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Abstract
Context-bounded analysis of concurrent programs is a technique to compute a sequence of under-
approximations of all behaviors of the program. For a fixed bound k, a context bounded analysis
considers only those runs in which a single process is interrupted at most k times. As k grows, we
capture more and more behaviors of the program. Practically, context-bounding has been very
effective as a bug-finding tool: many bugs can be found even with small bounds. Theoretically,
context-bounded analysis is decidable for a large number of programming models for which verification
problems are undecidable. In this paper, we survey some recent work in context-bounded analysis of
multithreaded programs.

In particular, we show a general decidability result. We study context-bounded reachability
in a language-theoretic setup. We fix a class of languages (satisfying some mild conditions) from
which each thread is chosen. We show context-bounded safety and termination verification problems
are decidable iff emptiness is decidable for the underlying class of languages and context-bounded
boundedness is decidable iff finiteness is decidable for the underlying class.
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1 Introduction

Algorithmic verification of shared-state multithreaded programs is one of the main motivations
for research in theoretical computer science. The general problem is undecidable, even when
the class of programs is restricted in different ways. Thus, one direction of research has
focused on finding decidable models that over-approximate the problem and another on
finding under-approximations. An over-approximate model captures more behaviors than
the original program; thus, if we find that the over-approximation has no bad behaviors, we
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3:2 Context-Bounded Analysis of Concurrent Programs

can be certain that neither does the original program. An under-approximation, conversely,
captures fewer behaviors. In this case, if we find a bad behavior in the approximation, we
know that the bad behavior is also possible in the original program.

We consider a particular type of under-approximation: context bounding. Context-
bounding is a technique to construct a parameterized sequence of under-approximations [46,
37]. For a fixed parameter k, a k-context-bounded analysis considers only those behaviors of
the program in which an individual thread is interrupted by the scheduler at most k times.
As k increases, more and more behaviors of the original program fall into the purview of the
analysis. In the limit, all behaviors are covered.

Context-bounding has become a popular technique because of two reasons. For a wide
class of programming models and verification questions, context-bounded analyses become
decidable, even though the unrestricted problems are undecidable. Moreover, in practice,
context-bounded analysis has had success as a bug finding tool, since many bugs in practical
instances can be discovered even with small values of k [46, 44, 36, 34].

We focus on decidability questions. In order to avoid “trivial” encodings of Turing
machines, we restrict programs to be finite data – that is, we assume each program variable
to take on finitely many values. Even with this restriction, depending on the model of
programs, decidability can be non-immediate because the state space of a program can be
infinite in other respects, such as the stack of an individual thread or the number of pending
threads.

Properties of concurrent programs. For the moment, we focus on three decision problems:
context-bounded reachability (“is there a k-bounded execution that reaches a specific global
state?”), context-bounded termination (“all all k-bounded executions terminating?”), and
context-bounded boundedness (“is there a bound on the number of pending threads along
every k-bounded execution?”). We shall come back to other problems later.

Context-bounded analysis is a family of problems, depending on the model of concurrent
programs as well as on the correctness properties considered. Qadeer and Rehof’s original
paper [46], that introduced context-bounding, stipulated that there is a fixed number of
recursive threads that read or write shared variables but these threads do not spawn further
threads. They showed that the reachability problem is NP-complete. Note that even with
two threads, the reachability problem for finite-data programs is already undecidable: for
example, we can encode the intersection non-emptiness problem for pushdown automata.
On the other hand, if threads are not recursive, then the reachability problem is decidable
without any context bounding restrictions, even if threads can spawn further threads: this
can be shown by a reduction to the coverability problem for vector addition systems with
states (VASS). Subsequently, Atig, Bouajjani, and Qadeer [11] extended decidability for
context-bounded reachability when threads can spawn further threads. They showed an
upper bound of 2EXPSPACE and a matching lower bound was shown by Baumann et al. [14].
Similar techniques show the same complexity for termination and boundedness.

A special case: Asynchronous programs. The special case of k = 0 of context-bounded
analysis is important enough to have its own name: asynchronous programs. In an asyn-
chronous program, threads are executed atomically to completion (that is, never interrupted
by the scheduler). Many software systems based on cooperative scheduling implement this
model. Sen and Viswanathan [47] studied the model and showed reachability is decidable
by reducing to a well-structured transition system. Ganty and Majumdar [28] showed that
reachability, termination, and boundedness are all EXPSPACE-complete, by again reducing
to coverability problems for VASS.
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Majumdar, Thinniyam, and Zetzsche [40] proved decidability results for asynchronous
programs in a general language-theoretic setting. They fix a class of languages C, and consider
asynchronous programs in which each individual thread is a language from the class C over
the alphabet of thread names as well as a transformer over the global states. That is, each
thread is a language (from C) of words of the form dwd′, where d and d′ are global states
and w is a sequence of thread names. The intent is that an atomic execution of the thread
takes the global state from d to d′ and also spawns new instances of all the threads in w.

They show that for all classes C satisfying a mild language-theoretic assumption (the
class C is a full trio), safety and termination are decidable if and only if the underlying
language class C has a decidable emptiness problem. Similarly, boundedness is decidable if
and only if finiteness is decidable for C. As a consequence, they get decidability results for
asynchronous programs over context-free languages, higher-order recursion schemes, as well
as other language classes studied in infinite-state verification.

Contribution. Our starting point is the general approach of Majumdar, Thinniyam, and
Zetzsche [40]. We show their general decidability results can be extended to context-
bounded analysis (any k ≥ 0). We define concurrent programs over a language class C and
show analogous decidability results: (i) context-bounded reachability and context-bounded
termination for programs are decidable if and only if C has a decidable emptiness problem,
and (ii) context-bounded boundedness is decidable if and only if C has a decidable finiteness
problem. As a consequence, we get a uniform proof for decidability for these problems for
programs over context-free languages and for programs over higher-order recursion schemes.

The key argument in both settings is that of downclosures of languages under the subword
ordering. Safety, termination, and boundedness are preserved if we “lose” some spawned
threads, as long as the sequence of global state changes (and there are at most k of them
for the fixed context bound k) is maintained. Since downclosures (even when maintaining
a bounded number of distinguished letters) are always regular languages, this implies: If
our concurrent program satisfies one of the above properties, then each thread can be
over-approximated by a regular language so that the property is still satisfied. The decision
procedure for reachability then runs two semi-decision procedures: one enumerates executions
(to check for reachability) and the other enumerates regular languages and checks that (1)
the thread languages are contained in the regular languages and (2) uses known decidability
results for context-bounded reachability with regular thread languages.

The decision procedure does not, in particular, need to construct an explicit description of
the downclosure. In fact, it even shows decidability for language classes for which downclosures
cannot be constructed. On the flip side, we do not get complexity bounds.

Other properties. What about other properties? Ganty and Majumdar showed fair ter-
mination for context-free asynchronous programs is decidable (by reduction to Petri net
reachability) [28]. Majumdar, Thinniyam, and Zetzsche generalized the result to show that
fair termination is equivalent to configuration reachability in the general setting [40]. On the
other hand, decidability of fair termination implies the decidability of checking the “equal
letters problem”: deciding if a language in C has an equal number of as and bs. Thus, fair
termination is undecidable for indexed languages. The undecidability is inherited by context-
bounded fair termination. On the other hand, somewhat surprisingly, fair termination is
decidable for context-bounded runs of context-free multithreaded programs [15].

ICALP 2023



3:4 Context-Bounded Analysis of Concurrent Programs

2 Preliminaries

An alphabet is a finite non-empty set of symbols. For an alphabet Σ, we write Σ∗ for the set
of finite sequences of symbols (also called words) over Σ. A set L ⊆ Σ∗ of words is a language.
By pref(L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L} we denote the set of prefixes of words in L.

The subword order ⊑ on Σ∗ is defined as follows: for u, v ∈ Σ∗ we have u ⊑ v if and only
if u can be obtained from v by deleting some of v’s letters. For example, abba ⊑ bababa, but
abba ̸⊑ baaba. The downclosure (or downward closure) ↓w of a word w ∈ Σ∗ with respect
to the subword order is defined as ↓w := {w′ ∈ Σ∗ | w′ ⊑ w}. The downclosure ↓L of a
language L ⊆ Σ∗ is given by ↓L := {w′ ∈ Σ∗ | ∃w ∈ L : w′ ⊑ w}. An important fact is that
the subword ordering ⊑ is a well-quasi ordering (Higman’s lemma). A consequence is that
the downclosure ↓L of any language L is a regular language [32]. However, a representation
for the downclosure of a language may not be effectively constructible.

The projection of a word w ∈ Σ∗ onto some alphabet Γ ⊆ Σ, written ProjΓ(w), is the
word obtained by erasing from w each symbol which does not belong to Γ. For a language
L, define ProjΓ(L) = {ProjΓ(w) | w ∈ L}. We write |w|Γ for the number of occurrences of
letters a ∈ Γ in w, and similarly |w|a if Γ = {a}.

A multiset m : X → N over a set X maps each symbol of X to a natural number. The
size |m| of a multiset m is given by |m| =

∑
x∈X m(x). The set of all multisets over X

is denoted M[X]. We identify subsets of X with multisets in M[X] where each element is
mapped to 0 or 1. We write m = Ja, a, c K for the multiset m ∈ M[{a, b, c, d}] such that
m(a) = 2, m(b) = m(d) = 0, and m(c) = 1. The Parikh image Parikh(w) ∈ M[Σ] of a word
w ∈ Σ∗ is the multiset such that for each letter a ∈ Σ we have Parikh(w)(a) = |w|a.

Given two multisets m, m′ ∈ M[X] we define m ⊕ m′ ∈ M[X] to be the multiset such
that for all a ∈ X, we have (m ⊕ m′)(a) = m(a) + m′(a). If m(a) ≥ m′(a) for all a ∈ X,
we also define m′ ⊖ m ∈ M[X]: for all a ∈ X, we have (m ⊖ m′)(a) = m(a) − m′(a). For
X ⊆ Y we regard m ∈ M[X] as a multiset in M[Y ] where undefined values are mapped to 0.

Language Classes and Full Trios. A language class is a collection of languages, together
with some finite representation. Examples are the regular languages (e.g. represented by
finite automata) or the context-free languages (e.g. represented by pushdown automata). A
relatively weak and reasonable assumption on a language class is that it is a full trio, that is,
it is closed under rational transductions. Equivalently, a language class is a full trio if it is
closed under each of the following operations: taking intersection with a regular language,
taking homomorphic images, and taking inverse homomorphic images [16].

We assume that all full trios C considered in this paper are effective: Given a language L

from C, a regular language R, and a homomorphism h, we can compute a representation of
the languages L ∩ R, h(L), and h−1(L) in C.

Many classes of languages studied in formal language theory form effective full trios. These
include the regular and the context-free languages [33], the indexed languages [2, 25], the
languages of higher-order pushdown automata [42], higher-order recursion schemes [31, 24, 40],
Petri nets [29, 35], and lossy channel systems. However, the class of deterministic context-free
languages is not a full trio: this class is not closed under rational transductions.

3 A Language-Theoretic Model of Concurrent Programs

Intuitively, a concurrent program consists of a shared global state and a finite number of
thread names. Instances of thread names are called threads. A configuration of such a
program consists of the current value of the global state and a multiset of partially-executed
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threads. A non-deterministic scheduler picks a partially-executed thread and runs it for some
number of steps. An executing thread can change the global state. It can also spawn new
threads – these can be picked and executed by the scheduler (in any order) in the future.
When a scheduler swaps a running thread for another one, we say that there is a context
switch. In our formal model, we keep the global state explicit and we model the execution
behavior of threads as languages. The language of a thread captures the new threads it can
spawn, as well as the effect of the execution on the global state.

3.1 Model
Let C be an (effective) full trio. A concurrent program (CP) over C is a tuple P =
(D, Σ, (La)a∈Σ, d0, m0), where D is a finite set of global states, Σ is an alphabet of thread
names, (La)a∈Σ is a family of languages from C over the alphabet ΣD = D ∪ Σ ∪ (D × D),
d0 ∈ D is an initial state, and m0 ∈ M[Σ] is a multiset of initial pending thread instances. We
assume that each La, a ∈ Σ, satisfies the condition La ⊆ aD

(
Σ ∪ (D × D)

)∗
D (we provide

the intuition behind this condition below).
A configuration c = (d, m) ∈ D × M[Σ∗

D] consists of a global state d ∈ D and a multiset
m of strings representing pending threads instances and partially executed threads. Given a
configuration c = (d, m), we write c.d and c.m to denote the elements d and m, respectively.
The size of a configuration c is |c.m|, i.e. the number of threads in the task buffer. We
distinguish between threads that have been spawned but not executed (pending threads) and
threads that have been partially executed (but swapped out). The pending thread instances
are represented by single letters a ∈ Σ (which corresponds to the name of the thread) while
the partially executed threads of “type” a ∈ Σ are represented by strings in pref(La) which
end in a letter from D × D.

Before presenting the formal semantics, let us provide some intuition. Suppose the
current configuration is (d, m). A non-deterministic scheduler picks one of the outstanding
threads (either a pending thread a ∈ m or a partially executed thread w ∈ m) and ex-
ecutes it for some time, until it terminates or until the scheduler decides to interrupt
it. The execution of a thread a is abstractly modeled by the language La. A word
ad1w1(d′

1, d2)w2(d′
2, d3) . . . (d′

k−1, dk)wk+1dk+1 ∈ La represents a run of an instance of the
thread a. The run starts executing in global state d1. It spawns new threads w1 ∈ Σ∗, then
gets interrupted at global state d′

1 by the scheduler. At some future point, the scheduler
starts executing it again at global state d2, when new threads w2 are spawned before it is
interrupted again at d′

2. The execution continues in this way until the thread terminates in
global state dk+1. Thus, the jump from one global state to another (from the perspective of
the thread) when a context switch is made is represented by a letter from D × D. The part
of a run starting at global state di, spawning threads wi and interrupted at d′

i is called a
segment. Each interruption is called a context switch; the above word has k context switches.

Formally, the semantics of P are given as a labelled transition system over the set of
configurations with the transition relation ⇒⊆ (D × M[Σ∗

D]) × (D × M[Σ∗
D]). The initial

configuration is given by c0 = (d0, m0).
The transition relation is defined using rules of four different types shown below. All four

types of rules are of the general form d
JwK,n′

−−−−→ d′. A rule of this form allows the program
to move from a configuration (d, m) to configuration (d′, m′), i.e., (d, m) ⇒ (d′, m′), iff
d

JwK.n′

−−−−→ d′ matches a rule and (m ⊖ JwK) ⊕ n′ = m′. Note that due to the definition of ⊖,
m has to contain w for the rule to be applicable. We also write w=⇒ to specify the particular
w used in the transition. As usual, the reflexive transitive closure of ⇒ is denoted by ⇒∗. A
configuration c is said to be reachable if c0 ⇒∗ c.

ICALP 2023



3:6 Context-Bounded Analysis of Concurrent Programs

(R1) d
JaK,Parikh(w)⊕Jadw(d′,d′′)K−−−−−−−−−−−−−−−−−→ d′ if ∃w ∈ Σ∗ : adw(d′, d′′) ∈ pref(La).

Rule (R1) allows us to pick some thread a from m and atomically execute it until the point
it is switched out by the scheduler. Note that the final letter (d′, d′′) of the thread indicates
that it has been switched out at global d′ and can be resumed when the global state is d′′.

(R2) d
JaK,Parikh(w)−−−−−−−−→ d′ if ∃w ∈ Σ∗ : adwd′ ∈ La.

Rule (R2) allows us to pick some thread a from m and atomically execute it to completion.

(R3) d
Jaw′(d′′,d)K,Parikh(w)⊕Jaw′(d′′,d)w(d′,d′′′)K−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ d′ if

∃w ∈ Σ∗ :
aw′(d′′, d)w(d′, d′′′) ∈ pref(La)

Rule (R3) allows us to pick some partially executed thread and execute it atomically until
the point it is switched out by the scheduler.

(R4) d
Jaw′(d′′,d)K,Parikh(w)−−−−−−−−−−−−−−→ d′ if ∃w ∈ Σ∗ : aw′(d′′, d)wd′ ∈ La

Rule (R4) allows us to pick some partially executed thread and execute it to completion.

3.2 Runs and Context-bounded Runs

A prerun of a concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) is a finite or infinite sequence
ρ = (e0, n0), w1, (e1, n1), w2, . . . of alternating elements of configurations (ei, n′

i) ∈ D×M[Σ∗
D]

and strings wi ∈ Σ∗.
The set of preruns of P will be denoted Preruns(P). Note that if two concurrent programs

P and P′ have the same global states D and alphabet Σ, then Preruns(P) = Preruns(P′).
The length |ρ| of a finite prerun ρ is the number of configurations in ρ.

A run of a CP P = (D, Σ, (La)a∈Σ, d0, m0) is a prerun ρ = (d0, m0), w1, (d1, m1), w2, . . .

starting with the initial configuration (d0, m0), where for each i ≥ 0, we have (di, mi)
wi+1===⇒

(di+1, mi+1). The set of runs of P is denoted Runs(P).
For a number k, the run ρ is said to be k-context-bounded (k-CB for short) if for each

ci = (di, mi) ∈ ρ and for each w ∈ mi, we have |w|D×D ≤ k. The set of k-context-bounded
runs of P is denoted by Runsk(P). In the case of finite runs which reach a certain configuration
c, We say a configuration c is k-reachable if there is a finite k-CB run ρ ending in c.

3.3 Decision Problems

We study the following decision problems.

▶ Definition 1.
CB Safety (Global state reachability):
Instance: A concurrent program P, a context-bound k and a global state df ∈ D.
Question: Is there a k-reachable configuration c such that c.d = df ? If so, df is said to
be k-reachable (in P) and k-unreachable otherwise.
CB Boundedness:
Instance: A concurrent program P and a context-bound k.
Question: Is there an N ∈ N such that for every k-reachable configuration c we have
|c.m| ≤ N? If so, the concurrent program P is k-bounded; otherwise it is k-unbounded.
CB Termination:
Instance: A concurrent program P, a context-bound k.
Question: Is P k-terminating, that is, is every k-CB run of P finite?
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3.4 Orders on Runs and Downclosures
Intuitively, k-safety, k-termination, and k-boundedness are preserved when the multiset of
pending threads is “k-lossy”: pending threads can get lost and we only consider runs where
each thread makes at most k context switches. This loss corresponds to these pending threads
never being scheduled by the scheduler. However, if a run demonstrates reachability of a
global state, or non-termination, or unboundedness, in the k-lossy version, it corresponds
also to a k-CB run in the original problem (and conversely). We make this intuition precise
by introducing an ordering on runs and defining the downclosure.

Let w, w′ ∈ ΣD
(
Σ ∪ (D × D)

)∗(
D ∪ (D × D)

)
be words with w = adw1e1w2e2 . . . wlel

and w′ = a′d′w′
1e′

1w′
2e′

2 . . . w′
le

′
l, where a, a′ ∈ Σ, d, d′ ∈ D, el, e′

l ∈ D ∪ (D × D), wi, w′
j ∈ Σ∗

for i, j ∈ [1, l], and ei, e′
j ∈ D × D for i, j ∈ [1, l − 1]. We define the state-preserving order

⊑D by w ⊑D w′ iff a = a′, d = d′, ei = e′
i for each i ∈ [1, l], and wi ⊑ w′

i, that is, wi is a
subword of w′

i, for each i ∈ [1, l]. We denote the corresponding notion of state-preserving
downclosure under this order by ⇓. Intuitively, the ⊑D relation is a subword ordering on
words that preserves the initial letter in Σ and all occurrences of D ∪ (D ×D), but potentially
loses letters from each segment – that is, newly spawned threads can be lost.

We use the order ⊑D to naturally define the order ⪯D on M[Σ∗
D] by induction: for

m, m′ ∈ M[Σ∗
D] with |m|, |m′| ≥ 1, we have m ⪯D m′ iff there are n, n′ ∈ M[Σ∗

D],
w, w′ ∈ Σ∗

D with m = n ⊕ JwK and m′ = n′ ⊕ Jw′K such that n ⪯D n′ and w ⊑D w′.
Furthermore, for all m ∈ M[Σ∗

D], we have ∅ ⪯D m.
We define an order ⊴ on preruns as follows: For preruns ρ = (e0, n0), w1, (e1, n1), w2, . . .

and ρ′ = (e′
0, n′

0), w′
1, (e′

1, n′
1), w′

2, . . ., we have ρ ⊴ ρ′ iff |ρ| = |ρ′|, ei = e′
i, wi ⊑D w′

i and
ni ⪯D n′

i for each i ≥ 0. The downclosure ↓R of a set R of preruns of P is defined as
↓R = {ρ ∈ Preruns(P) | ∃ρ′ ∈ R. ρ ⊴ ρ′}.

We write ⇓Runs(P) for the downclosure with respect to ⊴ restricted to valid runs.
Some properties of a concurrent program P only depend on the downclosure ⇓Runsk(P)

of the set Runsk(P) of k-CB runs of the program P. For these properties, we may transform
the program P to a program ⇓kP such that the latter is easier to analyze but retains the
properties of the former.

▶ Definition 2. For a language La of a CP, let

⇓kLa =

wwww�
(

La ∩
( k⋃

i=0

(
aD(Σ∗D × D)iΣ∗D

)))
For any CP P = (D, Σ, (La)a∈Σ, d0, m0) and number k, we define the CP ⇓kP =
(D, Σ, (⇓kLa)a∈Σ, d0, m0). In other words, ⇓kP is the program obtained by taking the state-
preserving downclosure of those words in La which contain at most k context switches.

Note that, by well-quasi-ordering arguments, for any fixed k, the languages La of ⇓kP

are all regular.

▶ Proposition 3. Let P = (D, Σ, (Lc)c∈C, d0, m0) be a concurrent program. Then
⇓Runsk(P) = ⇓Runs(⇓kP). In particular,
1. For every d ∈ D, P can k-reach d if and only if ⇓kP can k-reach d.
2. P is k-terminating if and only if ⇓kP is k-terminating.
3. P is k-bounded if and only if ⇓kP is k-bounded.

Clearly, every run in Runsk(P) is also in Runs(⇓kP). Conversely, we can show by induction
on the length of the run that for every run ρ ∈ Runs(⇓kP) there is a run ρ′ ∈ Runs(P) such
that ρ ⊴ ρ′. The result follows.

ICALP 2023



3:8 Context-Bounded Analysis of Concurrent Programs

4 Decidability Results

We now characterize full trios C for which decision problems for concurrent programs over C
are decidable. We shall make use of the following decidability results about regular languages.

▶ Theorem 4.
1. [28, 10] CB Safety is decidable for concurrent programs over regular languages.
2. [28, 15] CB Boundedness and CB termination are decidable for concurrent programs

over regular languages.

In fact, the above problems are decidable even if there is no bound on the number
of context switches. The result in [10] is stated for a model called Dynamic networks of
Concurrent Finite-state Systems (DCFS), but it is easy to see that there is a polynomial
time reduction for the problems of safety, termination and boundedness for CP over regular
languages to the corresponding problems for DCFS. The paper [15] shows decidability of CB
termination and CB boundedness for the model of dynamic networks of concurrent pushdown
systems, of which DCFS is a special case. There is also a simple reduction of these problems
to the corresponding results for the model of asynchronous programs [28].

Our first decidability result is the following.

▶ Theorem 5. Let C be a full trio. The following are equivalent:
(i) CB Safety is decidable for concurrent programs over C.
(ii) CB Termination is decidable for concurrent programs over C.
(iii) Emptiness is decidable for C.

The implications “(i)⇒(iii)” and The implications “(ii)⇒(iii)” are immediate from
corrsponding results for asynchronous programs [40], since context bounded analysis problems
generalize the corresponding analysis for asynchronous programs.

Before we prove the next implication, let us introduce a bit of notation. For each i ∈ N,
let Ri be the regular language Ri = ΣDΣ∗((D ×D)Σ∗)iD, R′

i = ΣDΣ∗((D ×D)Σ∗)i(D ×D),
for each l ∈ N we define Rl =

⋃l
i=0(Ri ∪ R′

i). For any language L and k ∈ N, the language
L ∩ Rk captures those words in L that contain at most k context switches.

For the implication “(iii)⇒(i)”, we construct two semidecision procedures (Algorithm 1):
the first one searches for regular over-approximations Aa of each language La such that
the program P′ obtained by replacing each La by the corresponding Aa is safe. We can
check whether our current guess for P′ is safe using Theorem 4. By Proposition 3, we
know that in case P is safe, then there must exist such a safe regular over-approximation.
Concurrently, the second procedure searches for a k-CB run reaching the target global state d

which witnesses the negation. Clearly, one of the two procedures must terminate. Note that
we use an emptiness check to ensure that our current guess for Aa includes the set La ∩ Rk.

To show “(iii)⇒(ii)”, we need an algorithm for termination of concurrent programs. As
in the case of safety, it consists of two semi-decision procedures. The one for termination
works just like the one for safety: It enumerates regular over-approximations and checks if
one of them terminates. The procedure for non-termination requires some terminology:

Predictions. We will use a notion of prediction, which assigns to each configuration (e, n)
of a run a multiset of strings that encode not only the past of each thread (as is done in n),
but also its future. To do this, we define the alphabet ΓD = ΣD ∪ {#} that extends ΣD a
fresh letter #. We shall encode predictions using strings of the form au#v, which encode a
thread with name a, past execution au, and future execution v. Additionally, we extend the
order ⪯D to strings of the form au#v by treating # as a letter from D × D which is to be
preserved. Let us make this precise.
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Algorithm 1 Checking CB Safety.
Input: Concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) over C, context bound k ∈ N,

state d ∈ D

run concurrently
begin /* find a safe over-approximation */

foreach tuple (Aa)a∈Σ of regular languages Aa ⊆ Σ∗ do
if (La ∩Rk) ∩ (Σ∗

D \Aa) = ∅ for each a ∈ Σ then
if P′ = (D, Σ, (Aa)a∈Σ, d0, m0) does not k-reach d then

return d is not reachable.

begin /* find a run reaching d */
foreach prerun ρ of P do

if ρ is a k-CB run that reaches d then
return d reachable.

Suppose ρ is a (finite or infinite) prerun (e0, n0), w1, (e1, n1), . . .. An annotation for ρ is
a sequence f0, f1, . . . ∈ M[Γ∗

D] of multisets of strings such that the sequence has the same
length as ρ. If ρ is a run, then we say that the annotation f0, f1, . . . is a prediction if
1. each string occurring in f0, f1, . . . is of the form au#v such that auv ∈ Σ∗

D and auv ∈
prefLa ∩

(
Σ ∪ (D × D)

)∗(
D ∪ (D × D)

)
2. for each i ≥ 0, the multisets ni and fi have the same cardinality and there is a bijection

between ni and fi so that (i) each word au in ni is in bijection with some word au#v in
fi and (ii) if au is the active thread when going from (ei, ni) to (ei+1, ni+1) and au#v is
its corresponding string au#v in fi, then the system executes the next segment in v.

Note that then indeed, for each thread, its string in ni records its past spawns, whereas the
corresponding string in fi contains all its future spawns (and possibly an additional suffix).

Of course, for each (finite or infinite) run, there exists a prediction: Just take the sequence
of actions of each thread in the future. Moreover, taking a prefix of both a run and some
accompanying prediction will yield a (shorter) run with a shorter prediction.

Self-covering runs. Recall that for each alphabet Θ, we have an embedding rela-
tion ⪯D on the set M[Θ∗

D], and in particular on M[Γ∗
D]. We say that a finite run

(e0, n0), w1, (e1, n1), . . . , wm, (em, nm), together with a prediction f0, . . . , fm is k-self-covering
if for some i < m, we have ei = em, fi ⪯D fm, and also, all words in f0, f1, . . . contain at most k

context-switches. As the name suggests, self-covering runs are witnesses for non-termination:

▶ Lemma 6. For every k ∈ N, a concurrent program has an infinite k-CB run if and only if
it has a k-self-covering run.

Here, it is crucial that for each k ∈ N, the ordering ⊑D is a WQO on the set of words
with at most k context-switches (on all of Σ∗

D, ⊑D is not a WQO).
We can now decide termination (Algorithm 2): the algorithm either (i) exhibits a k-

self-covering run, which shows the existence of a k-bounded infinite run by Lemma 6, or
(ii) finds a regular over-approximation that terminates, which means the original program is
terminating. We can check termination of the regular over-approximation using Theorem 4.
The algorithm also terminates: If there is an infinite k-bounded run, then Lemma 6 yields
the existence of a k-self-covering run. Moreover, if the concurrent program does terminate,
then Proposition 3 ensures the existence of a terminating regular over-approximation. This
concludes our proof of Theorem 5.

ICALP 2023
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Algorithm 2 Checking CB Termination.
Input: Concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) over C and context bound k ∈ N
run concurrently

begin /* find a terminating over-approximation */
foreach tuple (Aa)a∈Σ of regular languages Aa ⊆ Σ∗

D do
if (La ∩Rk) ∩ (Σ∗ \Aa) = ∅ for each a ∈ Σ then

if P′ = (D, Σ, (Aa)a∈Σ, d0, m0) is k-terminating then
return P is k-terminating.

begin /* find a self-covering run */
foreach prerun ρ of P and an annotation σ do

if ρ with σ is a k-self-covering run then
return P is not k-terminating.

Our second theorem is as follows.

▶ Theorem 7. Let C be a full trio. The following are equivalent:
(i) CB Boundedness is decidable for concurrent programs over C.
(ii) Finiteness is decidable for C.

The implication “(i)⇒(ii)” follows from the special case of asynchronous programs [40]. It
was also observed in [40] that decidability of finiteness for C implies decidability of emptiness
for C. Further, by Theorem 5, we may assume that CB safety is decidable for CP over C.

We now show the implication “(ii)⇒(i)”. For a language L ⊆ Σ∗
D and n ∈ N, let

L|n = L ∩ Σ≤n
D be the language restricted to strings of length at most n and, in addition,

for k ∈ N, let L′
a|n = La|n ∩ Rk. Moreover, for an alphabet Θ, a language L ⊆ Θ∗, and a

word w ∈ Θ∗, we define the left quotient of L by w as w−1L := {u ∈ Θ∗ | wu ∈ L}. Our
algorithm is based on the following characterization of unboundedness.

▶ Lemma 8. The program P is k-unbounded iff one of the two following conditions hold:
(P1) Either there exists some number n such that Pn = (D, Σ, (L′

a|n)a∈Σ, d0, m0) is unboun-
ded, or

(P2) for some a ∈ Σ, there exists some word w ∈ pref(La) ending in a letter (d, d′) ∈ D × D

such that pref(w−1La) ∩ Σ∗ is infinite and there exists a run ρ reaching a configuration c

with w ∈ c and c.d = d′.

Essentially, (P1) captures the case where each thread spawns a finite number of other
threads and (P2) the case that there is some reachable configuration at which a single thread
can spawn an unbounded number of new threads. The above characterization allows us to
implement Algorithm 3, which interleave three semidecision procedures: Checking properties
(P1) and (P2) for positive certificates of unboundedness, as well as looking for certificates
of boundedness by looking for bounded regular over-approximations. Here we can check
boundedness for the latter by Theorem 4. Note that while checking for (P1), it is possible to
compute each language L′

a|n explicitly since these languages are all finite. This is because,
given any finite language F ∈ C and an explicitly given finite language A, we know F = A iff
F ∩ (Σ∗

D \ A) = ∅ and for all w ∈ A, F ∩ {w} ≠ ∅, where the first condition checks if F ⊆ A

and the second if A ⊆ F . Therefore, by enumerating all strings w, we can build A iteratively.

A Remark on Complexity. Our procedures show decidability, but do not provide complexity
results. For particular classes of languages, precise complexity bounds are known. For
example, CB Safety, CB Termination, and CB Boundedness for concurrent programs over
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Algorithm 3 Checking CB Boundedness.
Input: Concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) over C and context bound k ∈ N
run concurrently

begin /* (P1): Check if finite under-approximation is unbounded */
foreach n ∈ N do /* Explicitly find strings in L′

a|n */
foreach a ∈ Σ do

Xa ← ∅, L′
a|n ← La ∩ Σ≤n

D ∩Rk

foreach w ∈ Σ≤n
D do

if L′
a|n ∩ {w} ̸= ∅ then
Xa ← Xa ∪ {w}

if L′
a|n ∩ (Σ∗

D \Xa) = ∅ then
break

if Pn = (D, Σ, (Xa)a∈Σ, d0, m0) is unbounded then
return P unbounded.

begin /* (P2): Check if unbounded segment can be reached */
foreach prerun ρ of P, a ∈ Σ, w ∈ aDΣ∗(D ×DΣ∗)≤k−2(D ×D) ∪ {a} do

if ρ is a k-run that reaches c with w ∈ c, w = w′(d, d′) where d′ = c.d, and
pref(w−1La) ∩ Σ∗ is infinite then

return P unbounded.
if ρ is a k-run that reaches c with w ∈ c, w = a where d′ = c.d, and
pref((wd′)−1La) ∩ Σ∗ is infinite then

return P unbounded.

begin /* Find a bounded over-approximation */
foreach tuple (Aa)a∈Σ of regular languages Aa ⊆ (aΣ∗

D ∩Rk) do
if (La ∩Rk) ∩ (Σ∗

D \Aa) = ∅ for each a ∈ Σ then
if P′ = (D, Σ, (Aa)a∈Σ, d0, m0) is bounded then

return P bounded.

regular languages are all EXPSPACE-complete [28], and over context-free languages are
2EXPSPACE-complete [11, 14]. These bounds use explicit constructions of the downclosure.
In particular, our results show decidability of the same problems for concurrent programs
over higher-order recursion schemes. However, we do not get an explicit complexity bound.
While there is an explicit construction of the downclosure of these languages [53, 30, 20], a
precise complexity bound for the construction remains open.

5 Further Results

Other Decision Problems. While we focus on safety, termination, and boundedness, there
are decidability results for other properties and other classes of systems. The fair termination
problem is a variant of termination, where we require that the scheduler is fair. Intuitively, a
scheduler is fair if it schedules each partially executed thread that is infinitely often ready to
execute. Context-bounded fair termination is decidable (but non-elementary) for context-free
concurrent programs [15]. The problem is equivalent to Petri net reachability already for
asynchronous programs [28]. It is undecidable for indexed languages.

Context-bounded analysis has also been studied for non-regular specifications. Lal et
al. [38] showed decidability for context-bounded analysis for a subclass of weighted pushdown
systems. Recently, Baumann et al. [13] studied the context-bounded refinement problem for
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non-regular specifications. In their setting, there is a fixed number of recursive (context-free)
threads which also generate a language over a set of events. The specification is given by a
Dyck language. They show that checking containment in the specification is coNP-complete,
the same complexity as that of context-bounded safety verification, albeit requiring very
different techniques. An analogous result was shown for the setting of asynchronous programs,
but the complexity is EXPSPACE-complete [12].

Tools and Sequentialization. A practical motivation for studying context-bounded reach-
ability was that, empirically, many bugs in concurrent programs could be found with a small
number of context switches. This led to the development of several academic and industrial
tools, such as CHESS [44] and CSeq [27]. CHESS incorporated context bounding in an enu-
merative search. CSeq and several other tools implemented sequentialization: a preprocessing
step that compiles the original concurrent program into a sequential program that preserves
all k-context bounded runs, an idea going back to Lal and Reps [37]. Context-bounding was
integrated with other exploration heuristics such as abstract interpretation and partial-order
reduction [45, 21, 41].

Context-Bounded Analysis of Related Models. Context-bounding was studied for other
models of concurrency, such as parameterized state machines communicating through message-
passing over a given topology [18], concurrent queue systems [49], programs over weak memory
models [9, 1], abstract models such as valence automata [43], etc. In each case, the notion of
“context” has to be refined based on the model.

Similar Restrictions. The theory of context-bounding has inspired other natural bounds in
the analysis of concurrent systems. For example, a well-studied restricion is scope-bounding:
In a k-scope-bounded run, there can be an unbounded number of context-switches, but during
the time span of a single function call (i.e. between a push and its corresponding pop), there
can be at most k interruptions [52]. This covers more executions than context-bounding, which
comes at the cost of PSPACE-completeness of safety verification [52]. Scope-boundedness
has also been studied in terms of timed systems [4, 17], temporal-logic model-checking [6],
resulting formal languages [51], and as an under-approximation for infinite-state systems
beyond multi-pushdown systems [48].

Similarly, a k-phase-bounded run consists of k phases, in each of which at most one stack
is popped [50, 8]. Another variant is k-stage-bounded runs: They consist of k stages, each of
which allows only one thread to write to the shared memory, whereas the other threads can
only read from it [7]. Further restrictions are ordered multi-pushdown systems [19, 5] and
delay-bounded scheduling [26].

Powerful abstract notions of under-approximate analysis (which explain decidability
of several concrete restrictions described above) are available in the concepts of bounded
tree-width [39] and bounded split-width [3, 23, 22].

In conclusion, context-bounding is an elegant idea that has been very influential both in
practice and in theory. In practice, it has been incorporated in several tools for automatic
analysis of programs. Theoretically, it has led to a wealth of new models and analysis
algorithms. At this point, the theory has marched ahead of implementations: it is an
interesting open challenge to see how far the new algorithms can also lead to practical tools.
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