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Abstract
Classical network design models, such as the Survivable Network Design problem (SNDP), are
(partly) motivated by robustness to faults under the assumption that any subset of edges upto a
specific number can fail. We consider non-uniform fault models where the subset of edges that
fail can be specified in different ways. Our primary interest is in the flexible graph connectivity
model [1, 3, 4, 8], in which the edge set is partitioned into safe and unsafe edges. Given parameters
p, q ≥ 1, the goal is to find a cheap subgraph that remains p-connected even after the failure of q

unsafe edges. We also discuss the bulk-robust model [6, 2] and the relative survivable network design
model [19]. While SNDP admits a 2-approximation [32], the approximability of problems in these
more complex models is much less understood even in special cases. We make two contributions.

Our first set of results are in the flexible graph connectivity model. Motivated by a conjecture
that a constant factor approximation is feasible when p and q are fixed, we consider two special cases.
For the s-t case we obtain an approximation ratio that depends only on p, q whenever p + q > pq/2
which includes (p, 2) and (2, q) for all p, q ≥ 1. For the global connectivity case we obtain an O(q)
approximation for (2, q), and an O(p) approximation for (p, 2) and (p, 3) for any p ≥ 1, and for (p, 4)
when p is even. These are based on an augmentation framework and decomposing the families of
cuts that need to be covered into a small number of uncrossable families.

Our second result is a poly-logarithmic approximation for a generalization of the bulk-robust
model when the “width” of the given instance (the maximum number of edges that can fail in any
particular scenario) is fixed. Via this, we derive corresponding approximations for the flexible graph
connectivity model and the relative survivable network design model. We utilize a recent framework
due to Chen et al. [17] that was designed for handling group connectivity.
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1 Introduction

The Survivable Network Design Problem (SNDP) is an important problem in combinatorial
optimization that generalizes many well-known problems related to connectivity and is
also motivated by practical problems related to the design of fault-tolerant networks. The
input to this problem is an undirected graph G = (V, E) with non-negative edge costs
c : E → R+ and a collection of source-sink pairs (s1, t1), . . . , (sh, th), each with an integer
connectivity requirement ri. The goal is to find a minimum-cost subgraph H of G such that

EA
T

C
S

© Chandra Chekuri and Rhea Jain;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 36; pp. 36:1–36:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
mailto:rheaj3@illinois.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 Network Design in Non-Uniform Fault Models

H has ri connectivity for each pair (si, ti). We focus on edge-connectivity requirements in
this paper.1 SNDP contains as special cases classical problems such as s-t shortest path,
minimum spanning tree (MST), minimum k-edge-connected subgraph (k-ECSS), Steiner
tree, Steiner forest and several others. It is NP-Hard and APX-Hard to approximate. There
is a 2-approximation via the iterated rounding technique [32].

A pair (s, t) that is k-edge-connected in G is robust to the failure of any set of k − 1
edges. In various settings, the set of edges that can fail can be correlated and/or exhibit
non-uniform aspects. We are interested in network design in such settings, and discuss a few
models of interest that have been studied in the (recent) past. We start with the flexible
graph connectivity model (flex-connectivity for short) that was the impetus for our work.

Flexible graph connectivity. In this model, first introduced by Adjiashvili [1] and studied in
several recent papers [3, 4, 5, 8, 7], the input is an edge-weighted undirected graph G = (V, E)
where the edge set E is partitioned to safe edges S and unsafe edges U . The assumption,
as the names suggest, is that unsafe edges can fail while safe edges cannot. We say that a
vertex-pair (s, t) is (p, q)-flex-connected in a subgraph H of G if s and t are p-edge-connected
after deleting from H any subset of at most q unsafe edges. The input, as in SNDP, consists of
G and h source-sink pairs; the i’th pair now specifies a (pi, qi)-flex-connectivity requirement.
The goal is to find a min-cost subgraph H of G such that for each i, si and ti are (pi, qi)-
flex-connected in H. We refer to this as the Flex-SNDP problem. Note that Flex-SNDP
generalizes SNDP in two ways2.

Bulk-robust network design. This fairly general non-uniform model was introduced by
Adjiashvili, Stiller and Zenklusen [6]. Here an explicit scenario set Ω = {F1, F2, . . . , Fm} is
given as part of the input where each Fj ⊆ E. The goal is to find a min-cost subgraph H of
G such that each of the given pairs (si, ti) remains connected in H −Fj for each j ∈ [m]. We
consider a slight generalization of this problem in which each scenario is now a pair (Fj ,Kj)
where Kj is a set of source-sink pairs. As earlier, the goal is to find a min-cost subgraph H

of G such that for each j ∈ [m], each pair (si, ti) in Kj is connected in H − Fj . The width of
the failure scenarios is max1≤j≤ℓ |Fj |. We use Bulk-SNDP to refer to this problem.

The advantage of the bulk-robust model is that one can specify arbitrarily correlated
failure patterns, allowing it to capture many well studied problems in network design. We
observe that SNDP and Flex-SNDP problem can be cast as special cases of Bulk-SNDP
model where the width is maxi(ri − 1) in the former case, and maxi(pi + qi − 1) in the
latter case. The slight generalization on Bulk-SNDP described above also allows us to
model a new problem recently proposed by Dinitz, Koranteng, and Kortsarz [19] called
Relative Survivable Network Design (RSNDP). This problem allows one to ask for
higher connectivity even when the underlying graph G has small cuts. The input is an
edge-weighted graph G = (V, E) and source-sink pairs (si, ti) each with requirement ri; the
goal is to find a min-cost subgraph H of G such that for each F ⊆ E with |F | < ri, (si, ti) is
connected in H − F if si and ti are connected in G− F . It is easy to see that RSNDP is a
special case of Bulk-SNDP with width at most maxi(ri − 1). A disadvantage of Bulk-SNDP
is that scenarios have to be explicitly listed, while the other models discussed specify failure
scenarios implicitly. However, when connectivity requirements are small/constant, one can
reduce to Bulk-SNDP by explicitly listing the failure sets.

1 In the literature the term EC-SNDP and VC-SNDP are used to distinguish edge and vertex connectivity
requirements. We use SNDP in place of EC-SNDP.

2 If all edges are safe (E = S), then (p, 0)-flex-connectivity is equivalent to p-edge-connectivity. Similarly,
if all edges are unsafe (E = U), then (1, q − 1)-flex-connectivity is equivalent to q-edge-connectivity.
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While SNDP admits a 2-approximation, the approximability of network design in the
preceding models is not well-understood. The known results mostly focus on two special cases:
(i) the single pair case where there is only one pair (s, t) with a connectivity requirement
and (ii) the spanning or global connectivity case when all pairs of vertices have identical
connectivity requirement. Even in the single pair case, there are results that show that
problems in the non-uniform models are hard to approximate to poly-logarithmic or almost-
polynomial factors when the connectivity requirement is not bounded [6, 5]. Further, natural
LP relaxations in some cases can also be shown to have large integrality gaps [16]. Motivated
by these negative results and practical considerations, we focus our attention on Flex-
SNDP when the max connectivity requirement p, q are small, and similarly on Bulk-SNDP
when the width is small. Other network design problems with similar hardness results
have admitted approximation ratios that depend on the max connectivity requirement (for
example, VC-SNDP [12, 18, 38] and (s,t) case of Bulk-Robust [6]).

1.1 Our contribution
We are mainly motivated by Flex-SNDP and insights for it via Bulk-SNDP. We make two
broad contributions. Our first set of results is on special cases of Flex-SNDP for which
we obtain constant factor approximations. Our second contribution is a poly-logarithmic
approximation for Flex-SNDP, Bulk-SNDP, and RSNDP when the requirements are small.

We use the terminology (p, q)-Flex-ST to refer to the single-pair problem with requirement
(p, q). We use the term (p, q)-FGC to refer to the spanning/global-connectivity problem
where all pairs of vertices have the (p, q)-flex-connectivity requirement (the term FGC is to
be consistent with previous usage [3, 8]).

(p, q)-FGC. Adjiashvili et al. [3] considered (1, 1)-FGC and obtained a constant factor
approximation that was subsequently improved to 2 by Boyd et al. [8]. [8] obtained several
results for (p, q)-FGC including a 4-approximation for (p, 1)-FGC, a (q + 1)-approximation
for (1, q)-FGC, and a O(q log n)-approximation for (p, q)-FGC. The first non-trivial case of
small p, q for which we did not know a constant factor is (2, 2)-FGC. We prove several results
that, as a corollary, yield constant factor approximation for small values of p, q.

▶ Theorem 1. For any q ≥ 0 there is a (2q + 2)-approximation for (2, q)-FGC. For any
p ≥ 1 there is a (2p + 4)-approximation for (p, 2)-FGC, and a (4p + 4)-approximation for
(p, 3)-FGC. Moreover, for all even p ≥ 2 there is an (6p + 4)-approximation for (p, 4)-FGC.

▶ Remark 2. In independent work Bansal et al. [7] obtained an O(1)-approximation for
(p, 2)-FGC for any p ≥ 1 (6 when p is even and 20 when p is odd). More broadly, they obtain
constant factor approximations for a special class of augmentation problems and demonstrate
several interesting applications.

(p, q)-Flex-ST. Adjiashivili et al. [4] considered (1, q)-Flex-ST and (p, 1)-Flex-ST and
obtained several results. They described a q-approximation for (1, q)-Flex-ST and a (p + 1)-
approximation for (p, 1)-Flex-ST; when p is a fixed constant they obtain a 2-approximation.
Also implicit in [6] is an O(q(p + q) log n)-approximation algorithm for (p, q)-Flex-ST that
runs in nO(p+q)-time. No constant factor approximation was known when p, q ≥ 2 with
(2, 2)-Flex-ST being the first non-trivial case. We prove a constant factor approximation for
this and several more general settings via the following theorem.
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▶ Theorem 3. For all p, q where (p + q) > pq/2, there is an O((p + q)O(p))-approximation
algorithm for (p, q)-Flex-ST that runs in nO(p+q) time. In particular, there is an O(1)
approximation for (p, 2) and (2, q)-Flex-ST when p, q are fixed constants.

Flex-SNDP, Bulk-SNDP, and RSNDP. We show that these problems admit poly-
logarithmic approximation algorithms when the width/connectivity requirements are small.

▶ Theorem 4. There is a randomized algorithm that yields an O(k4 log7 n)-approximation
for Bulk-SNDP on instances with width at most k, and runs in expected polynomial time.

▶ Corollary 5. There is a randomized algorithm that yields an O(q(p + q)3 log7 n)- approx-
imation for Flex-SNDP when (pi, qi) ≤ (p, q) for all pairs (si, ti), and runs in expected
nO(q)-time.

▶ Corollary 6. There is a randomized algorithm that yields an O(k4 log7 n)-approximation for
RSNDP where k is the maximum connectivity requirement, and runs in expected polynomial
time.

As far as we are aware of, no previous approximation algorithms were known for SNDP
versions of flexible graph connectivity (with both p, q ≥ 2) or bulk-robustness.

1.2 Overview of techniques and related work
Network design has substantial literature. We describe closely related work and results to
put ours in context.

SNDP and related connectivity problems. SNDP is a canonical problem in network
design for connectivity that captures many problems. We refer the reader to some older
surveys [28, 36] on approximation algorithms for connectivity problems, and several recent
papers with exciting progress on TSP and weighted Tree and Cactus augmentation. Frank’s
books is an excellent source for polynomial-time solvable exact algorithms [23]. For SNDP,
the augmentation approach was pioneered in [41], and was refined in [25]. These led
to 2Hk approximation where k is the maximum connectivity requirement. Jain’s iterated
rounding approach [32] obtained a 2-approximation. The nice structural results that underpin
the algorithms for SNDP have been extended to element connectivity introduced in [33];
consequently, Elem-SNDP also admits a 2-approximation [21]. VC-SNDP has posed non-
trivial technical challenges; the problem is not constant factor approximable when the
maximum connectivity requirement is large [12]. In a breakthrough result, [18], Chuzhoy and
Khanna gave an O(k3 log n) approximation via a reduction to element connectivity, where k

is the maximum connectivity. Nutov [38] improves this to an O(k2) approximation for the
single-source VC-SNDP case; however, there has been no further progress in obtaining an
f(k)-approximation for the general VC-SNDP problem.

Flexible Graph Connectivity. Flexible graph connectivity has been a topic of recent interest,
although the model was introduced earlier in the context of a single pair [1]. Adjiashvili,
Hommelsheim and Mühlenthaler [3] introduced FGC (which is the same as (1, 1)-FGC)
and pointed out that it generalizes the well-known MST and 2-ECSS problems. Several
approximation algorithms for various special cases of FGC and Flex-ST were obtained by
Adjiashvili et al.[3] and Boyd et al. [8], as described in Section 1.1.

Adjiashvili et al. [5] also showed hardness results in the single pair setting. They prove
that (1, k)-Flex-ST in directed graphs is at least as hard as directed Steiner tree which
implies poly-logarithmic factor inapproximability [31]. They prove that (k, 1)-Flex-ST in
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directed graphs is at least as hard to approximate as directed Steiner forest (which has
almost polynomial factor hardness [20]). The hardness results are when k is part of the input
and large, and show that approximability of network design in this model is substantially
different from the edge-connectivity model.

Bulk-Robust Network Design. This model was initiated in [6]. They obtained an O(log n +
log m) approximation for the Bulk-Robust spanning tree problem (as a special case of the
more general matroid basis problem). The authors show that the directed single pair problem
(Bulk-Robust shortest path) is very hard to approximate. The hardness reduction motivated
the definition of width. The authors obtain an O(k2 log n)-approximation for Bulk-Robust
shortest path via a nice reduction to the Set Cover problem and the use of the augmentation
approach that we build upon here. For the special case of k = 2 the authors obtain an
O(1)-approximation. Adjiashvili [2] showed that if the graph is planar then one can obtain
an O(k2)-approximation for both Bulk-Robust shortest path and spanning tree problems
– he uses the augmentation approach from [6] and shows that the corresponding covering
problem in each augmentation phase corresponds to a Set Cover problem that admits a
constant factor approximation. As far as we are aware, there has not been any progress on
the general setting beyond the spanning tree and shortest path cases.

Relative Network Design. This model was introduced in very recent work [19]. The authors
obtain a 2-approximation for the spanning case via nice use of the iterated rounding technique
even though the requirement function is not skew-supermodular. They also obtain a simple
2-approximation when the maximum requirement is 2. They obtain a 27

4 -approximation for
the (s, t)-case when the maximum demand is 3.

Survivable Network Design for Group Connectivity. As we remarked, one part of this
work builds on the recent framework of Chen et al. [17]. Their main motivation was to
address the approximability of the survivable network design problem with group connectivity
requirements. We refer the reader to [24, 30, 31, 14, 13, 17] and pointers to the extensive
work on the approximability of these problems.

Our Techniques. As we remarked, the non-uniform models have been difficult to handle
for existing algorithmic techniques. The structures that underpins the known algorithms
for SNDP (primal-dual [41] and iterated rounding [32]) are skew-supermodularity of the
requirement function and submodularity of the cut function in graphs. Since non-uniform
models do not have such clean structural properties, these known techniques cannot be
applied directly. Another technique for network design, based on several previous works, is
augmentation. In the augmentation approach we start with an initial set of edges F0 that
partially satisfy the connectivity constraints. We then augment F0 with a set F in the graph
G− F0; the augmentation is typically done to increase the connectivity by one unit for pairs
that are not yet satisfied. We repeat this process in several stages until all connectivity
requirements are met. The utility of the augmentation approach is that it allows one to
reduce a higher-connectivity problem to a series of problems that solve a potentially simpler
{0, 1}-connectivity problem. An important tool in this area is a 2-approximation for covering
an uncrossable function (a formal definition is given in Section 3) [41].

In trying to use the augmentation approach for Flex-SNDP and its special cases, we see
that the resulting functions are usually not uncrossable. To prove Theorems 1 and 3, we
overcome this difficulty by decomposing the family of cuts to be covered in the augmentation
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problem into a sequence of cleverly chosen uncrossable subfamilies. Our structural results
hold for certain range of values of p and q and hint at additional structure that may be
available to exploit in future work. Boyd et al. also show a connection to capacitated network
design (also implicitly in [5]) which has been studied in several works [25, 9, 10, 11]. This
model generalizes standard edge connectivity by allowing each edge e to have an integer
capacity ue ≥ 1. One can reduce capacitated network design to standard edge connectivity
by replacing each edge e with ue parallel edges, blowing up the approximation factor by
maxe ue. Boyd et al. show that (1, k)-Flex-SNDP and (k, 1)-Flex-SNDP can be reduced to
Cap-SNDP with maximum capacity k. While this reduction does not extend when p, q ≥ 2,
it provides a useful starting point that we exploit for Theorem 3.

We use a completely different algorithmic approach to prove Theorem 4. We rely on
a recent novel framework of Chen, Laekhanukit, Liao, and Zhang [17] to tackle survivable
network design in group connectivity setting. They used the seminal work of Räcke [39]
on probabilistic approximation of capacitated graphs via trees, and the group Steiner tree
rounding techniques of Garg, Konjevod and Ravi [24], and subsequent developments [27].
We adapt their ideas to handle the augmentation problem for Flex-SNDP and Bulk-SNDP.
We refer the reader to Section 4 since the framework is technical.

Organization. Section 2 sets up the relevant background on the LP relaxations for Flex-
SNDP and Bulk-SNDP. Section 3 outlines the proofs of Theorems 1 and 3. Section 4 outlines
the proofs of Theorems 4 and the resulting corollaries 5 and 6. This paper combines and
extends results from two preliminary versions; [16] for the first set of results discussed in
Section 3, and [15] for the second set of results discussed in Section 4. A full version of this
paper will be made publicly available in the near future.

2 Preliminaries

Throughout the paper we will assume that we are given an undirected graph G = (V, E)
along with a cost function c : E → R≥0. When we say that H is a subgraph of G = (V, E)
we implicitly assume that H is an edge-induced subgraph, i.e. H = (V, F ) for some F ⊆ E.
For any subset of edges F ⊆ E and any set S ⊆ V we use the notation δF (S) to denote the
set of edges in F that have exactly one endpoint in S. We may drop F if it is clear from the
context. For all discussion of flex-connectivity, we will let S denote the set of safe edges and
U denote the set of unsafe edges.

Flex-SNDP LP Relaxation. We describe an LP relaxation for (p, q)-Flex-SNDP problem.
Recall that we are given a set of h terminal pairs (si, ti) ⊆ V × V and the goal is to choose
a min-cost subset of the edges F such that in the subgraph H = (V, F ), si and ti are
(p, q)-flex-connected for any i ∈ [h]. Let C = {S ⊂ V | ∃i ∈ [h] s.t. |S ∩ {si, ti}| = 1} be the
set of all vertex sets that separate some terminal pair. For a set of edges F to be feasible
for the given (p, q)-Flex-SNDP instance, we require that for all S ∈ C, |δF (S) \ B| ≥ p for
any B ⊆ U with |B| ≤ q. We can write cut covering constraints expressing this condition,
but these constraints are not adequate by themselves. To improve this LP, we consider the
connection to capacitated network design: we give each safe edge a capacity of p + q, each
unsafe edge a capacity of p, and require p(p + q) connectivity for the terminal pairs; it is
not difficult to verify that this is a valid constraint. These two sets of constraints yield the
following LP relaxation with variables xe ∈ [0, 1], e ∈ E.
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min
∑
e∈E

c(e)xe

subject to
∑

e∈δ(S)−B

xe ≥ p S ∈ C, B ⊆ U , |B| ≤ q

(p + q)
∑

e∈δ(S)∩S

xe + p
∑

e∈δ(S)∩U

xe ≥ p(p + q) S ∈ C

xe ∈ [0, 1] e ∈ E

The following lemma borrows ideas from [8, 10].

▶ Lemma 7. The Flex-SNDP LP relaxation can be solved in nO(q) time. For (p, q)-FGC, it
can be solved in polynomial time.

Proof. We show a polynomial time separation oracle for the given LP. Suppose we are given
some vector x ∈ [0, 1]|E|. We first check if the capacitated min-cut constraints are satisfied.
This can be done in polynomial time by giving every safe edge a weight of p + q and every
unsafe edge a weight of p, and checking that the min-cut value is at least p(p + q). If it is not,
we can find the minimum cut and output the corresponding violated constraint. Suppose all
capacitated constraints are satisfied. Then, for each B ⊆ U , |B| ≤ q we remove B and check
that for each s, t ∈ T , the s-t min-cut value in the graph G−B with edge-capacities given
by x is at least p. Since there are at most nO(q) such possible sets B, we get our desired
separation oracle.

In the FGC case, if there is a remaining unsatisfied constraint, then there must must
be some S ⊂ V and some B ⊆ U , |B| ≤ q, such that

∑
e∈δ(S)−B xe < p. In particular,∑

e∈S∩δ(S)−B xe < p and
∑

e∈U∩δ(S)−B xe < p. We claim that the total weight (according to
weights (p + q) for safe edges and p for unsafe edges) going across δ(S) is at most 2p(p + q):
at most (p + q)p from S ∩ (δ(S)−B), at most p2 from U ∩ (δ(S)−B), and at most pq from
B. Recall that the min-cut of the graph according the weights has already been verified to
be at least p(p + q). Hence, any violated cut from the first set of constraints corresponds
to 2-approximate min-cut. It is known via Karger’s theorem that there are at most O(n4)
2-approximate min-cuts in a graph, and moreover they can also be enumerated in polynomial
time [34, 35]. We can enumerate all 2-approximate min-cuts and check each of them to see if
they are violated. To verify whether a candidate cut S is violated we consider the unsafe
edges in δ(S) ∩ U and sort them in decreasing order of xe value. Let B′ be a prefix of this
sorted order of size min{q, |δ(S) ∩ U|}. It is easy to see that that δ(S) is violated iff it is
violated when B = B′. Thus, we can verify all candidate cuts efficiently. ◀

Bulk-SNDP LP Relaxation. We can similarly define an LP relaxation for the Bulk-SNDP
problem. As above, we have a variable xe ∈ [0, 1] for each edge e ∈ E.

min
∑
e∈E

c(e)xe

subject to
∑

e∈δ(S)\Fj

xe ≥ 1 ∀(Fj ,Kj) ∈ Ω, S separates a terminal pair in Kj

xe ∈ [0, 1]

Note that the LP has a separation oracle that runs in time polynomial in n and m:
for each scenario (Fj ,Kj), we can remove Fj from the graph and check that the minimum
(u, v)-cut is at least 1 for each (u, v) ∈ Kj .

ICALP 2023



36:8 Network Design in Non-Uniform Fault Models

Augmentation. The results of this paper rely on the augmentation framework. We first
discuss Flex-SNDP. Suppose G = (V, E), {si, ti}i∈[h] is an instance of (p, q)-Flex-SNDP. We
observe that (p, 0)-Flex-SNDP instance can be solved via 2-approximation to EC-SNDP.
Hence, we are interested in q ≥ 1. Let F1 be a feasible solution for the (p, q − 1)-Flex-
SNDP instance. This implies that for any cut S that separates a terminal pair we have
|δF1∩S(S)| ≥ p or |δF1(S)| ≥ p + q − 1. We would like to augment F1 to obtain a feasible
solution to satisfy the (p, q) requirement. Define a function f : 2|V | → {0, 1} where f(S) = 1
iff (i) S separates a terminal pair and (ii) |δF1∩S(S)| < p and |δF1(S)| = p + q− 1. We call S

a violated cut with respect to F1. Since F1 satisfies (p, q − 1) requirement, if |δF1∩S | < p it
must be the case that |δF1(S)| ≥ p + q − 1. The following lemma is simple.

▶ Lemma 8. Suppose F2 ⊆ E \ F1 is a feasible cover for f , that is, δF2(S) ≥ f(S) for all S.
Then F1 ∪ F2 is a feasible solution to (p, q)-Flex-SNDP.

The augmentation problem is then to find a min-cost subset of edges to cover f in G− F1.
The key observation is that the augmentation problem does not distinguish between safe
and unsafe edges and hence we can rely on traditional connectivity augmentation ideas.
Note that if we instead tried to augment from (p− 1, q) to (p, q)-flex-connectivity, we would
still need to distinguish between safe and unsafe edges. The following lemma shows that
the LP relaxation for the original instance provides a valid cut-covering relaxation for the
augmentation problem.

▶ Lemma 9. Let x ∈ [0, 1]|E| be a feasible LP solution for a given instance of (p, q)-Flex-
Steiner. Let F1 be a feasible solution that satisfies (p, q − 1) requirements for the terminal.
Then, for any violated cut S ⊆ V in (V, F1), we have

∑
e∈δ(S)\F1

xe ≥ 1.

Adjiashvili et al [6] also define a corresponding augmentation problem for the bulk robust
network design model as follows: given an instance to Bulk-SNDP, let Ωℓ =

⋃
j∈[m]{(F,Kj) :

|F | ≤ ℓ and F ⊆ Fj}. Let Hℓ ⊆ E be a subset of edges that satisfy the constraints defined
by the scenarios in Ωℓ. Then, a solution to the augmentation problem from ℓ− 1 to ℓ is a set
of edges H ′ such that Hℓ−1 ∪H ′ satisfies the constraints defined by scenarios in Ωℓ. It is
not difficult to verify that any solution to the original instance Ω is also a solution to any of
the augmentation problems, and any solution satisfying all scenarios in Ωk also satisfies all
scenarios in Ω, where k is the width of the Bulk-SNDP instance.

3 Uncrossability-Based Approximation Algorithms

In this section, we prove Theorem 1 and Theorem 3. Recall that we are given a graph
G = (V, E) with cost function on the edges c : E → R≥0 and a partition of the edge set E

into safe edges S and unsafe edges U . In the (p, q)-FGC problem, our goal is to find the
cheapest set of edges such that every cut has either p safe edges or p + q total edges. The
(p, q)-Flex-ST problem is similar, except that we are also given s, t ∈ V as part of the input
and we focus only on cuts separating s from t.

We start by providing some necessary background on uncrossable/ring families and
submodularity of the cut function. We then prove a simple O(q)-approximation for (2, q)-
FGC by directly applying existing algorithms for covering uncrossable functions. Next, we
devise a framework for augmentation when the requirement function is not uncrossable.
Finally, we prove our results for special cases of (p, q)-FGC and (p, q)-Flex-ST using this
framework.
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Uncrossable functions and families. Uncrossable functions are a general class of requirement
functions that are an important ingredient in network design [41, 26, 28, 36].

▶ Definition 10. A function f : 2V → {0, 1} is uncrossable if for every A, B ⊆ V such
that f(A) = f(B) = 1, one of the following is true: (i) f(A ∪ B) = f(A ∩ B) = 1, (ii)
f(A−B) = f(B −A) = 1. A family of cuts C ⊂ 2V is an uncrossable family if the indicator
function fC : 2V → {0, 1} with f(S) = 1 iff S ∈ C, is uncrossable.

For a graph G = (V, E), a requirement function f : 2V → {0, 1}, and a subset of edges
A ⊆ E, we say a set S ⊆ V is violated with respect to A, f if f(S) = 1 and δA(S) = ∅. The
following important result gives a 2-approximation algorithm for the problem of covering an
uncrossable requirement function.

▶ Theorem 11 ([41]). Let G = (V, E) be an edge-weighted graph and let f : 2V → {0, 1} be
an uncrossable function. Suppose there is an efficient oracle that for any A ⊆ E outputs all
the minimal violated sets of f with respect to A. Then there is an efficient 2-approximation
for the problem of finding a minimum cost subset of edges that covers f .

A special case of uncrossable family of sets is a ring family. We say that an uncrossable
family C ⊆ 2V is a ring family if the following conditions hold: (i) if A, B ∈ C and A, B

properly intersect3 then A∩B and A∪B are in C and (ii) there is a unique minimal set in C.
We observe that if C is an uncrossable family such that there is a vertex s contained in every
A ∈ C then C is automatically a ring family. Theorem 11 can be strengthened for this case.
There is an optimum algorithm to find a min-cost cover of a ring family – see [37, 38, 22].

In order to use Theorem 11 in the augmentation framework, we need to be able efficiently
find all the minimal violated sets of the family. As above, we let F1 denote a feasible solution
for the (p, q − 1)-Flex-SNDP instance. For any fixed p, q, we can enumerate all minimal
violated sets in nO(p+q) time by trying all possible subsets of p + q − 1 edges in F1. In the
context of (p, q)-FGC, the total number of violated cuts in the augmentation problem is
bounded by O(n4). See [8] and the proof of Lemma 7 for details.

For the following sections on (p, q)-FGC, we let C denote the family of violated cuts.
Note that such families are symmetric, since δ(S) = δ(V − S). For any two sets A, B ∈ C,
if A ∪ B = V then by symmetry, V − A, V − B ∈ C. In this case, V − A = B − A and
V −B = A−B, so A and B uncross. Therefore, when proving uncrossability of A and B,
we assume without loss of generality that (A ∪B) ̸= V .

Submodularity and posimodularity of the cut function. It is well-known that the cut
function of an undirected graph is symmetric and submodular. Submodularity implies that
for all A, B ⊆ V , |δ(A)|+ |δ(B)| ≥ |δ(A ∩B)|+ |δ(A ∪B)|. Symmetry and submodularity
also implies posimodularity: for all A, B ⊆ V , |δ(A)|+ |δ(B)| ≥ |δ(A−B)|+ |δ(B −A)|.

3.1 An O(q)-approximation for (2, q)-FGC
The following lemma shows that the augmentation problem for increasing flex-connectivity
from (2, q − 1) to (2, q), for any q ≥ 1 corresponds to covering an uncrossable function.

▶ Lemma 12. The set of all violated cuts when augmenting from (2, q−1)-FGC to (2, q)-FGC
is uncrossable.

3 A, B properly intersect if A ∩ B ̸= ∅ and A − B, B − A ̸= ∅.
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The preceding lemma yields a 2(q + 1)-approximation for (2, q)-FGC as follows. We
start with a 2-approximation for (2, 0)-FGC that can be obtained by using an algorithm for
2-ECSS. Then for we augment in q-stages to go from a feasible solution to (2, 0)-FGC to
(2, q)-FGC. The cost of augmentation in each stage is at most OPT where OPT is the cost of
an optimum solution to (2, q)-FGC. We can use the known 2-approximation algorithm in each
augmentation stage since the family is uncrossable. Recall from Section 2 that the violated
cuts can be enumerated in polynomial time, and hence the primal-dual 2-approximation for
covering an uncrossable function can be implemented in polynomial-time. This leads to the
claimed approximation and running time.

3.2 Identifying Uncrossable Subfamilies

We have seen that the augmentation problem from (2, q − 1)-FGC to (2, q)-FGC leads to
covering an uncrossable function. Boyd et al. [8] showed that augmenting from (p, 0)-FGC
to (p, 1)-FGC also leads to an uncrossable function for any p ≥ 1. However this approach
fails for most cases of augmenting from (p, q − 1) to (p, q) (see [16] for examples). However,
in certain cases, we can take a more sophisticated approach where we consider the violated
cuts in a small number of stages. In each stage, we choose a subfamily of the violated cuts
that is uncrossable. In such cases, we can obtain a 2k-approximation for the augmentation
problem, where k is the upper bound on the number of stages.

Suppose we want to augment from (p, q − 1) to (p, q) (for either FGC or the Flex-ST
setting). Let G = (V, E) be the original input graph, and let F be the set of edges we
have already included. Recall that a cut ∅ ̸= A ⊊ V is violated iff |δF (A)| = p + q − 1,
|δF ∩S(A)| < p, and in the Flex-ST case, A separates s from t. Instead of attempting to cover
all violated sets at once, we do so in stages. In each stage we consider the violated cuts
based on the number of safe edges. We begin by covering all violated sets with no safe edges,
then with one safe edge, and iterate until all violated sets are covered. This is explained in
Algorithm 1 below.

Algorithm 1 Augmenting from (p, q − 1) to (p, q) in stages.

1: F ′ ← F

2: for i = 0, . . . , p− 1 do
3: Ci ← {S : S is violated and |δF ′∩S(S)| = i}
4: F ′

i ← approximation algorithm to cover cuts in Ci

5: F ′ ← F ′ ∪ F ′
i

6: end for
7: return F ′

3.3 Approximating (p, q)-FGC for q ≤ 4

In this section, we show that the above approach works to augment from (p, q − 1)-FGC
to (p, q)-FGC whenever q ≤ 3 and also for q = 4 when p is even. The only unspecified
part Algorithm 1 is to cover cuts in Ci in the i’th stage. If we can prove that Ci forms an
uncrossable family then we can obtain a 2-approximation in each stage. First, we prove a
generic and useful lemma regarding cuts in Ci.

For the remaining lemmas, we let Fi ⊆ E denote the set of edges F ′ at the start of iteration
i. In other words, Fi is a set of edges such that for all ∅ ≠ A ⊊ V , if |δFi(A)| = p + q − 1,
then |δFi∩S(A)| ≥ i.
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▶ Lemma 13. Fix an iteration i ∈ {0, . . . , p− 1}. Let Ci be as defined in Algorithm 1. Then,
if A, B ∈ Ci and
1. |δFi

(A ∩B)| = |δFi
(A ∪B)| = p + q − 1, or

2. |δFi(A−B)| = |δFi(B −A)| = p + q − 1
then A and B uncross, i.e. A ∩B, A ∪B ∈ Ci or A−B, B −A ∈ Ci.

Note that the preceding lemma holds for the high-level approach. Now we focus on cases
where we can prove that Ci is uncrossable.

▶ Lemma 14. Fix an iteration i ∈ {0, . . . , p− 1}. Let Ci be as defined in Algorithm 1. Then,
for q ≤ 3, Ci is uncrossable.

Proof. Suppose A, B ⊆ V such that δFi(A) and δFi(B) both have exactly i safe and
p + q − 1− i unsafe edges. Suppose for the sake of contradiction that they do not uncross.
By Lemma 13, one of δFi(A∩B) and δFi(A∪B) must have at most p + q− 2 edges, and the
same holds for δFi

(A−B) and δFi
(B −A). Without loss of generality, suppose δFi

(A ∩B)
and δFi

(A− B) each have at most p + q − 2 edges. By the assumptions on Fi, they must
both have at least p safe edges, hence they each have at most q − 2 unsafe edges. Note that
δFi

(A) ⊆ δFi
(A − B) ∪ δFi

(A ∩ B), hence δFi
(A) can have at most 2(q − 2) unsafe edges.

When q ≤ 3, 2(q−2) < q, which implies that δFi(A) has strictly more than p−1 safe edges, a
contradiction. Notice that δFi

(A) ⊆ δFi
(B−A)∪δFi

(A∪B), δFi
(B) ⊆ δFi

(A−B)∪δFi
(A∪B),

and δFi(B) ⊆ δFi(B − A) ∪ δFi(A ∩ B); therefore the same argument follows regardless of
which pair of sets each have strictly less than p + q − 2 edges. ◀

▶ Corollary 15. For any p ≥ 2 there is a (2p + 4)-approximation for (p, 2)-FGC and a
(4p + 4)-approximation for (p, 3)-FGC.

Can we extend the preceding lemma for q = 4? It turns out that it does work when p is
even but fails for odd p ≥ 3.

▶ Lemma 16. Fix an iteration i ∈ {0, . . . , p− 2}. Let Ci be as defined in Algorithm 1. Then,
for q = 4, Ci is uncrossable. Furthermore, if p is an even integer, Cp−1 is uncrossable.

The preceding lemma leads to a (6p + 4)-approximation for (p, 4)-FGC when p is even by
augmenting from a feasible solution to (p, 3), since we pay an additional cost of 2p ·OPT .
The preceding lemma also shows that the bottleneck for odd p is in covering Cp−1. It may be
possible to show that Cp−1 separates into a constant number of uncrossable families leading
to an O(p)-approximation for (p, 4)-FGC for all p. The first non-trivial case is when p = 3.

3.4 An O(1)-Approximation for Flex-ST
In this section, we provide a constant factor approximation for (p, q)-Flex-ST for all fixed
p, q that satisfy 2(p + q) > pq. We follow the general approach outlined in 3.2 with some
modifications. In particular, we start with a stronger set of edges F than in the FGC case
above. Let E′ ⊆ E denote a feasible solution to (p, q − 1)-Flex-ST.

Recall from Section 1 the capacitated network design problem, in which each edge has
an integer capacity ue ≥ 1. Consider an instance of the (p(p + q))-Cap-ST problem on G

where every safe edge is given a capacity of p + q and every unsafe edge is given a capacity
of p. Our goal is to find the cheapest set of edges that support a flow of (p(p + q)) from s

to t. It is easy to see that any solution to (p, q)-Flex-ST is also a feasible solution for this
capacitated problem: every s-t cut either has at least p safe edges or at least p + q total edges,
and either case gives a capacity of at least p(p + q). As mentioned in Section 1, there exists a
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2 maxe(ue) = 2(p + q) approximation for this problem. Let E′′ ⊆ E be such a solution, and
note that cost(E′′) ≤ 2(p + q) ·OPT , where OPT denotes the cost of an optimal solution to
(p, q)-Flex-ST.

Let F = E′ ∪E′′. We redefine C to limit ourselves to the set of violated cuts containing
s, i.e. C = {A ⊂ V : s ∈ A, t /∈ A, |δF ∩S(A)| < p, |δF ∩U (A)| = p + q − 1}. By symmetry, it
suffices to only consider cuts containing s, since covering a set also covers its complement.
Following the discussion in Section 3.2, we use Algorithm 1 to cover violated cuts in stages
based on the number of safe edges. However, unlike the spanning case, the sets Ci are not
uncrossable in the single pair setting, even for (2, 2)-Flex-ST. In this case, we aim to further
partition Ci into subfamilies that we can cover efficiently.

For the remaining lemmas, we let Fi ⊆ E denote the set of edges F ′ at the start of
iteration i. In other words, Fi is a set of edges such that for all cuts A separating s from t, if
|δFi

(A)| = p + q − 1, then |δFi∩S(A)| ≥ i. We begin with a structural lemma.

▶ Lemma 17. Fix an iteration i ∈ {0, . . . , p− 1}. Let Ci be as defined in Algorithm 1. Let
A, B ∈ Ci. Then, either
1. A ∪B, A ∩B ∈ Ci, i.e. A and B uncross, or
2. max(δFi∩S(A ∩B), δFi∩S(A ∪B)) ≥ p.

Consider a flow network on the graph (V, Fi) with safe edges given a capacity of (p + q)
and unsafe edges given a capacity of p. Since E′′ ⊆ Fi, Fi satisfies the p(p + q)-Cap-ST
requirement. Therefore, the minimum capacity s-t cut and thus the maximum s-t flow value
is at least p(p + q). Since capacities are integral, there is some integral max flow f . By flow
decomposition, we can decompose f into a set P of |f | paths, each carrying a flow of 1, and
we can find P in polynomial time.

For each Q ⊆ P where |Q| = i, we define a subfamily of violated cuts CQ
i as follows. Let

Q = P1, . . . , Pi. Then, A ∈ Ci is in CQ
i iff there exist distinct edges e1, . . . , ei ∈ S satisfying:

1. ∀j ∈ [i], δFi
(A) ∩ Pj = {ej},

2. δFi∩S(A) = {e1, . . . , ei}.
Informally, CQ

i is the set of all violated cuts that intersect the paths of Q exactly once and
on a distinct safe edge each.

▶ Lemma 18. Suppose pq < 2p + 2q. If A ∈ Ci, then there exists some Q ⊆ P, |Q| = i, such
that A ∈ CQ

i .

The above lemma shows that ∪Q⊆P,|Q|=iCQ
i = Ci. Therefore, it suffices to cover each CQ

i .

▶ Lemma 19. For any Q ⊆ P, |Q| = i, CQ
i is a ring family.

We combine the above lemmas to obtain a constant factor approximation for covering Ci.

▶ Lemma 20. Suppose 2(p + q) > pq and p, q are fixed. Then, there exists an algorithm that
runs in nO(p+q) time to cover all cuts in Ci with cost at most

(
p2+2pq

i

)
·OPT .

The above lemma gives us Theorem 3 as a corollary. At the beginning of each augmentation
step, before running Algorithm 1, we compute a solution to the (p(p + q))-Cap-ST problem,
which we can do with cost at most (p + q) ·OPT . Summing over q augmentation iterations
gives us the desired (p + q)O(p) approximation ratio.

▶ Remark 21. The approximation factor in Theorem 3 can be optimized slightly. For example,
the algorithm we describe gives a 5-approximation for (2, 2)-Flex-ST. We omit the details of
this optimization in this paper and instead focus on showing constant factor for fixed p, q.



C. Chekuri and R. Jain 36:13

4 Approximating the Augmentation Problem for (p, q)-Flex-SNDP

In this section, we prove Theorem 4 and the resulting Corollaries 5 and 6. We begin
with some background on Räcke’s capacity-based probabilistic tree embeddings and Tree
Rounding algorithms for Group Steiner tree. We then present the algorithm and analysis for
Bulk-SNDP.

4.1 Räcke Tree Embeddings

The results in this section use Räcke’s capacity-based probabilistic tree embeddings. We
borrow the notation from [17]. Given G = (V, E) with capacity x : E → R+ on the
edges, a capacitated tree embedding of G is a tree T , along with two mapping functions
M1 : V (T )→ V (G) and M2 : E(T )→ 2E(G) that satisfy some conditions. M1 maps each
vertex in T to a vertex in G, and has the additional property that it gives a one-to-one mapping
between the leaves of T and the vertices of G. M2 maps each edge (a, b) ∈ E(T ) to a path
in G between M1(a) and M1(b). For notational convenience we view the two mappings as a
combined mappingM. For a vertex u ∈ V (G) we useM−1(u) to denote the leaf in T that is
mapped to u byM1. For an edge e ∈ E(G) we useM−1(e) = {f ∈ E(T ) | e ∈M2(f)}. It is
sometimes convenient to view a subset S ⊆ V (G) both as vertices in G and also corresponding
leaves of T .

The mapping M induces a capacity function y : E(T ) → R+ as follows. Consider
f = (a, b) ∈ E(T ). T − f induces a partition (A, B) of V (T ) which in turn induces a
partition/cut (A′, B′) of V (G) via the mapping M: A′ is the set of vertices in G that
correspond to the leaves in A and similarly B′. We then set y(f) =

∑
e∈δ(A′) x(e), in

other words y(f) is the capacity of cut (A′, B′) in G. The mapping also induces loads
on the edges of G. For each edge e ∈ G, we let load(e) =

∑
f∈E(T ):e∈M(f) y(f). The

relative load or congestion of e is rload(e) = load(e)/x(e). The congestion of G with
respect to a tree embedding (T ,M) is defined as maxe∈E(G) rload(e). Given a probabilistic
distribution D on trees embeddings of (G, x) we let βD = maxe∈E(G) E(T ,M)∼D rload(e)
denote the maximum expected congestion. Räcke showed the following fundamental result
on probabilistic embeddings of a capacitated graph into trees.

▶ Theorem 22 ([39]). Given a graph G and x : E(G) → R+, there exists a probability
distribution D on tree embeddings such that βD = O(log |V (G)|). All trees in the support of
D have height at most O(log(nC)), where C is the ratio of the largest to smallest capacity in
x. Moreover, there is randomized polynomial-time algorithm that can sample a tree from the
distribution D.

In the rest of the paper we use β to denote the guarantee provided by the preceding
theorem where β = O(log n) for a graph on n nodes. In order to use these probabilistic
embeddings to route flow, we need the following corollary, where we use maxflowz

H(A, B) to
denote the maxflow between two disjoint vertex subsets A, B in a capacitated graph H with
capacities given by z : E(H)→ R+.

▶ Corollary 23. Let D be the distribution guaranteed in Theorem 22. Let A, B ∈ V (G) be
two disjoint sets. Then

(i) for any tree (T ,M) in D, maxflowx
G(A, B) ≤ maxflowy

T (M−1(A),M−1(B)) and
(ii) 1

β E(T ,M)∼D[maxflowy
T (M−1(A),M−(B))] ≤ maxflowx

G(A, B).
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4.2 Group Steiner Tree, Set Connectivity and Tree Rounding
The group Steiner tree problem was introduced in [40] and studied in approximation by Garg,
Konjevod and Ravi [24]. The input is an edge-weighted graph G = (V, E), a root vertex
r ∈ V , and k groups S1, S2, . . . , Sk where each Si ⊆ V . The goal is to find a min-weight
subgraph H of G such there is a path in H from r to each group Si (that is, to some vertex
in Si). The approximability of this problem has attracted substantial attention. Garg et
al. [24] described a randomized algorithm to round a fractional solution to a cut-based LP
relaxation when G is a tree – it achieves a O(log n log k)-approximation.

Set Connectivity is a generalization of group Steiner tree problem. Here we are given pairs
of sets (S1, T1), (S2, T2), . . . , (Sk, Tk) and the goal is to find a min-cost subgraph H such that
there is an (Si, Ti) path in H for each i. Chalermsook, Grandoni and Laekhanukit [13] studied
Survivable Set Connectivity problem, motivated by earlier work in [29]. Here each pair (Si, Ti)
has a connectivity requirement ri which implies that one seeks ri edge-disjoint paths between
Si and Ti in the chosen subgraph H; [13] obtained a bicriteria-approximation via Räcke tree
and group Steiner tree rounding. The recent work of Chen et al [17] uses related but more
sophisticated ideas to obtain the first true approximation for this problem. They refer to
the problem as Group Connectivity problem and obtain an O(r3 log r log7 n)-approximation
where r = maxi ri connectivity requirement (see [17] for more precise bounds).

Oblivious tree rounding. In [13] a randomized oblivious algorithm based on the group
Steiner tree rounding from [24] is described. This is useful since the sets to be connected
during the course of their algorithm are implicitly generated. We encapsulate their result in
the following lemma. The tree rounding algorithm in [13, 17] is phrased slightly differently
since they combine aspects of group Steiner rounding and the congestion mapping that comes
from Räcke trees. We separate these two explicitly to make the idea more transparent. We
refer to the algorithm from the lemma below as TreeRounding.

▶ Lemma 24 ([13, 17]). Consider an instance of Set Connectivity on an n-node tree
T = (V, E) with height h and let x : E → [0, 1]. Suppose A, B ⊆ V are disjoint sets and
suppose K ⊆ E such that x restricted to K supports a flow of f ≤ 1 between A and B. There
is a randomized algorithm that is oblivious to A, B, K (hence depends only on x and value
f) that outputs a subset E′ ⊆ E such that (i) The probability that E′ ∩K connects A to
B is at least a fixed constant ϕ and (ii) For any edge e ∈ E, the probability that e ∈ E′ is
min{1, O( 1

f h log2 n)x(e)}.

4.3 Rounding Algorithm for the Augmentation Problem
We adapt the algorithm and analysis in [17] to Bulk-SNDP. Let β be the expected congestion
given by Theorem 22. Consider an instance of Bulk-SNDP specified by a graph G : (V, E)
with cost function c : E → R≥0 and a set of scenarios Ω = {(Fj ,Kj) : j ∈ [m]}. Assume we
have a partial solution H satisfying all scenarios in Ωℓ−1. We augment H to satisfy scenarios
in Ωℓ.

We start by obtaining a solution {xe}e∈E\H for the LP relaxation. Let E′ = E \H. We
define LARGE = {e ∈ E′ : xe ≥ 1

4ℓβ }, and SMALL = {e ∈ E′ : xe < 1
4ℓβ }. The LP has paid

for each e ∈ LARGE a cost of at least c(e)/(4ℓβ), hence adding all of them to H will cost
O(ℓβ ·OPTLP). If LARGE ∪H is a feasible solution to the augmentation problem, then we
are done since we obtain a solution of cost O(ℓ log n ·OPTLP). Thus, the interesting case is
when LARGE ∪H is not a feasible solution.
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Following [17] we employ a Räcke tree based rounding. A crucial step is to set up a
capacitated graph appropriately. We can assume, with a negligible increase in the fractional
cost, that for each edge e ∈ E′, x(e) = 0 or x(e) ≥ 1

n3 ; this can be ensured by rounding down
to 0 the fractional value of any edge with very small value, and compensating for this loss by
scaling up the fractional value of the other edges by a factor of (1 + 1/n). It is easy to check
that the new solution satisfies the cut covering constraints, and we have only increased the
cost of the fractional solution by a (1 + 1/n)-factor. In the subsequent steps we can ignore
edges with xe = 0 and assume that there are no such edges.

Consider the original graph G = (V, E) where we set a capacity for each e ∈ E as follows.
If e ∈ LARGE ∪H we set x̃e = 1

4ℓβ . Otherwise we set x̃e = xe. Since the ratio of the largest
to smallest capacity is O(n3), the height of any Räcke tree for G with capacities x̃ is at most
O(log n). Then, we repeatedly sample Räcke trees. For each tree, we sample edges by the
rounding algorithm given by Chalermsook et al in [13] (see Section 4.2 for details). A formal
description of the algorithm is provided below where t′ and t are two parameters that control
the number of trees sampled and the number of times we run the tree rounding algorithm in
each sampled tree. We will analyze the algorithm by setting both t and t′ to Θ(ℓ log n).

Algorithm 2 Approximating the Bulk-SNDP Augmentation Problem from ℓ − 1 to ℓ.

H ← partial solution satisfying scenarios in Ωℓ

{x}e∈E ← fractional solution to the LP
LARGE← {e ∈ E′ : xe ≥ 1

4ℓβ }
SMALL← {e ∈ E′ : xe < 1

4ℓβ }
H ← H ∪ LARGE
if H is a feasible solution satisfying scenarios in Ωℓ+1 then return H

else

x̃e ←

{
1

4ℓβ e ∈ H

xe otherwise
end if
D ← Räcke tree distribution for (G, x̃)
for i = 1, . . . t′ do

Sample a tree (T ,M, y) ∼ D
for j = 1, . . . , t do

H ′ ← output of oblivious TreeRounding algorithm on (G, T )
H ← H ∪M(H ′)

end for
end for
return H

4.4 Analysis
For the remainder of of this analysis, we denote as H the partial solution after buying
edges in LARGE. We will assume, following earlier discussion, that H does not satisfy all
requirements specified by scenarios in Ωℓ. This implies that there must be some F such that
|F | ≤ ℓ, F ⊆ Fi for some i ∈ [m], and ∃(u, v) ∈ Ki such that u and v are disconnected in
(V, H \ F ). Since H satisfies all scenarios in Ωℓ−1, it must be the case that F has exactly ℓ

edges. We call such an F a violating set. There are at most
(|H|

ℓ

)
violating edge sets, and

since |H| ≤ n2, this is upper bounded by O(n2ℓ). We say that a set of edges H ′ ⊆ E \H is
a feasible augmentation for violating edge set F if ∀i ∈ [m] such that F ⊆ Fi, ∀(u, v) ∈ Ki,
there is a path from u to v in (H ∪H ′) \ F . The following is a simple observation.
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▷ Claim 25. H ′ ⊆ E \H is a feasible solution to the augmentation problem iff for each
violating edge set F , H ′ is a feasible augmentation for F .

The preceding observation allows us to focus on a fixed violating edge set F , and ensure
that the algorithm outputs a set H ′ that is a feasible augmentation for F with high probability.
We observe that the algorithm is oblivious to F . Thus, if we obtain a high probability bound
for a fixed F , since there are O(n2ℓ) violating edge sets, we can use the union bound to argue
that H ′ is feasible solution for all violating edge sets. For the remainder of this section,
until we do the final cost analysis, we work with a fixed violating edge set F . For ease of
notation, we let KF =

⋃
i∈[m]:F ⊆Fi

Ki be the set of terminal pairs that need to be connected
in (H ∪H ′) \ F .

Consider a tree (T ,M, y) in the Räcke distribution for the graph G with capacities
x̃. We let M−1(F ) denote the set of all tree edges corresponding to edges in F , i.e.
M−1(F ) = ∪e∈FM−1(e). We call (T ,M, y) good with respect to F if y(M−1(F )) ≤ 1

2 ;
equivalently, F blocks a flow of at most 1

2 in T .

▶ Lemma 26. For a violating edge set F , a randomly sampled Räcke tree (T ,M, y) is good
with respect to F with probability at least 1

2 .

Given the preceding lemma, a natural approach is to sample a good tree T and hope that
T \M−1(F ) still has good flow between each terminal pair. However, since we rounded down
all edges in LARGE ∪H, it is possible that M−1(F ) contains an edge whose removal would
disconnect a terminal pair in T , even if T is good. See [17] for a more detailed discussion
and example.

We note that our goal is to find a set of edges H ′ ⊆ E such that each terminal pair in
KF has a path in (H ′ ∪H) \ F ; these paths must exist in the original graph, even if they
do not exist in the tree. Therefore, instead of looking directly at paths in T , we focus on
obtaining paths through components that are already connected in (V (G), H \ F ). The rest
of the argument is to show that sufficiently many iterations of TreeRounding on any good
tree T for F will yield a feasible set H ′ for F .

4.5 Shattered Components, Set Connectivity and Rounding
Let QF be the set of connected components in the subgraph induced by H \ F . We use
vertex subsets to denote components. Let T be a good tree for F . We say that a connected
component Q ∈ QF is shattered if it is disconnected in T \M−1(F ), else we call it intact.
For each (u, v) ∈ KF , let Qu ∈ QF be the component containing u, and Qv ∈ QF be the
component containing v. Note that Qu may be the same as Qv for some (u, v) ∈ KF , but if
F is a violating edge set then there is at least one pair (u, v) ∈ KF such that Qu ≠ Qv. Now,
we define a Set Connectivity instance that is induced by F and T . Consider two disjoint
vertex subsets A, B ⊂ V . We say that (A, B) partitions the set of shattered components if
each shattered component Q is fully contained in A or fully contained in B. Formally let

ZF = {(A ∪Qu, B ∪Qv) : (A, B) partitions the shattered components, (u, v) ∈ KF }.

In other words, ZF is set of all partitions of shattered components that separate some pair
(u, v) ∈ KF . Since the leaves of T are in one to one correspondence with V (G) we can view
ZF as inducing a Set Connectivity instance in T ; technically we need to consider the pairs
{(M−1(A),M−1(B)) | (A, B) ∈ ZF }; however, for simplicity we conflate the leaves of T
with V (G). We claim that it suffices to find a feasible solution that connects the pairs defined
by ZF in the tree T .
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▶ Lemma 27. Let E′ ⊆ T \M−1(F ). Suppose there exists a path in E′ ⊆ T \M−1(F )
connecting A to B for all (A, B) ∈ ZF . Then, there is an u-v path for each (u, v) ∈ KF in
(M(E′) ∪H) \ F .

Routing flow. We now argue that (T ,M, y) routes sufficient flow for each pair in ZF

without using the edges inM−1(F ); in other words y is fractional solution (modulo a scaling
factor) to the Set Connectivity instance ZF in the graph/forest T \M−1(F ). We can then
appeal to TreeRounding lemma to argue that it will connect the pairs in ZF without using
any edges in F .

▶ Lemma 28. Let (A, B) ∈ ZF . Let S ⊂ VT such that A ⊆ S and B ⊆ VT \ S. Then
y(δT \M−1(F )(S)) ≥ 1

4ℓβ .

Bounding ZF . A second crucial property is a bound on |ZF |, the number of pairs in the
Set Connectivity instance induced by F and a good tree T for F .

▶ Lemma 29. For a good tree T , |ZF | ≤ 22ℓβ |KF |.

4.6 Correctness and Cost
The following two lemmas show that by taking a union bound over all violating edge sets
F and applying the Tree Rounding lemma 24, one can show that the algorithm outputs a
feasible augmentation solution with probability at least 1

2 .

▶ Lemma 30. Suppose T is good for a violating edge set F . Then after t = O(ℓlogn)
rounds of TreeRounding with flow parameter 1

4ℓβ , the probability that H ′ is not a feasible
augmentation for F is at most (1− ϕ)t|ZF | ≤ 1/4.

▶ Lemma 31. The algorithm outputs a solution H ′ such that H∪H ′ is a feasible augmentation
to the given instance with probability at least 1

2 .

Now we analyze the expected cost of the edges output by the algorithm for augmentation
with respect to OPTLP, the cost of the fractional solution.

▶ Lemma 32. The total expected cost of the algorithm is O(ℓ3 log7 n) ·OPTLP.

Combining the correctness and cost analysis we obtain the following.

▶ Lemma 33. There is a randomized O(ℓ3 log7 n)-approximation algorithm for the Bulk-
SNDP Augmentation problem from ℓ− 1 to ℓ. The algorithm runs in time polynomial in n

and α, where α is the amount of time it takes to solve the LP.

To prove Theorem 4, we start with a solution from ℓ = 0 and iteratively solve k

augmentation problems. Since the LP for Bulk-SNDP can be solved in polynomial time (see
Section 2), we obtain a polynomial time O(k4 log7 n)-approximation algorithm.

For Flex-SNDP, recall that (p, 0)-Flex-SNDP is equivalent to EC-SNDP where every
terminal pair has connectivity requirement ri = p. Therefore, we can start with a 2-
approximate solution to (p, 0)-Flex-SNDP and apply Lemma 33 q times. In this case, the
maximum width is p + q, so we get an overall approximation ratio of O(q(p + q)3 log7 n).
Recall from Section 2 that the LP can be solved in nO(q) time, giving us Corollary 5.

Finally, for Relative SNDP, there is an LP relaxation described in [19] that can be solved
in polynomial time, even when k is not fixed. We can modify Algorithm 2 for RSNDP by
solving this LP relaxation instead and following the same rounding algorithm. This, along
with the reduction to Bulk-SNDP discussed in Section 1, completes the proof of Corollary 6.

ICALP 2023
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