 2 nodes. Notice that G2 has
n − k + 4 nodes. Thus one has f(n) ≤ max5≤k≤n/2+2{f(k) + f(n − k + 4)}, which implies
that f(n) is polynomially bounded. ◀

Let us next show that RED produces a feasible solution.

▶ Lemma 10. Given a 2VC graph G, RED(G) returns a feasible 2VCSS solution for G.

Proof. Let us prove the claim by induction on (|V (G)|, |E(G)|) in lexicographic order. The
base cases are given when RED(G) executes Lines 2 or 13: in these cases RED clearly returns
a feasible solution. Consider an instance G where RED(G) does not execute those lines
(in the root call), and assume the claim holds for any instance G′ where (|V (G′)|, |E(G′)|)
is strictly smaller than (|V (G)|, |E(G)|) in lexicographic order. By Lemma 2, when RED
recurses at Line 4, the graph G \ {e} is 2VC, hence the recursive call returns a 2VC spanning
subgraph by inductive hypothesis. A similar argument holds when Line 12 is executed, this
time exploiting Lemma 6.

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:7

It remains to consider the case when Lines 6-10 are executed. Notice that both G1 and
G2 are 2VC. In this case we can assume by inductive hypothesis that both H1 and H2 are
2VC. Consider any w1 ∈ V1. Since H1 is 2VC, H1 contains 2 vertex disjoint paths from w1
to v2. Notice that both u and v must be the second last node in exactly one such path,
hence in particular there exist two (internally) vertex-disjoint paths Pw1u and Pw1v in H

over the nodes V1 ∪ {u, v} from w1 to u and v, resp. Symmetrically, for each w2 ∈ V2 there
exist two vertex disjoint paths Pw2u and Pw2v in H over the nodes V2 ∪ {u, v} from w2 to u

and v, resp.
For any w1 ∈ V1 and w2 ∈ V2, the w1-w2 paths Pw1u ∪ Pw2u and Pw1v ∪ Pw2v in H are

vertex disjoint. Similarly, for any w1 ∈ V1 and w2 ∈ V2, Pw1u ∪ Pw1v and Pw2u ∪ Pw2v are
vertex disjoint u-v paths in H. Given w1 ∈ V1 and w′

1 ∈ V1 ∪ {u, v}, consider the two vertex
disjoint paths in H1 between them. If these paths do not contain v2, then they also belong
to H. Otherwise exactly one of those paths contains the subpath P ′ = uv2v: by replacing
P ′ with Pw2u ∪ Pw2v for an arbitrary w2 ∈ V2, one obtains two vertex disjoint w1-w′

1 paths
in H. A symmetric argument holds for w2 ∈ V2 and w′

2 ∈ V2 ∪ {u, v}.
Assume to get a contradiction that H has a cut vertex w. If w ∈ {u, v}, then w is also a

cut vertex in either H1 or H2. Thus we can assume w.l.o.g. w ∈ V1. Consider the components
resulting of removing the vertex w from H. If one of this components does not contain u

nor v then w is also a cut vertex in H1. Thus removing w from H yields two connected
components Cu, Cv, with u ∈ Cu, v ∈ Cv. But since w ∈ V1, no edge from H2 present in H

is removed by deleting w. In particular, there is a path from u to v in H, contradicting the
fact that w is a cut vertex. ◀

It remains to analyze the approximation factor of RED.

▶ Lemma 11. |RED(G)| ≤

{
opt(G), if |V (G)| < max{6, 2

α−1 };
α · opt(G) − 2, if |V (G)| ≥ max{6, 2

α−1 }.

Proof. We prove the claim by induction on (|V (G)|, |E(G)|) in lexicographic order. The
base cases correspond to the execution of Lines 2 and 13. Here the claim trivially holds. The
claim holds by inductive hypothesis and by Lemmas 2 and 6 when Lines 4 and 12, resp., are
executed. Notice that the 6 that appears in the max in the claim of the lemma is meant to
guarantee that the conditions of Lemma 6 are satisfied.

It remains to consider the case when Lines 6-10 are executed. Let OPT be a minimum
2VC spanning subgraph of G, and OPTi be an optimal 2VCSS solution for Gi, i ∈ {1, 2}.
We will later show

|OPT| = |OPT1| + |OPT2| − 4. (1)

Notice that since |Hi ∩ Ei| = 2 for i ∈ {1, 2} and H1 \ E1 and H2 \ E2 are edge-disjoint, we
have |H| = |H1| + |H2| − 4.

Notice that, for |Vi| ≥ 2
α−1 , one has |OPTi| ≤ α|OPTi| − 2. We now distinguish a few

cases.
If |V2| < max{6, 2

α−1 }, then |H| = |H1| + |H2| − 4 = |OPT1| + |OPT2| − 4 = |OPT|.
If |V1| ≥ max{6, 2

α−1 }, then |H| = |H1| + |H2| − 4 ≤ α|OPT1| − 2 + α|OPT2| − 2 − 4 ≤
α(|OPT1| + |OPT2|) − 8 ≤ α|OPT| + 4α − 8 ≤ α|OPT| − 2. The last inequality uses the
assumption α ≤ 3/2.

Finally, if |V1| < max{6, 2
α−1 } and |V2| ≥ max{6, 2

α−1 }, we have |H| = |H1| + |H2| − 4 ≤
|OPT1| + α|OPT2| − 2 − 4 = (1 − α)|OPT1| + α(|OPT1| + |OPT2|) − 6 ≤ (1 − α)|OPT1| + 4α +
α|OPT| − 6 ≤ α|OPT| − 2. The last inequality holds since |OPT1| ≥ |V (G1)| ≥ 5 and α > 1.

ICALP 2023

29:8 A 4/3 Approximation for 2-Vertex-Connectivity

It remains to prove (1). Let E1 be the two edges of G1 with endpoints in v2 and
E2 be the two edges of G2 with endpoints in v1. Observe that Ei coincides with the Ei

defined in Line 9. By the same argument as in the proof of Lemma 10, one has that
(OPT1 \ E1) ∪ (OPT2 \ E2) is a 2VC spanning subgraph of G. Notice that OPT1 \ E1 and
OPT2 \ E2 are edge-disjoint and that |Ei ∩ OPTi| = |Ei| = 2 for i ∈ {1, 2}. Using this two
facts we get that |OPT| ≤ |(OPT1 \ E1) ∪ (OPT2 \ E2)| = |OPT1| + |OPT2| − 4.

For the other direction, assume by contradiction that |OPT| < |OPT1|+|OPT2|−4. Notice
that E(G) = (E(G1) \ E1)∪̇(E(G2) \ E2) and thus OPT = ((E(G1) \ E1) ∩ OPT)∪̇((E(G2) \
E2) ∩ OPT). Thus we have that either |(E(G1) \ E1) ∩ OPT| < |OPT1| − 2 or |(E(G2) \
E2) ∩ OPT| < |OPT2| − 2. Assume w.l.o.g. that |(E(G1) \ E1) ∩ OPT| < |OPT1| − 2. Then
((E(G1) \ E1) ∩ OPT) ∪ {uv2, vv2} is a 2VC spanning subgraph of G1 of cardinality less than
|OPT1|, a contradiction. (1) follows. ◀

2.2 A Canonical 2-Edge-Cover
It remains to give a good enough approximation algorithm for structured graphs. The first
step in our algorithm (similarly to prior work on related problems [6, 19, 25]) is to compute
(in polynomial time [33, Chapter 30]) a minimum-cardinality 2-edge-cover3 H of G. It is
worth to remark that |H| ≤ opt(G): indeed the degree of each node in any 2VC spanning
subgraph of G must be at least 2.

For technical reasons, we transform H, without increasing its size, into another 2-edge-
cover which is canonical in the following sense. We need some notation first. If a connected
component of H has at least 6 edges we call it a large component, and otherwise a small
component. Let C be a large component of H. We call every maximal 2VC subgraph of C a
block, and every edge of C such that its removal splits that component into two connected
components a bridge. Notice that every edge of C is either a bridge or belongs to some block
in that component. Also, every edge of C belongs to at most one block, thus there is a
unique partition of the edges of C into blocks and bridges (but a node of C might belong
to multiple blocks and to multiple bridges). Observe that C is 2VC iff it has exactly one
block. If C is large but not 2VC we call it a complex component. If a block B of a complex
component C contains only one cut vertex of C, we say that B is a leaf-block of C. Notice
that since H is a 2-edge-cover, C must have at least 2 leaf blocks.

▶ Definition 12 (Canonical 2-Edge-Cover). A 2-edge-cover S of a graph G is canonical if:
(1) Every small component of S is a cycle; (2) For any complex component C of S, each
leaf-block B of C has at least 5 nodes.

▶ Lemma 13. Given a minimum 2-edge-cover H of a structured graph G, in polynomial
time one can compute a canonical 2-edge-cover S of G with |S| = |H|.

Proof. We start with S := H. At each step if there are edges e ∈ E(G)\E(S) and e′ ∈ E(S),
such that S′ := S ∪ {e} \ {e′} is a 2-edge-cover that has fewer connected components than S

or it has the same number of connected components as S but has fewer bridges and blocks in
total than S, then we replace S by S′. This process clearly terminates within a polynomial
number of steps, returning a 2-edge-cover S of the same size as the initial H (hence in
particular S must be minimal).

3 A 2-edge-cover H of a graph G is a subset of edges such that each node v of G has at least 2 edges of H
incident to it.

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:9

Let us show that the final S satisfies the remaining properties. Assume by contradiction
that S has a connected component C with at most 5 edges that is not a cycle. By a simple
case analysis C must be a 4-cycle plus one chord f . However this contradicts the minimality
of S by Fact 3.

Finally assume by contradiction that S has a complex component C, with a leaf-block B

such that B has at most 4 nodes. By the minimality of S, B must be a 3-cycle or a 4-cycle.
Let B = v1 . . . vk, k ∈ {3, 4}, and assume w.l.o.g. that v1 is the only cut-vertex of C that
belongs to B. In this case we show that there must exist an edge e = uz ∈ E(G) such that
u ∈ {v2, vk} and z /∈ B. If this is not true then for k = 3, v1 is a cut-vertex in G, and for
k = 4, {v1, v3} form a non-isolating cut, leading to a contradiction in both cases. Consider
S′ := S ∪ {e} \ {uv1}. Note that S′ is a 2-edge-cover of the same size as S. Since uv1 belongs
to a cycle of S, then the number of connected components in S′ is not more than in S. If
z /∈ C the number of connected components of S′ is less than in S, which is a contradiction.
Otherwise the number of connected components of S and S′ is the same. Now in S′ all the
bridges and the blocks of S that shared an edge with any path from u to z in S \ {uv1}
become part of the same block and all the other bridges and blocks remain the same. This is
a contradiction as the total number of bridges and blocks of S′ is less than in S. ◀

2.3 A Credit-Based Argument
Next assume that we are given a minimum-cardinality canonical 2-edge-cover H of a structured
graph G. Observe that, for |H| ≤ 5, H is necessarily a cycle of length |H| by the definition
of canonical 2-edge-cover and a simple case analysis. In particular H is already a feasible
(and optimal) solution. Therefore we next assume |H| ≥ 6. Starting from S = H, we will
gradually add edges to (and sometimes remove edges from) S, until S becomes 2VC. In order
to keep the size of S under control, we use a credit-based argument similarly to prior work
[6, 19, 21]. At high level, the idea is to assign a certain number of credits cr(S) to S. Let us
define the cost of S as cost(S) = |S| + cr(S). We guarantee that for the initial value of S,
namely S = H, cost(S) ≤ 4

3 |H|. Furthermore, during the process cost(S) does not increase.
During the process we maintain the invariant that S is canonical. Hence the following

credit assignment scheme is valid for any intermediate S:
1. To every small component C of S we assign cr(C) = |E(C)|/3 credits.
2. Each large component C receives cr(C) = 1 credits.
3. Each block B receives cr(B) = 1 credits.
4. Each bridge b receives cr(b) = 1/4 credits.
We remark that each large connected component C of S which is 2VC, receives one credit in
the role of a component, and one additional credit in the role of a block of that component.
Let cr(S) ≥ 0 the total number of credits assigned to the subgraphs of S. It is not hard to
show that the initial cost of S is small enough.

▶ Lemma 14. cost(H) ≤ 4
3 |H|.

Proof. Let us initially assign 1
4 credits to the bridges of H and 1

3 credits to the remaining
edges. Hence we assign at most |H|

3 credits in total. We next redistribute these credits so as
to satisfy the credit assignment scheme.

Each small component C retains the credits of its edges. If C is large and 2VC then it
has exactly one block B. Since |E(C)| ≥ 6, its edges have at least 2 credits, so we can assign
1 credit to C and 1 to B.

Now consider a complex component C of H. The bridges keep their own credits. Since
H is a 2-edge-cover and C is complex, then C has at least 2 leaf-blocks B1 and B2. By
the definition of canonical, B1 and B2 have at least 5 nodes (hence edges) each. Therefore

ICALP 2023

29:10 A 4/3 Approximation for 2-Vertex-Connectivity

together they have at least 10
3 > 3 credits, which is sufficient to assign one credit to C, B1

and B2. Any other block B of C (which has at least 3 edges) keeps the credits of its edges,
hence at least 1 credit. Observe that cost(H) = |H| + cr(H) ≤ 4

3 |H| as desired. ◀

As mentioned before, starting from S = H, we will transform S without increasing its cost
cost(S) until it becomes a single large component C that is 2VC (and thus it has exactly
one block B) and therefore a 2VC spanning subgraph of G. Notice that at the end of the
process cr(S) = cr(C) + cr(B) = 2, hence |S| = cost(S) − 2 ≤ 4

3 |H| − 2. Combining this with
the trivial case for |H| ≤ 5, we obtain the following lemma.

▶ Lemma 15. Given a canonical minimum 2-edge-cover H of a structured graph G, one can
compute in polynomial time a 2VCSS solution S for G with |S| ≤ max{|H|, 4

3 |H| − 2}.

Given the above results, it is easy to prove Theorem 1.

Proof of Theorem 1. By Lemma 8 it is sufficient to compute a solution of cost at most
max{opt(G), 4

3 · opt(G) − 2} on a structured graph G. We initially compute a canonical
minimum 2-edge-cover H of G via Lemma 13. Then we apply Lemma 15 to obtain a 2VCSS
solution S with |S| ≤ max{|H|, 4

3 |H| − 2} ≤ max{opt(G), 4
3 opt(G) − 2}. Clearly all steps

can be performed in polynomial time. ◀

It remains to discuss the proof of Lemma 15 (assuming |H| ≥ 6), which is the most
technical part of our paper. The construction at the heart of the proof consists of a few
stages. Recall that we start with a 2-edge-cover S = H, and then gradually transform S

without increasing cost(S).
In the first stage of our construction we remove from S all the small components with the

exception of the following type of 4-cycles that require a separate argument in the following.

▶ Definition 16 (pendant 4-cycle). Let S be a 2-edge-cover of a graph G and C ′ be a large
component of S. We say that a connected component C of S is a pendant 4-cycle (of C ′) if
C is a 4-cycle and all the edges of G with exactly one endpoint in C have the other endpoint
in C ′.

▶ Lemma 17. Let G be a structured graph and H be a canonical minimum 2-edge cover of
G, with |H| ≥ 6. In polynomial time one can compute a canonical 2-edge-cover S of G such
that the only small components of S are pendant 4-cycles and cost(S) ≤ cost(H).

In the second stage of our construction we reduce to the case where S consists of large 2VC
components only.

▶ Lemma 18. Let G be a structured graph and S be a canonical 2-edge-cover of G such that
the only small components of S are pendant 4-cycles. In polynomial time one can compute a
canonical 2-edge-cover S′ of G such that all the connected components of S′ are 2VC and
large, and cost(S′) ≤ cost(S).

At this point we can exploit the following definition and lemma from [19] to construct
the desired 2VC spanning subgraph.

▶ Definition 19 (Nice Cycle). Let Π = (V1, . . . , Vk), k ≥ 2, be a partition of the node-set of a
graph G. A nice cycle N of G w.r.t. Π is a subset of edges with endpoints in distinct subsets
of Π such that: (1) N induces one cycle of length at least 2 in the graph obtained from G by
collapsing each Vi into a single node; (2) given the two edges of N incident to some Vi, these
edges are incident to distinct nodes of Vi unless |Vi| = 1.

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:11

▶ Lemma 20 ([19]). Let Π = (V1, . . . , Vk), k ≥ 2, be a partition of the node-set of a 2VC
graph G. In polynomial time one can compute a nice cycle N of G w.r.t. Π.

▶ Lemma 21. Let G be a structured graph and S be a 2-edge-cover of G such that all the
connected components of S are 2VC and large. In polynomial time one can compute a 2VCSS
solution S′ for G with cost(S′) ≤ cost(S).

Proof. Initially set S′ = S. Consider the partition Π = (V1, . . . , Vk) of V (G) where Vi is
the set of vertices of the 2VC component Ci of S′. If k = 1, S′ already satisfies the claim.
Otherwise, using Lemma 20 we can compute a nice cycle N of G w.r.t. Π. Let us replace S′

with S′′ := S′ ∪N . W.l.o.g assume N is incident to V1, ..., Vr for some 2 ≤ r ≤ k. Then in S′′

the nodes V1 ∪ . . .∪Vr belong to a unique (large) 2VC connected component C ′. Furthermore
cost(S′) − cost(S′′) =

∑r
i=1(cr(Ci) + cr(Bi)) − cr(C ′) − cr(B′) − r = 2r − 2 − r ≥ 0, where Bi

is the only block of the component Ci and B′ the only block of C ′. By iterating the process
for a polynomial number of times one obtains a single 2VC component, hence the claim. ◀

The proof of Lemma 15 follows by chaining Lemmas 17, 18, and 21, and by the previous
simple observations.

References
1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with

bounded costs. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 2384–2399. SIAM, 2017. doi:10.1137/1.9781611974782.157.

2 Étienne Bamas, Marina Drygala, and Ola Svensson. A simple LP-based approximation
algorithm for the matching augmentation problem. In Karen Aardal and Laura Sanità, editors,
Integer Programming and Combinatorial Optimization - 23rd International Conference, IPCO
2022, Eindhoven, The Netherlands, June 27-29, 2022, Proceedings, volume 13265 of Lecture
Notes in Computer Science, pages 57–69. Springer, 2022. doi:10.1007/978-3-031-06901-7_5.

3 Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 approximation for
2-vertex-connectivity, 2023. arXiv:2305.02240.

4 Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: a reduction to steiner tree. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 815–825. ACM, 2020. doi:10.1145/3357713.3384301.

5 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 370–383. ACM, 2021.
doi:10.1145/3406325.3451086.

6 Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and Vishnu V. Narayan.
The matching augmentation problem: a 7/4-approximation algorithm. Math. Program.,
182(1):315–354, 2020. doi:10.1007/s10107-019-01394-z.

7 Joseph Cheriyan, Robert Cummings, Jack Dippel, and J. Zhu. An improved approximation
algorithm for the matching augmentation problem. CoRR, abs/2007.11559, 2020. arXiv:
2007.11559.

8 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via
lift-and-project, part I: stemless TAP. Algorithmica, 80(2):530–559, 2018. doi:10.1007/
s00453-016-0270-4.

ICALP 2023

https://doi.org/10.1137/1.9781611974782.157
https://doi.org/10.1007/978-3-031-06901-7_5
https://arxiv.org/abs/2305.02240
https://doi.org/10.1145/3357713.3384301
https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1007/s10107-019-01394-z
https://arxiv.org/abs/2007.11559
https://arxiv.org/abs/2007.11559
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4

29:12 A 4/3 Approximation for 2-Vertex-Connectivity

9 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part II. Algorithmica, 80(2):608–651, 2018. doi:10.1007/s00453-017-0275-7.

10 Joseph Cheriyan, András Sebö, and Zoltán Szigeti. Improving on the 1.5-approximation of a
smallest 2-edge connected spanning subgraph. SIAM J. Discret. Math., 14(2):170–180, 2001.
doi:10.1137/S0895480199362071.

11 Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM J. Comput., 30(2):528–560, 2000. doi:10.1137/
S009753979833920X.

12 Nachshon Cohen and Zeev Nutov. A (1+ln2)-approximation algorithm for minimum-cost
2-edge-connectivity augmentation of trees with constant radius. Theor. Comput. Sci., 489-
490:67–74, 2013. doi:10.1016/j.tcs.2013.04.004.

13 Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost k-connected
spanning subgraph problem. In Robert Endre Tarjan and Tandy J. Warnow, editors,
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-
19 January 1999, Baltimore, Maryland, USA, pages 281–290. ACM/SIAM, 1999. URL:
http://dl.acm.org/citation.cfm?id=314500.314573.

14 E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimal
weighted cuts in a graph. Studies in Discrete Optimization, pages 290–306, 1976.

15 Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm for
augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 5(2):21:1–21:17,
2009. doi:10.1145/1497290.1497297.

16 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted
tree augmentation via chvátal-gomory cuts. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 817–831. SIAM, 2018. doi:10.1137/1.9781611975031.53.

17 Harold N. Gabow and Suzanne Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM J. Comput., 41(1):61–103, 2012. doi:10.1137/
080732572.

18 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On the cycle
augmentation problem: Hardness and approximation algorithms. In Evripidis Bampis and
Nicole Megow, editors, Approximation and Online Algorithms - 17th International Workshop,
WAOA 2019, Munich, Germany, September 12-13, 2019, Revised Selected Papers, volume
11926 of Lecture Notes in Computer Science, pages 138–153. Springer, 2019. doi:10.1007/
978-3-030-39479-0_10.

19 Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-
edge-connectivity. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 2368–2410. SIAM, 2023. doi:10.1137/1.9781611977554.ch92.

20 Naveen Garg, Santosh S. Vempala, and Aman Singla. Improved approximation algorithms for
biconnected subgraphs via better lower bounding techniques. In Vijaya Ramachandran, editor,
Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
25-27 January 1993, Austin, Texas, USA, pages 103–111. ACM/SIAM, 1993. URL: http:
//dl.acm.org/citation.cfm?id=313559.313618.

21 Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation
barrier for the forest augmentation problem. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 1598–1611. ACM, 2022. doi:10.1145/3519935.3520035.

22 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for
tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 632–645, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3188745.3188898.

https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1137/S0895480199362071
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1016/j.tcs.2013.04.004
http://dl.acm.org/citation.cfm?id=314500.314573
https://doi.org/10.1145/1497290.1497297
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/080732572
https://doi.org/10.1137/080732572
https://doi.org/10.1007/978-3-030-39479-0_10
https://doi.org/10.1007/978-3-030-39479-0_10
https://doi.org/10.1137/1.9781611977554.ch92
http://dl.acm.org/citation.cfm?id=313559.313618
http://dl.acm.org/citation.cfm?id=313559.313618
https://doi.org/10.1145/3519935.3520035
https://doi.org/10.1145/3188745.3188898

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:13

23 Prabhakar Gubbala and Balaji Raghavachari. Approximation algorithms for the minimum
cardinality two-connected spanning subgraph problem. In Michael Jünger and Volker Kaibel,
editors, Integer Programming and Combinatorial Optimization, 11th International IPCO
Conference, Berlin, Germany, June 8-10, 2005, Proceedings, volume 3509 of Lecture Notes in
Computer Science, pages 422–436. Springer, 2005. doi:10.1007/11496915_31.

24 Klaus Heeger and Jens Vygen. Two-connected spanning subgraphs with at most 10/7 opt
edges. SIAM J. Discret. Math., 31(3):1820–1835, 2017. doi:10.1137/16M1091587.

25 Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation
algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms,
15(4):55:1–55:28, 2019. doi:10.1145/3341599.

26 Raja Jothi, Balaji Raghavachari, and Subramanian Varadarajan. A 5/4-approximation algo-
rithm for minimum 2-edge-connectivity. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages
725–734. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644227.

27 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. In S. Rao
Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, pages 759–770. ACM, 1992. doi:10.1145/129712.129786.

28 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994. doi:10.1145/174652.174654.

29 Guy Kortsarz and Zeev Nutov. Lp-relaxations for tree augmentation. In Klaus Jansen,
Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016,
September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.13.

30 Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 12(2):23:1–23:20, 2016.
doi:10.1145/2786981.

31 Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discret. Appl. Math., 126(1):83–113, 2003. doi:10.1016/
S0166-218X(02)00218-4.

32 Zeev Nutov. On the tree augmentation problem. In 25th Annual European Symposium on
Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 61:1–61:14, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ESA.2017.61.

33 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science
& Business Media, 2003.

34 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,
3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597–629,
2014. doi:10.1007/s00493-014-2960-3.

35 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 1–12. IEEE, 2021. doi:10.1109/FOCS52979.2021.00010.

36 Vera Traub and Rico Zenklusen. A (1.5+ϵ)-approximation algorithm for weighted connectivity
augmentation. CoRR, abs/2209.07860, 2022. doi:10.48550/arXiv.2209.07860.

ICALP 2023

https://doi.org/10.1007/11496915_31
https://doi.org/10.1137/16M1091587
https://doi.org/10.1145/3341599
http://dl.acm.org/citation.cfm?id=644108.644227
https://doi.org/10.1145/129712.129786
https://doi.org/10.1145/174652.174654
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.1145/2786981
https://doi.org/10.1016/S0166-218X(02)00218-4
https://doi.org/10.1016/S0166-218X(02)00218-4
https://doi.org/10.4230/LIPIcs.ESA.2017.61
https://doi.org/10.4230/LIPIcs.ESA.2017.61
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.48550/arXiv.2209.07860

	1 Introduction
	1.1 Related Work
	1.2 Preliminaries

	2 Overview of Our Approach
	2.1 A Reduction to Structured Graphs
	2.2 A Canonical 2-Edge-Cover
	2.3 A Credit-Based Argument

