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Abstract
Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry.
In order to further investigate its complexity and the potential of quantum algorithms for quantum
chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian
problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a
ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall
showed quantum advantage (more precisely, BQP-completeness) for GLH with 6-local Hamiltonians
when the guiding state has fidelity (inverse-polynomially) close to 1/2 with a ground state.

In this paper, we optimally improve both the locality and the fidelity parameter: we show that
the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state
has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the
BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice
or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show
BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians
instead. Those make further steps towards establishing practical quantum advantage in quantum
chemistry.
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1 Introduction

Simulation of physical systems is one of the originally envisioned applications of quantum
computing [12, 13]. Quantum chemistry, in particular, has seen much activity on this front
in recent years, e.g. [1, 4, 5, 24, 29, 31]. There, a central goal is to estimate the ground
state energy of a given k-local Hamiltonian H, denoted the k-local Hamiltonian problem
(k-LH). Roughly, for this problem, a k-local Hamiltonian H =

∑
i Hi on n qubits is a 2n × 2n

Hermitian matrix, specified succinctly via “local quantum clauses” Hi acting on k ∈ O(1)
qubits each. The eigenvalues of H are the discrete energy levels of the corresponding quantum
system. In particular, the smallest eigenvalue, which we denote λ0(H), is called the ground
state energy. An eigenvector corresponding to λ0(H) is called a ground state, and describes
a state of the quantum system in the energy configuration λ0(H). Note that k-LH strictly
generalizes classical k-SAT, in that any instance of the latter can be embedded into the
former.

Unfortunately, it is nowadays well-known that estimating ground state energies of local
Hamiltonians is QMA-complete [23]. This hardness persists, moreover, even in the bosonic [32]
and fermionic settings [30]. Thus, assuming BQP ̸= QMA, one cannot hope for an efficient
algorithm for k-LH on all k-local Hamiltonians.

What actually happens in practice

In an attempt to bypass worst-case hardness results, in practice the quantum chemistry
community often adopts the following two-step procedure:

(Step 1: Ground state approximation) A classical heuristic algorithm is applied to obtain
a “guiding state” |ψ⟩, which is hoped to have “good” fidelity with a ground state.
(Step 2: Ground state energy approximation) The guiding state |ψ⟩ is used in Quantum
Phase Estimation (QPE) [22] to efficiently compute the corresponding ground state energy
[2, 4]. (A more recent approach is based on variational quantum algorithms, aimed more
at near-term hardware (see [9] for a survey), but which is heuristic in nature (unlike
QPE).)

Two comments: (1) There is something special about Step 2 – it is a unique strength of
quantum computers to be able to resolve an eigenvalue (within additive 1/poly(n) precision) of
a (sparse) Hermitian matrix given just an approximation |ψ⟩ to the corresponding eigenvector
(via QPE)!1 Indeed, the closely related task of (sparse) matrix inversion, which can be solved
efficiently on a quantum computer coherently by diagonalizing the matrix and “manually”
inverting its eigenvalues via postselection, is BQP-complete [19]. (2) In general, one does not
expect a good2 guiding state for arbitrary local Hamiltonian H to exist, as this would imply
QCMA = QMA. And even if such a guiding state did exist, finding it can still be hard. For
example, minimizing tr(Hρ) over the “simplest” quantum ansatz of tensor product states,
i.e. ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn for ρi ∈ L(C2), remains NP-hard (seen by letting H be a diagonal
Hamiltonian encoding a classical 3-SAT instance).

1 Actually, quantum computers can efficiently prepare a ground state with fidelity 1−1/ exp(n) given access
to a guiding state |u⟩ that has inverse polynomial fidelity with a ground state |g⟩ (i.e. |⟨u|g⟩| ≥ 1/poly(n))
using quantum amplitude amplification for local Hamiltonians that have inverse-polynomial spectral
gaps [26].

2 “Good” here meaning a state |ψ⟩ with inverse polynomial fidelity with a ground state, and with a
succinct classical description allowing |ψ⟩ to be prepared efficiently.
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Directions for study

With Steps 1 and 2 above in mind, in order to practically obtain a quantum advantage for
quantum chemistry problems, there are two branches of study necessary:

(Step 1: Ground state approximation) Here, the best one can hope for is fast algorithms
tailored to physically motivated special cases of Hamiltonians H (either heuristic or
worst-case poly-time complexity). This is arguably the bottleneck for fast quantum
algorithms outperforming classical techniques [25].
(Step 2: Ground state energy approximation) A thorough complexity theoretic understand-
ing of which Hamiltonian families provably permit quantum computers to outperform
classical ones, assuming a good guiding state has been found (in Step 1).

In [15], the formal study of the second step above was initiated. Specifically, the Guided k-local
Hamiltonian problem (k-GLH) was introduced, which is stated roughly as follows (formally
given in Definition 6): Given a k-local Hamiltonian H, an appropriate “representation” of
a guiding state |ψ⟩ with δ-fidelity with the ground space of H, and real thresholds β > α,
estimate the ground state energy of H. Then, two results were shown:

For any constant k, k-GLH can be efficiently solved classically within constant precision,
i.e. for β − α ∈ Θ(1) and δ ∈ Θ(1).
In contrast, 6-GLH is BQP-hard for inverse polynomial precision, i.e. β − α ≥ 1/poly(n),
and δ = 1/

√
2 − 1/poly(n).

The latter regime of inverse-polynomial precision turns out to be the relevant one for
solving quantum chemistry problems in practice – the desired “chemical accuracy” is about
1.6 millihartree (which is constant relative to an unnormalized Hamiltonian), which upon
renormalization of the Hamiltonian (as done here) yields the claimed inverse polynomial
precision. This BQP-hardness result thus gives theoretical evidence for the superiority of
quantum algorithms for chemistry.

Four important problems were left open in [15]: Is k-GLH still BQP-hard with larger
δ, and in particular for δ arbitrarily close to 1? Is k-GLH still BQP-hard for k < 6? Is
k-GLH still BQP-hard for estimating the excited state energies? Is k-GLH still BQP-hard
for physically motivated Hamiltonians?

This work

In this work, we continue the agenda toward Step 2 above by resolving these four open
questions. Here are our main contributions:

First, we show that BQP-hardness continues to hold even for δ = 1 − 1/poly(n), i.e. even
when we are promised the guiding state |ψ⟩ is a remarkably good approximation to the
ground state.
Second, we show that BQP-hardness continues to hold even for k = 2. (Note that for
k = 1, the problem can be solved efficiently classically, even without a guiding state.)
Third, we extend the BQP-hardness results to the case when one is interested in estimating
energies of excited states, rather than just the groundstate. Interestingly, we are only
able to show BQP-completeness in this setting by showing that the first point holds, i.e.
the BQP-hardness in the regime δ ∈ [ 1

2 + Ω(1/poly(n)), 1 − Ω(1/poly(n))].
Fourth, we prove hardness results for physically motivated Hamiltonians. They include
XY model (constraints of the form XX+Y Y ), Heisenberg model (constraints of the form
XX+Y Y +ZZ), the antiferromagnetic XY model and the antiferromagnetic Heisenberg
model (i.e. “Quantum Max Cut” [16]). In contrast, the BQP-hardness construction
of [15] is arguably artificial, because they used the circuit-to-Hamiltonian construction
of [23] and query Hamiltonian construction of [3].

ICALP 2023
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To formalize the third direction, we introduce the Guided k-Local Hamiltonian Low
Energy-problem (k-GLHLE) in which the guiding state has δ-fidelity with the c’th excited
state of H and the problem is to estimate the c’th excited state energy of H (for a formal
definition, see Definition 6). Then, the four contributions above are summarized in the
following theorem.

▶ Theorem 1 (Main result). For any δ ∈ (0, 1 − Ω(1/poly(n))), constant k ≥ 2 and some
integer 0 ≤ c ≤ O(poly(n)), there exist a, b ∈ [−1, 1] with b − a ∈ Ω(1/poly(n)) such that
k-GLHLE is BQP-hard. Moreover, it is still BQP-hard if the 2-local Hamiltonian is restricted
to any of the following families of Hamiltonians:

non-2SLD Hamiltonian on a 2D square lattice
antiferromagnetic Heisenberg model
antiferromagnetic XY model on a 2D triangular lattice.

Here, the “non-2SLD” Hamiltonians are, roughly, 2-local Hamiltonians that cannot be
diagonalized via single-qubit unitaries (see Definition 5 for the formal definition). (The term
2SLD is short for “the 2-local parts of all interactions in the set are simultaneously locally
diagonalizable”.) It was originally introduced in the Hamiltonian complexity classification
of Cubitt and Montanaro [10]. The XY model and the Heisenberg model are examples of
non-2SLD Hamiltonians.

Techniques

Now let us explain our technical contributions. Our first result is the improvement of the
fidelity δ (Proposition 7 in Section 3). The construction of [15] cannot exceed δ = 1/2 , but
we achieve the fidelity δ = 1 − 1/poly(n). Let us explain why the construction of [15] cannot
exceed the fidelity δ = 1/2. Their construction for the BQP-hardness result is the following
local Hamiltonian

H = α+ β

2 I ⊗ |0⟩ ⟨0| +H ′ ⊗ |1⟩ ⟨1| ,

where β − α > 1/poly(n) and H ′ is a certain local Hamiltonian whose lowest eigenvalue is
≤ α in the YES case and is ≥ β in the NO case. It is clear that a ground state of H is
|ψ⟩ ⊗ |1⟩ in the YES case, where |ψ⟩ is a ground state of H ′. For the NO case, a ground
state is |0...0⟩ ⊗ |0⟩. It can then be easily observed that the optimal guiding state (i.e. the
guiding state that has the maximum fidelity with ground states in both the YES and the NO
cases) is written as |ϕ⟩ ⊗ |+⟩ for a certain choice of |ϕ⟩, which shows that the fidelity cannot
exceed 1/2 in this construction.

To overcome the problem, we use the perturbation theory approaches of [21, 7]. In
particular, we use first-order perturbation theory, either using the general Schrieffer-Wolf
transform framework of [7] or a more first-principles approach via the Projection Lemma.
The main idea is to use a large energy penalty term to rule out all low-energy states which
do not look like “history states”. We then show that the corresponding guiding state can be
chosen as the semi-classical subset state introduced in [15] (see Definition 2 in Section 2). To
obtain this, we notice that the ground state of our Hamiltonian is gapped and unique. This
is because we are doing a reduction from BQP (as opposed to QMA). In other words, there
is no QMA “proof” to be plugged into the history state construction, and therefore there is
a unique low-energy history state. In sum, via perturbation theory, we are able to directly
approximate the ground state with a guiding state in both YES and NO cases, as opposed to
the block encoding approach of [15], which used equally weighted orthogonal subspaces to
separately encode the YES and NO cases, respectively.



C. Cade et al. 32:5

Our second result is BQP-hardness of k-GLH for k = 2 (Propositions 9 in Section 3).
Here, the universal simulation setup of [11, 33] cannot be directly applied, because although
their results can approximately preserve the ground space of the input Hamiltonian, it was
not known whether semi-classical subset states can be mapped to semi-classical subset states
under such simulation frameworks, and the latter is essential for guiding states used in GLH.
We show that this is indeed the case. In particular, we show that the original semi-classical
subset state of the input 5-GLH instance is mapped to a state with polynomially many
ancilla qubits in the low-energy subspace of the simulating 2-local Hamiltonian.

Our third result is the BQP-hardness for physically motivated 2-local Hamiltonians
(Proposition 10 and Proposition 12). The main obstacle here is that ground states of
physically motivated 2-local Hamiltonians are not known to be guided by semi-classical
subset states. To solve the problem, we introduce another class of semi-classical states which
we call semi-classical encoded states (see Definition 3 in Section 2). Intuitively, semi-classical
encoded states are states constructed from semi-classical subset states by applying a local
isometry on each qubit. Although semi-classical encoded states are more general than semi-
classical subset states, they still allow succinct descriptions and efficient classical sampling
algorithms (Lemma 4). For us, it is essential that semi-classical encoded states are closed
under the applications of the local encoding of states during the perturbative simulations.
We show that semi-classical encoded states indeed satisfy this property, and therefore can
guide ground states of physically motivated 2-local Hamiltonians. The semi-classical encoded
states newly introduced in this paper are of independent interest, and seem to have many
other interesting applications.

Finally, our fourth result is to extend the k-GLH problem to the question of excited state
energy estimation, we call this the Guided k-Local Hamiltonian Low Energy (k-GLHLE)
problem. In Ref. [20], the authors show that determining the cth excited state energy of a
k-local Hamiltonian (k ≥ 3), where c = poly(n), is QMA-complete – even if all the c − 1
energy eigenstates and corresponding energies are known. In their construction, they embed
a k-local Hamiltonian H, encoding the QMA computation, in a Hamiltonian H ′ living
on a larger Hilbert space. This allows them to add up to polynomial number of artificial
eigenstates to H ′ below the groundstate of H. Finding the c’th eigenvalue of H ′ is then
just as hard as finding the groundstate of H. We show that this construction translates to
the setting with guiding states. As a bonus, we also show that the unguided problem is
QMA-hard for k = 2, which was left open in [20].

Open questions

There are many open questions surrounding GLH, as well as the more general important
goal of solving quantum chemistry problems on quantum computers. For example, we have
shown BQP-hardness of GLH for physically motivated Hamiltonians such as those with
Heisenberg interactions. An important next step would be to show BQP-hardness for the
specific types of fermionic Hamiltonians which are currently being studied in the quantum
chemistry literature. Another subtle but important point is that, technically, the level of
precision required for GLH in quantum chemistry scales as 1/n, while the hardness promise
gap scales as o(1/n) in [15] and the present paper. Can this be improved to Θ(1/n)? A
positive resolution to the quantum PCP conjecture would presumably, in turn, allows one to
obtain hardness for gap Θ(1). Absent this, we are unaware of any circuit-to-Hamiltonian
construction which is able to achieve O(1/n) promise gap. Moreover, as mentioned earlier,
the main bottleneck for quantum chemistry on quantum computers is the arduous task of
finding a good guiding state (if it even exists!). Can good heuristics be designed for this?

ICALP 2023
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Efforts to date suggest the answer so far is negative [25]. Finally, more interestingly (but
more challengingly), can one show rigorous poly-time guiding-state computation algorithms
for the specific families of Hamiltonians considered in the quantum chemistry literature?

2 Preliminaries

Notation

We denote by [M ] the set {1, . . . ,M}. We write λi(A) to denote the ith eigenvalue of a
Hermitian matrix A, ordered in non-decreasing order, with λ0(A) denoting the smallest
eigenvalue (ground energy). We denote eig(A) = {λ0(A), . . . , λdim(A)−1(A)} for the (ordered)
set of all eigenvalues of A.

2.1 Semi-classical states
In this section, we formally introduce the guided local Hamiltonian problem. We first define
two classes of semi-classical states. The term “semi-classical” is motivated by the requirement
for such states that they should be efficiently described (as an input of the problem) and
efficiently samplable.3

▶ Definition 2 (Semi-classical subset state). We say that a normalized state |u⟩ ∈ C2n is a
semi-classical subset state if there is a subset S ⊆ {0, 1}n with |S| = poly(n) such that

|u⟩ = 1√
|S|

∑
x∈S

|x⟩ .

A semi-classical subset state can be efficiently described by the description of S. It is
clear that we can efficiently sample from the probability distribution that outputs x ∈ {0, 1}n

with probability |⟨x|u⟩|2, i.e. according to the uniform distribution over S.
We next introduce a generalized version of a semi-classical subset state.

▶ Definition 3 (Semi-classical encoded state). We say that a normalized state |u⟩ ∈ C2m ,
for n < m ∈ O(n), is a semi-classical encoded state if there is a subset S ⊆ {0, 1}n with
|S| = poly(n) and a set of isometries V1, V2, ..., Vn, where each of Vi maps a 1-qubit state to
an O(1)-qubit state, such that

|u⟩ = 1√
|S|

∑
x∈S

V1(|x1⟩) ⊗ V2(|x2⟩) ⊗ · · · ⊗ Vn(|xn⟩).

A semi-classical encoded state is indeed a semi-classical subset state if the encoding is
trivial (i.e. V1 = V2 = · · · = Vn = I). A semi-classical encoded state can be described by
the description of S and isometries V1, V2..., Vn. We can also efficiently sample from the
semi-classical encoded state as we show in the following lemma.

▶ Lemma 4. Given the description of an m-qubit semi-classical encoded state |u⟩, we can
classically efficiently sample from the probability distribution that outputs x ∈ {0, 1}m with
probability |⟨x|u⟩|2.

3 The requirement of sampling access for a guiding state is motivated by the existence of an efficient
classical algorithm for the GLH problem with constant precision, given a guiding state with sampling
access, as shown in [15]. One type of a semi-classical state we use in this paper is a polynomial-size
variant of the notion of subset states, first introduced in [18].
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Proof. Assume we are given the description, S ⊆ {0, 1}n and V1, V2, ..., Vn, of the semi-
classical encoded state

|u⟩ = 1√
|S|

∑
x∈S

V1(|x1⟩) ⊗ V2(|x2⟩) ⊗ · · · ⊗ Vn(|xn⟩).

Let P (y0, y1, ..., yi−1) = |(⟨y0, y1, ..., yi−1| ⊗ I) |u⟩ |2 be the probability that the measurement
outcome of the first i qubits of |u⟩ in the computational basis is y0, y1, ..., yi−1. For each
i ∈ [m], we can efficiently calculate P (y0, y1, ..., yi−1) because |S| = poly(n) and V1(|x1⟩) ⊗
V2(|x2⟩) ⊗ · · · ⊗Vn(|xn⟩) is a product state of O(1)-qubit states. Then, we can also efficiently
calculate the conditional probability

P (z|y0, y1, ..., yi−1) = P (y0, y1, ..., yi−1, z)
P (y0, y1, ..., yi−1) .

If the bits y0, y1, ..., yi−1 have already been sampled, we compute P (z|y0, y1, ..., yi−1) and
sample the next bit by tossing the coin with bias P (0|y0, y1, ..., yi−1). In this way, we can
classically efficiently sample from the probability distribution that outputs x with probability
|⟨x|u⟩|2. ◀

2.2 Non-2SLD Hamiltonian and geometry of interaction
To state the result, we introduce some families of Hamiltonians. Given a set of (at most)
two-body interactions S = {hα}, S-Hamiltonian refers to the family of Hamiltonians that
can be written in the form

H =
∑

⟨i,j⟩∈E

Ji,jh
(i,j)
αi,j

, (1)

where Ji,j ∈ R, h(i,j)
αi,j is two-local interaction chosen from S and E is the set of edges that

represents the connectivity of interaction [10]. If the connectivity of two-body interaction is
restricted to a 2D square lattice, we call such a family S-Hamiltonian on a 2D square lattice.
We also introduce the notion of 2SLD and non-2SLD:

▶ Definition 5 (2SLD interaction [10]). Suppose S is a set of interactions at most 2 qubits.
We say that S is 2SLD if there exists U ∈ SU(2), such that for all hi ∈ S,

U⊗2hi(U†)⊗2 = αiZ ⊗ Z +Ai ⊗ I + I ⊗Bi,

where αi ∈ R and Ai, Bi are arbitrary single-qubit Hamiltonians.

A set S is non-2SLD if it is not 2SLD. In particular, such non-2SLD S includes the following
physically motivated4 Hamiltonians:

{Z,X,ZZ,XX} (ZZXX interaction [6])
{Z,X,ZX,XZ} (ZX interaction [6])
{XX + Y Y } (general XY interaction)
{XX + Y Y + ZZ} (general Heisenberg interaction).

If there is only a single type of interaction (like S = {XX + Y Y + ZZ}), the Hamiltonian is
called semi-translationally-invariant. (Interaction strength can differ in each term.)

4 For clarity, in [10] and here, all hardness results require non-uniform weights on constraints. It is an open
question whether one can obtain (say) QMA-hardness results with uniform (i.e. unit weight) constraints
for such models. This remains an interesting open question, as many-body physicists typically utilize
unit weights to model physical systems.

ICALP 2023
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Restriction on the sign of the interaction

We also introduce a further restricted class of S-Hamiltonian in which all the signs of the
coefficients are promised to be non-negative (i.e. all of Ji,j in eq. (1) must satisfy Ji,j ≥ 0).
We call such a family of Hamiltonians as S+-Hamiltonian following [28]. In [28], the following
results are shown:

{αXX + βY Y + γZZ}+-Hamiltonian is QMA-complete if α + β > 0, α + γ > 0 and
β + γ > 0 hold.
{αXX + βY Y + γZZ}+-Hamiltonian is QMA-complete if the interactions are restricted
to the edges of a 2D triangular lattice if αXX + βY Y + γZZ is not proportional to
XX + Y Y + ZZ in addition to the condition that α+ β > 0, α+ γ > 0 and β + γ > 0
hold.

The first type of S+-Hamiltonian includes the antiferromagnetic Heisenberg model ({XX +
Y Y +ZZ}+-Hamiltonian) and the antiferromagnetic XY model ({XX+Y Y }+-Hamiltonian)
as important special cases. The antiferromagnetic XY model (unlike the antiferromagnetic
Heisenberg model) remains QMA-complete if its geometric interaction is restricted to a 2D
triangular lattice as it is included in the second type of S+-Hamiltonian above.

3 GLHLE hardness constructions

We next define the guided local Hamiltonian low energy (GLHLE) problem, which can be
viewed as a generalization of GLH by considering arbitrary eigenstates of Hamiltonians5. For
an n-qubit Hamiltonian H, we denote Πc the projector onto the space spanned by the states
of H that have energy λc(H).

▶ Definition 6 (Guided Local Hamiltonian Low Energy). GLHLE(k, c, a, b, δ)
Input: A k-local Hamiltonian H on n qubits such that ∥H∥ ≤ 1 and the description of a

semi-classical encoded state |u⟩ ∈ C2n , a constant c ∈ N≥0.
Promise: ∥Πc |u⟩ ∥2 ≥ δ, where Πc denotes the projection on the subspace spanned by the cth

eigenstates, ordered in order of non-decreasing energy, of H, and either λc(H) ≤ a or
λc(H) ≥ b holds.

Goal: Decide whether λc(H) ≤ a or λc(H) ≥ b.
The proof of Theorem 1 consists of five parts: first, we show that 5-local GLH with
δ = 1 − Ω(1/poly(n)) fidelity is BQP-hard. Then, we show how to extend this result to the
BQP-hardness of the 6-local GLHLE problem. Next, we improve the locality parameter and
show a reduction from 6-local GLHLE to 2-local GLHLE. Simultaneously we show that this
also holds when we restict the Hamiltonians to be non−2SLD S-Hamiltonian on a 2D square
lattice. Finally, we show that BQP-hardness persists if we restrict the family of Hamiltonians
to be {XX + Y Y +ZZ}+-Hamiltonians, or {XX + Y Y }+-Hamiltonians on a 2D triangular
lattice.

We state these five parts as propositions and prove them one by one, from this our main
result (Theorem 1) follows.

5 This definition of GLH is very similar to the definition of GLH∗(k, a, b, δ) in [15]. The difference is that
while the guiding states used in [15] are restricted to semi-classical subset states (Definition 2), in our
definition we use the more general concept of semi-classical encoded states (Definition 3). Note that
our BQP-hardness result for general 2-local Hamiltonians (Proposition 9) actually holds even when
the guiding state is a semi-classical subset state. Proposition 9, which optimally improves both the
locality and fidelity parameters of [15], therefore holds in exactly the same setting as [15]. We use
semi-classical encoded states only to show BQP-hardness for further restricted families of Hamiltonians
(Propositions 10 and 12).
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3.1 Increasing the allowed fidelity
The first proposition focuses on increasing the allowed fidelity of the guiding state with the
ground state of the Hamiltonian of interest (and hence c = 0).

▶ Proposition 7. For any δ ∈ (0, 1 − Ω(1/poly(n))), there exist a, b ∈ [0, 1] with b − a ∈
Ω(1/poly(n)) such that the problem GLHLE(5, 0, a, b, δ) is BQP-hard. Moreover, it is still
BQP-hard with the additional two promises that
1. H has a non-degenerate ground state separated from the first excited state by a spectral

gap γ ∈ Ω(1/poly(n)) in both the cases λ0(H) ≤ a and λ0(H) ≥ b.(We call such instances
γ-gapped GLH(k, a, b, δ).)

2. The guiding state is restricted to be a semi-classical subset state.

Proof. Let Π = (Πyes,Πno) be a promise problem in BQP, and x ∈ {0, 1}n be an input. Let
Ux = UmUm−1...U1 be a quantum circuit that decides x consisting of m = poly(n) gates. Ux

acts on |x⟩A ⊗|0...0⟩B where A denotes the n-qubit input register and B denotes the poly-size
ancilla register. By measuring the output register of Ux |x⟩A ⊗ |0...0⟩B , the quantum verifier
outputs 1 with probability at least α if x ∈ ΠYES (at most β if x ∈ ΠNO, respectively). We
may assume α = 1 − 2−n and β = 2−n via the standard error reduction for BQP.

Consider a pre-idled quantum verifier Ũx := UxI · · · I, where I is the identity gate. The
Ũx consists of M := m+N gates, where N is the number of idling steps. (N = poly(n) is
taken properly later.) Consider Kitaev’s [23] 5-local circuit-to-Hamiltonian construction with
an additional scaling factor:

H := ∆(Hin +Hprop +Hstab) +Hout. (2)

Here,

Hin := (I − |x⟩ ⟨x|)A ⊗ (I − |0...0⟩ ⟨0...0|)B ⊗ (|0⟩ ⟨0|)C (3)
Hout := |0⟩ ⟨0|out ⊗ |M⟩ ⟨M |C (4)

Hstab :=
M−1∑
j=1

|0⟩ ⟨0|Cj
⊗ |0⟩ ⟨0|Cj+1

(5)

Hprop :=
M∑

t=1
Ht,where (6)

Ht := −1
2Ut ⊗ |t⟩ ⟨t− 1|C − 1

2U
†
t ⊗ |t− 1⟩ ⟨t|C + 1

2I ⊗ (|t⟩ ⟨t|C + |t− 1⟩ ⟨t− 1|C). (7)

It is known that the non-degenerate and zero-energy ground space of H0 := Hin +Hprop +
Hstab is spanned by |ψhist⟩, where

|ψhist⟩ := 1√
M + 1

M∑
t=0

ŨtŨt−1 · · · Ũ1 |x⟩A ⊗ |0...0⟩B ⊗ |t⟩C .

It is also known that the smallest non-zero eigenvalue of H0 is larger than π2/(64M2) [17,
Lemma 2.2] (based on [14, Lemma 3]).

We apply the Schrieffer-Wolf transformation for this H by taking sufficiently large ∆.
Note that Hout = |0⟩ ⟨0| ⊗ I ⊗ |M⟩ ⟨M | and ∥Hout∥ = 1. We would take

∆ ≥ 16 · 64M2/π2.

Then, H has a one-dimensional ground space spanned by a ground state |g⟩. In the following,
we analyze the fidelity between |g⟩ and |ψhist⟩, and the eigenvalue of |g⟩ in the YES and NO
cases.
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Analysis of fidelity

Using Equation (12) of Appendix B , the bound

∥ |g⟩ − |ψhist⟩ ∥ ∈ O
(
(∆/M2)−1)

holds. Let us introduce the following state:

|u⟩ := 1√
N

N∑
t=1

|x⟩A ⊗ |0...0⟩B ⊗ |t⟩C .

This is a semi-classical subset state. This state satisfies

|⟨u|ψhist⟩|2 = N

m+N + 1 .

Therefore, for any positive polynomial r, we can take sufficiently large N,∆ ∈ O(poly(n)) so
that |⟨u|g⟩|2 ≥ 1 − 1/r(n).

Analysis of eigenvalue

Next, we see the ground state energy of H in both the YES case and the NO case. The
first-order effective Hamiltonian is given by

Heff,1 = |ψhist⟩ ⟨ψhist|Hout |ψhist⟩ ⟨ψhist| .

The history state is defined as

|ψhist⟩ = 1√
M + 1

M∑
t=1

Ũt · · · Ũ1 |x⟩A ⊗ |0...0⟩B ⊗ |t⟩C

and

⟨ψhist|Hout |ψhist⟩ = 1
M + 1 ⟨x, 0|U†

x(|0⟩ ⟨0|out ⊗ I)Ux |x, 0⟩ .

The eigenvalue of Heff,1 is given by ⟨ψhist|Hout |ψhist⟩ and this is O((∆/M2)−1) =
O(1/poly(n))-close to the ground state energy of H using Equation (11).

It can be verified that ⟨ψhist|Hout |ψhist⟩ ≤ (1−α)/(M+1) if Ux accepts x with probability
at least α and ⟨ψhist|Hout |ψhist⟩ ≥ (1 − β)/(M + 1) if Ux accepts x with probability at most
β. As we have mentioned earlier, we can assume α = 1 − 2−n and β = 2−n. Therefore, the
ground state energy a of H lies in the range of 0 ± O((∆/M2)−1) if x ∈ Πyes and the ground
state energy b of H lies in the range of 1/(M + 1) ± O((∆/M2)−1) if x ∈ Πno.

We also see the spectral gap between the ground state and any excited state in both
the YES and NO cases. We first see the NO case. As we have shown, the ground state
energy lies in 1−2n

M+1 ± O((M2/∆)). In H = ∆(Hin +Hprop +Hstab) +Hout, the eigenvalues of
∆(Hin +Hprop +Hstab) is perturbed at most ∥Hout∥ = 1. Therefore, the smallest non-zero
eigenvalue of H is larger than (∆π2)/(64M2)−1. The spectral gap in the NO case is therefore

O
(

∆
M2

)
− 1 −

(
1 − 2−n

M + 1 + O
(
M2

∆

))
.

The ground state energy in the YES case is smaller than that in the NO case. Therefore, we
can take sufficiently large ∆ ∈ poly(n) so that H has inverse-polynomial spectral gap and
b − a ∈ Ω(1/poly(n)). Finally, we can normalize H by a polynomially large factor, which
concludes the proof. ◀
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3.2 Extending to excited states
The next proposition extends the result to excited states, at the cost of increasing the locality
of the construction by one.

▶ Proposition 8. For any δ ∈ Ω(0, 1 − 1/poly(n)) there exist a, b ∈ [−1, 1] with b − a ∈
Ω(1/poly(n)) and some number 0 ≤ c ≤ poly(n) such that GLHLE(6, c, a, b, δ) is BQP-hard
even when,
1. the c’th eigenvalue of H, λc(H), is non-degenerate and is separated by a gap γ ∈

Ω(1/poly(n)) from both λc−1(H) and λc+1(H). (We call such instances γ-gapped
GLHLE(k, c, a, b, δ).)

2. The guiding state is restricted to be a semi-classical subset state.

Proof. We will reduce directly from the BQP-complete Hamiltonian H as defined in Eq. (2).
Again, let |u⟩ be a semi-classical guiding state such that |⟨u⟩ψ0| ≥ ζ. Consider the following
6-local Hamiltonian H(c) on n+ 1 qubits6:

H(c) = H(z) ⊗ |0⟩ ⟨0| +H(s) ⊗ |1⟩ ⟨1| , (8)

where

H(z) =
d∑

i=0
2i|1⟩⟨1|i +

n∑
i=d+1

2d+1|1⟩⟨1|i −
(
c− 1

2

)
I,

H(s) = 1
2
H + I/4

∥H∥ + 1/4 − 1
4I,

where we have that d = ⌈log2(c)⌉. H(z) has exactly c states with negative energy, with the
smallest eigenvalue being −c+ 1

2 and the largest eigenvalue value at
∑d

i=0 2i +
∑n

i=d+1 2d+1 −(
c− 1

2
)

= 2d+1 + 2d+1(n − d) − 1
2 − c. The spectrum jumps in integer steps of 1, and

has as largest negative (resp. smallest non-negative) energy value − 1
2 (resp. 1

2 ). Since
eig(H(s)) ∈ [−1/4, 1/4], we must have that H(s) sits precisely at the c’th excited state
level (or c + 1’th eigenstate level) in H(c). Therefore, given a guiding state |u⟩ for H
such that |⟨u|ψ0⟩| ≥ δ, one has that the guiding state |u(c)⟩ = |u⟩ ⊗ |1⟩ is also semi-
classical and must have |⟨u(c)|ψ(c)

c ⟩| ≥ δ, where |ψ(c)
c ⟩ denotes the cth excited state of

H(c). Since this construction of H(c) and |u(c)⟩ provides a polynomial time reduction
from an instance of GLH(k, a, b, δ) to one of GLHLE(k, c, a, b, δ), whenever c = O(poly(n)),
we must have that GLHLE(k, c, a, b, δ) is BQP-hard whenever k ≥ 6. The gap between
λc(H(c)) − λc−1(H(c)) = 1

4 and the gap between λc+1(H(c)) − λc(H(c)) = γ as before. The
norm of the new Hamiltonian is bounded by |H(c)| = O(poly(n)), hence after normalisation
we retain λc(H(c)) − λc−1(H(c)) ≥ λc+1(H(c)) − λc(H(c)) = Ω(1/poly(n)). ◀

3.3 Locality reduction and reduction to physically motivated
Hamiltonians via strong Hamiltonian simulation

The next two propositions bring (i) the locality k down to 2 and (ii) extend the result to any
of non-2SLD S-Hamiltonian on a 2D square lattice.

6 Note that this gadget can be trivially changed such that estimating the n highest energy states is
BQP-hard.
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▶ Proposition 9. Any γ-gapped GLHLE(k, c, a, b, δ) with k ∈ O(1), b − a ∈ Ω(1/poly(n)),
δ ∈ (0, 1−Ω(1/poly(n))), 0 ≤ c ≤ poly(n), and γ ∈ Ω(1/poly(n)) with a guiding semi-classical
subset state can be reduced to γ′-gapped GLHLE(2, c, a′, b′, δ′) with b′ − a′ ∈ Ω(1/poly(n)),
δ′ ∈ (0, 1 − Ω(1/poly(n))) and γ′ ∈ Ω(poly(n)), and with a guiding semi-classical subset state
in polynomial time.

▶ Proposition 10. Any γ-gapped GLHLE(k, c, a, b, δ) with k ∈ O(1), b− a ∈ Ω(1/poly(n)),
δ ∈ (0, 1 − Ω(1/poly(n))), 0 ≤ c ≤ poly(n) and γ ∈ Ω(1/poly(n)), and with a guiding
semi-classical subset state can be reduced to γ′-gapped GLHLE(2, c, a′, b′, δ′) with b′ − a′ ∈
Ω(1/poly(n)), δ′ ∈ (0, 1 − Ω(1/poly(n))) and γ′ ∈ Ω(poly(n)) in polynomial time whose
Hamiltonian is restricted to any of non-2SLD S-Hamiltonian on a 2D square lattice.

Proof of Propositions 9 and 10. Let H and |u⟩ be arbitrary inputs of GLHLE(k, c, a, b, δ)
with k ∈ O(1), b − a ∈ Ω(1/poly(n)), δ ∈ (0, 1 − Ω(1/poly(n))). From Theorem 15 (in
Appendix A.1 ), we can efficiently find a non-2SLD S-Hamiltonian H ′ on a 2D square lattice
that is a strong (∆, η, ϵ)-simulation of H given the description of H. We take ϵ < (b− a)/2,
b′ = b− ϵ, a′ = a+ ϵ and ∆ = O(ϵ−1∥H∥2 + η−1∥H∥) so that λc(H ′) ≤ a′ if λc(H) ≤ a, and
λc(H ′) ≥ b′ if λc(H) ≥ b′ while b′ − a′ ∈ Ω(1/poly(n)).

We have shown the existence of desirable eigenvectors in the simulated Hamiltonian.
What remains to show is that (i) the encoded state of |u⟩ still has 1 − 1/poly(n) fidelity with
c’th excited state of H ′ and (ii) the encoded state is still a semi-classical subset state after
the simulation by a 2-local Hamiltonian (for concluding Proposition 9) , and (iii) the encoded
state is still a semi-classical encoded state after the simulation by an arbitrary non-2SLD
S-Hamiltonian on a 2D square lattice (for concluding Proposition 10).

(i) Verification of the fidelity. The fidelity can be analyzed by the following lemma:

▶ Lemma 11 (Simulation of the gapped excited state). Suppose the c’th excited state |g⟩ of
H is non-degenerate and separated from both the c− 1’th excited state and c+ 1’th excited
state by a gap γ. Suppose H ′ is a (∆, η, ϵ)-simulation of H such that 2ϵ < γ. Then H ′ has a
non-degenerate c’th excited state |g′⟩ and

∥Estate(|g⟩) − |g′⟩ ∥ ≤ η + O(γ−1ϵ).

Proof. This is a slight modification of Lemma 2 of [8]. First, the non-degeneracy of the c’th
excited state of H ′ follows because the i’th smallest eigenvalues of H and H ′ differs at most ϵ
for all 0 ≤ i ≤ dim(H)−1, and ϵ satisfies 2ϵ < γ. Consider H as an unperturbed Hamiltonian
and V := Ẽ†H ′Ẽ −H as a perturbation. Then, the perturbed Hamiltonian H + V = Ẽ†H ′Ẽ
has a non-degenerate c’th excited state Ẽstate(|g′⟩). The first-order perturbation theory for
eigenvectors gives ∥ |g⟩ − Ẽ†

state(|g′⟩)∥ ∈ O(γ−1ϵ). Therefore, it follows that ∥Ẽstate(|g⟩) −
|g′⟩ ∥ = ∥Ẽstate(|g⟩) − Ẽstate(Ẽ†

state(|g′⟩))∥ ∈ O(γ−1ϵ) using that Ẽstate is an isometry and
|g′⟩ ∈ Im(Ẽstate) . Finally, by using ∥Estate − Ẽstate∥ ≤ η, ∥Estate(|g⟩) − |g′⟩ ∥ ≤ η + O(γ−1ϵ)
follows. ◀

Using Lemma 11, we can take sufficiently small ϵ and η to ensure ∥Estate(|u⟩) − |g′⟩ ∥ ≤
δ′ = δ − 1/poly(n). Because the Hamiltonian simulation is efficient, the operator norm ∥H ′∥
and the number of qubits of H ′ is in poly(n).

(ii) Verification of the semi-classical property for Proposition 9. We start from a semi-
classical subset state |u⟩ = 1/

√
|S|

∑
x∈S |x⟩. We show that after the simulation of the

original k-local Hamiltonian H where k ∈ O(1) by an 2-local Hamiltonian, the corresponding
encoding Estate(|u⟩) is still a semi-classical subset state.
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In order to simulate the k-local Hamiltonian by a 2-local Hamiltonian (that has no
restriction on the family of Hamiltonian), it is enough to use mediator qubit gadgets
that attach |0⟩ states for mediator qubits (called subdivision and 3-to-2 gadgets [27]). A
k-local term can be simulated by (⌈k/2⌉ + 1)-local terms using the subdivision gadget.
Moreover, subdivision gadgets can be applied to each of the terms of the Hamiltonian in
parallel [28, 11]. Therefore, we can reduce a k-local Hamiltonian to a 3-local Hamiltonian
by O(log k) rounds of applications of the subdivision gadgets. Then we can use the 3-to-2
gadgets in parallel to reduce to a 2-local Hamiltonian. In the corresponding encoding of
states of this procedure, polynomially many |0⟩ states are attached to the original state.
Clearly, by attaching polynomially many |0⟩ states, a polynomial-size subset state is mapped
to another polynomial-size subset state:

1√
|S|

∑
x∈S

|x⟩ → 1√
|S|

∑
x∈S

|x⟩ |0⟩⊗poly(n) = 1√
|S|

∑
x∈S×{0...0}

|x⟩ .

This concludes the proof of Proposition 9.

(iii) Verification of the semi-classical property for Proposition 10. We proceed to show
that starting from a semi-classical subset state |u⟩, the resulting state is a semi-classical
encoded state when we simulate the original Hamiltonian by a non-2SLD S-Hamiltonian on
a 2D square lattice. There are three types of encodings used in the simulation:

Mediator qubits. In this encoding, some simple ancilla states are attached to the
original state.
Subspace encoding. In this encoding, a local isometry is applied to the original state.
Local Unitaries. In this encoding, local unitary U ⊗ U ⊗ · · · ⊗ U , where each of U acts
on one qubit, is applied to the original state.

We restate the chain of Hamiltonian simulations of Appendix C:� �
Arbitrary k-local Hamiltonian
↓ (1) Mediator qubits. (Attach a semi-classical subset state |α⟩.)
Spatially sparse 5-local Hamiltonian
↓ (2) Mediator qubits. (Attach polynomially many |+y⟩ states.)
Spatially sparse 10-local real Hamiltonian
↓ (3) Mediator qubits. (Attach polynomially many |0⟩ or |1⟩ states.)
Spatially sparse 2-local Pauli interactions with no Y -terms
↓ (4) Subspace encoding.
Spatially sparse S0 = {XX + Y Y + ZZ} or {XX + Y Y } Hamiltonian
↓ (5) Mediator qubits. (Attach polynomially many |0⟩ or |1⟩ states.)
S0-Hamiltonians on a 2D square lattice
↓ (6) Mediator qubits, Subspace encoding, and local unitary.
Arbitrary non-2SLD S-Hamiltonian on a 2D square lattice� �

In step (1), a semi-classical subset state is attached to a semi-classical subset state |u⟩. The
resulting state is also a semi-classical subset state:

|u⟩ = 1√
|S|

∑
x∈S

|x⟩ → 1√
|S|

∑
x∈S

|x⟩ ⊗ 1√
|S′|

∑
x′∈S′

|x′⟩

= 1√
|S||S′|

∑
x∈S×S′

|x⟩ . (9)
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The resulting state after the encodings of steps (2)∼(4) is a semi-classical encoded state
because in these steps, a tensor product of single-qubit states is attached to a semi-classical
subset state and then the state is encoded by a local isometry. By further performing a
local encoding to the semi-classical encoded state, the resulting state is also a semi-classical
encoded state. This concludes the proof of Proposition 10. ◀

Finally, we show a BQP-hardness result for the antiferromagnetic Hamiltonian.

▶ Proposition 12. For any δ ∈ (0, 1 − Ω(1/poly(n))), there exist a, b ∈ [0, 1] with b− a ∈
Ω(1/poly(n)) and 0 ≤ c ≤ O(poly(n)) such that the problem GLHLE(2, c, a, b, δ) with b−a ∈
Ω(1/poly(n)) is BQP-hard for Hamiltonians that are restricted to either {XX+Y Y +ZZ}+-
Hamiltonian, or {XX + Y Y }+-Hamiltonian on a 2D triangular lattice.

Proof. We first prove the case of {XX+Y Y +ZZ}+-Hamiltonian. This can be reduced from
the GLHLE problem of {XX + Y Y + ZZ}-Hamiltonian with a semi-classical encoded state
as a guiding state, which is shown to be BQP-hard in Proposition 10. The {XX+Y Y +ZZ}-
Hamiltonian can be simulated by {XX + Y Y + ZZ}+-Hamiltonian using the “basic gadget”
(this is a type of a mediator qubit gadget) of [28]. In the corresponding encoding of the
state, a tensor product of two-qubit states is attached to the original state. This encodes a
semi-classical encoded state to another semi-classical encoded state. The reason is as follows.
Let us denote the attached tensor product of polynomially many two-qubit states as

|ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · |ϕm⟩ = V ′
1 |0⟩ ⊗ V ′

2 |0⟩ ⊗ · · ·V ′
m |0⟩ ,

where |ϕ1⟩ , ..., |ϕm⟩ are two-qubit states and V ′
1 , ..., V

′
m are isometries such that V ′

i |0⟩ = |ϕi⟩
for each i ∈ [m]. Then, the original semi-classical encoded state represented by a polynomial-
size subset S and a local isometry V1 ⊗ V2 ⊗ · · · ⊗ Vn is mapped to a semi-classical encoded
state represented by a subset S × {0...0} and a local isometry V1 ⊗ · · · ⊗ Vn ⊗ V ′

1 ⊗ · · · ⊗ V ′
m.

This concludes the case of {XX + Y Y + ZZ}+-Hamiltonian.
We next show the BQP-hardness of the GLHLE problem of {XX + Y Y }+-Hamiltonian

on a 2D triangular lattice with a semi-classical encoded state. We show a reduction from
the GLHLE problem of {XX + Y Y }-Hamiltonian on a 2D square lattice with a semi-
classical encoded state as a guiding state, which is shown to be BQP-hard in Proposition 10.
It is shown in [28] how to simulate {XX + Y Y }-Hamiltonian on a 2D square lattice by
{XX + Y Y }+-Hamiltonian on a 2D triangular lattice by using mediator qubit gadgets. The
corresponding encoding is just attaching a product state of polynomially many O(1)-qubit
states to the original guiding state. Therefore, the original semi-classical encoded state
is mapped to another semi-classical encoded state (by a similar reason as in the case of
{XX + Y Y + ZZ}+-Hamiltonian). ◀
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A Approximate Hamiltonian simulation

A.1 Introduction of approximate Hamiltonian simulation
While in the QMA-hardness reduction it suffices to focus only on the eigenvalues in the
simulation, in the reduction of GLH it is also important to know how the eigenvectors change
in the perturbative simulation. It is convenient to introduce the notion of approximate
Hamiltonian simulation to show the reduction of GLH.

▶ Definition 13 (Approximate Hamiltonian simulation [11], [33]). We say that an m-qubit
Hamiltonian H ′ is a (∆, η, ϵ)-simulation of an n-qubit Hamiltonian H if there exists a local
encoding E(M) = V (M ⊗ P + M̄ ⊗Q)V † such that
1. There exists an encoding Ẽ(M) = Ṽ (M ⊗ P + M̄ ⊗Q)Ṽ † such that Ẽ(1) = P≤∆(H′) and

∥Ṽ − V ∥ ≤ η, where P≤∆(H′) is the projector onto the subspace spanned by eigenvectors
of H ′ with eigenvalue below ∆,

2. ∥H ′
≤∆ − Ẽ(H)∥ ≤ ϵ, where H ′

≤∆ := P≤∆(H′)H
′.

Here, V is a local isometry that can be written as V =
⊗

i Vi where each Vi is an isometry
acting on at most 1 qubit, and P and Q are locally orthogonal projectors (i.e. for all
i there exist orthogonal projectors Pi and Qi acting on the same subsystem as Vi such
that PiQi = 0, PiP = P and QiQ = Q) such that P + Q = I, and M̄ is the complex
conjugate of M . Moreover, we say that the simulation is efficient if m and ∥H ′∥ are at most
O(poly(n, η−1, ϵ−1,∆)), and the description of H ′ can be computable in poly(n) time given
the description of H.

We approximately simulate the original Hamiltonian H in the low-energy subspace of H ′.
There is a corresponding encoding of a state which can be taken as

Estate(ρ) = V (ρ⊗ σ)V †

for σ such that Pσ = σ (if P ̸= 0). If ρ is the eigenvector of H with eigenvalue α, then
Estate(ρ) is approximately the eigenvector of H ′ with eigenvalue α′ ∈ [α− ϵ, α+ ϵ].

https://arxiv.org/abs/2208.02199
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1103/PRXQuantum.2.040332
https://arxiv.org/abs/2102.02991
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In [33], it is shown that there exist families of Hamiltonians that can efficiently simulate
any O(1)-local Hamiltonians. They call such families of Hamiltonians strongly universal
Hamiltonians.7 We use the construction of strongly universal Hamiltonians of [33] to show
Proposition 9. Formally, the strong (and weak) universality is defined as follows:

▶ Definition 14 (Strong and weak universality [33]). A family of Hamiltonians H = {Hm}
is weakly universal if given any ∆, η, ϵ > 0, any O(1)-local, n-qubit Hamiltonian can be
(∆, η, ϵ)-simulated. Such a family is strongly universal if the simulation is always efficient.

The following result is shown in [33]:

▶ Theorem 15 ([33]). Any non-2SLD S-Hamiltonian on a 2D-square lattice is strongly
universal.

B Schrieffer-Wolf transformation for 1-dimensional gapped ground
space

Let us introduce the Schrieffer-Wolf transformation and its approximation [7] which we use in
the proof. We only consider the case when the unperturbed Hamiltonian has 1-dimensional
ground space.

Let H0 be a Hamiltonian that has 1-dimensional ground space spanned by |g0⟩ whose
energy is 0. Let us assume that the smallest non-zero eigenvalue of H0 is larger than one.
Consider the following (perturbed) Hamiltonian: H = ∆H0 + V . We shall always assume
that ∥V ∥ ≤ ∆/2 in the following. Then, there is only one eigenvector (which we denote |g⟩)
of H with eigenvalue lying in the interval of [−∆/2,∆/2] (Lemma 3.1 of [7]).

Then, the Schrieffer-Wolf (SW) transformation is defined as a unitary USW that maps
the ground space of H to that of H0. That is, USW |g⟩ = |g0⟩. The Hamiltonian

Heff = Π0USW(∆H0 + V )U†
SWΠ0

is called the effective low-energy Hamiltonian. Here, Π0 is the projector onto the ground
space of H0. The eigenvector of Heff is |g0⟩ and the eigenvalue is the same as the eigenvalue
of |g⟩ with respect to H.

Next, we show how to approximate USW and Heff . We only need the simplest first-order
approximation in the proof of Proposition 7. In the following, we further assume ∥V ∥ ≤ ∆/16.
Then, it is known that

∥I − USW∥ ∈ O(∆−1∥V ∥) (10)

and

∥Heff − Π0VΠ0∥ ∈ O(∆−1∥V ∥2) (11)

hold (Lemma 3.4 [7], Lemma 4 [8]). This means that I and Π0VΠ0 work as the first-order
approximation of USW and Heff , respectively. The derivation and the forms of the higher-order
terms can be found in [7]. From eq. (10), it follows that∥∥ |g⟩ − |g0⟩

∥∥ =
∥∥∥(I − U†

SW) |g0⟩
∥∥∥ ∈ O(∆−1∥V ∥). (12)

It follows from eq. (11) that the ground state energy of H differs at most O(∆−1∥V ∥2) from
the eigenvalue of Heff,1 := Π0VΠ0 (restricted to the space spanned by |g0⟩).

7 It would be possible to show Theorem 1 by modifying the verifier circuit Ũx following [27] to make the
constructed Hamiltonian spatially sparse. We believe Proposition 9 is interesting because the reduction
holds for arbitrary O(1)-local Hamiltonian even if it is not originally spatially sparse.
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C Encoding of states for strong Hamiltonian simulation

We sketch the construction of the strong Hamiltonian simulation introduced in [33]. The
simulation mainly consists of two parts. First, they construct spatially sparse 5-local
Hamiltonian [27] using a quantum phase estimation circuit and its modification. This
procedure may be thought of as a “Hamiltonian-to-circuit” (then goes back to Hamiltonian
by circuit-to-Hamiltonian) construction. Then, they perturbatively simulate the spatially
sparse Hamiltonian with known techniques in the literature [27, 11, 28]. In the following, we
overview their construction.

(1) Arbitrary k-local Hamiltonian → spatially sparse 5-local Hamiltonian ([33])

Let H be a target O(1)-local Hamiltonian. Assume that H can be written as H =∑
i Ei |ψi⟩ ⟨ψi| where {Ei} and {|ψi⟩} are the eigenvalues and eigenvectors of H. In [33],

they showed that there is a spatially sparse quantum circuit U sparse
PE that approximately

estimates the energy of H, i.e.

U sparse
PE

∑
i

ci |ψi⟩ |0m⟩ ≈
∑

i

ci |ψi⟩ |Ẽi⟩ |other⟩ ,

where {ci} are arbitrary coefficients and {|Ẽi⟩} are approximations of {Ei}.
The circuit U sparse

PE is implemented first by constructing U sparse
NN that consists of 1D nearest-

neighborhood interaction. Then, U sparse
NN is converted into a spatially sparse circuit using

ancilla qubits and swap gates.
Then they combine uncomputation and idling to construct

U = (Idling)(U sparse
PE )†(Idling)U sparse

PE .

They apply circuit-to-Hamiltonian construction for this U to construct spatially sparse 5-local
Hamiltonian Hcircuit. They use first-order perturbation theory to show that Hcircuit simulates
H in its low-energy subspace. The encoding of Hcircuit to the low energy subspace of H is
approximated by the map: H → H ⊗ |α⟩ ⟨α|. Here, |α⟩ is a subset state with poly(n)-size
subset S′ that is related to the history state of the idling steps after uncomputation. For
detail, see the proof of Proposition 2 of [33]. Then, the corresponding encoding of the state is

|u⟩ → |u⟩ ⊗ |α⟩ .

The encoded state is also a semi-classical subset state if |u⟩ is a semi-classical subset state.

(2) Spatially sparse 5-local Hamiltonian → Spatially sparse 10-local real
Hamiltonian (Lemma 22 of [11])

In this simulation, the state is encoded by attaching polynomially many |+y⟩ where |+y⟩ is
the +1 eigenvector of Pauli Y matrix:

|u⟩ → |u⟩ ⊗ |+y⟩ ⊗ · · · ⊗ |+y⟩ . (13)

This encoding does not map a semi-classical subset state into a semi-classical state but maps
into a semi-classical encoded state. The reason is as follows. Let Vy be a unitary such that
|+y⟩ = Vy |0⟩, and |u⟩ = 1/

√
|S|

∑
x∈S |x⟩. Then, the right side of eq. (13) can be written as

|u⟩ ⊗ |+y⟩ ⊗ · · · ⊗ |+y⟩ = 1√
|S|

∑
x∈S×{0...0}

I ⊗ · · · ⊗ I ⊗ Vy ⊗ · · · ⊗ Vy |x⟩ .

This is a semi-classical encoded state with a subset S × {0...0} and a local isometry (this is
indeed a local unitary) I ⊗ · · · ⊗ I ⊗ Vy ⊗ · · · ⊗ Vy.
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(3) Spatially sparse 10-local real Hamiltonian → Spatially sparse 2-local Pauli
interactions with no Y -terms ([27, 10])

This can be done first by simulating the 10-local real Hamiltonian with 11-local Hamiltonian
whose Pauli decomposition does not contain any Pauli Y terms [11, Lemma 40]. In the
corresponding encoding, |1⟩ states are attached for the polynomially many mediator qubits
introduced in the simulation. Then, we can use subdivision gadgets and 3-to-2 gadgets [27].
In this simulation, polynomially many mediator qubits are introduced, and the encoding of
states is just to add |0⟩ states for each of the mediator qubits. The resulting Hamiltonian can
be written in the form

∑
i<j αijAij +

∑
k(βkXk + γkZk), where Aij is one of the interactions

of XiXj , XiZj , ZiXj or ZiZj .

(4) Subspace encoding for spatially sparse S0 = {XX + Y Y + ZZ} or
{XX + Y Y } Hamiltonian (Theorem 42 of [11])

We have already obtained 2-local Hamiltonian in the form
∑

i<j αijAij +
∑

k(βkXk + γkZk).
Then we show how to simulate this Hamiltonian with arbitrary non-2SLD S-Hamiltonians.
We first consider S0 Hamiltonian, where S0 = {XX+Y Y +ZZ} or S0 = {XX+Y Y }. In this
simulation, we use subspace encoding in which the logical qubit of the original Hamiltonian
is encoded into four physical qubits. Consider the simulation by Heisenberg interaction
{XX + Y Y + ZZ} for example. Each logical qubit is encoded into 4 qubit state by an
isometry that is defined as

V |0⟩ = |0L⟩ = |Ψ−⟩13 |Ψ−⟩24 (14)

V |1⟩ = |1L⟩ = 2√
3

|Ψ−⟩12 |Ψ−⟩34 − 1√
3

|Ψ−⟩13 |Ψ−⟩24 , (15)

where |Ψ−⟩ = (|01⟩ − |10⟩)/
√

2. For details, see [11, Theorem 42]. The encoding of states
for XX+YY interaction is the same. A semi-classical encoded state is clearly mapped to
a semi-classical encoded state by applying a local isometry of the corresponding subspace
encoding.

(5) Spatially sparse S0-Hamiltonian → S0-Hamiltonians on a 2D square lattice
(Lemma 47 of [11])

This simulation can be done using three perturbative gadgets called subdivision, fork, and
crossing gadgets. All of these gadgets attach a mediator qubit for each use of the gadgets.
O(1) rounds of parallel use of perturbative gadgets are sufficient to simulate a spatially
sparse S0-Hamiltonian by a S0-Hamiltonians on a 2D square lattice, which prevents the
interaction strength to grow exponentially. (For general interaction graphs, O(logn) rounds
of perturbative simulations are necessary.)

(6) S0-Hamiltonian on 2D square lattice → Arbitrary non-SLD S-Hamiltonian on a
2D square lattice (Theorem 43 of [11])

Finally, this simulation is similarly done by using variants of mediator qubit gadgets or
subspace encoding gadgets as well as applying local unitaries.8

8 Applying local unitaries means to simulate H by U⊗nH(U†)⊗n where U acts on one qubit. The
corresponding encoding of state is Estate(|ψ⟩) = U⊗n |ψ⟩.
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